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In the study of spaces of continuous functions on a topological space the weak 

topology and the strong topology are useful. Indeed, every completely regular space

is homeomorphic with a functional space with the weak topology, and this fact
\/

implies Tychonoff-Cech’s theorem about compactification.^  ̂ Moreover the topological 

space is defined up to a homeomorphism by the topological ring of all continuous 

functions with the weak topology.^  ̂ It is also well known that a compact Tg-space 

is characterized by the topological ring of all continuous functions with the strong 

topology.^  ̂ However, there does not exist such a usefulness in the weak or strong 

uniform topology by studying uniform spaces except particular cases. For example, 

a complete metric space is characterized by the topological ring of all bounded uni

formly continuous functions with the strong topology or with the weak topology 

but in the case of a general complete uniform space this proposition is invalid.

In this paper we define a new uniform topology, m-uniform topology of func

tional space and give analogous theories about uniform spaces as about topological 

spaces. In § I the definition of m-uniform topology is given, and it is shown that 

any general uniform space are uniformly homeomorphic with a functional space with 

this uniform topology. This fact implies that any uniform space is uniformly 

homeomorphic with a dense subspace of a complete uniform space. In §2 it is 

shown that if we introduce a suitable uniform topology in the topological ring or 

lattice of all bounded uniformly continuous functions with the strong topology, then 

this ring or lattice defines the uniform space up to a uniform homeomorphism. 

M-uniform topology is used as the suitable uniform topology.

§1. From now on we denote by R a uniform space and by {Violet ̂  A}y 

Uqj= {Ua(x)\x ̂  R] the uniform nbd (=  neighborhood) system of R.

D e f i n i t i o n .  For a real valued function f(x) on R and for a subset A oi R we
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denote by [/(A)] the closed interval [inf/(a:), sup/(jt:)].
xeA xeA

Definition. dJ^gCx\f(x)) =Max

Definition. f/oisC/) == ^(:»r)X  £ for all Jt: 6 i?} ^  F(jR), where F(i?)

denotes a set of real valued functions on R.

Theorem I. {1X̂8 W € A, e>0} (VL̂s =  {Uas(f)\f ̂  C(R)]) satisfies the condition 

of uniform nbd system, where C(R) is a set of continuous functions on R.

Proof Let f g  ̂ C(R), f  ̂ g ,  then there exists xeR  such that / (^ )  4= ̂  (a:). 

Since f(x) is continuous, there exist e ^O  and a ^ A  such that d(g(x), 

U (V a(x ))J)>e>0 . YLence g ̂  Uazif).

Since for U^<lXoj,®^ 0 < ^ < e  we get ^/^s(/) £  [/^s(Z) for every f  ̂ C(R), 

for every Uaz and UaV there exists such that U^8(f)^Uaz(f)r^UaV(f) 

(feC(R)).

For ae A and e >  O we take /3 € A such that { U^(y) \y € U^(x) } ^  Ua(x). If 

g, he U^^(f), then since d(g(x), [ / ( ^ s ( a : ) ) ] ) < t h e r e  exist y,zeUKx) such 

that d(g(x), Az):\)<~. Since [K f/p (j'))] )<  </(/(2),

[A(C/p(2))])<-|-, there exist y\y" such that K y')~~  ̂ f iy ) ,  +

Hence we get * ( / ) -e </(>-)- ^  <^r(A;), /((/0+  £ > / ( ■ ? ) >S'(^)- Since 

y\ y" eUaix), d(g(x)y VKUa(X))]) <c S holds. In a similar way we get d(h(x), 

Lg(Ua^x))]) <  £ and accordingly da(g(x), f(x)) <  £. Therefore g e Uaz(h).

Definition . We call this uniform topology m-uniform topology and denote by 

Cu(R), C\R) and C^(R) the uniform spaces with the m-uniform topology consist of 

the bounded uniformly continuous functions, of the continuous functions taking values 

between O and I and of the uniformly continuous functions taking values between O 

and I  respectively.

Remark. Generally, the m-topology, the topology defined by the m-uniform 

topology is weaker than the strong topology and it is stronger than the weak 

topology in C(R).

Definition. We define M(x) to mean the mapping which maps xeR  to the 

function x (f) =  f(x) (feC^'(R)) on C/(i?).

