Journal of the Institute of Polytechnics, Osaka City University, Vol. 4, No. 1, Series A

On relations between lattices of finite uniform coverings of a metric space and the uniform topology of the space

By Jun-iti NAGATA

(Received July 10, 1953)

We characterized a complete uniform space by the lattice of uniform coverings satisfying some two conditions in the previous paper.¹⁾ But for simplicity of the theory it is desirable to use a lattice consist of finite uniform coverings only. In the case of a totally bounded space the possibility of such a restriction is obvious.

In the case of a metric space the totality of finite uniform coverings are not uniform basis generally, but then we can use a lattice of finite uniform coverings for characterizing its uniform topology. In this paper we shall show that a lattice of finite uniform coverings of a complete metric space characterizes the uniform topology and that in the case of a general metric space the lattice characterizes the completion of the space.

We concern ourselves with a lattice L(R) consist of open finite uniform coverings of a complete metric space R satisfying the following conditions,

- 1) if $\mathfrak{U}, \mathfrak{V} \in L(R)$, then $\mathfrak{U} \lor \mathfrak{V} \in L(R)$,
- 2) if U,V are some open sets such that $U_{\cap}V = \phi$, $V \neq \phi$, then there exists $\mathfrak{M} \in L(\mathbb{R})$ such that $U \in \mathfrak{M}$, $V \notin \mathfrak{M}$,
- 3) L(R) is a basis of the totallity of finite uniform coverings of $R^{(2)}$

Remarks. The order $\mathfrak{U} < \mathfrak{V}$ between elements of L(R) is the relation that \mathfrak{U} is refiner than \mathfrak{V} . We denote by $\mathfrak{U} \lor \mathfrak{V}$ the uniform covering $\{W | W \in \mathfrak{U} \text{ or } W \in \mathfrak{V}\}$. In L(R) we regard two equivalent coverings³⁾ as the same element. Hence the notation $U \in \mathfrak{M}$ means the fact that for some $U' \supset U$, $U' \in \mathfrak{M}$ holds. In condition 2) we assume implicitly that R has no isolated points.

Definition. We denote by $U \leq V$ the fact that $V \in \mathfrak{M} \in L(\mathbb{R})$ implies $U \in \mathfrak{M}$.

Definition. We mean by a max. family for $\mathfrak{U}(\in L(R))$ a subset μ of L(R) having the property that $\mathfrak{P}_i \in \mu$ $(i = 1 \cdots k)$ imply $\mathfrak{U} \ll \bigvee_{i=1}^k \mathfrak{P}_i$ and for every $\mu' \supseteq \mu$ this condition does not hold.

On Uniform Homeomorphism between two Uniform Spaces, this journal Vol. 3, No. 1-2, 1952.

²⁾ If for every element \mathfrak{A} of a family A of coverings of R there exists $\mathfrak{U} \in L(R)$ such that $\mathfrak{U} < \mathfrak{A}$, then we call L(R) a basis of A.

³⁾ If $\mathfrak{U} < \mathfrak{B}$, $\mathfrak{B} < \mathfrak{U}$ hold, then we say that \mathfrak{U} and \mathfrak{B} are equivalent.

Lemma 1. In order that a subset μ of L(R) is a max. family for \mathfrak{U} it is necessary and sufficient that $\mu = \{\mathfrak{M} | \cdot U \notin \mathfrak{M} \in L(R)\}$ for some $U \in \mathfrak{U}$ such that $V \in \mathfrak{U}, V > U$ imply U > V.

Proof. Let $\mu = \{\mathfrak{M} | U \notin \mathfrak{M}\}, U \in \mathfrak{l}, \text{ and let } V \in \mathfrak{l}, V > U \text{ imply } U > V.$ If $\mathfrak{P}_i \in \mu$ $(i = 1, \dots, k)$, then from $U \notin \bigvee_{i=1}^k \mathfrak{P}_i$ we get $\mathfrak{l} \ll \bigvee_{i=1}^k \mathfrak{P}_i$.

Next if $\mathfrak{N} \notin \mu$, then there exists $N \in \mathfrak{N}$ such that $N \supset U$. We denote by V_i $(i = 1, \dots, l)$ all the elements of \mathfrak{U} . If $V_i \geqslant U$ $(i = 1 \dots, l)$, then there exists $\mathfrak{V}_i \in L(R)$ such that $V_i \in \mathfrak{V}_i$, $U \notin \mathfrak{V}_i$; hence $\mathfrak{V}_i \in \mu$ $(i = 1 \dots, l)$. If $V_i > U$, then from the property of $U, U > V_i$ holds. Since $U \in \mathfrak{N}$, we get $V_i \in \mathfrak{N}$. Therefore we get $\mathfrak{U} < (\bigvee_{i=1}^l \mathfrak{V}_i) \lor \mathfrak{N}, \mathfrak{V}_i \in \mu$ $(i = 1 \dots, l), i.e. \mu$ is a max. family.

