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Fatigue Characteristic of Reinforced Concrete Member in Mineral Oil
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Synopsis

The present paper describes flexural shear cyclic loading test results of reinforced concrete member in mineral oil,

with focusing on fatigue characteristic due to liquid permeation into cracks of the member. In case of no fatigue

failure reached, monotonic load was again applied up to failure after cyclic loading. For comparison, similar

loading tests were also conducted in water and no liquid (n01111al) conditions. Cyclic loading and liquid

dependent failure behavior, i.e. crack progress, stiffuess reduction and displacement increase are discussed.
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1. INTRODUCTION

In recent years, deterioration has been found in the concrete foundation for pressing machine of steel

production factory. In these facilities, circumferential temperature reaches up to 40 to 50 C degree around the

concrete foundation. As the result, accelerated evaporation of entrained water provides negative pressure and

leads absorption of mineral oil into concrete. In addition, repeated cyclic load is applied during n01111al operation.

These facts suggest fatigue orient deterioration of concrete. Chemical attack by plant oil has been well known,

but not by mineral oil. Rain water dependent deterioration of concrete slab subjected to repeated vehicle load is

also well known.

As the first step, authors conducted compressive fatigue test with concrete cylinders in the three different

circumstances, i.e. in mineral oil, in water and in no liquid, i.e. normal condition. Focusing points are load cycle

and liquid dependent strength and hysteretic stress strain relationship [1]. However significant effect of liquid

penneation into cracks was not observed. One of causes was that micro crack provided insufficient penneation

of more viscous mineral oil.

In these backgrow1ds, fatigue loading test has been conducted focusing on flexural shear fatigue

characteristic of reinforced concrete member. Test specimens designed as post yielding shear failure, are

similarly in the three different circumstances, i.e. in water, mineral oil and normal (no liquid) conditions.

Focusing points are load cycle and liquid type dependent crack progress, load displacement characteristic and

residual displacement increase. In case of no fatigue failure reached, monotonic load is again applied up to the

ultimate after fatigue test.
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2. EXPERIMENTAL TEST
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Table 1 Material Properties

Table 2 List of Test Specimens
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Fig.l Specimen Dimension and measurement
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Specimen
Test Condition Age Obtained Essential Yield Load (kN)

Circumferentional Applied Load (day) [Applied Upper and Lower Load Ratio (%) I
N-O Monotonic 70 16.7

N-I
o Liquid ~

N-2 Cyclic ~ (l0~80]

N-3 156

0-0 Monotonic 112 15.8

0-1 113-
0-2 Oil 127

Cyclic - (I 0~80]
0-3 170

-
0-4 225

W-O Monotonic 102 16.0

W-I
Water

106
-

W-2 Cyclic ~ (lO~801

W-3 163

2.1 Test Specimens

As illustrated in Fig.l, test specimen has
dimension of Bl20mmxHl501llin xLlOOOmm,
shear span ratio of 3.75 and has single tensile
reinforcement allocated with no shear
reinforcement. As for specimen production,
once work form removal, one day after the
concrete placement, test specimens were sprayed
water cured during 28 days in the curing room
under 20 iJ temperature. Material properties are
illustrated in Table 1.

2.2 Test Procedures

Three points loading is illustrated

in Fig.1. Measurements are relative

displacement between loaded and

supported points, reinforcement

strains at three points from center at

l50mm distance and concrete

strains at both sides of loading

point.

Test variable is circumferential

condition, in mineral oil, in water

and no liquid. As illustrated in

Photo 1, a part of test specimen

where crack distributes is soaked in

the liquid. Test specimens are listed

111 Table 2, where for each

circumferential condition; one is for

essential monotonic loading while

another three or four are for cyclic

loading test. Essential monotonic

loading specimen is referenced for upper and lower load limit

of the cyclic loading test. 10% of yield strength obtained in

that essential loading test will be utilized as lower limit and

80% of that as upper limit for the following cyclic loading

test.

In the fatigue test, controlled load was sine wave with

0.5Hz velocity due to applied load capacity and provided

displacement. Because of rather slow velocity controlled,

250,000 load cycles was employed as a maximum number

except 0-4 specimen. If no failure reached in the fatigue test,

it was again monotonically loaded up to failure after 250,000

cyclic loading experienced. It is noted that 0-4 specimen

was additionally tested for potential fatigue shear failure (failed in shear at 461,000 cycles during cyclic loading).
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3. FAILURE BEHAVIOR IN THE ESSENTIAL MONOTONIC LOADING TEST
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Fig.2 illustrates load-displacement relationship

in the essential monotonic loading test specimens

for tlu'ee circumferential conditions and Fig.3

represents crack distribution in the mineral oil

specimen. There is no significant difference in

yielding and maximum load capacity between three

circumferential conditions. Also conunonly

observed in tlu'ee specimens was flexural crack

progress up to diagonal shear through out the

loading point in the ultimate stage. There is some

difference in the failure displacement between

three specimens due to flexural shear crack

propagation, where shear crack in the water and

mineral oil specimen progresses up to the right side

of bearing plate, while that in the no liquid

speCImen progresses up undemeath the loading

plate.

