A generalization of a theorem of W. Hurewicz

By Jun-iti NAGATA

(Received September 16, 1957)

W. Hurewictz proved the following theorem for separable metric spaces R and S. If f is a closed continuous mapping of R onto S such that for each point q of S the inverse image $f^{-1}(q)$ consists of at most m+1 points, then dim $S \leq \dim R + m^{12}$.

This theorem was extended by K. Morita to ind dim R and dim S of normal spaces R and S^{2} .

The purpose of this brief note is to generalize Hurewicz's theorem as follows.

THEOREM. If f is a closed continuous mapping of a normal space R onto a perfectly normal space S such that for each point q of S the boundary $B(f^{-1}(q))$ of $f^{-1}(q)$ consists of at most m+1 points $(m \ge 0)$, then

ind dim $S \leq$ ind dim R+m.

Proof. We assume ind dim $R \leq n$ and shall carry out the proof of ind dim $S \leq n+m$ by induction with respect to $n \geq -1$ and $m \geq 0$.

1. This proposition is clearly valid for n = -1 and for every $m \ge 0$.

2. Let us show the validity of this theorem for every n > -1 and for m=0. Assume G_1 and G_2 are arbitrary closed sets of S such that $G_1 \cap G_2 = \phi$. Then $F_1 = f^{-1}(G_1)$ and $F_2 = f^{-1}(G_2)$ are disjoint closed sets of R. Hence we have, from ind dim $R \leq n$, an open set U satisfying $F_1 \subseteq U \subseteq \overline{U} \subseteq F_2^{c(3)}$, ind dim $(\overline{U} - U) \leq n-1$. Since f is a closed mapping, $V = \{f(U^c)\}^c$ is an open set of S and it satisfies $G_1 \subseteq V \subseteq \overline{V} \subseteq G_2^c$. For $f^{-1}(G_1) = F_1 \subseteq U$ implies $G_1 \subseteq V$. $q \in G_2$ implies $f^{-1}(q) \subseteq F_2 \subseteq (\overline{U})^c$, and hence $(f(\overline{U}))^c = Q$ is an open nbd (=neighborhood) of q satisfying $Q \cap V = \phi$, proving $q \notin \overline{V}$ and consequently $\overline{V} \subseteq G_2^c$.

Letting $f(\overline{U}-U) = H$, we have a closed set H. Let q be an arbitrary point of $(\overline{V}-V)-H$; then $f^{-1}(q) \cap U = \phi$, $f^{-1}(q) \cap (\overline{U})^c = \phi$, $f^{-1}(q) \cap (\overline{U}-U) = \phi$. For $f^{-1}(q) \cap U = \phi$ implies $\{f(R-f^{-1}(q))\}^c = Q \ni q$, $Q \cap V = \phi$, i.e. $q \notin \overline{V}$. $f^{-1}(q) \cap (\overline{U})^c = \phi$ implies $q \in V$. The both cases are impossible. $f^{-1}(q) \cap (\overline{U}-U) = \phi$ is obvious.

We put $f^{-1}(q)_1 = f^{-1}(q) \cap U$, $f^{-1}(q)_2 = f^{-1}(q) \cap (\overline{U})^c$. Then we can show $B(f^{-1}(q)) \cap f^{-1}(q)_1 \neq \phi$. To show this we assume the contrary. Then $f^{-1}(q)_1$ is open,

¹⁾ W. Hurewicz, Ein Theorem der Dimensionstheorie, Ann. Math., 31 (1930). We denote by dim R Lebesgue's dimension of R.

K. Morita, On closed mapping and dimension, Proc. Japan Acad., 32, no. 3 (1956). Ind dim φ=-1, ind dim R≤n if and only if for any pair of a closed set F and an open set G with F⊆G there exists an open set U such that F⊆U⊆Ū⊆G, ind dim (Ū-U)≤n-1.

³⁾ We denote by F^c the complement set of F.

and hence $P = f^{-1}(q)_1 \cup (\overline{U})^c$ is an open set containing $f^{-1}(q)$. Since $P \cap U = f^{-1}(q)_1$, $Q = \{f(P^c)\}^c$ is an open nbd of q satisfying $Q \cap V = \phi$, which contradicts $q \in \overline{V}$. Therefore $B(f^{-1}(q)) \cap f^{-1}(q)_2 = \phi$, i.e. $f^{-1}(q)_2$ is open.

i) In the case of n=0 we have $\overline{U}-U=\phi$, and hence $H=\phi$. Therefore for every point $q \in \overline{V}-V$ it follows from the openness of $f^{-1}(q)_2$ that $W=\{f(U^{\cup}f^{-1}(q)_2)^c\}^c$ is an open nbd of q such that $W_{\cap}V^c=\{q\}$. Hence \overline{V} is open and closed, proving ind dim $S \leq 0$.

ii) In the case of n > 0 we assume the validity of this proposition for n-1. Since f is a continuous, closed mapping of $\overline{U}-U$ onto H, we have ind dim $H \leq n-1$ from the assumption. We can choose, by the perfect normality of S, closed sets $H_k(k=1,2\cdots)$ such that $(\overline{V}-V)-H=\bigcup_{k=1}^{\infty}H_k$. It follows from $f^{-1}(H_k)_{\bigcirc}(\overline{U}-U)=\phi$ that $f^{-1}(H_k)_{\bigcirc}(\overline{U})^c = \bigcup \{f^{-1}(q)_2 | q \in H_k\} = E_k$ is a closed set of R. Since $f(E_k) = H_k$, f is a closed, continuous mapping of E_k onto H_k . Since $f^{-1}(q)_2$ for every point q of H_k is open, q is an isolated point of H_k . Hence the subspace H_k is a discrete space, and consequently ind dim $(H^{\cup}(\bigcup_{k=1}^{\infty}H_k)) \leq n-1$, i.e. ind dim $S \leq n$.

3. Now we assume the validity of this proposition for the case where ind dim $R \leq n-1$ and $B(f^{-1}(q))$ consists of at most m+1 points and for the case where ind dim $R \leq n$ and $B(f^{-1}(q))$ consists of at most m points. Then we shall prove it for the case where ind dim $R \leq n$ and $B(f^{-1}(q))$ consists of at most m+1 points.

Let G_1 and G_2 be arbitrary closed sets of S with $G_1 \cap G_2 = \phi$; then we can define F_1, F_2 . U, V and H in the same way as in the above proof 2. Since $\overline{U} - U$ is closed, f is a closed, continuous mapping of $\overline{U} - U$ onto H. Therefore ind dim $(\overline{U} - U) \leq n-1$ combining with the inductive assumption implies ind dim $H \leq n+m-1$. Furthermore we define H_k and E_k $(k=1, 2\cdots)$ as in the above. Then f is a closed, continuous mapping of E_k onto H_k . It follows from $B(f^{-1}(q)) \cap f^{-1}(q)_1 \neq \phi$ that the boundary of $f^{-1}(q) \cap E_k$ in E_k consists of at most m points. Hence we have ind dim $H_k \leq n+m-1$ from the inductive assumption. Thus we can conclude ind dim $(\overline{V} - V) =$ ind dim $(H^{-1}(\bigcup_{k=1}^{\infty} H_k)) \leq n+m-1$, which completes the proof of ind dim $S \leq n+m$.