Lemma I. M(R) ^  C (Cu (R))-

Proof. For any feCu(R) and £ > 0  there exists a: ̂  A such that f(Ua(x)) 

^S^(f(x )) for every xeRP  Since geUaz(f) implies d(g(x), U (U a(X ))JX ^ ,

88 Jun-iti N a g a t a

5) d{py M ) denotes the distance between a real number p and a subset M  of the space of 

real numbers.

6) We denote 1X̂  to mean U p (x )Q  U a(x) for every x e R .

7) S,(p) = {q\d(py q)<8]-



there exist y, U a ix ')  such that ( f i y ) - s ,  fCz) + s) 3g(x').  Hence g(x )  € ( f(x' )-2e,  
f ( x )  + 2s'), i.e. \xif)-x(,g')\ =  \f(,x)-g{x')\<i2z.  Therefore :» :(/)  6 C '(C „ '(i?)).

T h e o r e m  2 .  Mix') is a uniformly homeomorphic mapping between R and 

M(R)CCXCuXR)).

Proof. It is obvious that M{x)  is one-to-one. M{x)  is uniformly continuous. 

For given e >• O and a€.A,  we take J3 € A such that 1X3*  ■< If :V € Û (.x) and if

/6 CuXR'), fiy)  >  f{x),  then there exist nbds Fi(Ar), VaĈ ') of x, y respectively such that 

V,ix)r.V,iy)=<l>, V , {x )^ V ,i y )C U ? ix ) ;  / ( F x W )  C  ( / ( ^ ) - e , /(^)  + e), fiVziy))  
C  ( . f (y)~e ,  f ( .y)+s) .  From g „  g^^ C„XR) such that g^ x )  = f ( y ) ,  g^iVKx))  =  0, 

g^(y) = f ( x ) ,  g , i V i ( y ) )  =  1, l ^ g ^ ^ f i x ) ,  we get an element 

g  =  Cf^gi)  Agz of CuXR). If ^eFi(AT), then f ( y )  + e > g i z ) > J i z ) > f ( . x ) - e  
— g ( y ) - s .  Since U^iz), we get d,^{f(z), g ( z ) ) < . s .  In a similar way we get 

d^(f(z),  g ( z ) ) < s  ior z e V , ( y ) .  Fox Z  ̂ VXx)'^ V,(.y) f ( z )  := g(.z) holds. Hence 

g& u „ , i f ) .  Since x { f )  = y { g ) ,  x (g )  —y ( f ) ,  we see M ( y ) e  U ^ e ( M i x ) ) . Thus 

M(x)  is uniformly continuous.

Next we show that the inverse mapping M~X x(f ) )  is also uniformly continuous.
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For a given a ^ A  we take such that U^ix) C  Ua,(x) for every x^R.  If

y ^Uaix),  then for an element /  of C„XR) such that f ( U f i ( x ) ) = l , f C y ) = 0 ,  
g  € t / p i ( / )  implies 1^t(a:) - I  K  i. e. x (g )  =  g(x)  >  ~ .  Since y ( f )  =  0 , we get 

d^iCyif),  x C f ) ) ^ ^ ,  i.e. M{y )$  UfiHiMCx)). Hence M ( y ) e  Upii(M(x))  implies 

Ucoix̂ y and hence is uniformly continuous.

Let { F y l r € C }  be a cauchy filter of Ry then for e a c h / €  C^'Ci?) { / ( F 5) Ir € C} 

converges to a real value p z=iu(f).  Hence w ( / )  is a real valued function defined 

on Cu(R).

L e m m a  2 . u ( f )  €  C'(Cu'(R)).

Proof. For an arbitrary e^>0 we take a, 0  ̂A  such that \f(x')—f(y)\ <ie  
(y e Ua(X)), Let g e U ^ s ( f )  and let U ^ (x ) '^ F  y then since for each

ye F ^  there exist ZyZ'eU^(y) such that /C ^ -)-e  < ^ ( : y ) < / ( 0 ) +  e , / ( 2:) > / ( j t r ) - e  

and f (zXJ(^x) -\-e  hold for z,z'eUcc(x). Hence f ( x ) - 2 e < C g ( y )  < , f ( x )  + 2sy i.e. 
\f(x)-g(y)\<C2e.  Since \ f ( x ) - u ( f ) \ < e y  we get \u(f)-g(y)\<C^e  for every 

y e  F./. Therefore \u(f)-u(g)\^?>ey i.e. u ( f ) e C ( C u ( R ) ) .

