On topological groups.

By Shin-ichi Matsushita

(received September 15, 1952)
0. Introdnction. In this paper, we shall deal with arbitrary topological groups by means of their Markoff-extensions: the definition of an Markoffextension is given in Section 1.

Generally speaking, though the representation theory in matric-algebras plays an important rôle in studying topological groups, ${ }^{1)}$ it becames occationally meaning-less for some type of groups, which have no usual (nen-trivial) representations; as well known, minimally almost periodic groups are those. However, the Markoff-extension seems to be useful for any topological groups.

Section 2 is devoted to an exposition of the relation between the representation of a topological group and those of its Markoff-extension. In Section 3, we shall concern the duality theorem of any topological groups, which we would rather call the co-duality theorem. Our theorem coincides with the famous one of Tannaka and Krein ${ }^{2)}$ in maximally almost periodic cases at all, but even if a group is minimally almost periodic, ours may remain still useful.

This duality theorem is, on the other hand, considered as the representation theorem in B-algebra, and the process from Theorem 4 to Theorem 5 gives one proof for the Tannaka-Krein's duality theorem.

The space of almost periodic functions is considerd as a commutative B^{*} algebra. This investigation is done in Section 4.

Finally, in Section 5, we shall try the theorem of K. Iwasawa ${ }^{3)}$ concerning the group-rings as an interesting application of Markoff-extensions.

1. Preliminary theorem. We begin with the noted theorem of A. Markoff and S. Kakutani on free topological groups. ${ }^{4)}$ That is stated as follows: For any completely regular topological space Γ, there exists a free topological group F with the following properties ;

[^0]«) $\mathrm{P} \subset[F]$,
β) Γ generates F algebraically,
γ) any continuous mapping φ of Γ into any topological group \mathbb{B} is extended up to the continuous homomorphism \varnothing of F into \mathbb{E} such that
$$
\mathscr{D}(x)=\varphi(x) \text { on } \Gamma,
$$
where [F] is the set of all elements of F with the same topology as F.
Now we always assume that G is a topological group, then G is a uniform space with that topology, due to A. Weil, ${ }^{5}$) and is completely regular; so is the topological space [G], where the brackets are used in the above sense.

We shall next consider a continuous mapping ϕ of [G] into G such that

$$
\phi(x)_{x \in G G]}=x_{x \in G} \quad \text { (identity mapping), }
$$

that is,

$$
\begin{equation*}
\phi([G])=G . \tag{1.1}
\end{equation*}
$$

Then according to the Markoff and Kakutani's theorem mentioned above, we can obtain a free topological group F such that;
(1.2) $[G]$ generates F algebraically,
(1.3) $\phi(F) \subset G$,
and
(1.4) $[G] \subset[F]$.

Combining (1.1) with (1.3), we have

$$
G=\phi([G]) \subset \phi(F) \subset G,
$$

that is,
(1.5) $\phi(F)=G$.

Since F is a free topological group, F is maximally almost periodic (max, a. p.); this fact is due to T. Nakayama. ${ }^{6)}$ Then we conclude:

Theorem 1.7) For any topological group G, there exists at least one max. a. p. topological group G, which has the following properties:
«) There exists a continuous homomorphism ϕ of G_{0} onto G.
$\beta)[G] \subset G_{0}$ and $[G]$ is the group-generator of G_{0}.
r) ϕ is invariant on [G], i.e.

$$
\phi(x)=x, \quad x \in[G] .
$$

For a given topological group G, we can consider the family of all such G_{0} and denote it by Π_{G}. Then it is certain that Π_{G} is not empty. For G_{1}, G_{2} of
5) A. Weil 26).
6) T. Nakayama 14).
7) P. Samuel has proved that any topological group is the image of a free topological group; in P. Samuel 17).
Π_{G}, if G_{1} is topologically homomorphic to G_{2}, one writes $G_{2} \geq G_{1}$. Thus Π_{G} forms a partly orderd set by this binary operation \geqq, whose greatest extreme is the free topological group.

Each element of Π_{G} is called an Markoff-extension of G, and if $G_{0}=G_{0}^{\prime}$ for every G_{0} with $G_{0} \geq G_{0}^{\prime}, G_{0}$ is called irreducible, while the rest reducible. A max. a, p. topological group is obviously the irreducible Markoff-extension of itself.

