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Introduction. This paper is devoted essentially to two main subjects lying in 

the study of involutive Banach algebras ; the first is an investigation about the positive 

boule of the dual space, while the second is the general Banach representation theory 

of Banach algebras, the greater part of whose interest however might be found in 

connection with the group algebra of a locally compact (abbrev. LC) group.

Here the positive houle is a regularly convex subset of the dual unit sphere 

consisting of positive linear functionals; in the case of a real commutative algebra 

possessing the unit of norm I, it is well known that the positive boule coincides 

with the weakly closed linear convex hull of all multiplicative linear functionals, 

Propositions K  and

In Chapter II, these circumstances are extensively investigated in more general 

situations, where the algebras are assumed throughout to be over the complex field, 

not necessarily commutative, and without unit but with the approximate indentity. 

Thus Theorem 2 is the most general form of the above fact, Proposition and

under some additional conditions, a ) and /3) in § 5, this result is made more precise 

of in Theorem 3, while Theorem 4 determines the complete structure of the positive 

boule.

Although these results have their own interests, one may easily and directly 

reproduce them in the theory of topological groups, e.g. the representation theory or 

the analysis of positive definite functions, without considering the underlying groups. 

Therefore, our theorems would be considered as a generalization of the group repre

sentation theorem.

Chapter I is a basic preliminary; above all Theorem I  plays an important role 

in later discussions in respect of the real restriction method.

Chapter I. Prelim inary study of the functionals 

on B-algebras

I. Prelim inaries about B-algebras. We shall recall some fundamental notions 

and fix our notations at first. Let R ov K  he the real or complex number field 

respectively.

A {S ) is a Banach algebra (B-algebra) over the scalar field S which is either R



or K ;  if A (S ) has an algebraic unit I  with norm I, we say A (S )  to be unitary. 

If A (S ) has an approximate identity {z;̂ } such that av^-^a and v^a->a (uniformly) 

in A (S ), we call A (S ) s e m i-u n ita r ,

An involutive (or self-adjoint) B-algebra (Bp},-algebra) over S is a B-algebra 

which admits such a ^-operation that is a conjugate linear, involutely, anti-automorph

ism of A(S)/^^ Further if a Bjj<-algebra A^ (S ) has the norm condition

( 1 . 1 )  11 =  11 a  11 - I l

A * (S ) is called a B^'-algehra over S : it has sometimes a stronger norm condition, 

11 ad  ̂11 =  11« ; in the case, it must be IU il =  H H

If A * (S ) is commutative, it is easily proved that the latter norm condition is 

equal to (I .  I ) .

Throughout this paper, we shall assume A (S ) or A ^ (S ) to be over iT, i.e. S = K ,  

unless otherwise specified by adding the term “ real” : then we abbreviate sometimes 

A (S ) (or Avf^(S)) to A  (or A * ) only, if there is no confusion.

An element a with a =  a  ̂ is called hermitian (or self-adjoint) and the collection 

of all hermitian elements In A  is called the hermitian kernel of it, denoting by H (A ^ ).

It is easy to see H (A )  being a B-algebra (necessarily over the reals R ), if and 

only if A  is commutative; in other words, a commutative real B-algebra is charac

terized by a B>[<-algebra A>i< with A ^ = H (A ^ ), and if it forms moreover a B*-algebra, 

it is essentially a continuous function algebra C (X )  on a compact

If A^ is unitary, unit must be hermitian.

Proposition I. Denoting by D (A ^ ) the subset o f H (A ^ ) consisting o f  a ll such 

elements as in the form  h^h, h^A^, every product ab in A^ may be written as follows-,

(I . 2) ab =  jz  i -̂^dk ( i  =  i / ^ )
Tb = I

fo r  d k ^ D (A ^ ), and i f  A^ is semi-unitary, A^ is uniformly approximated by the 

complex linear envelope o f D (A ^ ).

In fact, (1 .2 ) is easily deduced, putting dk=hk^hk and ( “ 0^“^^)

for k = l,  2, 3, 4: the rest is somewhat manifest.

As mentioned above, H (A ^ ) is not always an algebra, but there exist two definable 

manners of introducing products in it, that is.

Proposition 2. H (A ^ ) is a special Jordan and besides special Lie algebra with 

respect to the products-,
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1) It should be noticed that the word “unitary” or “ semi-unitary” is sometimes used in 
different senses; e.g. see J. Diximer [2].

2) That is ; (aa^h)^==aa^-\-b^, a^^=a, (a b ) ^ = b V .
3) For example, C. Rickart, Banach algebra with an adjoint operation, Ann. of Math., 47 (1946), 

pp. 528-550; I. Kaplansky, Normec algebra, Duke Math. J., vol. 16 (1949), pp. 339-418.
4) R. V. Kadison [4], Theorem 6. 8; S. Matsushita, [6 ] Theorem 4.



Cl. 3) aob  =  ^ ia b  +  ba)

and

(1 .4 ) {a,b~\ — {ab--hd) (special Poisson’s product) respectively.

The former is always commutative, distributive, but not associative, while the 

latter skew-symmetric, distributive, and satisfies the Jacobi’s equality

La, +  lc, a-]-] + lc , la ,  =  O .

Then is a non-associative real normed algebra with respect to the product

(I .  3), satisfying usual norm condition

(1 .5 ) 11 « 0 ^ 1 1  ^  11 ^  I l  -  11 ^  I l

and aoa — ĉ . If is semi-unitary, it is clear that o a z=^aov  ̂—> a for every 

a € no matter when the approximate identity is in H^A^') or not.

If an approximate identity is wholly contained in H (A ^ \  it is called an hermitian 

approximate identity; for example, this is the case when 11 11 =  \\a\\ for every a 

of A^.

Proposition 3. In H (A ^ ), every Jordan product a^h may he written in the fo rm ]

(1-6) =

di, di so that i f  A^ has an hermitian approximate identity, H{A^') is

uniformly approximated hy the real linear envelope o f

According to the decomposition (I. 2), assume now ah= '^  i^'^dk and b a = ^  i^~^dk\
Ic ' fc

then by simple calculation, we have 

for k=2n, so that

i d , + ( - i )d /  =  id,^-\-C-i)d, =  o ,

from which follows (1.6 ).