L e m m a  3 . For every diverging cauchy filter { F  |' /€C} of R { M ( F / ) | r € C }  con
verges to u ( f )  in C'(Cz!(R)).

Proof. For simplicity we can restrict {F^} to a cauchy filter of closed sets.

8 ) W e define U p * <  t/oj to mean y, z  ̂ Ufi(x) implies ze Ua(y)  for every x e R .
9 )  Vi%x) means the complement of Vi(x). gi(Vi%x)) =  O means that ^ 1 ( 2 ) = O  for every

10) UotẐ (Ci) denotes the uniform nbd of a^C{C'n(R) )  defined by XIojs and e.



For given a '^ A  and s> 0 , we take a, f i^A  such that > i !* * > U «> Up* and 

X, Fy such that x€ Fy^Up(xp). Now we shall prove x^Ua't^iu). For f  ̂  C^'(R) 
we take F e  {Fy} such that x^ F £  Up(xp), | / (3 ')-/ (2 )l<  y  (g, z^F ) .  If d(f(x'), 
[ / ( F ) ] ) < - | ,  then \ x ( n - u ( f ) ] < e ,  i.e. d a ^ , ( x ( f ) u ( f ) ) < e .  I f / « > sup/(>-), 

then there exist a nbd of F  and a nbd V2 of x such that Vi =  S(F  U p ')" ’  for 

some^'eyl; =  ; /(FJ C  ( « —L, a+|-) , /(F^)SlZW-S,
/(jt:) + £). For 7i, Fg we define gi, gz. g ^CuXR) such that ^ i (F )  ^ / W , ^i(Ff)==O,

O ^  g, < f ( x )  ; gz(x) =  w(/), F i) =  l y l > ^ g z ^  u ( f )  ; g =  ( f  ̂  g DAg 2 - In a 

similar way as in the proof of Theorem 2 we can show g € Ua^^CfX Since 
x ( f )  = w (^ ),  x{g )  we get xe Ua'zz(M). Hence for any a' eA,  e > 0  there

exists Tq^C such that T^To  impHes F ^  Therefore {Fv} converges

to m(/ ).

From this lemma we get
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Theorem  3. M(R ) ( ^CXC uXR) ) )  is complete.̂ ^̂

§ 2. The topological ring of the bounded uniformly continuous functions with the 
strong topology characterizes the complete metric space. Generally, a uniform homeo

morphism between two complete uniform spaces implies the topological isomorphism 

between their topological rings of the bounded uniformly continuous functions with 

the strong topology, but the inverse is not valid.^^  ̂ Hence we use that topological 

ring with a suitable uniform topology to characterize R.

Lemma 4. M-uniform topology agrees with the strong topology in C^(R).

Proof, For given f  ̂ Cu(R) and e > 0  we choose a ^ A  such that y, z e Ua(x) 

implies \ f ( y ) - f ( z ) \ < - j .  Since 6 C/«|(/) implies d(g(x) ,  L f ( U ^ ( X ) ) I X j  

for every x^R, \g (x ) - f (x )\<ie  holds for ge Ua3^Xf)- Thus this lemma is estab

lished.

D efin ition . We use the notation L(R)  to mean Cu(R) with the natural lattice 

order.

D efin ition . If a non-vacous subset J of L(R )  satisfies the conditions,

i ) f < g e j  implies /G/,

i i )  if there exists D f y  for f ^ i  L then
yec

then we call / an i-set.

11 )  =
12) M ( R )  means the closure in C ' ( C u X R ) ) -
13) Let i? be a non-com pact complete uniform space and let S be the totally bounded un i

form  space having the same topology as R  and with the uniform  subbasis Ctc(R) ] ,

31, =  { N„\k  =  ± 1 , ± 2 , - ] ,  N i c =  { x \ ^ < f ( x ) < ^ ^ ] ,  then Cu(R) = Cu(S). If  we  

denote by S the completion of S, then C u ( R )  — Cu(S) ,  but R  and S are not uniform ly  

homeomorphic.