Fig.4 represents load strain relationship of

concrete at compressive flange, in which loading

history is respectively provided as stage I before

yielding, stage 2 before maximum loading and

stage 3 after that. In the stage I, compressive

strain, mainly due to flexural compression,

increases more due to dominant flexural cracks,

while in the stage 2, less due to predominance of

diagonal shear crack. In the stage 3, this

compressive strain decreases 111 the load

descending branch because of ultimate shear

failure, no flexural defonnation increase.

Although shear to flexural strength ratio of 1.37,

these specimens ultimately failed in flexural shear

and experimental maximum loads reached up to

around the calculated shear strength due to strain

hardening of reinforcement.

4. FATIGUE TEST

4.1 Failure Behavior in the Cyclic Loading Test

Experimental test results are sWllinarized in the Table 3 including essential monotonic loading test specimens.

Among them, water specimens W-2 and W-3 and mineral oil specimen 0-4 were failed in shear during cyclic

loading. The cyclic nW11ber at failure is shown in the parentheses of the table. Other test specimens were failed

in post yielding shear during final monotonic loading stage after cyclic loading application. The yielding load
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Table 3 Summary of Test Results

.'11' "'I' ('1/' ,'rJl />111 ,,\/, Ip nl L't" 0:\/1 R II/"'!J//? //(1
L"P

Applied Load
Failure i\ludeSpecimen P,., PI·,"I/IIP I'll PIli /) III "'I' /P II/} II",

Cyclic Monotonic

N-O 16.6 - 19.4 - - 0.0558 1.00 0
N-I 16.5 099 21.4 1.10 - 0.0638 1.14 0 0
N-2 17.6 1.06 18.8 0.97 - 0.0402 0.72 0 0
N-3 0.0620 1.11 0 0 Post Flexural

16.7 1.01 18.7 0.96 -
Yeilding Shear

0-0 16.3 - 19.0 - - 0.0429 1.00 0 Failure
0-1 17.4 1.07 20.7 1.09 - 0.0747 1.74 0 0
0-2 17.3 1.06 19.3 1.02 - 0.0347 0.81 0 0

0-3 17.1 1.05 18.1 0.95 - 0.0509 l.J9 0 0

0-4 12.6 0.67 0.68 0.0080 0.19 0(461,152) - Shear Failure During- -
Fatigue loading

WoO 160 - 18.8 - - 0.0453 100 - 0 ' v, oe."" ,

0.83 0 0
Ycilding Shear

W-I 17.6 1.10 181 096 00376 , ,:I ....

W-2 - - 12.8 0.68 0.69 00066 0.15 0(25,280) . Shear Fnilure During

W·3 - - 12.8 0.68 0.69 0.0147 0.32 0(32.807) - Fatigue londing

Note: P "j exp : yeilding strength, P '"~ exp : maximum experimental strength, P V" cal: estimated strength, R '"~ exp : ulrimme rotation
For Oil, R ,,4 exp : rotation of 461,000 cycle

For Water, R ,,2 exp and R ,,3 exp : rotation of25,000 cycle and 32,000 cycle respectively
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Fig.S Load-Displacement History
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Fig.6 Load-Strain History

ratio which is defined as the yield capacity at cyclic loading divided by that at essential monotonic loading,

provides no significant effect of fatigue deterioration except above mentioned two water specimens,

Fig.S and Fig.6 represent displacement and concrete strain histories of the cyclic loading test specimen

respectively for each circwnferential condition, And crack distribution until 1,000th cyclic loading, the end of

cyclic loading and post fatigue monotonic loading is respectively illustrated in Fig.7, where in the water specimen

W-2 failed in shear, crack distribution is shown until cyclic loading number of 25,000. It is noted that in the

Fig.S and Fig.6, the 1st cycle history is affected by cracking because applied upper limit load is more than the

flexural tensile strength of the member. Fig.S suggests cyclic nwnber dependent increase of displacement, where

in the water specimens failed during cyclic load application, larger displacement reached even at lO,OOOth and

displacement at 20,OOOth is larger than that at 250,OOOth of both mineral oil and no liquid specimens.
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Fig.7 Comparison of Crack Distribution

specimen.

As for the strain history at compressive concrete flange shown

in Fig.6, it seems to cOlTespond with displacement history except

water specimen where strain at 10,000th cycle is smaller that that

at J OOth, and cyclic number dependent decreases is observed for

further cycles. This strain decrease phenomena of the water

specimen is explained by significant shear defoD11ation increase

and flexural stress release as a result at the progressive shear

failure stage. It is noted that for no liquid specimen, predicted

design fatigue strength [2] defined below eq.(l) provides 9.46kN at 250,000 cycles (13.4kN as upper load applied

in the present test), that means all specimens are predicted as possible fatigue failure during cyclic loading stage.

