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In the present paper we shall show that the umiform topology of a uniform
space can be defined by the uniform convergence of uniform d.s.p. (= directed sets
of points), which satisfies analogous conditions to those of ordinary convergence on
topological space and is equivalent with the uniform convergence of uniform filters
satisfying some conditions. Furthermore we shall discuss the special case of a
metric space.

Let us denote by R a T,-space and by A a directed system,? and then we mean
by a wuniform d.s.p. a mapping ¢.(p)(a¢€ A, p€R) from AKX R into K. Here we
introduce the notion “wuniform convergence of ¢ (p) “and denote by ¢,(p) — the
fact that ¢,(p) uniformly converges.

About uniform convergence we consider the following four conditions,

D)) ¢u(p) = p for every a and p implies ¢,(p) — .

D,) If ¢, (p) —and ¢,/ (p) — (@€ A), then for every cofinal subset B® of A
and for every {pg|B € B} (ps€R), there exists ¢,(p)(y €C, pER) such that ¢,(p)—>
and {(p,, (PN €Ci = {(¢p(pp), 96 (p8)) |BE B} for some {py|7r €C} (py€R),

D,) If for a uniform ds.p. ¢,(p) (€ A) and for every cofinal subset B of A
and every {pp|B€ B} (ys€R), there exists ¢y(p) (7€C, pER) such that ¢y(p) >
and {((p;, ¢y €CT = {(pp, ¢(pp)|BE By for some (py|i€C; (py€R), then
eu(p) .

D) es(p) — implies ¢, (p,) — po for each point p, of R.

Let us note here the well-known conditions of uniform neighbourhood.?’

U (U (p)|x€ X} is a neighbourhood basis of p, for a fixed point p,€ R.
U,) For every x€ X and y€ X, there exists z€ X such that U,(p) <" Uy(p) A
Uy(p) hold for all p€R.

1) Notions and notations in this paper are due chiefly to J. W. Tukey, Convergence and
uniformity in topology (1940) and to A. Weil, Sur les espaces a structure uniform et
sur la topologie générale (1938).

2) We denote by ¢, ¢« and ¥y uniform d. s. p. We mean by a cofinal subset of A a
subset B such that for every element @ of A, 8=« holds for some 8¢ B.

3) (pv, ¥v($7)) means a point of RQR and hence {(Dy ¥y(dv)) |7 e C} S {(¢s(D8) ¢8'(£8))]
Be B} means that for every v¢C there exists B3 B such that py = ¢p(pp), ¥v(bvy)
= ¢’ (P8).

4) A. Weil, loc. cit.
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U,) For every x€ X, there exists y€ X such that p€ Uy(r) and g€ Uy(r) imply
q € U (p) for every r€R.

Next we give the relation between uniform convergence and uniform neighbourhood.

Tu) ¢o(p) (@€A) uniformly converges, if and only if for every uniform
neig hbourhood {Uu(p)|p€ R} there exists a(x)€A such that a=a(x) implies
¢a(D) € Us(p) for every pER.

Tan) A set {U(p)|p€R} of neighbourhoods of p is a uniform neighbourhood,
if and only if for every uniformly converging ¢.(p) (a€ A), there exists a€ A such
that ¢, (p) € Uy(p) for every pER.

REMARKS. Using R QR after Weil,®> we get the following conditions D,")—D,"),
which are equivalent to D,)—D,). Let us denote by 4 the subset of R (X R consisting
of all the points (p, p), by uniform d.s.p. ¢,(a € A) a family of subsets ¢, =R R
such that ¢, = {(p, ¢.(p))]|p € R} for a mapping ¢,(p) from R into R and by ¢,
the fact that ¢, uniformly converges, then

D)) ¢, =4 for every a € A implies ¢, — ,

D)) if ¢o-—> and ¢, -, then for every G = RQR such that {8|G ~¢5lps=+¢}
is cofinal in A, there exists ¢,(y € C) such that opv~G==¢ for all 7,

D)) if for g,(a€A) and for every G =R QR such that {B|G~¢p==¢) is
cofinal in A, there exists y(y €C) such that ¢y— and Ppy~G==¢ for all v, then
Pa =

D)) @u—> implies ¢,(py) = po.