W e call a non-vacous subset satisfying the dual condition an s~set.

D e f in it io n . W e  mean by an i-ideal a subset I  of L (R )  satisfying

1) /  =  ^  € M }, where are i-sets, and for every I , /jl^ M  there exists 

V 6 M  such that ^

2) if f i ^ I  O 'e C )  and if {fi\T^C] are upper bounded ,then  for every Uo:s 

there exist g e l  and f /C v ^ C )  such that g e  Ua^if/),

3) /  is a non-trivial ideal.^^^

W e  call a subset satisfying the dual condition an s-ideal.

Lem m a  5. For an open set V  {f\ 3xeV :f(x )< C .a }:=^Ja (V ) is an i-set. 

[ f \ 3 x e V  :f (x )y > a ) - S a (V )  is an s-set.

Proof. It is obvious.

Lem m a 6. {f\f(x) ^ k )  ^  Jk(x) is an i-ideal.

\f\f(x)'^^k} =  S^(x) is an s-ideal.

Proof. Ijc(x) =  r\{Ja(V)\a'^ ky V  is an open nbd of x). Since Condition 2) is 

obviously valid for an isolated point x, we prove 2) for an accumulating point x. 

Let f/el]c(x) ( y e C )  and let f i ^ q  for a real number q, then for a given H a s  and 

for Up such that <  Uoc we can define /,  f /  € L (R )  such that f(x ) =  k, 

f (U p \ x ))  = q ;  f (y )  = q ,  ye U p (x ) ;  k < f < q ;  f /  ^ f ^ ^ f .  For a point 2:$ 
f / ( 2) = f ( z )  holds. For a point 2-6 Up(x), f (y ) = q ' ^ f / ( z )  >-f(z) > k = ^ f ' ( ^ )  

holds. Since jc, G Uo,(z), / €  Uo^,(f/) and f e h ( x )  hold.

L em m a  7. For every i-set J there exists a real number a and an open set P  such 

that f (x ) ^ a  for some x e P  implies f e

Proof. If we assume the contrary, then from the property of i-set a ^ J  holds 

for every a. Hence J  ^  <j>, which is a contradiction.

L em m a  8. If  I  e M} is an i-ideal and if  su p  {«1 there exists P  such

that X ePj f(x )  ^  a imply f e j \ } —e =  a^(^ >  0), then inf 4 =  —  >̂0 .

Proof. Assume that inf then for every f e L ( R )  there exists a real

number ^ and a  ̂ such that £ +  « a < ^ < / -  N o w  let us show f ^ J \ .  Since ky>e +  a)̂ y 

for every open set P  there exists fp (x )e L (R )  such that fp(x) ^ k ,  x e P ;  fp^  J\. 

Hence f p ^ k ^  / ^ ,  and hence inf (fp ^ k )  z = k ^ J .  Thus we get / $  J x ^ I  and /  0 ,

P

which is a contradiction.

Let us put miax =  a (^- - ^ ) ,  then for every A there exists some open set P
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14) There exists /  such that f ' ^ f y  ( y ^ C ) .
15) /4=L(i?), Cf,.

16) Lemmas 7-14 admit the dual propositions.



such that /(jr) and x ^ P  imply f e j \ .  For this a we give the following

D e f in it io n . \P\f(x)  and x ^ P  (open) imply f e j \ ]  =  P\- 

{ f\3xePx:Ax)<a}=A,QA,

L e m m a . 9. ^  Jx (/«, X ^ M )  implies P ^ P x-

Proof. If PfJ,'^ PXy then there exist f  and X^ P^ such that f ix ')

f i J x ,  S ince/€/^, A .

L e m m a  10. {Px\XeM} is a cauchy filter.

Proof. {P} ]̂ is a filter from Lemma 9.

Assume that is not cauchy, then there exists Ho, such that U^ix) ^ P x  iov 

every Xy k. Let and let b be an arbitrary large real number, then taking

f:,eL(_R) such that fa,(Up(x)) =: by f^ (U c fW )  =  a ; a < f ^  < b ,  we get f^e r^Ax 

^  ^  =  I  for every x^R.  Since { f^\xeR}  is bounded, from Condition 2) of an 

/-ideal there exist f e l y f x 2 ~ f x  such that /€ tZ^sCAO- Since //(f7^(:r)) it

must be f ( x ) ^ b - e  for every X^ Ry and hence b - e ^ L  Therefore I= ^ L (R )  holds, 

but this is impossible.

