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Since the publishing of the paper [14] by A.H. Stone locally finite coverings
have played an increasingly important role in studies of topological spaces. A. H.
Stone [14], M. Katétov [5], R. H. Bing [2], C. H. Dowker [3], K. Morita [8], [9], E.
Michael [6], [7], K. Nagami [11] and the others have established relations between
locally finite coverings, point-finite coverings, paracompactness, full normality and
the other normalities. The investigations of metrizability by means of locally

finite coverings and of similar coverings have been made by Yu. Smirnov [13], R.
H. Bing [2], K. Morita [10] and the author [12].

~— The purpose of this paper is to study Trelations between continuous functions
and locally finite coverings of topological spaces. Using families of continuous

functions, we shall give a necessary and sufficient condition for a T,-space to be
fully normal in an analogous form to Urysohn’s lemma and shall give necessary
and sufficient conditions for metrizability. Furthermore, we shall generalize
Hausdorff’s theorem for continuous functions by using coverings.

1. Full normality

LeMMA 1. Let R be a topological space and let Vo= {x|f,(x)>0} (@<z)V for
real wvalued continuous functions f, on R. If B={V,la <t} covers R, and if
ﬁ“ém fe(x) is continuous for every a=r, then B has a locally finite refinement?

Proor. Let Vi,={l /(>3 } and Vie={slfa(0>4F— 0~ - > oz
2), then obviously V;,& Vi,1,EV,(G=1,2,+; a<r). From these V,, we define
N,y by N,i=V., Nu= V,,,—ﬁmﬁ (1<a<<t). Then it is easily seen that
{Nwxln=1,2...; a <t} covers R. For x€ V; implies x € V,3=N,y for some #», and
x€V, x& Vs (B<a), 1<a <t imply x€ V,, for some »n and p<a e (%) =0. Since

g2y Jp 18 continuous from the assumption of the proposition, there exists a nbd

The content of this paper is the detail of our note published in Proc. of Japan Acad., Vol. 31,
No. 10 (1955). Notions and notations but recent ones in this paper are due chiefly to J. W. Tukey
[15].

1) a, B, 7, T denote ordinals in this lemma.

2) In this note coverings and refinements are open but in the proof of Lemma 2.
p%wf,g denotes the function sup {fg(x)|B<<a}(x€R). f;%ufp(x) denotes the value of this
function at x.
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(=neighbourhood) U(x) of x such that ,3<,, SeCU)) < 212 —%m and con-

sequently U(x)m(ﬂ;w Varg)=7c. Hence er,a<m Varie, and hence x € N,,.
Next, we shall show {N,,la <t} is locally finite for a fixed n. Let V,/

11 1 1 .
={x|fw(x)>-2——7—-~——2,,——m}, then obviously VS Vi If x€ Vi,
rEV/(B<a), a=r, thenp.“éwfs(x)<%—~~—%— 2_21n+1. Since 2, fp is con-

tinuous, there exists a nbd V(x) of x such that V(%) ~ V,e=¢ (8 <a). Moreover,
%€ Viysig and V1o ~Nyy=¢ (¥ >a). Hence there exists a nobd of x intersecting

at most one of N,, (¢ <t). Therefore F,=,2.N,, is closed for every n. Put

1 1 1 1 1
V;w={xlfw(x)> “""—"“‘—7"*3.—2”_,,—1“}, V;’m={xlfw(x)> “““““““ 7
gty | and put M=V, Mu=Vi— 2, Vii (1<a <o), then N,uEM,. for
very n, a <t. N,y M, is obvious. If n=2, x¢M,, then since NwwS VS cv,.
. . - . . . 1 1 1
x§ Vn’m implies x& N,,. Since x¢,Z, V,,,J‘F, implies ;2 fa (%) Sy Tt T g T and
1 .
consequently f‘<n/ff'(U(x)>——2 ------ o —-ﬁ, ie. Ux)~(2, V;’F) =¢ for some

nbd U(x) of x, it holds xéEﬁ@ 7. Hence x& S, Vip implies &Y Vit E NG ¥
and x&N,,. Thus we conclude N,,EM,,.