The condition D,) (or D,)) combining with D,) for ¢,(p) = p (or with D,)) is
analogous to the so-called star-convergence conditions of ordinary convergence:
¢(a|la€ A) — p, if and only if for each A confinal in B and some ¢(7|y € C) converg-
ing to p, ¢(C) = ¢(B).*> D,) (or D,)) is analogous to the idem potent condition
of ordinary convergence in T—space: If gplala€ Ag) — ¢(B) and ¢(B|BEB) — p,
then there exists ¢(y|7€C) such that ¢(C) = {¢gpa(a)|a€ Ag, B€ B} and ¢(y|y€C)
— $,” but in uniform space it is a condition having the same content as U,). D,)
or D,”) shows the agreement of the uniform topology with the topology.

THEOREM 1. If a uniform topology is defined by uniform coverings satisfying
U)—U,) in R, then defining uniform convergence by Tns), we get D,)-—D,) about
the uniform convergence.

Conversely, if a uniform topology is defined by uniform convergence satisfying
D,)—D,) in R, then defining uniform coverings by Tan), we get U,)—U,) about the
uniform coverings.

5) A. Weil, loc. cit.
6) J. W. Tukey, loc. cit.
7) This condition is due to A. Komatu, Theory of topological spaces (1947, in Japanese).
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Proof. 1. It is obvious that U,) and Tng) imply D,).

Uy, Us) and Tuq) imply D,), for let ¢,(p) —, ¢'o(p) — and let {pglB€ B} be
a subset of R for B confinal in A, then for each x€ X from U,;) and Tu;) there
exists B(x) € B such that that B3 =8 (x) implies ¢p(p) € Uy(¢’s (p)), where
{Uzslx€ X} is the system of all the uniform neighbourhoods. Since from U,), X is
a directed system, we can define a uniform d.s.p. ¢,(p) (x€ X) so that ¢,(p) € U,(p)
and ¢, (@pn (Do) = ¢ (Pee). Then ¢,(p) obviously satisfies the condition of
¢y(p) in D).

Twe) implies D,), for if ¢, (p) -»,* then there exist a uniform neighbourhood
U,(p), and for some B confinal in A and pp(B € B), ¢p(pp) ¢ U,(pp) holds for every
BE€B. If {(py,dv(Py)) T € CI((pg, va(pp))|B € B}, then for every i € C there exists
B € B such that py = pg and ¢y(py) =pp(pp) € Us(p8), ie. ¢y(p) € Uy(py). Therefore

Gy (p) .
1t is obvious that U,) and Tu;) imply D,).

2. Firstly we prove the following two propositions.

If D)), D,), Tan) and ¢,(p) > hold, then for every uniform neighbourhood U,(p)
there exists a(x) such that a.:a(x) implies ¢,(p)€ U,(Ip) for all p€R. For
assume that ¢,(p) >, and that for B cofinal in A ¢p(pp) ¢ Uy(pp) (B € B), then
from D)), D,) there would exist a uniform d.s.p. ¢ (p) (7 €C) such that ¢y— and
{(Bydy(D) |7 €CY = (P ¢p(p))|BE B} for some {p;|r€C}. But ¢y(py) = ¢s(pp)
& Uy(pp) = Uy(py) for every 7 €C, which contradicts Tgn).

Next ¢,(p) € Uy(p) for every uniform neighbourhood U,(p) (x€ X) and for
every p€R implies ¢,(p) —, when D;) and T4s) hold. For assume that ¢,(p) -+,
then from D,) there exist B cofinal in X and {pg]3€ B} =R such that {(p, ¢,(p))|r€C}
T {((ppes(pp))|BE€P} implies ¢.(p) -+ . Hence defining U(p) =R —{@s(pp)|pe =11,
we get a uniform covering U(p) satisfying Ta.). Hence from the former proposition
there exists a(x) such that « = a(x) implies ¢,(p) € U(p) for all p€ R, but for
B=alx), B€B ¢s(pp) € U(pg) would also hold, which is a contradiction.

D,), Tan) and D,) imply U,). For if U,(p,) E U(p,) for some neighbourhood
U(p,) of p, and for every uniform neighbourhood U,(p), then defining ¢,(p) so
that ¢,(po) € Us( Do) —U(Do), ¢u(p) =p(p=p,), we get a uniformly converging
¢,(p) by the latter of the above propositions. Hence from D,) ¢.(p,) — p, would
hold, which is impossible.