The set of all w such that w—\a, h~\ for all pairs a, b in H (A ^ ) is denoted by 

T f(A * ).

2. Functionals on Bj^-algebras. To study the functionals defined on B>},-algebras, 

the following symbolical conventions are adopted:

^ ( • )= th e  dual space of a normed vector space ( • ) ;  ^ (-^ ) ^nd are

mainly considered. -T (- ) is over K  or R, according to ( * ) ’s circumstances; for 

example F ^ A ^ ) is over K, while F over R.

£’(^>}.)=the sub-space of F (A ^ ),  over R, whose elements are characterized by

(2 .1 ) =  (p(a) for every a  ̂A ^ . ^

IJ (A ^ )= Ih e  convex subset of F (A ^ ),  whose elements called positive functionals, 

are characterized by the property;
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(2. 2) (p(^a^a) ^  O , i.e. cpCd) ^  O for every d € .

the set of all multiplicative linear functionals]

(2. 3) cpiab) =  (Pia)(Pib) .

/7'(j4-i- ) = 77'(A*) n  ■S’(y4. )̂, which is clearly a convex subset of J7( j4,i.).

As immediate consequences of the definition, we hold

i)  C (hence C -^ (^ ^ )), ii) if aeH ^A ^ ), then <p(a^')^0 for every

(p e n (A ^ ).
A

Lemma I. (generalized Cauchy-Schwarz’s Lemma) I f  q> is in I I we have

(2. 4) I cp{aH^ ^ (6% ) 12 <  cp{a^a')cp(hn') .

In fact, for an arbitrary a in K, we hold <p(^aa-\-b')^-(iaa^-h')')— (p^a^a') 

+  a<p (a H ) +  a(p (Jf^a) +  cp (h H ) ^ O :  if (p ( «% ) =  O and cp (^aH) O , we may put 

a  (real) ^ and get a contradiction; if ^ (<2% ) =4=; O, putting 

a =  — (p(b'^a')l(p(ia^a'), we can easily obtain (2.4).

Now denoting the zero functional by d, which is evidently contained in all the
A A

classes enumerated above, we shall make use of II^, # ,  etc. instead of F  — d, 

I l  — d, 0 - d, etc. respectively.

Proposition 4. For any cp^F^A), the set 'Î p, //, or defined hy 

nr {a', (p{aa-\-xa) =  O fo r  every x o f A ] ,

I'xp =  {a\ (p{aa + ax) =  O for every x o f A ) ,

I^z= [a \ (p{aa + xay) =  O fo r  every x, y o f  A ] , 

where a being an arbitrary number o f S, forms a closed left, right, or two-sided ideal 

o f A{S~) respectively \ further i f  cp is In then =  and Î p is self-adjoint,

i.e. Icp̂ —Icp.

I f  (p^F^^A), these ideals are proper.

Proposition 4̂ ®̂. Analogously as above, cp being in i^ (^ ) ,  the set Îcp, I'cp, or Icp, 

defined by
Q

'Icp -= [a ; Cp(̂ xa) — O fo r  every x o f  A ) , 

r,, — {a ; (p(ax') — O fo r  every x o f A ] ,

4  =: [a ; (pf^xay) =  O fo r  every x, y yof A } ,

forms respectively a closed left, right, or two-sided ideal o f  A, too. The assertions 

mentioned in the latter half o f Proposition 4 are also valid fo r  these ideals, except 

the last assertion.

The proof follows immediately from the definitions themselves. As a matter of
O O O

course, 'IcpCi I q>, Fcp Cl I'cp, IcpClcp', but we shall make a further remark:

Proposition 5. I f  A  is semi-unitary, or especially unitary, these two kinds o f  

ideals must be identical] that is, 'I^ — Î ,̂ r<p~I/ and Icp=Icp.
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Proposition 6. For any the quotient Bspace (or A^lfcp)

forms a pre-Hilheri space with the inner product]

(2. 5) =  (Pih^a) (or =<p(ab^)) ,

where Xa is an element o f A ŷI '̂ (p which contains a o f A. Completing
O O

A^/ Icp {A^/I'cp) by the norm W XaWcp — {Xa, XaYJ^, we have Hilbert space 'Hcp which 

contains the dense subspace A^/ Îg, {or resp. H'cp).

By the same reasoning, fo r  a two-sided ideal I(p, the completion o f A^jIcp with 

respect to the norm H - forms a Hilbert algebra. Owing to Proposition 5, i f  A^ 

is semi-unitary, (F^p, or Icp) may be replaced by 'Icp or Icp).

To prove this proposition, we have only to prove that H XaWcp=O if and only if 

a '̂Iep (or resp. ^Ftp')', indeed, a '̂Iep implies (p{a^a) ■= \\ Xa\\%=^0 and conversely if 

^ ( «% )= 0 ,  (p(b^a')=0 for all b in virtue of Lemma I.

Proposition 7. For any cp 6 (^^(^), the set

(2 .6 ) Iep=  ̂ {a- cp {a )^ 0 ] ,

forms a maximal two-sided regular ideal, fo r  which AjIep is isomorphic to the scalar 

field S o f A (S ).  I f  A ^ (K )  is considered, then

Here, the notion of regularity in ideals follows a costomary manner; that is, a 

left (right, or two-sided) ideal is said to be regular if there exists such an element 

u, called right (left, or resp. two-sided) identity modulo the ideal, that {ua — a,

resp. aub — db) in the ideal for every a, b in the algebra.

We shall now prove the above Proposition: but the first half is somewhat trivial, 

and to prove #(t4>k) == #(^>j<), we need only to show (A:^) C. (A ^ ) . Forthis 

purpose, we prepare

Lemma 2. I f  u is a (two-sided) identity modulo Iep, then (p(u)^(p(u^)=^l.

In fact, U^U-U  ̂Iep implies that (u^u-u^)'^ -=u^u-u  ̂Iep^^Iep, so that u^-U ^  Iep 

or equivalently q^(u^)-=^(p(u), which must be equal to I  from A/Iep^K.