Now we denote Wy, =My, W,m,,=M,,w-—?‘;_"11F,- (n=2). Then W={W,,\n=1,2--;
a <t} is a locally finite refinement of %B. Firstly, we prove that 2 covers R.
Since Y {N,ul7=1,2; a <t}=R, for every x€ R there exists » such that x € N,
for some a <t and xEENmF, (m<n, B<t). From N,,EM,, we get x€M,, and
xQE::E, and hence x€ W,,. Since < W is obvious, we show lastly that B is
locally finite. If x€ NpwSFy, then Npy Wip=0 (m>Fk, B <t). Next, we denote

{xlfw(x)> 212—---—§—Tzl,,q}(a<r) for a fixed n=k If x€V,/
and x&V, (B <a), a =r, then since ﬁ%mfp(x)gl—'“—%—'z*.;w, there exists

anbd V(x) of x such that V(x)~ Vi.=¢ (8<a). Hence V(x) ~M,z=¢ and
consequently V(x) ~ Wye=¢ (8 <a). Moreover, x€ V/, and VI, ~M,,=d(T >a).
Therefore there exists a nbd V,(x) of x intersecting at most one of M,, (@ <rt).
Hence the nbd f:l Va(x) AN, of x intersects only finitely many W,,.

In fact, we have no need to assume that B covers R, that is to say
CorOLLARY 1. Let R be a topological space and lel Vo= x|f,(x) >0} (a <7)

3) f(U)=k means f(x)=<Fk for every x € U.
4) We denote by N¢ or C(N) the complement of N.
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Sfor real valued continuous functions f, on R. If 2, fp is continuwous for every
a =, then there exists a locally finite collection M= {W,|[T €C} of open sets such
that W, 'V, for every T €C and some a € A, and such that e Wy=,24Va.

Considering A. H. Stone’s theorem® “full normality and paracompactness are
equivalent for T,-spaces”, we get the following theorems from this lemma.

THrEOREM 1. In order that a Ts-space R is fully normal or paracompact it is
necessary and sufficient that for every open covering {V,la € A}, there exists a family
{ fula € A} of real valued functions on R such that f,(V5) =0, agafu=1, gesfs is
continuous for every BS A.

Proof. Sufficiency is directly deduced from the lemma.

Conversely, if B={V,la € A} is an open covering of a fully normal T,-space
R, then there exist a locally finite refinement U= {Ug|B} of B and a covering I
={Wg|B € B} such that Wﬁg Us (B €B). Defining continuous functions g(8 € B)
on R such that gg(Wp) =1, g.(Ug)=0 and 0=f, =1, from the locally finiteness
of 1 we see obviously that ,zg, is continuous for every CSB. If we put f,
=" {gplUgS V,}, then ;g4 f,=1 from U<B, and the continuity of ,&4.f, (A’SA)
is deduced from the continuity of vee&y- Since f,(V:) =0 is obvious, the necessity
is proved.

COROLLARY 2. In order that a completely regular space R is fully normal or
paracompact it is mnecessary and sufficient that if {ezla € A} is a family of real
valued continuous functions on R such that ,Zap, is continuous, then for every >0
there exists a family {f,la € A} of functions on R such that f,=¢, (@€A), ogafs
~ oealul =€, and (gpfp is continuous for every BSA.

Proof. Necessity. If ;Zips=¢ is continuous on a fully normal Ti-space R,
then for a given ¢>0 we put V,={xlp,(x)>¢px)—¢} (@€ A). Since B={V,
le € A} is an open covering of R, we may choose locally finite coverings U={U,
|BE€B}, W={Wg|B e€B} of Rsuch that <D, Wﬁg U, (8 €B). Define continuous
functions g for every B €B such that gp(x) =¢(x)—¢ (x€ Wp), ge(Up)=—oo,
ge@) =) —e(x€R), then g =g, (US V), perge=¢(x) —¢, and gy is obvi-
ously continuous for every CSB. f,="“{gs|U,EV,} (¢ € A) have all the necessasry
properties.