Fig.7 suggests that in comparison between no liquid and

mineral oil specimens, flexural crack followed by flexural shear

crack is similarly observed, however flexural shear crack of the

water specimen distributes up at earlier stage. In the water

specimen, it distributes much earlier, say at around 10,000th cycle,

up to as same extent of that at 250,000th cycle of the mineral oil

Vrcd=Vcd (1- VpdIVcd) (l-logN/ll)

V rcd : Fatigue shear strength V cd : Shear strength

Vpd : Applied shear force N : Fatigue life(Load cycles)

(1)

4.2 Displacement History

Fig.8 provides load cycle dependent stiffness reduction, where the stiffness is defined as load amplitude divided

by responded displacement amplitude for each loading cycle and stiffness ratio defined as the prescribed stiffness

divided by initial stiffness at the first loading cycle. Each specimen provides significant reduction of stiffness,

however after 10th cycle, some difference is observed due to circumferential condition. In the no liquid

specimen, stiffness ratio gradually decreases until 1,000 load cycles but is rather stable after that. In contrast,

both water and mineral oil specimens continuously decrease even after that cycle. However in the shear failed

specimens, two water specimens W-2 and W-3 and the mineral oil specimen 0-4, the history does not provide

sudden reduction even toward shear failure.
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Fig.9 provides load cycle dependent displacement response, where drift angle is defined as the displacement at

each cycle upper load divided by shear span L=450mm. No liquid (nol111al) specimens tend to increase linearly,

while water specimens provide similar increase until around 4000 cycles, but provide significant incTease after

that cycle except W-I with no shear failure reached. Among mineral oil specimens shown as thick solid line,

0-4 specimen provides significant increase after 400,000 cycles and others some increase after 100,000 cycles.

4.3 Damage Potential with Liquid Pressure

Two of three water specimens provided shear failure during cyclic load application, while one of four mineral

oil specimens shear failure. In general, with liquid existence, crack especially flexural shear crack tends to be

enhanced. That enhancement is more in water than in mineral oil with higher viscosity. In the eye observation,

both at water and mineral oil specimens test, paste was pushed out of existing cracks and flew out in the acryl

storage with increase of load cycles. However more amolU1t of paste flow out was observed in the water specimen

than mineral oil specimen. This fact suggests difference of liquid pem1eation and pressure dependent 011 liquid

viscosity.

Fig.l0 Load Displacement Relationship after
Fatigue Load Experienced

4.4 Post Fatigue Monotonic Loading Test

Monotonic load was applied up to failure for survived

specimens. Obtained load displacement relationship is

represented in Fig.l0 where the results of same

specimens is provided for no liquid and mineral oil

condition, and the result of W-I specimen provided for

water. With some difference in maximlU11 load capacity

and ultimate displacement, it is commonly said that load

increases up to 17-18kN at yielding and after that

displacement increases until ultimate shear failure. As

shown in Fig.7 some flexural shear cracks were

distributed but no flexural yielding was reached.

Flexural shear crack enhanced during cyclic load

application, progressed toward the compressive flange

section.
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4.5 Ultimate Strength and Ultimate Displacement

Obtained ultimate strength and ultimate displacement is respectively summarized in Fig.ll and Fig.12. Fig.ll

provides no significant difference in ultimate strength except liquid specimens failed in shear during cyclic load
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Fig.ll Comparison of Ultimate Strength Fig.12 Comparison of Ultimate Displacement
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application. Shear strength of these latter two water specimens provide 69% of calculated value, further less

compared with obtained flexural strength in other specimens, where averaged value is provided only for post

yielding shear failure specimens.

Fig.12 provides ultimate displacement, where some difference is observed between specimens because all of

them were ultimately failed in shear; i.e. some of them in shear during fatigue loading and most of them in

flexural shear. In general, mineral oil specimens provide less value than no liquid (non11al) specimens and water

specimens least value among all specimens failed in flexural shear.

5. Concluding Remarks

Cyclic loading test has been carried out in order to study liquid penneation dependent fatigue characteristic of

reinforced concrete beam. Obtained results are concluded as followings.

1) Flexural shear crack develops during cyclic load application.

2) Load cycle dependent displacement increases more in water and the next, mineral oil than normal(no liquid)

condition, and two of three specimens in water and one of four those in mineral oil failed in shear during cyclic

loading.

3) In the post fatigue monotonic loading test, observed is post flexural yielding shear failure at ultimate.

4) Displacement ductility decreases more in water and the next, mineral oil than nonnal conditions.

5) For practical design of reinforced concrete member with mineral oil pen11eation, it seems to be conservatively

designed with fatigue strength predicted by cunent design standard considering water penneation.
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