In the contrary, let μ be a max. family for \mathfrak{U} , then there exists $U \in \mathfrak{U}$ such that $U \notin \mathfrak{P}_{\alpha}$ for all $\mathfrak{P}_{\alpha} \in \mu$. Since \mathfrak{U} is a finite covering, there exists some $V \in \mathfrak{U}$ such that V > U; $\mathfrak{U} \ni V' > V$ implies V > V'. Since $U \notin \mathfrak{P}_{\alpha}$ for all α , $V \notin \mathfrak{P}_{\alpha}$ holds for all α , too. Hence we get $\mu \subset \{\mathfrak{M} | V \notin \mathfrak{M}\}$. Therefore from the maximum property of μ we get $\mu = \{\mathfrak{M} | V \notin \mathfrak{M}\}$.

Definition. We mean by a *chauchy sequence of* L(R) a sequence $\{\mu_n | n = 1, 2, \dots\}$ of max. families of L(R) such that $\mu_n \supset \mu_{n+1}$, and for every $\mathfrak{U} \in L(R)$ and for some μ_n , $\mathfrak{U} \notin \mu_n$ holds.

Remarks. By lemma 1 let us assume that $\mu_n = \{\mathfrak{M} | U_n \notin \mathfrak{M}\}$ $(n = 1, 2, \dots)$. In order that $\mu_n \supset \mu_{n+1}$ it is necessary and sufficient that $U_n > U_{n+1}$. We note that the last formula implies $U_{n+1} \subset \overline{U}_n$. For in the contrary case we get from the condition 2) of L(R) an element \mathfrak{U} of L(R) such that $U_n \in \mathfrak{U}, U_{n+1} - \overline{U}_n \notin \mathfrak{U}$, and accordingly $U_{n+1} \notin \mathfrak{U}$. This consequence contradicts the fact that $U_{n+1} < U_n$.

Lemma 2. If $\mu_n = \{\mathfrak{M} | U_n \notin \mathfrak{M}\}$ $(n = 1, 2, \dots)$, then in order that $\{\mu_n | n = 1, 2, \dots\}$ is a chauchy sequence of L(R) it is necessary and sufficient that $\{U_n | n = 1, 2, \dots\}$ is a chauchy sequence⁴ of R.

Proof. Since $U_n \in \mathfrak{l}$ implies $\mathfrak{l} \notin \mu_n$, the sufficiency of the condition is obvious. Now assume that $\{U_n | n = 1, 2, \dots\}$ is no chauchy sequence of R, and assume that $U_n \subset S_m(x)$ for all n and for all $x \in R$, where $S_m(x) = \{y | \rho(x, y) < 1/2^m\}$; ρ is the distance between x and y. Then there exist $x_1, y_1 \in U_1 = U_{n_1}$ such that $y_1 \notin S_m(x_1)$. If $S_{m+1}(x_1) \cap U_n \neq \phi$ for all n, then for the uniform covering $\mathfrak{M} = \{\overline{(S_{m+1}(x_1))}^c, S_m(x_1)\}^{5_0}$ we can take a refinement $\mathfrak{l} \in L(R)$ of \mathfrak{M} by condition 3) of L(R). Since $U_n \notin \mathfrak{M}$ for all n, $U_n \notin \mathfrak{l}$ hold for all n; hence $\mathfrak{l} \in \mu_n$, and

⁴⁾ We mean by a chauchy sequence of R a sequence $U_n(n = 1, 2, ...)$ of open sets of R such that $U_u > U_{n+1}$, and the diameters of U_n tend to zero.

⁵⁾ We denote by A^{c} the complement of A. Since $\{S_{m+2}(x) | x \in R\} < \mathfrak{M}, \mathfrak{M}$ is a uniform covering of R.

hence $\{\mu_n\}$ is no chauchy sequence of L(R). In the case that $S_{m+1}(y_1) \cap U_n \neq \phi$ for all *n*, we see analogously that $\{\mu_n | n = 1, 2, \dots\}$ is no chauchy sequence of L(R).