Sufficiency. Let {V,la € A} is an arbitrary open covering of R, then for every
x € R there exist V,3x and a continuous function ¢, such that ¢,(x) =1, ¢,(VE) =0,
0=p. =1

Since ,gre.=1, there exists a family {f,/lx€ R} of continuous functions on R
such that f,=¢, (x€R), |\tr/fe—11=4, and 5/, is continuous for every SSR.
Hence U,=1y/.(3)>01S {0, (¥)>0,S V, for some « €A, and {U,|x€ R} covers

5) See [14].
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R. Since from the lemma {V,la € A} has a locally finite refinement, we conclude
the full normality of R.

Furthermore, we give three already known theorems as direct consequences
of Theorem 1 and of Lemma 1.

CorOLLARY 3. (E. Michael)® A regular space R is paracompact if and only if

every open covering of R has an open refinement %=,,‘§1%,,, where each B, is a local-
ly finite collection of open sets.
CorOLLARY 4. (K. Nagami)™ Let R be a topological space and V,=({x|f,(x)

>0} (n=1,2, ), wheve f, are real-valued continuous functions on R. If B={V,|n
=1,2,:} covers R, then B has a locally finite refinement.

CorOLLARY 5. (A.H.Stone)® Every fully normal T.-space is paracompact.

2. Metrizability

THEOREM 2. In order that a Ti-space R is metrizable it is necessary and suf-
ficient that therve exists a family {f,la € A} of real valued continuous functions on
R such that (g fp and (Jpfe are continuous for every BSA, and such that for every
X € R and every nbd U(x) of x there exists f,€ {fyla € A}: f,(x)<e and f,(U'(x))
=¢ for some ¢>0.

Proof. We shall prove the sufficiency. Let {f,la € A} be a family satisfying
the condition of this proposition and put V,.,= ¥/, ()<}, W,u={y|fu(¥)>r}
for rational numbers #'>7>0 and U,,»(B) = (/s Ve me?(g) W,.)° for B€ A,8 where
we put 3 Vyw=R for B=¢, wgeeny Wra=¢ for C(B)=¢. Moreover, we define a

collection W,, ={U,,,(B)|BSA} of sets. Letting A(x)= {alfw < H;/ } for a
r

definite point x of R, We get .t fu()="0"~ and M) = {Jluctinfe() <7’}
gweq‘(x) Vr’a’n N(x) = {ylweC(rE(x))fw (y) >7} ;mgca(x)) Wrw, Where M(x) = R fOl‘ A(-x) =¢,
N(x)=R for C(A(x))=¢. Since Yf, and 7f, are continuous, M(x) and N(x) are
open nbd of x such that Mx) ~N®)ESU,, (A(x)). Hence {M(x)~N(x)|x€ R}
=§R<11, 7

Now we shall show that Tt has a locally finite refinement. Obviously it
holds Ff,(x)<7’, if and only if 7} (r+# —f,(x))>r. Therefore M(x) ~N(x)
= {ylwﬁc("‘A(x)) Jo () warsy(r+7"—f(9))>7}. To prove the continuity of the function

U{w{c"(s)f‘”(y) QB(;*—}—;" ~fu(3))IBEB}Y=F(y) for an arbitrary B&24, we denote by

a the value of this function at a definite point y of R. For an arbitrary ¢>0 there

exists ¢ € C(B) :fm(y)<a+—§— or ¢ €B: r+r’—fw(y)<a+% for every Be®B. We
6) See [6].
7) See [11].

8) A° denotes the interior of A.
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denote by B’ the totality of « such that a €C(B), f,( y)<a+~;— for some B€®B

and by B” the totality of @ such that a € B, 7+r’—fw(y)<a+% for some BED.

Then w;‘g/fm(y)éa-l—%, m‘gjgf»(r+r’—fw(y))§a+i, and C(B)~B'*x¢ or B~B'=x¢
for every B€®B. Hence from the continuity of ,¢p.f, there exists a nbd U(y) of

y such that ;75 f,(U(y))<a+e. Since ,gpn(r+7’ —fw)=7’+r'—'a;”fw and is con-

tinuous, there exists a nbd V(y) of y such that g (r+7"—f,(V(3))) <a+e. There-
fore F(U(y) A V(y))=a+e from the definition of F(y). Since E@Bfw ?B(7+7" —fw)
a ) a

= e Jarn (r+7" —ogsfo) is continuous for every BS A4, there exists a nbd W(y)
a€C(B)

of y such that F(W(y))>a—e. Thus from the firstly proved lemma %t has a
locally finite refinement.