D)), D,) and Ta,) imply U,). For if {U,(p)|p€R} and {Uy(p)|p€R) are
uniform neighbourhood, then from the former of the above propositions there exist
a(x), a(y) such that @=a(x) implies ¢,(p) € U,(p) for every p€ R, and a=a(y)
implies ¢, (p) € Uy(p) for every p€R. Hence a=a(x) and a=a(y) imply ¢.(p)

8) @u(p) +> denotes the negation of @u(p) —>.
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€ U(p) A Uy(p), and hence {U,(p)~Uy(p)|p€R} is a uniform neighbourhood
satisfying the condition of U,(p) in U,).

Lastly we prove that D,), D,) and T4,) imply U,). Assume that for some
uniform neighbourhood U,(p) and for every uniform neighbourhood Uy(p) (¥ € X),
there exist py, gy and #y such that py € Uy(ry), gy € Uy(ry) and gy ¢ Uy(Py). Hence
defining ¢y(7y) = py,0u(D) € Uy(D); ' (ry) = qu, ¢4 (p) € Uy(p), we get uniform
converging ¢y(p) and ¢,/(p) by the latter-mentioned proposition. Therefore there
would be a uniform converging d.s.p. ¢,(p) satisfying the condition in D,) for
0y, ¢y and {ry|ly€ X}, ie. for every 7 there would be y such that ¢y(¢y(7y))
= @y (ry) € Uy(py) = Us(@y(ry)). This contradicts T4,) and completes the proof of
this theorem.

THEOREM 2. If we derive from uniform convergence,— satisfying D,)—D,)
uniform neighbourhoods by Ta) and from the uniform neighbourhoods uniform con-
vergence, ~ by Tpy), then the convergence ~ is equivalent to—> . Conversely, if we
derive from uniform neighbourhoods 1 = {Uy(p)|x € X} satisfying U,)— Us) uniform
convergence by Tnz) and from the uniform convergence wuniform neighbourhoods
W={Uy(P\¥ €X'} by Tan), then U and W are equivalent.®

Proof. 1. If ¢,(p)—, then from the former proposition in 2 of the proof of
Theorem 1, ¢,(p) ~ is obvious. .

Conversely, if ¢,(p) +, then from D,) there exists B confinal in A and pg(B € B)
such that {(py ¢v(pv)) |7 €C} = (P8 ¢s(pp)) |B € B} implies ¢y(p) > . Hence defining
U(p) = R—{¢p(pp)|ps = p}, we get a uniform neighbourhood {U(p)|p € R}. There-
fore ¢p(pp) &€ U(pp) for all B€ B, and hence ¢,(p) + from Tua).

2. We prove the latter-half of the theorem. If U,(p) €, then since ¢,(p) —
implies ¢,(p) € U,(p) for some a(x) and every a=a(x), U,(p) €W from Tan).

Conversely, if for some U(p)€ W and for every U,(p) €U, there exists p,€ R
such that U,(p,) & U(p,), then defining ¢,(p) (x€ X) so that ¢,(p)€ Uy(p),

@o(D2) € Us(py) — U(ps), we get a uniformly converging ¢,(p). Since ¢,(p,) ¢ U(p,)
for every x € X contradicts T4,), we can conclude the equivalence of 11 and 1I’.

Now let us concern ourselves with filters. Generally, let F,(p) (a€ A, p€ER),
Gg(p) (BEB, p€R) be mappings from AXQR into 2% and from B® R into 28
respectively,'” where A, B are certain sets, and R is a T,-space. We denote by
Gg(p) < F,(p) the fact that for every a and some 8, Gg(p) = F,(p) holds for all
DPER.

