On complete metric space

By Jun-iti NAGATA

(Received April 5, 1955)

We characterized the uniform topology of a complete uniform space by the lattice of uniform coverings satisfying some conditions in previous papers.¹⁾ But then we assumed that the uniform space had no isolated point. While the purpose of this paper is to take away this restriction, it is an attempt to establish a unity between the theory of characterization by uniform coverings and that by real valued functions. Now we concern ourselves only with metric spaces.

In $\S 1$ we shall characterize a complete metric space by the lattice of "uniform nbds (in the extended meaning)". In $\S 2$ we shall give corollaries derived from the result in $\S 1$ and especially the theory of characterization by uniform coverings.

1. From now forth we denote by R a complete metric space.

DEFINITION. We mean by a uniform nbd (in the extended meaning) a real valued function f(x) of R satisfying

- I) $f(x) \ge \varepsilon$ for some $\varepsilon > 0$,
- II) $f(x) \le \frac{1}{2n}$, $d(x, y) \le \frac{1}{2n}$ imply $f(y) \le \frac{1}{n}$ for every natural number n.

We consider a directed set D(R) of uniform nbds satisfying

- 1) there exist $e_n \in D(R) (n = 1, 2, \dots)$ such that
 - a) $e_n \geq e_{n+1}$,
 - b) $\{e_n | n = 1, 2, \dots\}$ is cofinal in D(R),
 - c) $\lim_{n\to\infty} e_n(x) = 0 \ (x \in R),$
 - d) for every $\varepsilon > 0$, $x \in R$ there exists $f \in D(R)$: $f(x) < \varepsilon$, $f(y) \ge e_n(y) \left(d(x, y) \ge \frac{1}{n} \right)$,
- 2) $f, g \in D(R)$ implies $f \lor g \in D(R)^2$.

DEFINITION. We call a sequence $\{F_n|n=1,2,\cdots\}$ of subsets $F_n=\{f|f^{\vee}f_n\geqq b_n,\ f\in D(R)\}$ of D(R) a cauchy sequence by $\{f_n,b_n\}$ when it

On uniform homeomorphism between two uniform spaces, this journal Vol. 3, No. 1-2, 1952.
On relations between lattices of finite uniform coverings of a metric space and the uniform topology, this journal Vol. 4, No. 1, 1953.

²⁾ The relation $f \ge g$ for two elements f, g of D(R) means $f(x) \ge g(x)$ for every If for $x \in R$ every $f \in D(R)$ there exists e_n such that $e_n \le f$, then we call $\{e_n\}$ cofinal in D(R). For example, $e_n = \frac{1}{n}$ $(n=1, 2, \cdots)$ satisfy the conditions a), b), c) of 1). d(x, y) denotes the distance between x and y.

satisfies the following conditions,

- i) $f_n, b_n \in D(R) (n = 1, 2, \dots),$
- ii) $\{b_n | n = 1, 2, \dots\}$ is cofinal in D(R), $b_n \ge b_{n+1}$,
- iii) $F_n = \phi$,
- iv) for every $h \in D(R)$ there exists n_0 such that $f \in F_m$, $g \in F_n$ and $m, n \ge n_0$ imply $f \lor g \ge h$.

LEMMA 1. Let $e_n(n=1, 2, \cdots)$ be a sequence of elements of satisfying the condition 1) and let f_n be an element satisfying the condition of f for $\varepsilon = e_n(x_0)$ in d), then $F_n = \{f | f^{\vee} f_n \not\ge e_n\} (n=1, 2, \cdots)$ is a cauchy sequence by $\{f_n, e_n\}$.

Proof. The conditions i)- iii) are obviously satisfied.