Lastly, let U(x) be a nbd of x, then there exist a positive rational number #’
and a € A such that x€ V,,,&U(x) from the property of {f,la € A}. Taking a
rational number »>0:f,(x)<r<7#’, we obtain S(x, U, )ESU(x).?> For if x€U,,’
(B), then since f,(x) <7 and consequently x¢& W,,, it must be a € B. Hence U,,
(B)&V,,SU(), and hence S, U, )SU(x). Take a locally finite refinement
B,,» for each U,,,, then {%B,,/|r,7’ are rational positive numbers} is an enumerable
family of locally finite coverings, and the totality of sets contained in some %,,,
makes an open basis of R. Since R is obviously regular, we conclude the metri-
zability of R from the theorem by Yu. Smirnov and the author “in order that
a regular space is metrizable it is necessary and sufficient that there exists an
open basis which is an enumerable sum of locally finite collections of open sets.”'%

Conversely, if R is metrizable, then {p(x,y)|x € R} satisfies the condition of this
theorem, where p(x,y) denotes a bounded distance of R.

We give here only two of various possible corollaries of this theorem.

COROLLARY 6. In order that a Tispace R is metrizable it is necessary and
sufficient that we can assign a function ¢(x,y) on RX R having non-negative (bounded)
values such that 1) {yle(x,y)<e} (¢>0) is a nbd basis of x for every x€ER, 2)
d(A, x)=sup {¢(,2)|y €A} and d(A,x)=inf {¢(y, x)|y € A} are continuous functions
of x for every subset A of R.

Proof. It is obvious.

From this corollary, we get easily the following

CorOLLARY 7. In ovder that a Ty-space R is wmeirizable it is necessary and
sufficient that we can assign a function p(x,y) on RX R having non-negative (bounded)
values such that 1) (y|p(x,y) <ée} (6>0) is a nbd basis of x for every x€ R, 2)
d(F,x) and d(F,x) are continuous functions of x for every closed set F of R.

CoroLLarY 8. If R is a completely regular space, then in order that R is

9) S(A W= ({U|U~Axp, Ucut.
10) See [13], [12].
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metrizable it is necessary and sufficient that theve exists a sequence L, (n=1,2, )
of families of continuous functions on R such that ,Zsf, and o f. ave continuous
for every f, €L, (a € A) for a definite n, and such that for every bounded continuous
Sunction f and every € >0 there exist f, € ,EjLn (BEB): iﬁ?Bfﬂ —fl<e.

Proof. If R is metric, then L,={¢| lo(x)—o(»)|=np(x,y) (x,y€ R)} satisfies
the condition of the proposition. Assume that f is an arbitrary bounded continuous
function of R such that f(X)=A (x€R). Let F,={x| ne=fx)s=sm+1e} (=0,
+1, +2,+-) for a given ¢>0 and let %=max{—nl; S%(x)ﬁFn+2=¢}11> for
x€ R:ne <f(x)=m+1)e. We take the integer p(x) such that p(x) —1 <m(x) (A—ne)
=p@) and put f:(y»)=p@px,y)+ne.  Then fi€ Ly, f:(x)=ne, and fi(Si
(x))= A. Since y € F, implies (n—De = 22 fx(y)=mne, | (e f:(3) —f(p)|=2¢ (yER).

Conversely, the sufficiency is easily checked. Assume that L, (n=1,2,--)
satisfies the conditions of this proposition. We define a continuous function f for
a given point ¥ of R and nbd U(x) such that f(x) =0, f(U°(x))=1, 0=f=1. Then
it must be IE?BfF_—fI<%~ for some fp ,,gLn (B €B). Hence there exists BE€B:

fe@) <} and f,(U°(x))>4%. Hence, as is easily seen from the proof of Theorem

2, R is metrizable.

We give the following lemma in the form of an extension of Chittenden’s theorem.