We mean by a uniform filter a mapping F,(p) (¢€ A, p€R) from AXR into
2F satisfying the following conditions,

9) If for every U,(p)cll and some Up/(p)ell, Uy (p) S Uy(p) as well as the converse
hold, we call 1l and I’ equivalent.
10) We denote by 2F the set of all the subsets of R.
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i) ¢==F,(p) for every a and p,
ii) for every «, 8 and for some 7, Fy(p) & F,(p) ~ Fp(p) holds for all p€ R,

Any set {FA(p)|A€ L} of uniform filters F3(p) (a€ A,) has the lowest upper
bound Gg(p) about the order <X: {Gp(p)|B€ B} = (G|G 2 F}(p) for every 1, for
some « and for all p}, which is denoted by }‘\/ Fi(p). We denote by Fu(p) — the

cr

statement “the uniform filter F,(p) uniformly converges. We consider the following

conditions about uniform convergence of uniform filters,

F)) F,(p)=2p for every a and p implies F,(p) —,

F) F,(p) — implies Gp(p) —> for some Gg(p) such that Gp(p) == S.(p)
=S(p, (Fo(P)|pER}),

Fy) for any set [Fy(p)|A€ L} of uniform filters, A\e/ng(m = Gp(p) —>, if and
only if every Fi(p) —,

F,) F,(p)— imples the filter {F,(p,)\a€ A} — p, for each p,€ R,
where F,(p), F3(p), Gg(p) denote uniform filters.

ReEMARK, Using R X R, we get the following conditions, which are equivalent
to F,)—F,). If we mean by a filter & on R®R a family of subsets of R®QR such
that F,, Fe€ & implies Fy " F,~Fg for some F, €% and F(p,)==¢ for every FEF
and p,€R, and if we denote by & —> the statement ‘% uniformly converges ”, then

F)) =4,

F,)) T — implies & — for some & such that & > & = (FF7|FeF),

F)) N/ & —, if and only if T — for every )€ L,

AEL

F)) Fyla€ A} =F — implies {Fy(po)|a€ A} — p, for each p,€R,
where §, &, & denote filters on R Q R, and & =& denotes the fact that for every
G€® and for some S€S, G=28S.

The following axioms show the relation between uniform filters and uniform d.s.p.

Ta) ¢ (p) =, if and only if Fu(p) — , where Fo(p) = {9/ (p)|a Za}.
Tap) F.(p) —, if and only if ¢.(p) > for every ¢o(p) such that oo (p) € Fu(p).

THEOREM 3. If we define uniform convergence of uuiform filters by Tap) from
uniform convergence of uniform d.s.p. satisfying D,)-—D,), then it satisfies F,)-—F,).
Conversely, if we define uniform convergence of uniform d.s.p. by Tyq) from
uniform convergence of uniform filters satisfying F,)-—F,), then it satisfies D,)—D,).

Proof. Firstly, we prove that F,(p) > (a€ A), if and only if F,(p) < U,(p)
for the uniform filter U,(p) of all the uniform neighbourhoods, which are defined by
Tan) from uniform d.s.p. Let F.(p) == U,(p), then there exist U,(p) and p, for

11) By the order @ << B: Fu(p) S Fp(p) for all pe R, A is a directed system.
12) Generally, S(p,%) denotes the set Y{Flpec Fe ).
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every a€ A such that Fyo(p.) < Uy,(p,). Defining ¢.(p) so that ¢,(p) € F.(p),
@1 (Do) € Fu(py) —Uy(pa), we get a uniform d.s.p., ¢.(p) — . Hence F,(p) + by
Tap).

Conversely, let F,(p) -» , then there exists ¢,(p) such that F,(p) D ¢.(p) + .
Hence defining U(p) such that U(p) =R—{¢p(pps)|ps = p} for some {pg|B€ B},
B confinal in A, we get a uniform neighbourhood. Since for every «, there exists
BE€B such that B=a, ¢p(pe) € Fa(pp) = Fu(pp), ¢sé U(pp). Therefore Fu(pp)
& U(pp), ie. Fulp) = UD).

1. Now we prove the former-half of the theorem. From D,), F,) is obviously
satisfied.

Next we prove F,). If F,(p) —, then Fo(p) < Uy(p), where U,(p) (x€ X) is
the uniform filter of all the uniform neighbourhoods. For an arbitrary x € X, there
exists ¥ € X such that p, p’€ Uy(q) implies p € Uy(p’). Hence for Fo(p) & Uy(p)
(PER) Uy (D) 2V {Uy (@ pEUy (@} 2V {Fu(@| pEFou(@)} =Su(p). Therefore
Un(p) = Se(p) and Uy(p) — .

The proof of F;) is as follows. Fj(p) < Gp(p) — implies Gg(p) < U,(p) and
accordingly FA(p) < U,(p), i.e. FI(p) —. Conversely, F3(p)— (A€L) imply U,(p)
D Fyao(p) (PER) for every x€ X, A€ L and for some a(l)€A,. Hence U,(p)
= Gp(p), ie. Gg(p) — . .