Proof of 0^(^A^) (ZS^ (A ^ ) : Putting z-=^ip(a) ( ^ K ) ,  z u -a  is in Iep, and so 

(zu — a)'^-=zu^ — a ,̂ from which it holds (p (a^)- = Z ip Q u ^ )=  cp (a ). This completes 

the proof of Proposition 7.

Remark I : The iverse problem of Proposition 7, which will estimate profoundly 

the existence of non-trivial (i.e. ^ d )  multiplicative functionals, is solved in such a 

manner that if Icp is a two-sided regular ideal which is maximal as a left as well as 

right ideal, then (p € § \ A ).

Remark I I : Owing to the latter half of Proposition 7, in the case of B^-algebras
A

there needs no distinction between § and 0 at all.

3. Functional on H (A ^ ), We shall begin with some notations: F (H (A ^ ) )  

is the same as mentioned above, §2.
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T I convex subset of r (H (iA ^ ') ') consisting of all such functionals (p 

defined on ;

(3 .1 ) hj)\^(p{a^) +  (p(lf') .

^(iJ(i4>i<))=:all of multiplicative linear functionals with respect to the product

(1.3 ), i.e, (p{aoh')-=^(p{a)-(p{h'), vanishing on 

Then we can establish;

Theorem I. i) In a B^-algehra A^^K'), any functional o f F^A^') is entirely 

determined on H {A ^ ). ii) Especially, we have

a ) S (A ^ ' ) ^ r (H (A ^ ') ) ,

/5) n ( A V ^ n ( H ( A ^ ^ ) ,

r )  0 (A ^ ) ^  0 (H (A ^ ')') ,

where A iA ^ ) ^  means that A and A are topologically isomorphic one another

withe respect to the weak topologies {uf^-topology^ as functionals in respective dual 

spaces, r^ A ^ ) and r (H (A ^ ) ) ,  in such a fashion that i f  fo r  ^  ̂A, cp^A, then
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Proof of i) is immediate; if cp coincides with ip on iJ(A>}<), both of which being 

in/^(^^), then <p{a)=^(^s) + i^{t)'==(p<is')+i(p{t)=:(p<ia'), where ŝ =̂ -~̂ - and t ^ ~ ^  .

Proof of ii) : d ). Since ip, (p^E^A^), is real on H (A ^ ), the restricted (p oi q> 

on H (A ^ ) is in r ( H (A ^ ) )  ; conversely, any extended cp of (p, (p ^ r (H (A ^ ) )  by the 

relation (3.2 ), is clearly contained in SCA^). The algebraic isomorphism between 

them is somewhat trivial, but the topological one shall be proved afterwards in a lump.
A

/9). We shall first prove that each functional of ! ! (A ^ )  becomes an element of 

n (H (A ^ ) ') .  For the decomposition a=s + it as above, we have

(3.3 )

so that if (p is in I I {A ^ ),  (p{s‘̂ ) +  <p{t‘̂ )'^2(p(X_s, t~Y) and ~2(p(X_s, f ] ) ,  from which the 

inequality (3.1). The converse assertion is also clear on account of (3. 3).

y'). For <p k 0^{A^^, it is easy to see that the restricted (p is also in ^ (/ f(^ ^ )),  

since ^ (J ja ,b ~ \ ) { q ) (Iac)--Cp(ba )) Thus, it is sufficient to prove that every

(p is extensible to the whole A^ preserving its multiplicativity.

Let (p be the extension of <p as in the form (3 .2 ), them

CP(St)-<p(ts) =  =  2/. ^]) =  2/.^([s, /]) =: O ,

for every a, b in HCA^) ; putting a^s^^ +  it^ and +  a, be A^, s ,̂ ŝ , t̂ ,

t2 ^H (A^ '), it holds



' ah =  5i52— + + ,

. ha =  828^ - /2̂ 1 +  i • {tzSi + 52 î) , 
and

cp{ah')-(p(ha) =  - [ ( ;^ (y 2) - ^ (^ 2̂ 1) ]

+ il<p(isj2)-< p {t28d '] +  tl<P{hs2)--(p{^S2Q'\ =  0 , 

that is, (p{_ah')-=-ip{hd). Therefore, we can conclude the multiplicativity as follows;

(pî ah) ^  (̂ (pî ah')-Vipihd)^

=  yC^(5i52) +  ̂ (525i)]-y[<^(y2)+<;^’(2'2 î)]

=  ?(^i ° Ŝ ) ° t2) ° k ) +  K k  ° 2̂) )

=  ?̂ (5i )? (^ 2) --?’(^l)?'(^2)+2(?'(5l)?(^2)+?’(i^l)?^(^2))

=  (?^(5i)+/f^(^i))(??(52) +  /?;( 2̂) )  =  (p{a](p{h) .

i ii) t'inally, it remains only to prove the topological equivalency of ^  in a;), 

/5), x ) b u t  the continuity A-^A  is evident; in fact, for a w*-nighborhood of (p̂  in

A, U<PQiai, ...... , an; e), <3:̂   ̂A>j<, e >  0 , we see easily that the w*-neighborhood

...... , Sn, ti,, ....... ,tn\ e/ i/ T ) of in A is mapped into U^q, since we have

evidently
I ( fK^k)  - (Po(c^k) I =  i ( . ^ ( S k ) + i p ( t k ) ' ) -  +  i ^ o ( t k ) )  I

=  (  I (̂Sk) -  r  +  I ? ( «  -  ? o ( «  I
< i/ e V ^ £ V 2  =  £,

for k = l ,  ...... , n. The inverse continuity A —> A is clear, since H(A^)C.A:;^ and

consequently the Wjj,-topology of A is stronger than that of A .

Thus Theorem I  is completely proved.

In a commutative Â ;̂ , (3 .1 ) is naturally replaced by ° < 0  for 

a ^ H (A ^ ), and 0 (i7 (^ ^ )) is characterized by the singule condition of multiplicativity.

Moreover if A  is real and commutative, i.e. A  =  with A^ =  HCA^), the both 

sides of ^  in Theorem I  must be identical and of course P (A )= ^ E (A ),  so that the 

sign A would be unnecessary.