LemMa 2. A Ty-space R is metrizable, if and only if a function ¢(x,y) on
RX R having non-negative values can be defined so that 1) {yle(x,y)<e} (€>0) is
a nbd basis of x for every x € R, 2) for every € >0 and x € R there exist nbds Si(¢ x),
Sole x), Ss(ex) of x:p(x,y)=¢ and z € Sz(e y) imply z& S1(e x), 2 S1(e x) and u € S
(e x) imply ué& S:(c x).

Proof. Since the necessity is clear, we prove only the sufficiency. The proof
is analogous to that of Lemma 1. We put S,(x) = {ylgo(x,y) <% }, Si(x) =Sy <% x) ,
S0 =5 (L x), $3x)=Sy(— x). To prove firstly the full normality of R, we
take an arbitrary open covering B={V,la <t} of R and put V,,={x[S,(x) & V,},
Vn’w= - {S%OC) ]JC € Vnm}y V;,1/w= - {S%(x) Jx € Vnw} 5 Mm; = (Vz/m_ﬁ‘zlm V;:;z) O, Fn=wL<J,.an,

W,,M=M,,,x,—7gF,- and W= {W,,ln=1,2,---, a<c}. Then it is easily proved that
9% is a locally finite, not necessarily open refinement of B. W<V is obvious. To
prove that %8 covers R, we assume x€ V,, xE V(8 <a), a <r for a given x€R.
Since x€ V,, S,(x)&V, for some #n, and hence SZ(x)S V), Since x& V,, (8 <a),
from the property of ¢ it hold Si(x) ~ (Y. Vi) =¢ (8 <a). Hence x€M,,, and
hence {M,,\n=1,2,; a<t] covers R. Now let x€ M,,, x&M,z (m<n, f<1),
then x € W,, ; hence 28 covers R. Finally we show the locally finiteness of 28.
For every point x of R there exists some M,, :x € M,,. Then M,, is a nbd of x,

11)  Si/m(x)=1{y|P(x, )<k}, where P(x, ») is the distance between x and y.
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and My~ Wyg=¢ (m=n+1, B <r1). For a definite natural number m =,
we assume x€ V,,, ¥&V,.(f<a), a=7. From the property of ¢ it hold S3
D~ GZaVig)=¢ and V] ,~M,,=¢d (T >a), hence S}x)~W,=¢ (BL<a),
Voo~ Way=¢ (¥>a). Therefore the nbd S3(x) ~ V},, of x intersects at most one of
Was(@<t). Thus we conclude the full normality of R from E. Michael’s theorem
“regular space is fully normal, if and only if every open covering of R has a
locally finite not necessarily open refinement”?? combining the regularity of R,
which is easily to be checked.

Let U(x) be an arbitrary nbd of x€ R, then S,(y) Px for some #» and every
y&U(x). Hence S, U,)<SU(x), where WU,={(S,(x))°|x€ R}. Therefore R is
metrizable from Urysohn’s theorem.®

From this lemma we get the following extensions of P. Alexandroff and P.
Urysohn’s theorem.

THEOREM 3. A Ty-space R is metrizable if and only if there exists an enumer-
able collection {(W,\n=1,2,--} of open coverings of R such that

1D (S, U)n=1,2, -} makes a nbd basis of x for every point x of R,

2) every W, has an open vefinement W, such that Uy, U, Us €U, U;~U,
P, Up~ Us=xdp imply U“ U, UsS U for some U€EW,, where W, does not neces-
sarily belong to {(U,n=1,2, - }.

Proof. Since the necessity is obvious, we show only the sufficiency. We define
the function ¢(x,y) on RXR by ¢(x,y) =Min { —n——lﬁly € S(x,1,) }, o(x,y)=1
if y&Sk,N,) (n=1,2,---). Since we can assume I, ;< U,without loss of gener-

ality, it is clear that {y]go(x,y) <%} (n=1,2,---) makes a nbd basis of x. For

every € >0 we take ng%—. Then ¢(x, y)=¢ implies S(x,11,) Py and consequently
S2(x, U,)) ~AS(, 0,)) =p0 y&S2(x, N,/) implies S(y, U,/) ~Sx, U,/)=¢, and hence
Si(e, x) =S2(x, 1)), Sy(e, x) =Ss(e, x) =S(x, U,)) satisfy the condition of the lemma.
Therefore this theorem is valid. .