If $S_{m+1}(x_1) \cap U_{n'} = \phi$, $S_{m+1}(y_1) \cap U_{n''} = \phi$, then for $n \ge max(n', n'') = n_2$ from $U_n \subset \overline{U}_{n'}$, $U_n \subset \overline{U}_{n''}$ we get $S_{m+1}(x_1) \cap U_n = \phi$ and $S_{m+1}(y_1) \cap U_n = \phi$. Then we can take x_2 , $y_2 \in U_{n_2}$ such that $S_m(x_2) \ni y_2$. If $S_{m+1}(x_2) \cap U_n \neq \phi$ for all n or $S_{m+1}(y_2) \cap U_n \neq \phi$ for all n, then we can conclude that $\{\mu_n \mid n = 1, 2, \dots\}$ is no chauchy sequence of L(R) as in the previous manner. In the contrary case $S_{m+1}(x_2) \cap U_n = \phi$, $S_{m+1}(y_2) \cap U_n = \phi$ hold for some n_3 and for all $n \ge n_3$. Then we take x_3 , $y_3 \in U_{n_3}$ such that $y_3 \notin S_m(x_3)$. By an inductive consideration we get the conclusion that $\{\mu_n \mid n = 1, 2, \dots\}$ is no chauchy sequence of L(R) or the conclusion that there exists a sequence x_i , y_i $(i = 1, 2, \dots)$ of points of R such that x_i , $y_i \in U_{n_i}$; $y_i \notin S_m(x_i)$, $S_{m+1}(x_i) \cap U_{n_j} = \phi$, $S_{m+1}(y_i) \cap U_{n_j} = \phi$ $(j \ge i+1)$.

In the last case we get a finite uniform covering $\mathfrak{M} = \{ \bigcup_{i=1}^{\infty} S_{m+1}(x_i), R - \bigcup_{i=1}^{\infty} x_i \}$, for which $U_{n_i} \notin \mathfrak{M}$ hold for all *i*. For $x_i \in U_{n_i}$ implies $U_{n_i} \not\subset R - \bigcup_{i=1}^{\infty} x_i$, and $y_i \notin \bigcup S_{m+1}(x_i)$ combining with $y_i \in U_{n_i}$ implies $U_{n_i} \not\subset \bigcup_{i=1}^{\infty} S_{m+1}(x_i)$. By the condition 3) of L(R), we take \mathfrak{l} such that $\mathfrak{M} > \mathfrak{l} \in L(R)$. Then for an arbitrary U_n , $n_i \ge n$ implies $U_{n_i} < U_n$; hence from $U_{n_i} \notin \mathfrak{l}$ we conclude that $U_n \notin \mathfrak{l}$ Therefore $\mathfrak{l} \in \mu_n$ for all n, *i.e.* $\{\mu_n \mid n = 1, 2, \dots\}$ is no chauchy sequence of L(R)also in this case.

Definition. We denote by $\{\mu_n | n = 1, 2, \dots\} \sim \{\nu_n | n = 1, 2, \dots\}$ the relation between two chauchy sequences of L(R) such that for every $\mathfrak{U} \in L(R)$ there exist two elements μ_n , ν_n of the sequence and some max. family λ such that $\lambda \supset \mu \cup \nu$, $\mathfrak{U} \notin \lambda$.

Lemma 3. In order that $\{\mu_n | q = 1, 2, \dots\} \sim \{\nu_n | n = 1, 2, \dots\}$ it is necessary and sufficient that $\{U_n | n = 1, 2, \dots\}$ and $\{V_n | n = 1, 2, \dots\}$ are equivalent chauchy sequences of R, where $\mu_n = \{\mathfrak{M} | U_n \notin \mathfrak{M}\}, \nu_n = \{\mathfrak{M} | V_n \notin \mathfrak{M}\}.$

Proof. The sufficiency of the condition is obvious.

If $\{U_n\}$ and $\{V_n\}$ are not equivalent in R, then for some m $U_n \cup V_n \ll S_m(x)$ hold for all n and for all $x \in R$. Hence in the same way as in the previous proof we get $\mathfrak{U} \in L(R)$ such that $U_n \cup V_n \notin \mathfrak{U}$ for all n. Take $\mathfrak{V} \in L(R)$ such that $\overline{\mathfrak{V}} = \{\overline{V} \mid V \in \mathfrak{V}\} < \mathfrak{U}$. If $\mathfrak{V} \notin \lambda$ for some max. family $\lambda = \{\mathfrak{M} \mid W \notin \mathfrak{M}\}$, and if $\lambda \supset \mu_n \cup \nu_n$, then $U_n \ll W$, $V_n \ll W$; hence from $W \in \mathfrak{V}$, $U_n \cup V_n \subset \overline{W} \subset U \in \mathfrak{U}$, but this is impossible. Therefore the negation of $\{\mu_n \mid n = 1, 2, \dots\} \sim \{\nu_n \mid n = 1, 2, \dots\}$ holds.