Let h be an arbitrary element of D(R), then $h(x_0) > \frac{1}{p}$ for some natural number p. From c), d) of 1) there exists n_0 such that $n \ge n_0$ implies $e_n(x_0) < \frac{1}{4p}$, $f_n(y) \ge e_n(y)(d(x_0,y) \ge \frac{1}{4p})$. If $f \lor f_m \ge e_m$, $g \lor f_n \ge e_n$ for some m, $n \ge n_0$, then it must be $f(y) < a_m(y)$, $g(z) < a_n(z)$ for some y, z such that $d(x_0,y) < \frac{1}{4p}$, $d(x_0,z) < \frac{1}{4p}$. Since $a_m(x_0) < \frac{1}{4p}$ and $a_n(x_0) < \frac{1}{4p}$, from II) we get $a_m(y) \le \frac{1}{2p}$, $a_n(z) \le \frac{1}{2p}$, and hence $f(y) < \frac{1}{2p}$, $g(z) < \frac{1}{2p}$. Therefore $f(x_0) \le \frac{1}{p}$, $g(x_0) \le \frac{1}{p}$ and $f(x_0) \lor g(x_0) \le \frac{1}{p} < h(x_0)$. Thus we get $f \lor g \ge h$.

LEMMA 2. If $\{F_n | n=1, 2, \cdots\}$ is a cauchy sequence by $\{f_n, b_n\}$, then $A_n = \{x | x \in R, f_m(x) < b_m(x) \text{ for some } m \ge n\} (n=1, 2, \cdots) \text{ is a cauchy filter of } R.$

Proof. Let p be an arbitrary natural number, then using iv) for $h=e_p$, we get n_0 such that $f\in F_m$, $g\in F_n$ and m, $n\geq n_0$ imply $f^\vee g \not \geq e_p$. Now we shall show that x, $y\in A_{n_0}$ implies $d(x,y)<\frac{2}{p}$. To show this, we assume the contrary, i.e. $f_m(x)< b_m(x)$, $f_n(y)< b_n(y)$, m, $n\geq n_0$ and $d(x,y)\geq \frac{2}{p}$. Then there exist f, $g\in D(R)$ such that $f(x)< b_m(x)$, $f(z)\geq e_p(z)\Big(d(x,z)\geq \frac{1}{p}\Big)$; $g(y)< b_n(y)$, $g(z)\geq e_p(z)\Big(d(y,z)\geq \frac{1}{p}\Big)$ from d) of 1). Since $d(x,y)\geq \frac{2}{p}$, there hold $f^\vee g\geq e_p$, $f^\vee f_m \not \geq b_m$ and $g^\vee f_n \not \geq b_m$ simultaneously, but this is impossible. Hence $d(x,y)<\frac{2}{p}$, and hence $\{A_n\}$ is a cauchy filter.

DEFINITION. We denote by $\{F_n\} \sim \{G_n\}$ the relation between two cauchy sequences $\{F_n\}$ and $\{G_n\}$ by $\{f_n, b_n,\}$ and $\{g_n, c_n\}$ respectively such that

for every $h \in D(R)$ there exists n_0 such that $n \ge n_0$, $f \in F_n$ and $g \in G_n$ imply $f \lor g \ge h$.

LEMMA 3. In order that $\{F_n\} \sim \{G_n\}$ it is necessary and sufficient that cauchy filters $A_n = \{x | f_m(x) < b_m(x) \text{ for some } m \ge n\}$ $(n = 1, 2, \dots)$ and $B_n = \{x | g_m(x) < c_m(x) \}$