Finally, Fo(p) — implies ¢4(p,) —> Po, for ¢u(p) € Fu(p) from D,) and Tay);
hence F,(po) — po .

2. From F,), D,) is obvious.

If ¢,(p)—, ¢4/ (p)—, then {py(P)la=Za}=Fu(p)—~>, {ow(p)|la =a}
=F/(p) —-. Hence from F;) F,(p)VF,/(p) =Gs(p)—, and from F,),
S(p, {Gs()g€eR})) =Ss(p) < Uy(p) — for some uniform filter U (p). Therefore
for each 7, there exists 0 =d(7) such that S(p, {Gs(@)|1g€R}) S U,(p) (PER).
Let {pg|B€ B} be an arbitrary subset of R for B confinal in A, then for each g,
there exists B8 = B(6) such that Fg(p)“ F'g(p) S Gs(p) (p€R). Hence for these
0 =0@) and B =B, ¢s(pp), ¢'s(Pp) € Gs(pp) and ¢’s(pp) € Ss(pp(pp)) hold;
hence we can define ¢,(p) so that ¢,(p)€Ss(p) = Uv(p), ¢ (¢p(Pp)) = ¢'p(D8).
Since {¢, (P17 =7} = Hy(p) S Uy(p) — from Fy) and Ty,), we get Hy(p) — and
¢y(p) —, i.e. D,) is concluded.

Next, let us consider ¢,(p) satisfying the star-condition in D,), then we see
{ow(D)|a’za} =Fy(p) <A (p) for the uniform filter A,(p) =V {FI(p)|Fi(p) —}.
For if we assume the contrary, there exists 7, B cofinal in A and {pg|8 € B} such
that ¢a(pp) ¢ A/(pp) (BEB). Hence {(ps, ¢5(5))} < (P, ve(pe))} implies ¢5(ps)
¢ Ay(ps) and ¢5(p) + from the definition of Ay(p), which contradicts the star-
condition of ¢,(p). Therefore it must be Ay(p) = Fo(p). Since Ay(p) — from
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F)), we get Fu(p)-> and accordingly ¢,(p)->. Thus D,) is established. D,) is
obvious from F,).

THEOREM 4. If from a uniform convergence of uniform filters F,(p) — satisfying
F)—F), by Tyr) and Tue) the uniform convergence F,(p)~ is definde, then
F(p) — and F(p) ~ are equivalent.

Conversely, if from a uniform convrgence of d.s.p. ¢.(p) — satisfying D,)-—D,),
by Tay) and Tre) the uniform convergence ¢o(p)~ is defined, then ¢,(p) — and
¢u(p) ~ are equivalent.

Proof. Firstly, we prove the former-half. If F,(p) —, then since {¢y(p)|a’
Za} S Fy(p) for ¢u(p) € Fu(p), from Fy) we get {p(p)|a/ = a} —, ie. ¢u(p)—.
Therefore Fo(p) ~ .

Conversely, let F,(p) ~ and © be the set of all the uniform filters G,(p) such
that G,(p) = (e (P)a' = a}, ¢u(p) € Fu(p), then since ¢,{p) — from T,,) and
G, (p) — from Tys), we get V{G,(p)|Gu(p)€®} =H,(p)—~> from F;). If we
assume Hy(p) 22 F,(p), then there exist 7, {p,la€ A} such that Hy(p,) 2 F.(pu)
(a€ A). Hence defining ¢,(p) so that ¢o(p) € Fo(p), ¢ul(Pa) € Fo(po) —Hi(pa)s
we get a uniformly converging ¢,(p), but {¢(p) | = a) & Hy(p,) (@€ A), which
contradicts the definition of H,(p). Therefore it must be H,(p) = F,(p), and
hence F,(p) — from F,).

Next we remove to the proof of the remainder. ¢,(p) ~+ implies {@/(p)|a’ = a}
= F,(p) - and accordingly ¢,(p) -+ for some ¢4(p) € F(p). We denote by a'(a)
the element of A such that ¢,(p) = ¢/ cm>(P); hence a’(a) == a. From D;) we get
B cofinal in A and pg(B8 € B), for which star-condition about ¢,(p) does not hold.
Let B ={«a’/(B)|B€ B} and ppr = pg for a definite 8 such that 8’ = «/(B), then for
an arbitrary ¢’y and p, (7 €C), {(py¢(py))|T€C) = {(pp ¢/ (pp))|B € B} implies
{(y's(Dy) 17 €CY = {(ps ¢e(pe))|B € B}. Hence ¢'y(p) + . Since B is cofinal in
A, we get ¢,(p) -+ from D,) and D.,).