Theorem 2. The homomorphism ϕ, which is continuous, of an Markoffextension G_{0} of G onto G is further a open mapping.

Proof. Let H_{0} be the kernel of homomorphism ϕ. The natural mapping $\phi_{H_{0}}$ from G_{0} to G_{0} / H_{0} being topological, i.e. continuous and open, an open set $U_{0} \subset G_{0}$ is mapped to an open set $U_{H_{0}} \subset G_{0} / H_{0}$ by $\phi_{H_{0}}$ and $V_{0}=\phi_{H_{0}}^{-1}\left(U_{H_{0}}\right)$ is also open in G_{0}.

Putting $V_{0} \cap[G]=V_{G}$, we shall prove that V_{G} is open in $[G] \subset G_{0}$. For an arbitrary $x \in V_{G}$, there exists an open neighborhood $U(x)$ in G and also in [G]; while x being an element of V_{0}, there must be an open set $V(x)$ in V_{0}.

Since $W(x)=V(x) \subset U(x)$ is not empty, $W(x)$ must be an open set contained in V_{G}. Thus, V_{G} is open and hence

$$
\phi\left(U_{0}\right)=\phi\left(V_{0}\right)=\phi\left(V_{G}\right)
$$

must be open in G.
Corollary. G_{0} / H_{0} is topologically isomorphic to G, in the symbols;

$$
\begin{equation*}
G_{0} / H_{0} \cong G . \tag{1.6}
\end{equation*}
$$

2. Representations and *-Representations. Let G_{0} be an (irreducible or reducible) Markoff-extension of G and H_{0} the kernel of the homomorphism ϕ, $\phi\left(G_{0}\right)=G$, i.e.

$$
\phi\left(H_{0}\right)=e,
$$

where e is the unit of G. We call such H_{0} the Markoff-kernel of G_{0}. Let $H_{(x)}$ be the restclass containg x, while H_{x} the restclass which corresponds to x, with respect to the factor-group G_{0} / H_{0}. Then we have immediately that $H_{(x)}$ $=H_{x}$.

We shall distinguish the group-operation of G_{0} from that of G, writing che former by $x_{0} \cdot y_{0}$ in G_{0} and the latter by $x y$ in G, while we denote the inverse of $x_{0} \in G_{0}$ by x_{0}^{-1} and that of $x \in G$ in usual way, i.e. by x^{-1}. Then we have

$$
\begin{equation*}
H_{x} \cdot H_{y}=H_{x \cdot y}=H_{x y}=H_{(x y)} . \tag{2.1}
\end{equation*}
$$

We nex.t denote the set of such elements, differences in a sense, that

$$
\begin{equation*}
\dot{\delta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n}^{-1} \cdot x_{n_{-1}}^{-1} \cdots x_{1}^{-1} \cdot x_{1} x_{2} \ldots x_{n} \tag{2.2}
\end{equation*}
$$

for $x_{k} \in G: n, k=1,2, \ldots$, by \hat{H}_{0}, calling it the essential Markoff-kernel of G_{0}. Olbviously, $\hat{H}_{0} \subset H_{0}$. Furthermore we hold;
lemma 1. \hat{H}_{0} is the generator of H_{0}.

Proof. [G] being the group-generator of G_{0}, each $x_{0} \in H_{0}$ is represented as

$$
\begin{equation*}
x_{0}=x_{1} \cdot x_{2} \ldots x_{n} ; x_{k} \in G \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n}=e \tag{2.4}
\end{equation*}
$$

Then we see that

$$
\begin{align*}
x_{0} & =\left(x_{1} x_{2} \ldots x_{n}\right) \cdot\left(x_{n}^{-1} \cdot x_{n-1}^{-1} \ldots x_{1}^{-1} x_{1} x_{1} x_{2} \ldots x_{n}\right)^{-1} \tag{2.5}\\
& =e \cdot \delta^{-1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

and $\delta\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \hat{H}_{0}$; that is, for each $x_{0} \in \hat{H}_{0}$, we have

$$
\begin{equation*}
x_{0}=e \cdot \hat{x}_{0,-1}^{\cdot-1} \quad \hat{x}_{0} \in \hat{H}_{0} \tag{2.5}
\end{equation*}
$$