for some $m \ge n$ $\{(n = 1, 2, \cdots) \text{ converge to a point } x_0.$

Proof. If $\{A_n\}$ and $\{B_n\}$ converge to a point $x_0 \in R$, then for an arbitrary element h of D(R) we can take a natural number p such that $h(x_0) > \frac{1}{p}$. Since $\{b_n\}$, $\{c_n\}$ are cofinal in D(R), there exists n_0 such that $y \in A_{n_0}$ and $z \in B_{n_0}$ imply $d(x_0, y) < \frac{1}{4p}$ and $d(x_0, z) < \frac{1}{4p}$ respectively, and $b_n(x_0) < \frac{1}{4p}$, $c_n(x_0) < \frac{1}{4p}$ ($n \ge n_0$). Hence $f \in F_n$, $g \in G_n$ and $n \ge n_0$ imply $f(y) < b_n(y)$, $g(z) < c_n(z)$ for some y, z such that $d(x_0, y) < \frac{1}{4p}$, $d(x_0, z) < \frac{1}{4p}$, and hence $b_n(y) \le \frac{1}{2p}$, $c_n(z) \le \frac{1}{2p}$, i.e. $f(y) < \frac{1}{2p}$, $g(z) < \frac{1}{2p}$. Therefore we get $f(x_0) \le \frac{1}{p}$, $g(x_0) \le \frac{1}{p}$ and $f \lor g \ge h$.

Conversely, if $\{A_n\}$ and $\{B_n\}$ converge to distinct points x and y respectively, then there exists some natural number p such that $d(x,y) > \frac{2}{p}$. For every n_0 there exists $n \ge n_0$ such that $x' \in A_n$ and $y' \in B_n$ imply $d(x',y') \ge \frac{2}{p}$. Hence there exist x',y' such that $f_n(x') < b_n(x'), g_n(y') < c_n(y')$; $d(x',y') \ge \frac{2}{p}$. Now we get $f,g \in D(R)$ satisfying $f \in F_n$, $g \in G_n$ and $f \lor g \ge e_p$ simultaneously as in the proof of Lemma 2. Namely, there holds the negation of $\{F_n\} \sim \{G_n\}$.

From Lemma 3 we can classify all the cauchy sequences of D(R) by the relation \sim . We denote by $\mathfrak{D}(R)$ the set of all such classes. From this lemma and the completeness of R we get a one-to-one correspondence between R and $\mathfrak{D}(R)$; hence we denote by $\mathfrak{D}(A)$ the image of a subset A of R in $\mathfrak{D}(R)$ by this correspondence.

DEFINITION. We call $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ *u-disjoint sets of* $\mathfrak{D}(R)$ when for some $h \in D(R)$ and every $\{F_n\} \in \mathfrak{D}(x) \in \mathfrak{D}(A), \{G_n\} \in \mathfrak{D}(y) \in \mathfrak{D}(B)$ there exist $f \in F_n$, $g \in G_n$ satisfying $f \vee g \geq h$ for an infinite number of n.

LEMMA 4. $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are u-disjoint if and only if A and B are u-disjoint sets of R.³.

Proof. If A and B are u-disjoint, then $d(A,B)>\frac{2}{p}$ for some natural number p. For every $\{F_n\}\in \mathfrak{D}(x)\in \mathfrak{D}(A), \{G_n\}\in \mathfrak{D}(y)\in \mathfrak{D}(B)$ and n_0 there exists $n\geq n_0$ such that $x\in A_n$ and $y\in B_n^{(4)}$ imply $d(x,y)\geq \frac{2}{p}$, for $\{A_n\}\to x\in A$, $\{B_n\}\to y\in B$ and $d(x,y)>\frac{1}{p}$. Since we get $f,g\in D(R)$ satisfying $f\in F_n$, $g\in G_n$ and $f^\vee g\geq e_p$ as in the proof of Lemma 2, $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are u-disjoint according to the definition.

If A and B are not u-disjoint, then for an arbitrary element h of D(R) we can take $x \in A$, $y \in B$: $d(x,y) < \frac{1}{4p}$ for a natural number p such that $\frac{1}{p} < \varepsilon \leq h(x)(x \in R)$. Let $\{F_n\} \in \mathfrak{D}(x)$ and $\{G_n\} \in \mathfrak{D}(y)$, then $\{A_n\} \to x$ and $\{B_n\} \to y$; hence for some n_0 ,

³⁾ We say A and B are u-disjoint when $d(A B) = \inf\{d(x, y) | x \in A, y \in B\} > 0$

⁴⁾ In this proof we denote by $\{A_n\}$, $\{B_n\}$ the same caucy filters as in Lemma 3.