From lemma 3 we can classify all the chauchy sequences of L(R) by the relation \sim . We denote by $\mathfrak{L}(R)$ the set of all such classes. From this lemma and the completeness of R we get a one-to-one correspondence between R and

Jun-iti NAGATA

 $\mathfrak{L}(R)$; hence we denote by $\mathfrak{L}(A)$ the image of a subset A of R in $\mathfrak{L}(R)$ by this correspondence.

Definition. We mean by a *uniform covering of* $\mathfrak{L}(R)$ a covering $\{\mathfrak{L}(U'_{\alpha})|\alpha \in A\}$ of $\mathfrak{L}(R)$ such that there exists a definite covering $\{\mathfrak{L}(U_{\alpha})\}:$ $\{\mathfrak{L}(U_{\alpha})\}^{\Delta *} < \{\mathfrak{L}(U'_{\alpha})\}^{\epsilon_{3}}$ and for an arbitrary binary covering $\{\mathfrak{L}(U), \mathfrak{L}(V)\}$ $> \{\mathfrak{L}(U_{\alpha})\}$, there exists $\mathfrak{U} \in L(R)$ such that $\mu_{n} \in \{\mu_{n} | n = 1, 2, \cdots\} \notin \mathfrak{L}(U),$ $\nu_{m} \in \{\nu_{n} | n = 1, 2, \cdots\} \notin \mathfrak{L}(V)$ imply $\mathfrak{U} < \mathfrak{U}' \lor V'$ for some $\mathfrak{U}' \in \mu_{n}$ and $\mathfrak{B}' \in \nu_{m}$.

Lemma 4. In order that $\{\mathfrak{L}(U_{\alpha}')\}$ is a uniform covering of $\mathfrak{L}(R)$ it is necessary and sufficient that $\{U'_{\alpha}\}$ is a uniform covering of R.

Proof. Sufficiency. Let $\{U'_{\alpha}\}$ be a uniform covering of R, then there exists a uniform covering $\{U_{\alpha}\}$ of R such that $\{U_{\alpha}\}^{\Delta *} < \{U_{\alpha'}\}, i.e. \{\mathfrak{L}(U_{\alpha})\}^{\Delta *} < \{\mathfrak{L}(U_{\alpha'})\}$. If $\{\mathfrak{L}(U), \mathfrak{L}(V)\}$ is an arbitrary binary covering of $\mathfrak{L}(R)$ such that $\{\mathfrak{L}(U), \mathfrak{L}(V)\} > \{\mathfrak{L}(U_{\alpha})\},$ then since $\{U_{\alpha}\} < \{U, V\}$ in R, $\{U, V\}$ is a binary uniform covering of R. Hence from condition 3) of L(R) there exists $\mathfrak{U} \in L(R)$ such that $\overline{\mathfrak{U}} < \{U, V\}$. If $\mu_n \in \{\mu_n\} \notin \mathfrak{L}(U), \nu_m \in \{\nu_n\} \notin \mathfrak{L}(V)$ and if $\mu_n = \{\mathfrak{M} | U_n \notin \mathfrak{M}\}, \nu_m = \{\mathfrak{M} | V_n \notin \mathfrak{M}\},$ then $\{U_n\}$ converges to $a \notin U$ and $\{V_n\}$ converges to $b \notin V$. Let $U' \in \mathfrak{U}$, then from $\overline{\mathfrak{U}} < \{U, V\}, \overline{U'} \subset U$ or $\overline{U'} \subset V$ holds. If $\overline{U'} \subset U$, then from $a \notin U$ and from $a \in \overline{U}_n$ we get $\overline{U'} \Rightarrow U_n$. Hence from condition 2) of L(R) there exists $\mathfrak{U}(U') \in L(R)$ such that $U' \in \mathfrak{U}(U'), U_n \notin \mathfrak{U}(U')$. If $\overline{U'} \subset V$, then analogously there exists $\mathfrak{U}(U')$ such that $U' \in \mathfrak{U}(U'), V_m \notin \mathfrak{U}(U')$. Hence $\lor \{\mathfrak{U}(U') \mid \overline{U'} \subset U\} = \mathfrak{U'} \in \mu_n, \lor \{\mathfrak{U}(U') \mid \overline{U'} \subset V\} = \mathfrak{B'} \in \nu_m$ and $\mathfrak{U} < \mathfrak{U'} \lor \mathfrak{B'}$. Therefore $\{\mathfrak{L}(U_{\alpha'})\}$ is a uniform covering of $\mathfrak{L}(R)$ by the above definition.

