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Synopsis

Lifecycle seismic risk of existing highway bridge piers which were retrofitted after the Hanshin Earthquake,

have been estimated by probability analysis. Hazard and fragility curves for the seismic risk analysis and also a

category of damage rank and recovery cost are explained practically, those are essentially required for the

estimation. The obtained results and also some issues to be solved for the near future are described consequently.
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1. Introduction

Cost minimum based strategy is strongly required nowadays for the maintenance of infrastructures. Life cycle

cost assessment is essential for decision making when and how to maintain and for priority which facility to

implement. The stages for the Iife cycle cost assessment are generally construction, maintenance and

reconstruction. In addition to those, it should be also essential to consider the possible impact of earthquake,

which might occur during service period.

In this paper, a seismic risk of highway bridges in urban area has been evaluated as value of money, which is

helpful for decision making. Money value quantifications of the possessing risk and of the countermeasure are

effective for the strategic maintenance program in practice. The seismic risk is generally consisted with direct cost

due to recovery of the infrastructure itself and indirect cost due to social loss by the deterioration of its network

function. The present study focuses only the former cost.

2. Seismic Risk Assessment Procedure

As shown in Fig.1, there are three essentials in the seismic risk analysis as follows: The first is a hazard curve

for ealihquake occurrence probability, the second is a fragility curve for damage rank and its probability of

structure due to earthquake, and the last is an expectable value loss relevant to each of the damage rank

The hazard curve used herein was as shown in Fig. 2, which has been proposed by JSCE available allover

Japan. Moreover, the fragility curve was obtained as follows: First, The strengths of existing highway bridge piers

were estimated considering confinement effect on concrete; Second, the displacement responses of the piers was

calculated by dynamic response analyses; Last, the fragility curve and also damage density distribution were
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Figure 1. Flow of seismic risk estimation

drawn supposing that the displacement responses could accord to lognormal distribution. Furthermore the

expectable value loss was defined based upon the restoring expenses of highway viaducts, consisting piles and a

T-shaped pier at Hyogoken Nanbu Earthquake in 1995.
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Figure 2. Seismic hazard curve3
)

Consequently, the probability of the damage due to ealihquake was a product of the probabilitie of

occurrences of eatihquake by the hazard curve and damage by the fragility curve and the seismic risk can be

estimated by multiplying the obtained product by the expectable value lost.

3. Existing Bridge Piers to be analyzed

The structures to be analyzed are existing highway bridge piers in urban area, which have been already

retrofitted by steel jacketting due to sei mic code change after the HatlSin Earthquake, however, the focusing point

in the present stud is to estimate eismic risk against the larger earthquake in the future. The execution cost for

the piers reconstruction and strengthening due to earthquake damage a ear and fifty ser ice periods ere onl

considered, except for the cost for the girders due to earthquake damage and ordinary maintenance cost.

All the highway bridge pier for anal se are of reinforced concrete, while the corresponding bridge girders

are of reinforced concrete or steel. Various five piers among them, Ii ted in Tab. 1, were selected with deferent

height, cross-sectional size and the individuality which will be describe in section 5.2. The pier height at the

analysis was defined as the length from the bottom of deck slab to the top of foundation, in which an inetiia force

due to earthquake was applied at the top of the pier. Thu , the solution ha a safety margin because a gra ity

center of the superstructure is generally located above the bottom of the deck lab.
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Table 1. Detail of bridge piers

Square
Static nonlinear individuality

Bridge Height Yielding Yielding Maximum Maximum Ultimate
Beam cross-Section

Piear (m) load Seismic load Seismic displacement
(111m)

(kN) Intensity* (kN) Intensity* (111111 )

T1 RC 12.7 2400 2577 0.35 3696 0.50 302

T2 Steel 11.2 2000 1864 0.40 2612 0.55 272

T3 Steel 11.2 2000 1781 0.36 2228 0.45 438

T4 Steel 11.2 2300 2582 0.47 3700 0.67 304

T5 Steel 11.1 2300 2256 0.47 3181 0.66 354

• Failure seismic intensity is defined as the ratio between failure load and weight, while maximum seismic intensity is defined as the ratio between

maximum load and weight

4. Seismic Hazard Curve

In Fig.2, the left graphic shows seismic hazard curve in the 246 places distributed around Japan. For each

acceleration, a curve which has larger probability than the 84% curves was drawn, and named as 0.84. At this

research, considering the reinforcement, the curve named 0.16 was chosen to estimate the min. seismic risk.

5. Fragility Curve

5.1 Confinement effect of concrete

In an ordinary structural design of concrete, the uniaxial stress and strain relation as broken line in Fig. 3.

However, an alternative solid line in the figure was recommended lately in the specification of highway bridge

design in Japan, which was reflected on the confinement effect of concrete due to shear reinforcement. The effect

can lead the improvement of the strength and defonnability of reinforced concrete structural members. The

maximum effect was expected in this study, because the referred existing bridges had a sufficient shear

reinforcement.