 $f_n(z) \geq b_n(z) \left(d(x,z) \geq \frac{1}{4p} \right), g_n(z) \geq c_n(z) \left(d(y,z) \geq \frac{1}{4p} \right); b_n(x) < \frac{1}{4p}, c_n(y) < \frac{1}{4p} (n \geq n_0).$ Therefore $f \in F_n$, $g \in G_n$ imply $f(z) < b_n(z) \leq \frac{1}{2p}, g(z') < c_n(z') \leq \frac{1}{2p}$ for some z, z' such that $d(x,z) \leq \frac{1}{4p}, d(y,z') \leq \frac{1}{4p}.$ Since $d(x,z') < \frac{1}{2p}$, there holds $g(x) \leq \frac{1}{p}$ from II), and this combining with $f(x) \leq \frac{1}{p}$ leads to $f \vee g \not \geq h$. Namely $\mathfrak{D}(A)$ and $\mathfrak{D}(B)$ are not u-disjoint.

Since we showed previously that the uniform topology of a metric space is defined by u-disjointness⁵⁾, from this lemma we can define in $\mathfrak{D}(R)$ the uniform topology uniformly homeomorphic with that of R. Hence we get the following

THEOREM 1. In order that two complete metric spaces R_1 and R_2 are uniformly homeomorphic it is necessary and sufficient that $D(R_1)$ and $D(R_2)$ are isomorphic, where $D(R_1)$ and $D(R_2)$ are directed sets of uniform nbds satisfying 1), 2).

2. COROLLARY 1. The uniform topology of a metric space R is characterized by the lattice $L_a(R)$ of all uniform nbds (in the extended meaning), i.e. of all real valued functions satisfying I), II).

Proof. Let $e_n = \frac{1}{n}$ and define $f(x) = \frac{\varepsilon}{2} + d(x_0, x)$ for each $x_0 \in R$ and $\varepsilon > 0$, then conditions 1), 2) are clearly satisfied. Since $f(x) = \frac{\varepsilon}{2} + d(x_0, x) \le \frac{1}{2n}$ and $d(x, y) \le \frac{1}{2n}$ imply $f(y) = \frac{\varepsilon}{2} + d(x_0, y) \le \frac{\varepsilon}{2} + d(x_0, x) + d(x, y) \le \frac{1}{n}$, f satisfies II)

COROLLARY 2. The uniform topology of a metric space R is characterized by the lattice $L_d(R)$ of all real valued functions satisfying I) and $|f(x)-f(y)| \leq d(x, y)$ $(x, y \in R)$.

Proof. It is obvious.

Corollary 3. The uniform topology of a metric space R is characterized by the lattice L'(R) of all mappings of R into $N = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ satisfying I), II).

Proof. Since $e_n = \frac{1}{n} \in L'(R)$, if we define f(x) such that $f(x) = \frac{1}{n} \left(\frac{1}{n} \le \frac{\varepsilon}{2} + d(x_0, x) < \frac{1}{n-1} \right)$ for each $x_0 \in R$ and $\varepsilon > 0$, we can see easily that all conditions are satisfied. We show only that f satisfies II). If $f(x) \le \frac{1}{2n}$, $d(x, y) \le \frac{1}{2n}$, then $\frac{\varepsilon}{2} + d(x_0, x) < \frac{1}{2n-1}$, and hence $\frac{\varepsilon}{2} + d(x_0, y) < \frac{1}{2n-1} + \frac{1}{2n} < \frac{1}{n-1}$. Therefore $f(y) \le \frac{\varepsilon}{2} + d(x_0, y) < \frac{1}{n-1}$, and namely $f(y) \le n$.