Necessity. Assume that $\{U_{\alpha'}\}$ is no uniform convering of R and that $\{\mathfrak{L}(U_{\alpha})\}^{\Delta *} \leq \{\mathfrak{L}(U_{\alpha'})\}$, then $\{U_{\alpha}\}^{\Delta *} \leq \{U_{\alpha'}\}$. We denote by \mathfrak{S}_n the uniform covering $\{S_n(x)|x \in R\}$ of R. Putting $\mathfrak{A} = \{U_{\alpha'}\}$, for every n we get $S_n \in \mathfrak{S}_n$ $(n = 1, 2, \dots)$ such that $S_n \notin \mathfrak{A}^{\Delta *}$. For this S_1 we take $x_1, y_1 \in S_1$ such that $y_1 \notin S^2(x_1, \mathfrak{A})^{\gamma}$. If $S(x_1, \mathfrak{A})_{\bigcirc} S_{n_i} \neq \phi$ hold for an infinite number of n_i $(i = 1, 2, \dots)$ then for $x_{n_i} \in S(x_1, \mathfrak{A})_{\bigcirc} S_{n_i}$ $(i = 1, 2, \dots), \mathfrak{A}' = \{S^2(x_1, \mathfrak{A}), R - \bigcup_{i=1}^{\omega} x_{n_i}\}$ is a binary covering of R such that $\mathfrak{A} < \mathfrak{A}'$. Since $\mathfrak{S}_{n_i} \neq \mathfrak{A}$ hold for an infinite number of n_i is no uniform covering of $R.\mathfrak{s}$ If $S(y_1, \mathfrak{A})_{\bigcirc} S_{n_i} \neq \phi$ hold for an infinite number of n_i , then analogously there exsists a binary non-uniform covering \mathfrak{A}' .

If $n \ge n_2$ implies $S(x_1, \mathfrak{A}) \cap S_n = \phi$ and $S(y_1, \mathfrak{A}) \cap S_n = \phi$ for some n_2 , then

⁶⁾ This notation is due to J.W. Tukey, Convergence and Uniformity in topology, 1940.

⁷⁾ $S(x_1, \mathfrak{A}) = \bigcup \{A | x_1 \in A \in \mathfrak{A}\}, S^2(x_1, \mathfrak{A}) = S(S(x_1, \mathfrak{A}), \mathfrak{A}) = \bigcup \{A | A \cap S(x_1, \mathfrak{A}) \neq \varphi, A \in \mathfrak{A}\}.$ See J.W. Tukey, loc. cit.

⁸⁾ For $S_n \notin \mathfrak{A}^*$ implies $S_{n_i} \subset S^2(\mathbf{x}_1, \mathfrak{A})$, and $\mathbf{x}_{n_i} \in S_{n_i}$ implies $S_{n_i} \subset R - \bigcup_{i=1}^{\infty} \mathbf{x}_{n_i}$.

we take x_2 , $y_2 \in S_{n_2}$ such that $y_2 \notin S^2(x_2, \mathfrak{A})$. For these x_2 , y_2 ; S_{n_2} in the same way as for x_1 , y_1 , $S_{n_2} \coloneqq S_1$, we get a binary non-uniform covering \mathfrak{A} of R such that $\mathfrak{A} < \mathfrak{A}'$ or x_3 , y_3 ; S_{n_3} $(n_3 > n_2)$ such that x_3 , $y_3 \in S_{n_3}$; $S(x_2, \mathfrak{A}) \cap S_n = \phi$, $S(y_2, \mathfrak{A}) \cap S_n = \phi$ $(n > n_3)$, $y_3 \notin S^2(x_3, \mathfrak{A})$. By such an argument we get a binary non-uniform covering \mathfrak{A} of R such that $\mathfrak{A} < \mathfrak{A}'$ or points x_i , y_i $(i = 1, 2, \dots)$ of R such that x_i , $y_i \in S_{n_i}$; $x_i \notin S(y_j, \mathfrak{A})$, $y_i \notin S(x_j, \mathfrak{A})$. In the latter case, we get a binary covering $\mathfrak{A}' = \{ \bigcup_{i=1}^{\infty} S(x_i \mathfrak{A}), R - \bigcup_{i=1}^{\omega} x_i \}$. For this $\mathfrak{A}' \mathfrak{A} < \mathfrak{A}'$ is obvious. Since $x_i \in S_{n_i}$, $S_{n_i} \not\subset R - \bigcup_{i=1}^{\omega} x_i$. From $y_i \notin S_{n_i}$ and from $y_i \notin S(x_j, \mathfrak{A})$ for all j, $S_{n_i} \not\subset \bigcup_{i=1}^{\omega} S(x_i \mathfrak{A})$ holds. Hence $\mathfrak{S}_{n_i} \not\lt \mathfrak{A}'$. Since this formula holds for every i, \mathfrak{A}' is no uniform covering \mathfrak{A}' such that $\mathfrak{A}(\mathfrak{A}) < \mathfrak{L}(\mathfrak{A}')$.