Since R is complete, [P^)  converges to a point x of R. Then { f \ f { x ) - ^a  — e} 

— Ja-zix) is obvious.

Lemma 11. { f\f {x)  < c }  = //(:r) ^ I  holds for c ~  sup {k\J^(ix) C / } .

Proof. It is obvious.

L e m m a  12. f { x )  > c  implies f ^ I  for the same c in lemma 11.

Proof. If Ŵe assume that f ( x ) ^ c  and /€/, then there exists a real number k 

such that f ( x )  >   ̂>  c. If g (x )  <  ky then there exists h 6 L (R )  such that h^x) <  c, 

f ^ h '^ g .  Since he Iy we get f ^ h e l  and accordingly g e l .  Hence 

which contradicts the definition of c.

D e f in it io n . We denote by I(Xy c) an ideal I  satisfying Lemmas 12, 11.

Every /-ideal is represented uniquely by the form 7(jtr, c).

D e fin it io n . For two /-ideals Ji, 12 we define / 1 ^ / 2  to mean that there exists 

some 5-ideal S such that =  0, Sr^Iz =  0.

L e m m a  13. I(Xy c)-^I(yy d), i f  and only i f  x :=y .

Proof. It is obvious.

D e f in it io n . For an /-ideal I  and an 5-ideal S, we define S ^ I  to mean that 

there exist some /-ideal I  ̂ and 5-ideal such that I ^ h  \ =  0-

L e m m a  14. I{Xy c)^S(yy d), i f  and only i f  x =  y.
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Proof. It is obvious.

Hence v^e can classify all the /-ideals and all the 5-ideals by We denote by 

L ( R )  the totality of such classes and by L {x )  the one-to-one mapping from R  onto 

which mapsjt: to the classes consisting of a)  and b).

D e f in it io n . If for a family { ! (x,  aCx^^lx e A }  of /-ideals there exists f e O I  

(Xy aix^X then we call this family lower hounded.

' 'Upper hounded'' is defined as the dual.

L e m m a  15. [I{Xy a(x' ) )\x e A )  is lower hounded, i f  and only i f  in f«(A :)^^  -co .

Proof. It is obvious.

D e f in it io n . S ( [ 7 )  and are called w-^Z/^^o/w/, if  and only if for every lower

bounded { ! (x,  a(x' ) ' )\x e U }  and upper bounded |jt: € A }  there exists

f e n  Kx, a ( x ) ) r \ S { x ,  h (x} ) .
« e i r  X ^ A

L e m m a  16. 2 ( U )  and 2 (A ' )  are u-disjoint, i f  and only i f  there exists a uni

formly continuous function f  such that f ( U )  = 0 ,  f ( A )  =  1 , O < f ^ ^  I.

Proof. It is obvious.

D e f in it io n . A  family { !^(F(^r)) Ijc € i^} of non-void subsets of S (i? ) is called a 

uniform nhd of 2 (R ) ,  i f  and only if there exists {S ( (7(jc)) U  € i?} such that

1) ^ i U i x ) )  and 2(V^ (x ' ) ' )  are w-disjoint,

2) i f  { I (y ,  aCy^^ly e U ( x ) }  is lower bounded for every x e R ,  then there exist 

bCx), a, e such that fx^ Ky ' ) ) \y   ̂ U ix ) }  and gx^Kx,  b ix ) )  imply 

gx^ UasCfx) for every x e R .

L e m m a  17. [ ^ ( V ( X ) ) I x e R ]  is a uniform nbd of 2 (R ) ,  i f  and only i f  

{ V ( x ) \ x e R }  is a uniform nbd of R.