Next, we investigate relations between uniform nbds (in the extended meaning) and uniform coverings. We consider a uniform covering $\mathfrak U$ consisting of spheres

⁵⁾ See "On relations ... ".

 $S_{n(x)}(x) = \left\{ y \mid d(x, y) < \frac{1}{n(x)} \in N \right\} \ (x \in R).$ For \mathbb{I} we define a function $f(\mathbb{I}, x)$ such that $f(\mathbb{I}, x) = \operatorname{Max} \left\{ \frac{1}{n} \mid S_n(x) \subseteq S \text{ for some } S \in \mathbb{I} \right\}.$ Then $f(\mathbb{I}, x)$ satisfies clearly I).

LEMMA 1. $f(\mathfrak{U}, x)$ satisfies II) for every \mathfrak{U} .

Proof. If we assume $f(y) > \frac{1}{n}$, $d(x,y) \leq \frac{1}{2n}$, then $S_{n-1}(y) \subseteq S$ for some $S \in \mathfrak{U}$. Since $d(x,z) < \frac{1}{2n-2}$ implies $d(y,z) < \frac{1}{2n} + \frac{1}{2n-2} < \frac{1}{n-1}$, $S_{2n-2}(x) \subseteq S$. Namely, we get $f(\mathfrak{U},x) \geq \frac{1}{2n-2} > \frac{1}{2n}$ and condition II).

Hence $f(\mathfrak{U}, x) \in L'(R)$ for every \mathfrak{U} .

LEMMA 2. $f(\mathfrak{U}, x) \geq f(\mathfrak{V}, x)(x \in R)$, if and only if $\mathfrak{U} > \mathfrak{V}$.

Proof. If $\mathbb{I} > \mathfrak{V}$, then $S_n(x) \subseteq S \in \mathfrak{V}$ implies $S_n(x) \subseteq S' \in \mathbb{I}$, and hence $f(\mathfrak{V}, x) \leq f(\mathfrak{U}, x)$. If $\mathfrak{U} > \mathfrak{V}$, then there exists $S_n(x) \in \mathfrak{V}$ such that $S_n(x) \subseteq S$ for every $S \in \mathfrak{I}$, and hence $f(\mathfrak{V}, x) \geq \frac{1}{n}$, $f(\mathfrak{U}, x) < \frac{1}{n}$, *i.e.* $f(\mathfrak{V}, x) \leq f(\mathfrak{U}, x)$.

LEMMA 3. $f(\mathfrak{U} \vee \mathfrak{B}, x) = f(\mathfrak{U}, x) \vee f(\mathfrak{B}, x)$.

Proof. Let $f(\mathfrak{U} \vee \mathfrak{B}, x) = \frac{1}{n}$, then $S_n(x) \subseteq S \in \mathfrak{U} \vee \mathfrak{B}$. Since $S \in \mathfrak{U}$ and $S \in \mathfrak{B}$ imply $\frac{1}{n} \leq f(\mathfrak{U}, x)$ and $\frac{1}{n} \leq f(\mathfrak{B}, x)$ respectively, we obtain $\frac{1}{n} \leq f(\mathfrak{B}, x) \vee f(\mathfrak{U}, x)$. On the other hand $f(\mathfrak{B}, x) \vee f(\mathfrak{U}, x) \leq f(\mathfrak{U} \vee \mathfrak{B}, x)$ is an immediate consequence of Lemma 2, and hence this lemma is proved.