In passing, we shall touch on the -operation defined in F (A ^ )  : putting

(<p, a) =  (p(a) ,

we may consider it as a bilinear functional defined on the direct space
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there exists in P ^ A ^ ) such an element that a) =  ((Py a )(= (p (a '^ ')), for which 

the following properties are verified; i) (ô (pi +  (p2'j'^=a(p{^ +  (p2'̂ , ii) iii) (p"̂ -=̂ (p

for (p 6 S (A ^ ).

Thus we comprehend that 5 (^ ,1,) is the hermitian kernel of r ( A ^ )  with respect 

to such >K-operation and (^, a) is real on the product of both hermitian kernels



Chapter II. Structure of positive boule

In the preceding Chapter, we have investigated the space of functionals defined 

on a B- (or particularly B^-) algebra, but we shall now pursure the further investiga

tion about it, correlating with ideals of the algebra or with the reducibility of 

quotient spaces (or algebras) relative to the ideals; from such a standpoint, the 

following well-known assertion plays a fundamental role in the case of a real 

commutative unitary B-algebra A, i.e. unitary A  with A ^ ^ H {A ^ ) :

Proposition K. Denoting the unit sphere {boule) o f  F ^ A ) and its surface by E  

and S {E ) respectively, S ( ^ E ) {A)r\S(^E) is a w^-compact convex subset o f F ( A )  

and i f  S(J5) is non-null, each o f its extreme points, whose set shall be denoted by
A

extr. S {E ) is multiplicative and vice versa, that is,

( K )   ̂ extr. S (E ) =  0 \ A ) ,
A

so that (p~' (̂fi) is a maximal ideal o f A  fo r  every extreme cp o f S (E ),  (See R. V. 

Kadison [9 ], pp. 23-24).

We should remark that <p ^ S (E ) i f  and only i f  (p C I I ( A )  with ^ ( I ) = I  ( I  being 

the unit of A ).

In this Chapter, this result shall be extended to the case that A  is a non- 

commutative, non-unitary (but semi-unitary), complex B,|<-algebra A - A ^ ( K )  in a 

certain situation. We shall begin with some preparatory discussions.

4. Extremity and irredueibility.
Denoting the unit sphere of r (H (A ^ ) )  by E q, which is a w*-compact convex 

set, due to S. Kakutani and J. Dieudonne, the intersection (called the positive boule)

(4 .1 ) E , := E ,r \ T l (H (A ^ ) )

is also w*-compact and convex, i.e. regularly convex in the sense of M. Krein-V. 

Smulian; since E q is bounded, the Krein-Milman’s theorem is also applicable to it, 

from which it follows that E q has sufficiently many extreme points whose convex hull 

is w"*"-dense in

As we have seen before, for each closed one-sided (two-sided) ideal I, the quotient 

space A / I turns to be a Banach or Hilbera space (algebra) by suitable norming 

and, if necessary, completing ; then it is easy to see that A / I (completion of A/I, 

or —A / I if it is complete in itself) admits the left, right or two-sided translation 

operator La, Ra or Ta respectively according as / is a left, right or two-sided ideal;

LaX =  [ax ', X^ X } , RaX =  {xa; x ^ X }

8 Shin-ichi Ma t s u s h it a

and TaX =  LaX ~  RaX for X  € A /I, a ^ A .

Obviously, LaXx =  Xax and RaXx =  Xxa, so that X A ) i ~  {La; a e A } , (A Y i

5) See N, Bourbaki [ I ] ,  Chap. II, §4,



=  {Ra] a e A )  or \ a (iA ]  forms a bounded, continuous Banach or Hilbert

representation of A  on A / I  according to /’s kind, with respect to the usual operator 

norming. Then we arrange
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Definition I. Let / be a closed left ideal of A  such that forms a Hilbert

space. If there exists no such projective operator P  on H  relative to any closed 

proper subspace of H, as reduces (or equivalently 'commutes with) every element 

La of Hilbert representation \ A ) i ,  then A/1 is said to be irreducible^ otherwise 

reducible. In right or two-sided cases, these notions are analogously defined.

Proposition 8. =  La^, =  Ra  ̂ and Ta^ =  where S* is the conjugate 

operator o f S on H = A / 1; therefore, fo r  each a^H^A^^), Lay Ra and Ta are hermitian 

operators.

A  bounded hermitian operator A  is reduced by the projective operator P  relative 

to a closed sub-space M  if and only if A M d M ; then decomposing every La as in 

the form

(4 .2 ) La =  Ls +  i^L f,

where s =  ~(^a +  a^) and t = - ~ ( a —a^), both Ls and Lt are hermitian and hence we 

see directly

Proposition 9. H = A / 1 is irreducible i f  and only i f  there is no closed linear 

manifold which is invariant under {L « },  [Ra) or [T a ) according to F s  kind.

It is easy to see that I  is never maximal but A / I is irreducible, while the con

verse is not necessarily true. We appreciate however that the converse is also true 

in the case of unitary commutative B^-algebras ;

Lemma 3. I f  A^ is unitary and commutative, the following four conditions are

mutually equivalent] i)  Hcp=A )̂^/I  ̂ is irreducible, ii) H^pis simple, iii) Icp is maximal,

iv ) (p is multiplicative.

The equivalency of ii) iii) and iv ) is clear, so that we have only to show that of i) 

and ii) : in fact, if Hilbert algebra H  is supposed not to be simple, then there would 

exist an ideal I q such that I C  Io, for which I^/1 is a proper ideal of H  and so 

contained in a maximal ideal M  of H  which is invariant under [T a ). This yields 

the reducibility of Hep, that is, i ) —>ii). Next if Hcp is simple, then Iq> is maximal, 

so that H  is irreducible from Theorem 3 mentioned later, since A  satisfies the 

conditions a ) and /5) in §5.

Thus we can replace, in beforesaid Proposition K, the terms ‘> “ ^0 ) is maximal” 

by those of A/Icp is irreducible’', and get

Proposition Under the same conditions as in Propositon K, H<p =  A/Iep,
 ̂ . A

(p  ̂S (E ),  is irreducible, i f  and only i f  (p is extreme o f S (E ) or equivalently Iep 

maximal.