Conversely, ¢,(p) ~ implies {¢/(p)la/ = a} = Fy(p) — by Tye), and from
$a€ Fu(p) by Tap), ¢u(p) —.

The uniform topology of a metric space is deciced by uniform convergence of
uniform d.s.p. on N = {1, 2, ---}1%,

THEOREM 5. Metric spaces are characterized aS uniform spaces, in which
0u(D) — (@€ A), if and only if there exist a,,a,,---€A such that A>B:;>=> s
(i=12-) imply (ﬂﬁ,;(ﬁ) .

Proof. If R is a metric space, then there exists a basis of uniform neighbour-

13) The topology of a topological space satisfying first countability axiom is decided by a
sequencial convergence by K. Sakakihara, The structure of neighbourhood systems and
types of convergences, this journal, Vol. 4, No. 1 (1953).
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hoods consisting of a countably infinite uniform neighbourhoods U,(p), U,(p), -
(PER). Hence ¢,(p)— implies ¢,(p) € Uy(p) for some a,€A and for every
a = ay,. Therefore if fi=>a; (i =1,2,--), then for every ¢, k> implies goﬂk(p)
€U (p) S Ui(p) (PER), and hence gaBi(p) —> . Furthermore ¢,(p) -+ implies
ws(pp) € Un(pp) (B€ B) for some n and B cofinal in A. Hence for an arbitrary
sequence a, , ,, -~ of elements of A, there exists B, 8., - such that a; < p;€B
and accordingly gaﬁi(pﬁ%)ée Un(sz) (i=1,2,-), ie. ‘/’Bﬂ@ -

Conversely, if ¢,(p) —> satisfies the condition of the theorem, then for the set of
all the uniform neighbourhoods {U,(p)|x€ X}, we define a uniform d.s.p. ¢ (P)
on XX R such that ¢ue(p) = p(g¢ U(p)), =q (g€ Uy(p)), where XX R is a
directed system by the order (x¢) < (y7) meaning x <y. For an arbitrary U,(p),
(*q,) = (yq) implies y = x and @y (p) € Uy(p) & Uy(p), and hence ¢ep(p) — .
Hence there exist (xig:) (1 =1,2,---) such that (xiq:) < (wers) (G =1,2,--) imply
@ (yr)(P) — . Now we shall see that the uniform neighbourhoods Ui(p) = {w(xi@( D)
lgeR} = Uxi(p> form a uniform basis of R. For if we assume that there exist
x€X and p; (1 =1,2,-) such that Ui(p:) & Uy(p), then for 7€ Us(ps) — Us(pe),
e (ps) =rié Uy(ps) (1 =1,2,---) hold. Hence <p(x”,i>(p) -+, but this contradicts
(xi7¢) = (2:g:). Thus R has a uniform basis of countably infinite number of uniform
neighbourhoods and is a metric space.

About uniform filters, in the same way we can show the following.

THEOREM 6. Metric spaces are characterized as uniform spaces satisfying that
F(p)—> (a€A), if and only if for some a;€ A (i =1,2,--+), Fwé(p) -,

In a metric space the totality of the uniform coverings consisting of two sets
determines the uniform topology, and this important fact leads to theorems holding
only in metric spaces by the author'*’; for example, the uniform topology of a
complete metric space R is defined by the lattice U(R) of uniformly continuous
bounded functions on the space and it is also defined by a lattice L(R) of finite open
uniform coverings satisfying 1) L(R) is a basis of the totality of finite uniform
coverings of R, 2) W€ L(R) and V€ L(R) imply UVB e L(R), 3) for any open sets
U,V such that U~V =¢, V¢ there exists M€ L(R) such that UeN. V&N
We get this fact readily from Theorem 5 and from the fact that in a metric space
va(p) — (m=1,2,---), if and only if for every binary uniform covering 1= {U,, U,}
there exists #, such that #n=#, implies ¢,(p) € U; for each p and for some U;€ .
We close this note with the following