Proof. If is a uniform nbd of R, then there exists a uniform nbd

Ua such that Ua(x)  and V \ x )  are ^-disjoint for each x e R .  Since for a lower 

bounded family { I ( y ,  a ( y ) \ye  Ua(x ) }  inf [ a( y ) \y e Ua( x ) }  = c ( x ) 4 -  - o o ,  we put 

b(x) :=ic[x)~l .  l i g^e l ( x ,  b ( x) ) ,  f „ e  m{ I ' ( y^ ci (y) ) \y^ Ua(x ) ) ,  theng^(x)  ^ h ( x )  and 

f x ( y ) ' ^ h ( x )  +  l  ( y e U a ( x ) )  hold. Hence gx iUai ( f x ) -  Therefore { 2 ( V ( x ) ) \ x  e R}  

is a uniform nbd of 2 ( R ) .

Conversely, if  { V ( x ) \ x  e R }  is no uniform nbd of 2 (R ) ,  then we can show that 

Condition 2 ) is not valid for any { U ( x ) }  such that U (x )  and V^(x )  are w-disjoint. 

Take the lower bounded family { I i ( y ) \ y e  U ( x ) }  and any I (x,  b (x ) ) ,  a, e, then since 

there exist ^ e A  and x e R  such that Uj3*< l la i ,  Up(x)  ^  V ( x ) U ( x ) ,  we get 

f g e L ( R )  such that f ( U ( x ) )  =  2, f ( V H x ) ) : = b ' ( x )  = M i n  ( b ( x ) - l , 2 ) ,  b ' (x )  

< - / ^ 2 ;  g ( x )  =  h' (x) , g ( y )  = 2 ,  y e  U p ( x ) - V ( x ) ,  g ( z )  =  f ( z )  (for 2'$ Up(x) ) ,  

b ' ( x )  ^ g  < 2  as in the proof of Theorem 2. I t i s  obvious that f  e r\ {^ ( y^\y ^Lf (X) ) ,
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g e l { x ,  b ( x ) )  and /€ Therefore { V ( i x ) \xeR }  is not a uniform nbd of ^ ( R ) .

From this lemma we get

T h e o r e m  4. In order that two compete uniform spaces R^ and R 2 are uniformly 

homeomorphic, it is necessary and sufficient that L(R^)  and L ( Rz )  are uniformly 

isomorphic

Next, by C ( R )  we denote C^ ( R )  with the natural ring-operation. Since f ^ g  

in L(R)y  if and only if there exists h such that =  f ~ g  in C ( R ) ,  a ring-isomorphism 

between C(R^)  and C(Rz )  generates a lattice-isomorphism between L ( R i )  and L(Rz ) .  

Hence we get the following corollary.

C o r o l la r y .  In order that two complete uniform spaces R^ and Rz are uniformly 

homeomorphic, it is necessary and sufficient that C(R^)  and C (Rz )  are uniformly 

isomorphic.

Finally, let us denote by U ( R )  C u ( R )  with the natural lattice-order, then the 

analogous theory is simpler.

D e f in it io n  We call a subset I  of L ( R )  an i'-ideal, i f  and only if  I  satisfies 

conditions I ) ,  2) in the definition of /-ideal and 3 )' 7 is a non-trivial ideal and 

closed, 4 )' / is a minimum set satisfying I ) ,  2), 3).

We call a subset S satisfying the dual condition an s-ideal.

L e m m a  18. I ( x )  =  [ f \ f ( x )  = 0 }  is an i'-ideal.

L e m m a  19. For any i-set J  there exists an open set P  and such that

f ( x )  ^ a ,  x e P  imply f e j .

Let I  be an /'-ideal and let / = H A ,  where are /-sets, then we use the 

following notations, ^ [ P \ f { x ) ^ a  for some x £ P  implies f ^J\ ,  and F  is open}

L e m m a  20. Jtx ^  J\ implies P ^ P

Proof. P f x a  ^  P \ a  is proved for every «  >  O as in Lemma 9, and hence P f x ^  P^.

L e m m a  21. /̂  ^ cauchy filter.

Proof. {Px)  is a filter by Lemma 20. If we assume that it is not cauchy, then 

for some and for every I, x Ua(x)  ^ P \  holds. Choose ^ such that and

A  € L ' ( R )  such that f^(  Up( x ) )  =  I, / ,( U ^ ^ x )) 0, then fx^  L  Hence

there exist f„', g  such that f x ^ f x \ g ^ U p e ( f x ) y g ^ I  for every e > 0 .  Therefore 

for every x^R,  and hence l - s 6 / .  Thus it must he I  =  I  ^ U ( R ) ,  but 

this is a contradiction.