In the following, we shall extend this assertion to more general cases, as is 

already announced at the outset of this Chapter. To begin with, some conventions 

and notation for later use;

1) For (p  ̂r , (p means the extend functional of (p over the whole

i.e. C p ( ^ a ) ^ c p + icpî  2i )  ̂ ^ the restricted one of cp to

; these are really reasonable owing to Theorem I.

We often use, however, the same cp instead of tp or of if there exists no 

confusion.

2) 'Iq>{Icp\ Icp), (P^E q, is the ideal 1$) defined by the extended ^ of (p.

3) If Îcp Z= ̂ for cp, Cp̂  E q, we call such cp and (p {left') equivalent, writing 

(p^ (p ; it is easily possible to define right, or two-sided equivalency in an analogical 

manner.

Although we are going to consider mainly about the case of left ideals (and 

hence of left equivalency) hereafter, the other cases are still well treated by analogy; 

then we abbreviate “ left equivalent” to the term “ equivalent” merely, unless other

wise specified.

Definition 2. If ^ is equivalent to no linear convex combination of 4)̂  and 

4 2̂, each of which is in and not equivalent to cp, then cp is said to be weakly 

extreme (or abbrev. w. extr.) in Eq.

From the definition itself, it follows immediately:

i )  (p-^(p implies (p -^{acp +  ̂ cp') for /3>0 with

ii) if (p is w. extr. in E q and (p^(p, then (p is also w. extr. in it, 

iii) for a, ^ '^ 0  with a:+ /3 — I.

It should be noticed that the collection of all mutually equivalent elements in E q is
O  O

not always w*-closed: for a counter-example, it is sufficient to consider 'Icp and 

such that ÎrpC.'I<p properly; indeed, +  for a:^ O  but aq̂  + ̂ (p^(p  for a =  0.

The theorem enlarging Proposition is :

Theorem 2. For a semi-unitary B^-algebra A ^ , a necessary and sufficient 

condition —A^/ Îcp, <p ^E q, would he irreducible is that <p is w. extr. in E q; thus 

i f  Îcp is maximal, cp is tv. extr. in E q.

Proof C Suppose first cp not to be w. extr. in E q , then there exists such <Pq € E q 

that (p- (̂pQ and + where ^i, (Pz ^ E q. By iii ) above, we have

Î<PiC]'I(P2 ^̂ I<pQ. Denoting the completion of M ^ =  h q by M, we see that M  is a 

closed proper sub-space of 'Hcp '̂H^Pq, which is evidently invariant under {La }; in 

fact, if  were dense in 'Hcp, there would exist for each given e > 0  an element 

lying in such that 11 Xt;\ —Xg being an arbitrarily fixed element of the

approximate identity {v^}, then since IjXsll-^i =  O by the assumption, it holds

10 Shin-ichi M a t s u s h i t a



_  ][ 11 X ,̂\ ll<; î- 11 Xg ll<Pi|

^  11 XvX — X 2 Ŵ i ^  ] /  2*11 Xv\ ~ X 2 11 (p <C 2  ̂J

and hence along with £'->0, so that every would be contained i n ,

Positive functionals and representation theory on Banach algebras. I  11

where X  means the corresponding element of A^ / ' to X^^H . This is absurd 
and hence M  is proper, or in other words, Ĥcp is reducible, which complets the proof 

of necessity.
To prove the sufficiency, we employ the orthogonal decomposition of 'Hcp: assume 

that H=^Hcp is reducible, then i7 = M i0 M 2 , both of which are invariant under {La}, 
whence each Z  of i J  is also decomposed into for Z* €M /(/=l, 2).

Then putting (pi(b^a) =  (Xi, Xi)cp, both and ^ 2  are well defined on by 

virtue of the approyimate identity; in fact,

( Z ^ ,  X i^ ,\  =  (Xix, T a ^ X i ) ,=  (X ix,  T K X D ^
=  QTaXix, X l \  =  (Xi,Xy X l)^ ,

so that (f̂ Qb'̂ a') = U m  <p̂ (b̂ av̂ ) =  '(Xi, XDcp and hence <pi is uniquely determined for 

i =  ly 2. Clearly, cp̂  and q?2 are in I I (A^) and, from (Z , F)<p=(Z\ X̂ )<p + (X^, Z )̂< ,̂ 

it follows

(4 .3 )  (p =  ^, + ^2-

As is easily seen, both H 11 and 11 $̂ 2 11 are ^  H  ̂ H ^  I  and hence setting

(4. 4) (pQ =  a^i + 0^2 for /3 >  O with a-\-  ̂ =  I ,

we see that (p <̂Pq and (Po^Eo, since l l ^ o l l ^ ^  + /3 =  l .  This completes the proof of 

Theorem 2 entirely.

5. Extremity and irreducibility, cont. One may make precise of Theorem 2 in 
some special cases : the first is the case when A^ is semi-unitary again and, more

over, satisfies the following two conditions ;

11^2*^11^11^11  ̂ for every ,
/3) lli;^ll :=1 for each element of the approximate identity

The condition a)  is fulfiled in the case of a B*-algebra with stronger norm 

condition 11 <3!% 11 =  11 Il̂  (e .g .  C'^'-algebra) or of the group-algebra L ( G )  on a 
locally compact group G, while the latter /3) is so in the case of every unitary 

B-algebra or L(G)  again. The algebra discussed in Proposition K and is 

also the one which satisfies these two conditions, so that the following Theorem 3 is 
applicable to it.

In such cases, each element X^=Xvx, being contained in Â / Îcp for a fixed 
(p^Eo, is bounded and (Xa, X^)(p=(p(v^^a') converges to 0 ( a) ;  since X a , a ^ A ^ ,  is 
dense in Ĥ̂ p, we see consequently that {Z;^} converges weakly to a certain element 
Xcp in Ĥcp.



Proposition 10. Under the above conditions a ) and 0), it holds that H ^ 1| =  H ^ l| 

fo r  (p^ IK iA ^ ) with restricted ^  ̂T I .