COROLLARY. If S is a T,-space and if R is a uniform space such that R =S,

14) J. Nagata, On lattices of functions on topological spaces and of functions on uniform
spaces, Osaka Math. Journ. Vol. 1, No. 2 (1949).
J. Nagata, On relations between latties of finite uniform coverings of a metric space
and the uniform topology of the space, this journal Vol. 4, No. 1 (1953).
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then in order that the uniform lopology of R can be extended to S, it is necessary
and sufficient that

i) every d.s.p. in R converging to a point of S satisfies chauchy condition in R,
ii) every equivalent d.s.p. in R with a d.s.p. converging to a point of S in R
converges to the same point.

Proof. Since the necessity of the condition is ovbious, we shall prove only the
sufficiency. From the condition i) of the theorem, for every point p€S =R there
exists a chauchy d.s.p. p*(a€ A,) converging to p such that p*€R. For every
x€ X there exists a(x) € Ap such that Ap>a=>a(x) implies U,(p**) > p®, where
{Us(p)x€ X, pER} is the system of the uniform neighbourhoods defining the uniform
topology of R. For p€R we take p® = p. Now for UL R, we denote by U the
subset (U®)® of S.**> Furthermore we denote Y {Uy(q)|q€ Us(p)) by Uy(Un(p)),
U,(U,(p)) by U2(p), U,(U2p)) by Ui(p) and so far. We define uniform conver-
gence of uniform d.s.p. in S as follows: ¢,(p)-> (y€C) if and only if for every
x € X there exists 7(x) € C such that y-=7(x) implies W}Bgﬁ(?) for each
p€S. It is easy to verify that this uniform convergence satisfies the conditions
D)—D)).

Firstly, ¢s(p) = p implies ¢s(p) —~ . For every x € X, there exist ¥,2¢ X such
that U2(¢) = Uy(q) S Uq) = U,(q) (qE€R). If pé¢ Uy(po) then there exists
7y —> p, where ry € V,(p), and {Vy(p)|7€C} is a neighbourhood basis of p in S such
that 7y € R—U%(p%®). Since U, (p*®)3p* —p (aZza(y)), defining ¢¢H =7y,
Gy = PPNV EV,(p) (aly) = a(y)) for the directed system ((77)|7y€C} with the
order (yi) = (7i): v =7, we get a non chauchy d.s.p. ¢¢viy converging to p, which
contradicts i). Hence we get p¢ U/y-(?‘;“/’)f_; UyUzUx(P”(;)/);C; WJ from
PP E U (Uy(p*™)), dce. ¢s(p) — .

Next let us prove p, ¢, (p) <€ ﬁm (x€ X, p,€R) implies ¢,(p) — . For any
ye€X,y =y implies py € Uj(py) from Uy(py) ~Uy(py)==¢. Hence ¢y(p)<
~— ~— —~— o~
Uy (py) S US(py) = (UL U,(p%®)) for every x€ X from the fact that p € Uy(py),
i.e. f];rp-y/) is a neighbourhood of p in S and accordingly U,(p*®) ~ Uy(py) == 9.
(For a = o’ implies p*€ U,(p*@) ~ Uy(py) for some «'€ A,.) Therefore taking
y € X for an arbitrary x € X such that Uj(q) = U,(q) (¢ € R), we get ¢u/(p) € W)
for ¥ =y; hence ¢,(p) — . I ¢ (p) —, ¢,/ (p) — (e.€ A) and if pg€S (€ B) for
a cofinal B in A, then for every x¢€ X there exists 3(x) € B such that f==3(x)
implies @g(pp), ¢’s(pp) € U/g-(p\‘;a)/). Hence from the above fact we get the condition
D,).

15) U’ denotes the complement of U in R, and (U?)® denotes the complement of U’ in S.
U¢ denotes the closure of U° in S.
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Next if ¢,(p) -+, then there exist x€ X, D cofinal in C and p;5€S such that
os(Ps) & W} (6€D). Hence for this D and p; (0 € D) the star condition of
D,) does not hold. Lastly, ¢,(p)-> implies the equivalence of ¢,(p,) with p% for
each p,€S, and hence from ii) we get ¢y(p,) — po. It is obvious that this uniform

topology is an extension of that of R.