From this lemma any converges to a point x.
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17) A  uniform isomorphism means a uniform homeomorphism preserving the lattice-order.



L e m m a  22. I f  [Px.] converges to x, then I  =  I(x').

Proof. Let f i x ' )  =  0, then for any a ^ A  and e > 0  there exist /9, such that 

U,* <  Up <  Up* <  , / ( ^ x  £ (3̂  € Uf^ix)).
Taking g' e L \ R )  such that g X U  (x))  = 0 ,  g X W i x ) )  =  I, we get g = g ' r ^ f e L  

For U ( x ) for every X, and this imphes g e  r ^ A ^ ^ I .  Since g e  Uaz i f )  is 
obvious, we get f  ^ I  =  I. Therefore I ^ I ( x )  = {f \ f ( x )  =  0}, and hence from Con
dition 4) of an /-ideal it must be 7 "  I(x) .

L e m m a  23. A n  arbitrary s'-ideal S is represented by the form  S(a:) 

= { / ! / «  = I}.
D e f i n i t i o n . By I ^ S  we denote that 7 ^ S =  (j) holds for the /'-ideal I  and for the 

5'-ideal S.

L e m m a  24. l i x ) ^ S ( y ) ,  i f  and only i f  x — y.
LIence we can classify all the i ' -  and ^'-ideals b y W e  denote by 2 ' (R)  the 

totality of such pairs and by 2'(x)  the one-to-one mapping from R  onto 2'(R).
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D e f i n i t i o n . We denote by the fact that ^ [ I ( y ) \ y  e A] ^ I i x ) .

L em m a 2 5 . 2 ' ( A )  ^ 2 ' ( x )  i f  and only i f  X^ A.

D e f i n i t i o n . By a star-uniform nbd we mean a family [ 2 ' i V i x ) ) \ x  e R)  of open 
nbds of 2'Cx) such that for some a, e and for every f e S ( x )  and g e r \ i K y ) \ y  
€ Ua(x)}, g ^  U a s i f ) holds.

L e m m a  2 6 . I f  [ U a i x ) \ x e R ]  is a uniform nbd o f  R, then [2 ' i U ai x) ) \ x  e R)  is 
a star-uniform nbd o f  2 ' (R) .

Proof. If [Uocix)] is a uniform nbd, then f e S i x )  and g ^ r ^ [ I i y ) \y  ^ U aix)] 
imply f ( x )  =  I, g i U a i x ) )  O and accordingly g ^  U ^ i i f ) .

L e m m a  2 7 . I f  { S ( F ( j c ) ,  is no uniform nbd o f  R, then 1̂ : €

is no star-uniform nbd o f  2 '{R) ,  where [ V i y ) \ y  e R ]  is a family o f  nbds.

Proof. For a given we choose ^ e A  such that Since U p ix ) ^ .  S
i V ( x ) ,  55) for some x ^ R ,  for y e  U p i x ) - S i V i x ) ,  53) we get nbds V^ix), Vz iy )  and 
/ e n R )  SUChthat V , i x ) r ^ V 2 iy)=<i>, V , i x ) ^  V2 i y ) ^ U p i x )  ; f ( V i x ) )  =0,  f i y )  =  I. 
Moreover we get g \  g ' \  g  e L ' iR )  such that g \ x )  — I, g ' i V \ i x ) )  =  O ; g ' \ y )  =  0, 

=  g  =  i g ' ^ f )  Ag''. It is obvious that f e  Vix)] ,  g e S i x )
and g e  U a z i f ) for every e > 0 .  Therefore {S'(F(ji:))} is no star-uniform nbd.

If we define uniform topology of 2 \ R )  by the uniform nbds {S(!^'(y(:r)), 
^'(55)) for star-uniform nbds ! '̂(55) =  { ^ '( ^ ( ^ ) ) }» then R  and 2 ' iR)  are
uniformly homeomorphic from Lemmas 26 , 27.

T h e o r e m  5 . In order that two complete uniform spaces R^ and R 2 are uniformly 
homeomorphic it is necessary and sufficient that U (R i )  and U i R 2 )are uniformly 
isomorphic.