Let \mathfrak{l} be an arbitrary uniform covering in L(R), then $\mathfrak{l} \leq \mathfrak{A}'$ holds for this \mathfrak{A}' , *i.e.* there exists $U \in \mathfrak{l}$ such that $U \subset A, B$ for both elements A, B of \mathfrak{A}' . Take x, y so that $x \in U_{\bigcirc} A^e$, $y \in U_{\bigcirc} B^e$, and let $L(x) = \{\mu_n | n = 1, 2, \cdots\}$, $\mathfrak{L}(y) = \{\nu_m | m = 1, 2, \cdots\}$; $\mu_n = \{\mathfrak{M} | U_n \notin \mathfrak{M}\}$, $\nu_m = \{\mathfrak{M} | V_m \notin \mathfrak{M}\}$, then since $\{U_n\}$, $\{V_n\}$ converge to x, y respectively in R, there exist U_n, V_n such that $U_n \subset U$ $V_n \subset U$. For every $\mathfrak{l}' \in \mu_n$, $\mathfrak{B}' \in \nu_n$ we get $U_n \notin \mathfrak{U}', V_n \notin \mathfrak{B}'$. Combining these formulas with the above $U_n \cup V_n \subset U$, we get $U \notin \mathfrak{l}', \mathfrak{B}'$. Hence $\mathfrak{l} \leq \mathfrak{l}' \vee \mathfrak{B}'$ for such \mathfrak{l}' . \mathfrak{B}' . Therefore $\{\mathfrak{L}(U_n')\}$ is no uniform covering of $\mathfrak{L}(R)$ by the above definition.

By this lemma R and $\mathfrak{L}(R)$, the uniform space having the above defined uniform coverings are uniformly homeomorphic. Since points and uniform coverings of $\mathfrak{L}(R)$ are defined by elements of L(R) and by relations \langle between elements of L(R), we get the following theorem.

Theorem 1. In order that two complete metric spaces R_1 and R_2 are uniformly homeomorphic it is necessary and sufficient that $L(R_1)$ and $L(R_2)$ are lattice-isomorphic, where $L(R_1)$, $L(R_2)$ are lattices of finite uniform coverings of R_1 , R_2 respectively and satisfy conditions 1), 2), 3),

Next we concern ourselves with a metric space having no completeness property. We denote by $L_{f}(R)$ the lattice of all finite uniform coverings of R. We define max. family of $L_{f}(R)$ as in the above proof of Theorem 1, and we mean by chauchy sequence of $L_{f}(R)$ a sequence of max. families of $L_{f}(R)$, $\{\mu_{n} | n = 1, 2, \dots\}$ satisfying besides the above conditions the condition that there exists a max. family μ such that $\mu \supset \mu_{n}$ for all n, and $\nu \supseteq \mu$ is not valid but $\nu = \{\mathfrak{M} | R \notin \mathfrak{M}\}$. Thus we can characterize a converging chauchy sequence of R by such a chauchy sequence of L(R) and by an analogous argument to the case of complete metric space we get the following,

Corollary. In order that two metric spaces R_1 , R_2 are uniformly homeomorphic it is necessary and sufficient that lattices $L_f(R_1)$, $L_f(R_2)$ of all finite

Jun-iti NAGATA

uniform coverings of R_1 , R_2 respectively are lattice-isomorphic.

This corollary is obvious for totally bounded uniform spaces R_1 , R_2 , too. Next let us consider relations between L(R) and the completion \widetilde{R} of R.