Confined concrete p
(J C B A As

member

d
,

~
Unconfined

concrete member

E 8

Figure 3. Example of uniaxial Figure 4. Dal11age rank on

stress-strai n curve for confined load-displacement curve

concrete
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5.2 Load-deflection curves and hysteresis of the piers

FigA shows the idealized multi linear load-deflection curve introduced by a nonlinear analysis program used

herein. Each slope were determined as follows: First, at the point a in the figure, cracking of concrete initiates;

Second, at point b, tensile reinforcement yielded and the yielding load achieved; Third, at point c, maximum

strength attains; Last, at point d of ultimate state defined by the compressive failure of concrete. Furthermore, four

damage ranks according to deflection level were categorized into C, B, A and As.

5.3 Time response analysis

Time response analysis is a kind of dynamic analysis, with the proper period and ground motion due to

earthquake as parameters. To raise the reliability of the analysis, number of practical pier models with various and

reasonable proper periods were derived from the existing five piers, altering their yielding intensity. In Fig.5, in

actually the piers with the same shear strength have different bending strength from each other around 10%,

accordingly we changed yielding intensity among ex ± 0.1 (ex as the initial yielding intensity). The alteration

results are shown in Fig.6.

As the another parameter, 6 kinds of design seismic waves for the second-category foundation have been

prescribed by the existing specifications for highway bridges, in which three of them are called Type 1, and the

rest are called Type 2. We adjusted the earthquake intensity from 100gai to 1000gai with 100gai increment in

between. Thus, there are 60 seismic waves available.

The estimation results of the pier T5 are shown in Fig.7.
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5.4 Seismic fragility curve

It is essential, for the five existing piers, the corresponding damage rank previously described in section 5.2.

Table.2 shows the definition of the damage ranks.

For each of the prescribed acceleration on ground surface, the corresponding series of the calculated

responses displacement, take the results of 700gal shown in Fig.7 as an example, were approximated to be

distributed lognormally, as shown in Fig.8. The approximated distribution were, further more, subdivided into four

of the damage ranks of As, A, Band C as shown in Fig.9, in which the subdivided curves were integrated as to be

the occurrence probability of each damage rank. The fragility curves shown in Fig.! 0 have been obtained as the

whole results of the probabilities, ca'Tying out the same procedure as to data in Fig.7 of other accelerations.
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Figure 9 Lognormal distribution Figure 10 Fragility Curve
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Table 2. Category of damage rank based upon displacement states

Damage
Displacement Definition

Rank

As Ultimate Collapsed or seriously deformation

A at The Maximum Load Rupture ofre-bars and Significant deformation

B At Yielding Load ofre-bars Crack and partial peeling of cover concrete

C Elastic Minor damage, i.e., crack initiation

6. Cost at Ranks of Seismic Damage and Seismic Risk

According to reference 4, the restoring method and cost for each damage rank were indicated and shown in

Tab.3. From chapter 4 to 6, all of three essentials were prepared, P(a) as the probability of earthquake, p(bla) as

the probability of level b damage when earthquake a occurs, at last cost(b) as the repairing cost of level b

indicated at Tab.3. The seismic risk is able to be calculated with the equation I and 2. The results are in TabA with

the interest rate 0.02.

Table 3. Restoring method and cost for each damage rank

Retrofitting design
Damage rank

New-Construction Repairing
Recovery cost

Strengthening

As Removal of existing

pier and Construct

new pier with - - 15.8

A sufficient seismic

performance

Removal of

damaged concrete,
Steel or concrete

B - Repair of deformed 2.8

re-bars and Fill up
jacketing

of cracks with resin

C None 0

New construction I

rOOOgal f.
risk = 1 P(a)x LLP(b!a)xcosl(b)]

!Jam

risk50 = iJiSk/(1 + O.02Y]
1=0
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Table 4. Estimation results

Tag
Percentage of average cost Percentage of total cost for 50 years

Yearly(risk) usage(risk50)

T1 4.07% 125%

T2 4.40% 136%

T3 4.43% 134%

T4 3.57% 110%

T5 3.38% 104%

The damage possibilities of the existing highway bridge piers in the urban area due to earthquake and also

the relevant cost for recovery.

As Fig.11 showed, as to the tendency of estimated cost a year for each damage rank, it was naturally found

that the cost for damage ranks As and A was expensive. It was due to the need of the rernoval and reconstruction

based on the practical experience at the Hanshin Earthquake.

While Fig.12 shows us the seismic risks of different piers, it also could be pointed out that the seismic risk

of the pier under eccentric vertical load was relatively less occasionally designed with larger ultimate strength.

The contain of seismic risks for different piers as shown in Fig.13 and the list of the cost for the rank A and

B categories took larger percentage.
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In this paper, with detail expectation of hazard curve, fragility curve and prospective recovery cost, the min.

seismic risk of the highway bridges, which are supposed to be adequately strengthened, were estimated. From

the results, it can be seen that

(1) the piers of steel beam have larger seismic risk than the ones of concrete beam.

(2) It is also obviously that A and B ranks take the larger percentage of the total seismic risk..

(3) The total risk will increases with a yearly reduced pace.

As issues to be solved, first, load-displacement relationship of the bridge piers should be improved

considering foundation. Second, definition of both damage rank and corresponding cost should be more

precisely considered. Last, hazard risk should be improved reflecting locality.
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