In fact, by Lemma I  we have

\(p(ia v̂'̂ ')\  ̂^(p{a^a')(f(v^'^v'^) ^(p(^a^a') 1 1 ̂ 1 1, 
from which I (p{a') Î  ^  <p(̂ â a) H  (p 1| and hence, for a € with 11 a H  ^  I, 11 ^ 11  ̂

^  (̂<2% ) 11 ^ 11 <  11 11 • 11 ^ 11, i.e. 11^11^11^11. On the other hand, it is clear that 

11̂ 11<11<J?11, which proves the Proposition.

This shows that, in such cases, it holds

(5.1 ) E o ^ E n n u ^ ' ) ,

(5 .2 ) S (E o )^ S (E ) ,

where the sign designates the same equivalency as is mentioned in Theorem I, 

and S (E q) means the surface of E^, that is, = S (E ) r ]n (H (A ^ ) ) ,  while S (E )= S (E )
A

(~ ]n (A ^ ) ; about S (E ), refer also to the outset of this Chapter.

Now, we define the subset E q of E q as the collection of such functionals lying 

in E q that (X<p, X<p)<̂ ==l. We call E q normalized positiue boule.

Proposition 11. The following three conditions are mutually equivalent)

i)  (P^ E q ,
A

i i) (p ^ I I (A ^ ) and (X$,X^)^-==1 fo r  (p's extended (p, 

iii) (P^S (E q)  or its extended ^  ̂S (E ),  owing to (5.2 ).

Proof. We shall prove this in rotation; iii) ^ i )  ^ i i )  ^ i i i ) .  A t first, i ) —>iii). 

Since q>(v^)-=(X$, X^)$-^ (X ^ , X$)^-=^l and I  ^̂ (2;^) I ^  11 ^ 11 <  I  for <p^Eq, it follows 

I  ^  11 11 ^  I, that is, I l  ^ I l  rn I  and hence (p 6 S (E )  or equivalently (p € S(Eq).

i i ) - ^ i ) .  For every a with 11 <3: H ^  I, we have by Schwarz’s inequality that

\^a)\^ = \ (X a , Z ^ )^ r ^  (̂ ^% X ^ )^ - (^ ., ^ . )^  -  a) ^  11 ^ H

from which H (p ^  I l  11 and so 11 11 ^  I. This shows that (P^Eq.

i i i ) -^ ii). Clearly I  (X;^, X̂ )<̂ | == I v>(ẑ )̂ I ^  11 H =  I ,  from which (X$  ̂ X$)$ 

=  suppose now <^<1, then putting ^/a:=0Q, we see immediately ,
A

X$Q =  Xcp and (Pq^ I I (A ^ ) ,  then ii) and hence successively i) and iii) are valid for 

such (pQ, so that H 11 =  I and I I ^^ l l = c ^< l ,  which is contradictory with the 

assumption ^  ̂S (E ). Hence (Xcp, Xcp)cp =  1, which make sure of ii).

Corollary P. 11. H ^ |I =  |i ^ H — (X$, X$)$.
~  A

Thus we conclude that Eq is nothing but a w'^'-closed convex subset of 1 I(H (A ^ ))  

with the property (Xcp, X<p)(p I ,  which coincides with the surface S (E q)  of E q 

entirely; indeed, the fact that E q is w*-closed and convex is easily verified. These 

make us confirm the

Theorem 3. Provided that A^ satisfies the conditions a ) and fi) above, 'Hcp is 

irreducible i f  and only i f  q> is an extreme point o f E q.
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Proof, Assume that is reducible, then in the same manner as in the proof 

of Theorem 2, we get two functionals (fi and cp2, cf. (4.3), both of which belong to
A

As is easily varified, Xvi)<Pi:={Xip, for /=1,2, and we have

(5. 3) (-X^l > "  {Xcp̂  X(p)q> == I :
A

putting {X^i, X(Pi)^i := O and (pi/ô i =  (pi  ̂ for / =  1,2,  we see that

\\(pi\\=:\\^i\\/ai=:(^X(Pi,X<Pi)<Pi/ai==l, so that  ̂E q for / =  1,2. On the other 

hand, it holds

(p—ai(pj_ +  a2^2 , where â  +  a2—l  by (5.3), which shows (p being a midpoint of a 

segment in E^, This proves the sufficiency.
I ~

Conversely, let Ĥcp be irreducible; if (p=̂ -7f((Pi +  <P2) suitable (fi and (P2 ^Eq,

then ^ o = - is in E  ̂and (Z « ,  Xa)^Q"(PQ{d^'a) ( ^ ( Z « ,  Xa)(p for every a 6 4̂̂ )̂ defines

an hermitian form in 'Hcp and hence an hermitian operator A  such that

(A X , Z)<, =  (X , Z)^o for all Xe^H^.

As is easily seen, A  is commutative with every La and, since Ĥ<p is irreducible,
Si;

it must be in the form (A X , X)(p-=^a(X, X)cp for a fixed number a ; from <p, (Pi^Eo, 

it follows and so ^o=^i/2=^2/2, that is, <p̂ :=z(p̂ —2(p. This shows (p is extreme

in j :.

Thus, Theorem 3 is completely proved.

Summerizing all these arguments, we can determine the complete structure of E :̂

Theorem 4. I f  A,  ̂ satisfies the condition a ) and /3), the set o f extreme points, 

extr, E q, consists o f that o f E q, extr. E q, and the origin (zero functional) d. Every 

w. extr. (p o f E q is either extreme of it or a inner point o f a segment combining the 

origin d with an element o f extr. E q, <Pq say, i.e,

(5. 4) a(fQ fo r  O <  <  I .

In fact, an exreme cPq is either of norm I or identical with d, since (Pq with 

is necessarily a midpoint of a segment. Let (p be w. extr. in E q and
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11^114=0, then 11 ^ Ii lies on E q and AJ'Icp is irreducible by Theorem 2; q>Q

is hence extreme by Theorem 3, (p:=aq)Q for a-=i\\(pQ\\ which is > 0 .  If H^ll 

(p itself is extreme. Thus Theorem 4 is completely proved.