\hat{H}_{0} being a subset of H_{0}, we have also

$$
\begin{equation*}
\hat{x}_{0}=e \cdot \hat{x}_{0}^{\prime} \cdot-1 \quad \hat{x}_{0}^{\prime} \in \hat{H}_{0} ; \text { i.e. } e=\hat{x}_{0} \cdot \hat{x}_{0}^{\prime} \tag{2,6}
\end{equation*}
$$

and we see consequently $x_{0}=\hat{x}_{0} \cdot \hat{x}_{0}^{\prime} \cdot \hat{x}_{0}^{-\dot{1}}$. This proves the Lemma.
Let $D\left(x_{0}\right), x_{0} \in G_{0}$, be a continuous (irreducible) unitary -equivalent represencation of G_{0}, i.e. a continuous normal representation in the sense of J, von Neumann. ${ }^{8)}$ Such $D\left(x_{0}\right)$ does not necessarily become a representation of G. Then, we shall investigate the necessary and sufficient condition for $D\left(x_{0}\right)$, in order that it might be a continuous normal representation of G. If $D\left(x_{0}\right)$ is an algebraic representation of G, the continuity of it on G is easily proved. Hence, it is sufficient to restrict our treatments to purely algebraic ones.

Theorem 3. For a normal (irreducible) representation of G_{0}, an Markoffextension of G, the following three conditions are mutually equivalent;
i) $D\left(x_{0}\right)=E$ for all $x_{0} \in H_{0}$,
ii) $D\left(x_{0}\right)=E$ for all $x_{0} \in \hat{H}_{0}$,
iii) $D(x)$ is a normal (irreducible) representation of G,
where E is unit matrix with same dimension as $D\left(x_{0}\right)$.
Proof of ii) \rightarrow iii. $)$. iii $) \rightarrow$ ii) is clear. We show that, if $D\left(x_{0}\right), x_{0} \in G_{0}$, has the property ii), $D(x), x \in G$, forms a representation of G, We have easily

$$
\begin{aligned}
& D\left(\delta((x, y))=D\left(y^{-1} \cdot x^{-1} \cdot x y\right)\right. \\
& =D\left(y^{-1}\right) D\left(x^{-1}\right) D(x y)=D(y)^{-1} D(x)^{-1} D(x y)=E,
\end{aligned}
$$

that is,

$$
\begin{equation*}
D(x y)=D(x) D(y) \tag{2.7}
\end{equation*}
$$

for every $x, y \in G$, and consequently iii) is satisfied, providing $D(e)=E$,
Proof of i) $\rightarrow \mathbf{i i}$). i) \rightarrow ii) is clear. If ii) is fulfilled for $D\left(x_{0}\right)$, from Lemma 1, we have for every $x_{0} \in H_{0}$

$$
x_{0}=\hat{x}_{1} \cdot \hat{x}_{2} \ldots \hat{x}_{n} ; \hat{x}_{k} \in H_{0}
$$

Then we have,
8) J. von Neunann 15).

$$
\begin{aligned}
& D\left(\hat{x}_{0}\right)=D\left(\hat{x}_{1}\right) D\left(\hat{x}_{2}\right) \ldots D\left(\hat{x}_{n}\right) \\
& \quad=E \cdot E \ldots E=E
\end{aligned}
$$

Thus ii) \rightarrow i) is proved. This completes the proof of the theorem.
We now come to the desirable condition, under which the (irreducible) normal representation of G_{0} becomes that of G, but we shall pursue the study of representations of G further.

If G has a continuous normal (irreducible) representation $D(x), x \in G$, putting

$$
\begin{equation*}
D_{0}\left(x_{0}\right)=D(x) \text { for all } x_{0} \in H_{x} \tag{2.8}
\end{equation*}
$$

it is easy to see that such $D_{0}\left(x_{0}\right), x_{0} \in G_{0}$, is a continuous normal (irreducible) representstion of D_{0}, and the condition (2.8) is characterised by only condition such that,

$$
\begin{equation*}
D_{0}\left(x_{0}\right)=E \quad \text { for all } x_{0} \in \hat{H}_{0} \tag{2.9}
\end{equation*}
$$

These facts enable us to establish
Corollary. A necessary and su fficient condition for a topological group G to have a continuous normal (irreducible) representation is that one of its Markoff-extension G_{0} has a continuous normal (irreducible) representation $D_{0}\left(x_{0}\right)$, such that

$$
D\left(x_{0}\right)=E \text { on } \hat{H}_{0}\left(\text { or equivalenty on } H_{0}\right)
$$

where \hat{H}_{0} is the essential Markoff-kernel of G_{0}.
Some topological groups have not any non-trivial representations, even when they are locally bicompact or further Lie-groups; minimally a. p. groups are those.