Theorem 2. If R_1 , R_2 are metric spaces and if $\widetilde{R_1}$, $\widetilde{R_2}$ are the completions of R_1 , R_2 respectively, then in order that $\widetilde{R_1}$ and $\widetilde{R_2}$ are uniformly homeomorphic it is necessary and sufficient that lattices of finite uniform coverings, $L(R_1)$, $L(R_2)$ satisfying conditions 1), 2), 3) are lattice-isomorphic.⁹⁾

Proof. For each $\mathfrak{U} = \{U_a\} \in L(R_1)$ we denote by $\widetilde{\mathfrak{U}}$ the uniform covering $\{(\widetilde{U_a}^c)^k | U_a \in \mathfrak{U}\}$ of $\widetilde{R_1}$, where U^c , U^k , \widetilde{U} mean complement in R_1 , complement in $\widetilde{R_1}$, closure in $\widetilde{R_1}$ respectively. Putting $L(R_1) = \{\widetilde{\mathfrak{U}} | \mathfrak{U} \in L(R_1)\}$, we see easily that $L(R_1)$ and $\widetilde{L(R_1)}$ are isomorphic. For $\widetilde{\mathfrak{U}} \ni U \subset V \in \mathfrak{V}$ implies $(\widetilde{U^c})^k \subset (\widetilde{V^c})^k$; hence $\mathfrak{U} < \mathfrak{V}$ implies $\widetilde{\mathfrak{U}} < \widetilde{\mathfrak{V}}$. If $\widetilde{\mathfrak{U}} < \widetilde{\mathfrak{V}}$, then for all $U \in \mathfrak{U}$ there exists $V \in \mathfrak{V}$ such that $(\widetilde{U^c})^k \subset (\widetilde{V^c})^k$; hence $(\widetilde{U^c})^k \cap R_1 = U \subset V = (\widetilde{V^c})^k \cap R_1$. Therefore $\mathfrak{U} < \mathfrak{V}$. Since $\widetilde{\mathfrak{U}} \lor \mathfrak{V} = \mathfrak{U} \lor \mathfrak{V}$ is obvious and since $L(R_1)$ satisfies condition 1). If U', V' are open sets in $\widetilde{R_1}$ such that $V' \neq \phi$. Hence there exists $\mathfrak{U} \in \mathfrak{U}$. Then from $U_0' \cap R_1 = U$, $V' \cap R_1 = V$, we get $U \cup V = \phi$, $V \neq \phi$. Hence there exists $\mathfrak{U} \in \mathfrak{U}$. Then from $U_0^c \subset U^c \subset U'^k$ we get $\widetilde{U_0^c} \subset U'^k$, and hence $U' \subset (\widetilde{U_0^c})^k \in \mathfrak{U}$. $V' \ll \widetilde{U_a}$ for every $\widetilde{U_a} \in \mathfrak{U}$ is obvious from $V \ll U_a$. Thus $\widetilde{L(R_1)}$ satisfies condition 2) in R_1 .

Next we shall show that $\widetilde{L(R_1)}$ satisfies condition 3) in $\widetilde{R_1}$. Let $\{U_i | i = 1, \dots, k\}$ be an arbitrary finite uniform covering of $\widetilde{R_1}$, then taking a uniform covering \mathfrak{S} of $\widetilde{R_1}$ such that $\mathfrak{S}^{**} < \{U_i\}$, we get open sets $G_i = \bigcup \{S | S' \cap R_1 = S \supset F \in \mathfrak{F}$ for some $S' \in \mathfrak{S}$ and for some \mathfrak{F} , F such that $F \in \mathfrak{F} \in U_i^k\}$ of R_1 , where \mathfrak{F} is a maximum chauchy filter of closed sets of R_1 , and \mathfrak{F} is also a point of $\widetilde{R_1}$. For example, $F \in \mathfrak{F}$ means that the filter \mathfrak{F} of R_1 contains the subset F of R_1 , and $\mathfrak{F} \in U$ means that the point \mathfrak{F} of $\widetilde{R_1}$ is contained in the subset U of $\widetilde{R_1}$. Now we show that $\mathfrak{U} = \{G_i^e\} > \mathfrak{S}$ in R_1 , where \mathfrak{U} is not an open covering generally. Assume the contrary and assume that $S \in \mathfrak{S}$, $S' = S \cap R_1$, $S' \cap G_i \neq \phi$ $(i = 1, \dots, k)$, then there exist open sets S_i of $\widetilde{R_1}$ and maximum chauchy filters \mathfrak{F}_i of R_1 such that $S \cap (S_i \cap R_1) \neq \phi$, $\mathfrak{S} \ni S_i \supset S_i \cap R_1$ and $\mathfrak{F}_i \in \mathfrak{V}_i \in \mathfrak{V}_i^*$ combining with $S_i \supset F_i \in \mathfrak{F}_i$ implies $\mathfrak{F}_i \in S_i \subset S_i'^*$, which contradicts the fact that $\mathfrak{F}_i \in S_i'$. Therefore $S_i' \subset S^2(S, \mathfrak{S})$ from