Next we shall define another notion: in our present considerations, we need not 

the assumptions a ) and /9), which are assumed in the preceding arguments for A^.

Assume that an element <p of F (H (A j^ )) has the following properties;

1°) 'Icp(Fcp, Icp) is a closed regular ideal,

2°) (p(j)-==^l for an identity j  modulo the corresponding ideal cited in 1°) above.

Then (p (or (p') is called left (right, tow-sided) regular', there need however 

only two regularities of (p, one-sided and two-sided, since <p is also right regular, 

having p ' modulo = (% ) * ,  for each left regular (p.



The set intersection of of all one-sided (or two-sided) regular functionals
• O • O

is denoted by E q (or resp. E q), which is evidently w*-closed and convex. E q(E q)  is 

called one-sided (tow-sided) regular positive houle.

Lemma 4. Let cp G II(H (^A ^)) he one-sided regular\ then it holds that (p(ay<(p(^a^) 

and hence 1 1 ^ 1 1 <  I, where a € H (A ^ ).

Indeed, in the inequality (2.4 ) we have only to put b = j  and get (p (aY—^ (a y  

==^ (^y )^^^ («^ )$^ (i* i)= ^ (^ ^ )= ^ («^ ) for a ^ H (A ^ ), since ^>(y*y)= ? ’( ; ) = ! .  The 

proof of the latter is immediate, hence shall be omitted. Then we assert

Proposition 12. The following two conditions are mutually equivalent ; i)  

(p  ̂E q(E q), ii) (p ^ I I (H (A ^ ))  and it is one-sided (two-sidhd) regular.
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Theorem 5. For <p  ̂Eq(Eq), i f  Hcp A:^/^Lj>(A^/I(p) is reducible, then there exists 

a segment o f E q( E q)  just in which <p is an inner point.

Proof. As is easily verified, an identity j  modulo is also the one both modulo 'h i  

and modulo 'I<p2, where <Pi and (p2 are just the same as in (4 .3 ), i.e. ^ == ^1 +  ̂ 2- As 

^ / (y )= ^ / (i* y )^ 0  and ^ (i)==^ iC ;) +  ̂ 2( i ) = l>  we see that l ^ ^ / ( ; ) > 0  for f = l ,  2; 

putting a i^ cp i(j) and we see that

(5 .5 ) ( f ( - )  =a^i^^l(0+^2^^2(0 .

A
Since ( p i ( j ) - = l  and Î<Piz=̂ I<Pî  (pi is one-sided regular and clearly (pi^ T I ( H (A ^ ) ) ,  

from which results ipi 6 Eq by Proposition 12. This shows that cp is an inner point.

Corollary T. 5.1. For an extreme cp in E q (o r  E q), each o f A^/'I<p and AJTcp (o r

resp. A J lip) is irreducible.

Corollary T. 5. 2. Every extreme point o f E q (or, i f  the algebra is unitary, o f  

E q) is w. exter. in E q.

As in Proposition 7, ^2, every (p in 0 ° (A J  causes a maximal two-sided regular 

ideal Iq> and clearly ( p ( j ) = l  for an identity j  modulo Zp. Moreover by the multipli- 

cativity of <p, it must be 11 ^ H <  I  ( i f  A^ is unitary, = 1 ). AU these make us 

confident that

(5 .6 ) 0 (H (A J )  C  E q .

More precisely we have

Theorem 6. Every (p in 0 ^ (H (A J ) is an extreme point o f E q and hence that 

o f E q and o f Ê ,.

Proof. Suppose that (p ((pi +  cpz) for (Pi,(P2 ^Eq\ we have (p(a^) — ~\_(Pi(a^) 

+  ̂ 2(«^ )] =  (^ (^ ))"== -r[^ i(«)^  +  2 -^i(i?)-^2(^ ) +  ̂ 2(« )^ ] ; therefore it follows that



—(P^ia)Y  ̂ (owing to Lemma 3).

Consequently, (Pi^a)=(PzCa) and so (p is never a midpoint of any segment in E q. 

This completes the proof. This skilful way of proving Theorem 6 is essentially due 

to R. V. Kadison [3 ], Lemma 3.1.

6. Summerizing and group algebra. We now summerize the considerations of 

the preceding paragraph and realize those results to the special case of group-algebra 

on a locally compact group.

First we present a convenient proposition :

Proposition 13. I f  is semi-unitary, satisfying the conditions a ) and /3), then 

i t  holds fo r  each (P^E q {̂ or E q)  Xcp=Xj as elements o f {resp. HcpX where j  is 

an identity modulo 'Iq> {resp, Icp). Therefore, EqCZEqCIEq.

In fact, we have (X a , X$)(p=^(^a)=^(laj) =  (^Xa, X j)$  for <p ^ E q and for every 

a ^ A ^ , so that Xq>-=^X^=Xj \ since { X j , we obtain {X$, X$)$

Z=I and so (p^E^, i.e. EqC^o•

Then, in the case of such as is semi-unitary and satisfies ol) and /3), we
O • ~  ~

establish the following ''inclusion schema,' in which we write Fo, Fo, Fo or Fo for 

extr. Eo, extr. Eo, extr. Eo extr. E„ respectively and “ X - ^ Y ” reads “ X  is the set 

of all extreme points of Y ” :

i\ H (A ^ ) )  C  Vo C  Vo C  Vo C  Fo =   ̂U Fo
(6 .1 ) I ”

EoC E oC E o=  S (E q)  C  E o ,

and if A^ is unitary,

C  Fo =  Fo =  Fo C  Fo =  ^ U  Fo

(6 .2 ) i i j. i

Eq Eq := Eq S (E o ) C  Eq .

Moreover, if is commutative, then

(6. 3 ) Fo =: Fo =  n  extr. S(Eq) ,

When A^ is unitary in addition, (6. 3) comes from Proposition 3 and Theorem 3 

as is mentioned before.