LEMMA 4. $f(\mathfrak{U}_{\wedge}\mathfrak{V}, x) = f(\mathfrak{U}, x)_{\wedge} f(\mathfrak{V}, x)$, where $\mathfrak{U}_{\wedge}\mathfrak{V} = \{S_n(x) | S_n(x) \subseteq S, S' \text{ for some } S \in \mathfrak{U} \text{ and } S' \in \mathfrak{V}\}.$

Proof. $f(\mathfrak{U}_{\wedge}\mathfrak{B}, x) \leq f(\mathfrak{U}, x)_{\wedge} f(\mathfrak{B}, x)$ is an immediate consequence of Lemma 1. Conversely, let $\frac{1}{n} = \min\{f(\mathfrak{U}, x), f(\mathfrak{B}, x)\}$, then $S_n(x) \subseteq S_{\cap} S'$ for some $S \in \mathfrak{U}$ and $S' \in \mathfrak{B}$. Hence according to the definition of $\mathfrak{U}_{\wedge}\mathfrak{B}$, we obtain $\frac{1}{n} \leq f(\mathfrak{U}_{\wedge}\mathfrak{B}, x)$.

Combining Lemma 1-Lemma 4, we get

Theorem 2. The totality $L_u(R)$ of uniform coverings consisting of spheres is isomorphic to a sublattice of L'(R).

We denote by L(R) a subset of $L_u(R)$ satisfying the following conditions,

- 1)' L(R) is cofinal in $L_u(R)$,
- 2)' if \mathfrak{U} , $\mathfrak{V} \in L(R)$, then $\mathfrak{U} \vee \mathfrak{V} \in L(R)$,
- 3)' for every $\mathfrak{U} \in L(R)$ and an open set S, there exist $\mathfrak{V} \in L(R)$ such that $S_n(x) \in \mathfrak{V}$ implies $S_n(x) \not\equiv S$, and $S_n(x) \in \mathfrak{U}$ and $S_n(x) \cap S = \emptyset$ imply $S_n(x) \in \mathfrak{V}$.

Then we obtain

We denote by B<¼ the relation that for every S∈ B there exists some S'∈ II: S⊆S'.

⁷⁾ $\mathfrak{U} \setminus \mathfrak{V} = \{ S | S \in \mathfrak{U} \text{ or } S \in \mathfrak{V} \}.$

LEMMA 5. $\{f(\mathfrak{U},x) | \mathfrak{U} \in L(R)\}$ satisfies 1), 2) for every metric space R without isolated point.

Proof. 2) is immediately deduced from 2)' and Lemma 3. If we take $\mathbb{U}_m \in L(R)$ such that $\mathbb{U}_n < \{S_{3n}(x) \mid x \in R\}$, $\mathbb{U}_{n+1} < \mathbb{U}_n$, then $e_n = f(\mathbb{U}_n, x)$ $(n = 1, 2, \cdots)$ satisfy clearly a), b) of 1). Next, since an arbitrary point x_0 of R is no isolated point, for every n there exist $x \in S_n(x_0) - x_0$ and m such that $x \notin S(x_0, \mathbb{U}_m)$. Since $S_n(x_0) \nsubseteq S$ for every $S \in \mathbb{U}_m$, $e_m(x_0) = f(\mathbb{U}_m, x_0) < \frac{1}{n}$. This implies $\lim_{n \to \infty} e_n(x_0) = 0$.

Lastly, to see the validity of d), for e_n and $\varepsilon'>0$ we denote by $\mathfrak B$ an element of L(R) satisfying the condition of $\mathfrak B$ in 3)' for $\mathfrak U_n$ and $S_\varepsilon(x_0)=\Big\{y\,|\,d(x_0,y)<\varepsilon=\mathrm{Min}\,\Big(\varepsilon',\frac{1}{3n}\Big)\Big\}$. Then we can easily show that $f(\mathfrak B,x)$ satisfies the condition of f in d). $f(\mathfrak B,x_0)<\varepsilon$ is obvious from the property of $\mathfrak B$ and $S_\varepsilon(x_0)$. If $d(x_0,x)\geq \frac{1}{n}$ and $f(\mathfrak U,x)=\frac{1}{m}$, then $S_m(x)\subseteq S_p(y)$ for certain $S_p(y)\in \mathfrak U$. To show $S_\varepsilon(x_0)\cap S_p(y)=\phi$, we assume the contrary. Since $\mathfrak U_n<\{S_{3n}(x)\}$, the assumption that $S_\varepsilon(x_0)\cap S_p(y)=\phi$ leads to the existence of $y\in R$ such that $d(x_0,y)<\varepsilon,d(y,x)<\frac{2}{3n}$ and to $d(x_0,x)<\frac{1}{n}$, but this is a contradiction. Hence it must be $S_\varepsilon(x_0)\cap S_p(y)=\phi$, and hence $S_m(x)\subseteq S_p(y)\in \mathfrak B$ from the property of $\mathfrak B$, which implies $\frac{1}{m}\leq f(\mathfrak B,x)$. Thus d) of 1) is valid for L(R).