⁹⁾ The completion *R* of *R* consists of all the maximum chauchy filters of closed sets of *R*. The topology of *R* is defined by the closed basis {*F* | *F* = {𝔅 | 𝔅 ∋ *F*}, *F* is closed subset of *R*}. The uniform topology of *R* is defined by the uniform coverings *U* = {(*U*^c)^k | U ∈ U} for uniform coverings *U* of *R*.

 $S_{\bigcirc}S_i \neq \phi$. Therefore $\mathfrak{F}_i \notin U_i$, $\mathfrak{F}_i \in S_i' \subset S^2(S, \mathfrak{S})$; hence $S^2(S, \mathfrak{S}) \not\subset U_i$ $(i = 1, \dots, k)$, but this contradicts the fact that $\mathfrak{S} \neq \ll \langle \{U_i\}$. This contradiction proofs the validity of $\mathfrak{S} < \mathfrak{ll}$ in R_1 . Hence \mathfrak{ll} is a finite uniform covering of R_1 and hence we can take $\mathfrak{V} \in L(R_1)$ such that $\mathfrak{V} < \mathfrak{ll}$. Let $V \in \mathfrak{V}$ and let $V \subset G_i^c \in \mathfrak{ll}$. If \mathfrak{F} is a maximum chauchy filter of R_1 or a point of R_1 such that $\mathfrak{V} \in U_i^k$ in R_1 , then taking $S \in \mathfrak{S}$ such that $S \supset F \in \mathfrak{F}$ for some F, from the definition of G_i we get $R_1 \subseteq S \subset G_i \subset V^c$. Hence $\mathfrak{F} \in V^c$, and hence $U_i^k \subset V^c$, *i.e.* $U_i \supset (\overline{V^c})^k$. Since V is an arbitrary element of $\mathfrak{V}, \mathfrak{V} < \{U_i\}$ for $\mathfrak{V} \in L(R_1)$. Thus we see that $\widetilde{L(R_1)}$ is a basis of all the finite uniform coverings of R_1 , *i.e.* $\widetilde{L(R_1)}$ satisfies 3), too.

If $L(R_1)$ and $L(R_2)$ are isomorphic, then $\widetilde{L(R_1)}$ and $\widetilde{L(R_2)}$ are isomorphic; hence from the above conclusion and from Theorem 1 we get Theorem 2.

For completions of non-metric spaces we get the following propositions by the theorem of my previous paper¹⁰⁾ and by analogous arguements.

Corollary. If we denote by $\widetilde{R_1}$, $\widetilde{R_2}$ the completions of totally bounded uniform spaces R_1 , R_2 respectively, then in order that $\widetilde{R_1}$ and $\widetilde{R_2}$ are uniformly homeomorphic it is necessary and sufficient that lattices $L(R_1)$ and $L(R_2)$ of finite uniform coverings satisfying conditions 1), 2), 3) are lattice-isomorphic.

Corollary. If we denote by $\widetilde{R_1}$, $\widetilde{R_2}$ the completions of uniform spaces R_1 , R_2 respectively, then in order that $\widetilde{R_1}$ and $\widetilde{R_2}$ are uniformly homeomorphic it is necessary and sufficient that $L(R_1)$ and $L(R_2)$ are lattice-isomorphic, where $L(R_1)$ and $L(R_2)$ are lattices of uniform coverings of R_1 and R_2 respectively and satisfy the following conditions.

- 1') $\mathfrak{U} \in L(R_i), \mathfrak{V} \in L(R_i) \text{ imply } \mathfrak{U} \lor \mathfrak{V} \in L(R_i),$
- 2') if $\mathfrak{U} \in L(R_i)$ and if $U \neq \phi$ is an open set of R_i , then there exists $\mathfrak{M} \in L(R_i)$ such that $U \notin \mathfrak{M}$; $U^e \supset U' \in \mathfrak{U}$ implies $U' \in \mathfrak{M}$,
- 3') $L(R_i)$ is a basis of the totality of uniform coverings of R_i .

¹⁰⁾ Loc. cit.