The following proposition is a direct consequence of this theorem.

CoroLLARY 9. A Ty-space R is metrizable, if and only if there exists a col-
lection (W,\n=1,2,...} of open coverings such that

D (S, UDn=1,2, -} makes a nbd basis of x,

2) every W, has a star-refinement.’®

12) See [6].

13) Although Michael’s theorem is essentially unnecessary in this proof, his theorem has various
uses tor simplifying proots of theorems for coverings. '

14) S%(x, ) = S(S(«x, W), U).

15) We call ¥ a star-refinement of W if B* <1, where B* = {S(V, B) | V& B}. /e don't know
whether “star-refinement” in this proposition may be changed with ‘delta-refinement.” We
call B a delta-refinement of 1 if BA = {S(x, B)|x € R} <.



36 Jun-iti NaGara

3. Extension theorems of continuous functions on uniform spaces

TueEOREM 4. Let R be a fully normal uniform space with the uniform topology
defined by the unform coverings (M, |la’ € A’} and S a uniform space with the uniform
topology defined by the uniform coverings {Nyla € A} such that |A’\=]|A|=m1® If f
is a continuous mapping defined on a closed set F of R and having values in S,
then S can be imbedded in a uniform space T which uniform topology is defined by
a system of uniform coverings with the cardinal number m, such that f can be continu-
ously extended to R with values in T, such that the extension is a homeomorphism of
R—F with T—S, and such that S is a closed sub-uniform space of T. If fis a
homeomorphism, then the extension is also a homeomorphism.

Proof. Since, as it is easily seen, s <M, implies W <U=F"1(Np) = {f1(V)]
Ne%e}, we can choose W;,(i=1,2,--) from {U,la € A} such that U, =U,, U,
>3 >, >UE,>Us,> -0 Putting B, = {(R—-F)“YU|U€U,,), we get a covering
Biy =B AM, of R such that By aF={V~F|VEDB,} <Uy,, By, <M. Since R is
fully normal, we can choose further a covering B, of R such that B, AF<Us,,
B, <Bi,. We can obtain successively in the same way a sequence of coverings
of R M, ->By,>B5,>B,, >B¥ >+ such that B, F<Wupq, 0=1,2, ).

Now we define a sequence of coverings of R from the above sequence by 3,,
=0, Vi) ={NU, B, VAR-F)|UEW,,, VeB;,}, where N(U, B;,) denotes
the open set Y {V|pxV~FSU, VE€B;,) of R. Let us show P;, > PA,, (G=1,2,).
We denote by x an arbitrary point of R. If S(x, B;i10) ~F=¢, then there exists
VeDB;, such that S(x, Bii1w) =Sk, Bia,) EV from B),,<B,, and the definition
of Pir10. Hence S, Bir1n) EVA(R-F) €P;p. If x€ R—F and S, Piiiw) ~Fx,
then since B}, <B;, and B aF<W 14, there exist VEDB;, and Uy€ W, such
that S(x, Biv1a) EV, VAFSU € Wiq. From U, ,<W;, it holds S(Uj W) EU”
for some U’ €llf,. Since V~Fx¢, VEDB,,, VAFESU, we get S, D) EV
SN, Bi0) €Biw. If x€NU,Bii1,) and U€Uiire, then S, Biige) ~F~N(U,
B,110) =S, Biaw) ~F~U2x¢p, and hence Uy~ U=zx¢ from S(x, Bipe) ~AFEVAF
C U, Therefore USS(U,, N;41,) S U’ and consequently. N(U, B;.11.) EN(U’, B;,).
Thus we get S, Bir1a) EN(U, Biy) € Piw. In the case that x € F we get S(x, Wi10)
c U for some U €W, and consequently S(x, Pii10) EN(U, Vi) € B;,. Therefore By,
>P2,,; is established.