In non-unitary case, A^ can be immedded as a maximal ideal of a unitary 

A ^ ^ { (a ,  a ) ;  a ^ K ,  a^A ^^ , having the product, norm, involution as follows; 

(a , a) (0, h) =  (o:/9, a + ah +  ah), \\ (a, a) \\ =  \a\ + \\ a \\, (a , a)^ =  (a, Putting

(f(a , a) a +  (p(a) for (p ^ S (E ), it is easily seen that ^  ̂E.̂  =  the unit sphere of 

^ (A > K )n iT (y 4 ^ ) and moreover H ^ H r r I, that is, ^ € S (£ ' i ) ,  since 11 11 ^  Il ^  11, 

^(1, 0) =  I  and
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a ))  — \a\̂  +  2^(rx(p{a)) (p{d^ a)

-  _  A A _  —
Conversely, putting (p{a) •:=̂ (p(Oy a) for cp^S^E^), we see that (p^E  and <p^(p
_  _  A _  -

for (p, implies (p^(p because 0) =  </̂ (1, 0) =  I .  Then, suppose that
^ _ _ _ A  _ _ _

^ =  — (^ 1  +  ̂ 2) for Ip^extr. S iE ^  and (Pi, (P2 ^S{E^) with thein it follows
I ~

that ? =  -^ (? i +  ?2) with ^2^ ^ 2, both of which lying in Eq , so that ^ cannot be

extreme in and so in S (E ), which is impossible. Therefore (p ^extr. S (^o) implies

^ ^extr, S (E i) and, by above argument concerning about unitary it concludes

that ^ € #(ii/(Avj.)), so that (p  ̂ . This proves (6 .3 ) completely.

Proposition 14. I f  <p ^ S (E q) and Â /̂ Icp {or Â /Fcp )̂ is finite dimensional as a 

quotient Banach space, then (p is in E q.

If the assumption is held, owing to a noted theorem of Riesz, the unit sphere of 

A^/ Î(p (or A^/r<p) is compact and hence a suitable sub-family {X^} of {Xvx}, which 

is entirely contained in the unit sphere, converges to a certain X q for which XaX^i 

-> XaXQ =  Xa (resp. =  so that each element u ^ X q is a let (resp.

right) identity modulo 'Icp (resp. Fcp).

Now we know that there exist two intersting and important objects to which we 

could realize the foregoing considerations; one is the C^-algebra, in which <p ^ S (E q) 

is called a ''state” , while (p  ̂extr. S(Eq) a ''p u re” one^^  ̂ and another is the group 

algebra, in which every ^ 6 S(Eo) corresponds to a continuous positive definite func

tion, while (f ^extr. S(Eq) to a "elementary” onê ^̂ .

The following is devoted exclusively to study of the latter, i.e. the group algebra. 

Let G be a locally compact (LC ) group with the unit e, and L (G ) the group algebra

of G with respect to the left-invariant Haar mesure dx, with elements f , g , ...... and

the approximate identity

L (G ) forms a Bjj.-algebra with respect to the involution
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(6 .4 ) / * (^ ) =  K ^ )/ (^ -^ ) r

where q (̂ x ') is the density of right-invariant Haar measure, dx~^=p<ix)dx.

In the case, every is helmitian and of norm I  and Ij H/l| for every 

f £ L (G ) ,  so that L (G ) satisfies the conditions a ) and /3) o f  §5.

Lemma 5. Putting =  {_left translation^, we have

(6 .5 ) U x T - g = f ^ < g x - i ) .

Proof. By a direct calculation as follows;

6) Consuliting the Cauchy-Schwarz’s lemma (2.4), the second term - - 2 \ a \ ’ q)( â â')

7) Cf. I. E. Segal [7].



=  \ j% z ')g ,^ , (z -^ . )d z  = / * . (^ . - 0  ( • ) .

We can arrange this Lemma in the following manner, using th^ operator Ux on 

the Hilbert space = L ( G ) /'I<p, ( P ^ E q= S ( E q), defined by U x X f= X fx ;

(U xX f,X g )^  =  (X f ,  Ux-^Xg)^,

Thus, we see that Ux is unitary and {Ux\ x ^ G }  forms a continuous unitary 

representation of G on 'Hep. Then (X ,  UxX)cp is a continuous positive definite 

(c .p .d .) function on G. Denoting the collection of all c.p.d. functions with norms 

less than I  by P (G ) and that of those with norms =  I  by P q(G ), we see that 

^(p(x) =  (Xcp, UxXcp)(p for (p ^ E q (or ^ E q) is an element of P (G ) (resp. of Pq(G)). 

Conversely, for each $  ̂P (G )  (or € Pq(G )) the functional on L (G )  defined by

(6 .7 ) n ( f )  =  l^ K ^ f ( x - )d x .

A A
is clearly contained in E  (resp. in S (E ) )  and moreover

(6. 8) S(x ) =  (X<p^, UxX(p̂ )<p̂ .

Thus we can establish:

Proposition E q (o r  E q =  S (E q) )  is one-to-one corresponding to P (G ) (resp.

to Pq(G ) )  by ( p Scp and as defined above, where

i)  — ,

ii) f  ̂ ^̂ l + ̂<P2 == ,

iii)  l i e  H  =  1 1 ^ ^  ! I ,  I l  ^  11 =  I l I ^ J l ,
iv ) ^ ( f )  =  $<p(x)f(x ) dx, n ( f )  =  ^ (x ) f ( x )  dx .

In fact iii) comes from Il ? H  = ^ (e )  =  (X<p̂ , X<p̂ )\̂  =  i| <p̂ 11 by Corollary P. 11.

Proposition 16. A  continuous positive definite function $ is elementary i f  and 

only i f  € V =  exter. S ( E q).

From (6 .3 ) above, in the case where G is commutative (and so is L (G ) ) ,  V q 

coincides with 0^ (H (A ^ )), from which it follows immediately that Sep, <p  ̂extr. S ( E q), 

is a continuous character of G and vice versa; Fq ̂  G.
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8) See e.g. L. H. Loomis [5 ], R. Godement [3].
A d d itio n a l: The summary of this paper was published in the Proceedings of the Japan 

Academy, Vol. 29 (1953) ; the present full note has been completed in 1953 but is late in 
publishing for some reasons.
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