From Theorem 1, Theorem 2 and this lemma we get the following proposition previously obtained by the author, 9)

THEOREM 3. In order that two complete metric spaces R_1 and R_2 without isolated point are uniformly homeomorphic it is necessary and sufficient that $L(R_1)$ and $L(R_2)$ are isomorphic, where $L(R_1)$ and $L(R_2)$ are lattices of uniform coverings satisfying 1', 2', 3'.

From now forth we denote by R a metric space and by R^* the completion of R. Let f be a uniform nbd of R, i.e. a real valued function satisfying I), II), then defining f^* : $f^*(x) = f(x)$ $(x \in R)$, $f^*(z) = \lim_{n \to \infty} \sup\{f(x) - d(x, z) | d(x, z) < \frac{1}{n}$, $x \in R\}$, we see easily that f^* satisfies I) and II)' $f^*(x) \leq \frac{1}{4n}$, $d(x, y) \leq \frac{1}{4n}$ imply $f^*(y) \leq \frac{1}{n}$ $(x, y \in R^*)$.

Furthermore we obtain easily the following lemmas.

LEMMA 6. $f* \ge g^*$, if and only if $f \ge g$.

LEMMA 7. $f^* \vee g^* = (f \vee g)^*$.

LEMMA 8. If $\{e_n(x)\}$ is cofinal in D(R), then $\{e_n^*(x)\}$ is cofinal in $D^*(R) = \{f^* | f \in D(R)\}$.

Lemma 9. If $\lim_{n\to\infty} e_n(x_0) = 0$ $(x_0 \in R)$, then $\lim_{n\to\infty} e_n^*(x_0) = 0$ $(x_0 \in R^*)$.

⁸⁾ $S(x_0, \mathfrak{U}_m) = \smile \{S | x_0 \in S \in \mathfrak{U}_m\}$

⁹⁾ See "On uniform homeomorphism.". In this paper we proved the theorem generally in a complete uniform space without isolated point.

Lemma 10. If $\{e_n\}$ satisfies d) of 1), then for every $\varepsilon > 0$ and $x \in R^*$ there exists $f^* \in D^*(R)$ such that $f^*(x) < \varepsilon$, $f^*(y) \ge e^*_n(y) \left(d(x, y) \ge \frac{1}{n}\right)$.

We omit the proofs of these lemmas.

Therefore, if D(R) is a directed set of uniform nbds satisfying 1), 2), then $D^*(R) = \{f^* | f \in D(R)\}$ is a directed set satisfying 1), 2) for R^* , which elements satisfy I), II)'. Let R_1 and R_2 be metric spaces, then an isomorphism between $D(R_1)$ and $D(R_2)$ implies an isomorphism between $D^*(R_1)$ and $D^*(R_2)$ from Lemma 6, and hence we obtain the following

THEOREM 4. If R_1 and R_2 are metric spaces and if $D(R_1)$ and $D(R_2)$ are isomorphic, then R_1^* and R_2^* are uniformly homeomorphic, where $D(R_1)$ and $D(R_2)$ are directed sets of uniform nbds of R satisfying I), II).

COROLLARY 4. $L_a(R)$, $L_d(R)$ and L'(R) of a metric space R characterize the uniform topology of the completion R^* respectively.