Putting (R—F)“YS=7, we define a mapping f* from R into 7 by f*(z)
=2 zER-F), f*(x) =f(x) (x€F). Defining coverings £2;, of T by f*(Bi.) =L,
we see easily 9,,>07,,(=1,2,...; a€4). In fact, y€ T, f*(P) 3y and P€Pii1a
imply P> x for any point ¥ of R such that f*(x)=y. Since S(x, %, ,1,)SP" for
some P’ €WB,,, it holds SUH*(x), f*Prsaw)) =S, Q1) S F¥(P) €9Q;,. In addition

16) We denote by |A| the cardinal number of the set A. We denote by a’ the image of a by
a one-to-one mapping from A onto A’.
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we note that {Q;,ASla € A4, i=1,2,...} ={N,la € A} is obvious from the definition
of Q;,.

If y€ T-S, then since f*1(y)=x€ R—F and F is closed, we get S2(x, Byn) ~F
E5%(x, My ) ~F=¢ for some a’ € A’. Therefore S(x, By,) ~F=¢, and hence S(y,
Qyp) ~S=¢. Hence S is a closed subset of 7. Furthermore, for every distinct
points yi, ¥ of T there exists L;, such that y,& S(yy, Qiy). Thus we can define
a uniform topology in (R—F)“S by the uniform covering system consisting of
all the finite intersection coverings of Q,, (@€ A4, i=1,2,---), and obtain the uni-
form space T and the extension f* of f satisfying conditions in this theorem.

The following Hausdorff’s theorem is the direct consequence of this theorem
for m=2x,.

Hausdorff’s theorem If R and S are metric spaces, F is a closed set of R and
if fis a continuous mapping from F into S, then S can be imbedded isometrically
in a metric space T such that f can be continuously extended to R with values in T,
such that the extension is a homeomorphism of R-F with T-S, and such that S is
a closed sub-space of T. If fis a homeomorphism, then the extension is also a
homeomorphism.

Finally, let us discuss extension theorems in the case that R is not fully normal.

TurorREM 5. Theovem 4 is valid when R is normal and F satisfies the second
countability axiom or when R is normal and S satisfies the second countability axiom.

Proof. We assume that R is normal and F satisfies the second countability
axiom and that {M,|a € A} and {M,-|a’ € A’} are uniformities of S and R respectively.
If we denote by f a continuous mapping on F having values in S, then f1(%,)
=1, is a normal covering of F:!® We choose a sequence U, =1;,>U% > Uy, >U% >

- of coverings from {f1(M,)|a € A} in the same way as in the proof of Theorem
4. Since F satisfies the second countability axiom, there exists a locally finite
enumerable refinement UW={U,ln=1,2, -} of Uy,. Let us denote by Uy;={Uy,l
n=1,2, -} a covering of F such that U,,CU, (n=1,2, ), and consider con-
tinuous functions ¢, on R such that ¢,(Uy,) =1, ¢,(F—=U,)=0, 0=¢,=1. If we
put W,={x|e,(x)>0}, then ,}ZW,F W2F and WAF<U,, for W={W,ln=1,2, -}.
Now we take a continuous function ¢, on R such that ¢o( W) =1, ¢o(F)=0, 0= ¢,
=1, and define Uy={x|f;(x)>0}. Then we have an enumerable covering 2B,
={Uy, Uy, Uy, --- } of R such that W, ={U,, Uy, Uy, -} of R such that 38, F<ls,.
Since B;, is a normal covering from Corollary 4, we have a normal covering U,
=281, AM,,, of R such that By, AF<Us,.

17) See [4]. R. Arens, [1] gives some extensions and a brief proof of Hausdorff’s theorem by
a different method from us.

18) A covering % of R is called normal, when there exists a sequence {®%,|7==1,2,--} of cover-
ings such that NF, <N, <N =1,2,--).
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Next, we take a normal covering %, of R such that ¥¥, <%, and a normal
covering 2,, of R such that 2B,, A F>1l3, in the same way as in the case of
Wi,. Putting Bpy =Wy A Ty, we have a normal covering such that BF, <By,,
By N F<U3,. Repeating such processes, we obtain a sequence of uniform cover-
ing By, > BF, > By, >BE, > -+ of R such that By, <Myr, Bin AF<Uipgn G=1,2 )
for every a € A. The remainder of the proof is the same as the proof of Theorem
4 and is omitted.
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