Now we shall define a new oparation of matrices. Let G_{0} be an Markoffextension of G and $D\left(x_{0}\right)$ a continuous normal (irreducible) representation of G_{0}. Markoff-kerne1 H_{0} and $H_{x}\left(=x \cdot H_{0}\right)$ are defined as above. Then we define

$$
\begin{equation*}
D\left(x_{0}\right) * D\left(y_{0}\right)=D\left(x_{0}\right) D\left(y_{0}\right) \Delta(x, y), \tag{2.10}
\end{equation*}
$$

where $x_{0} \in H_{x}, y_{0} \in H_{y}$ and

$$
\begin{equation*}
\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D\left(\delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \tag{2.11}
\end{equation*}
$$

For any $x, y \in G$, we have immediately

$$
\begin{aligned}
D(x) * D(y) & =D(x) D(y) \Delta(x, y) \\
& =D(x) D(y) D\left(y^{-1} \cdot x^{-1} \cdot x y\right) \\
& =D\left(x \cdot y \cdot y^{-1} \cdot x^{-1} \cdot x y\right)=D(x y)
\end{aligned}
$$

Thus $D(x)$ becomes a kind of representation of G with respect to the operation*, and, it is cartain, this representation is continuous. We call it a *-representation of G based on G_{0}.

Theorem 4. A *-representation $D(x)$ of G based on G_{0} coincides with the usual one, if and only if

$$
\Delta(x, y)=E \text { for all } x, y \in G
$$

or equivalently
ii) $\quad D\left(x_{0}\right)=E$ on the (essential or not) Markoff-kerner of G_{0}.

All these facts together with the approximation theorem of WeierstrassNeumann bring us the considerations about a. p. functions on G.

Again, let G_{0} be an markoff-extension of G, and $\boldsymbol{A}\left(G_{0}\right)$ the space of all continuous complex-valued a. p. functions on G_{0}, which becomes a B^{*}-algebra as we see in the following.

If there exists such $f \in \mathbf{A}\left(G_{0}\right)$, i.e. a. p. function in G_{0}, that all for $x_{0}, x_{0}^{\prime} \in H_{x}$ and $x \in G$,

$$
\begin{equation*}
f\left(x_{0}\right)=f\left(x_{0}^{\prime}\right) \tag{2.12}
\end{equation*}
$$

 functions for some G_{0}, and if $f \in \hat{A\left(G_{0}\right)}$, the translation of f by G, $f a\left(x_{0}\right)=$

Now, we put, for $f \in \hat{\boldsymbol{A}}\left(G_{0}\right)$,

$$
\begin{equation*}
\tilde{f}(x)=f\left(x_{0}\right)_{x_{0} \in H x} . \tag{2,13}
\end{equation*}
$$

Then we have:
Corollary. For any $f \in \hat{\boldsymbol{A}}\left(G_{0}\right), \tilde{f}$ is a. p. on G. Conversely, if fis a. p. on G, $f_{0}\left(x_{0}\right), x_{0} \in G_{0}$, which is defined by (2.13);

$$
f_{0}\left(x_{0}\right)=\tilde{f}(x) \text { on each } H_{x}
$$

is a. p. on G_{0}.
We complehend, consequently, that if $G_{1} \geqq G_{2}$ in Π_{G}, there are no more a. p. functions on G_{2} than on G_{1}. Especially, a. p. functions on G are contained in those on $G_{0}, G_{0} \in \Pi_{G}$, in the above sense.

The totality of $\tilde{f}, f \in \boldsymbol{A}\left(G_{0}\right)$, coincides with $\boldsymbol{A}(G)$, i.e.

$$
\begin{equation*}
\hat{A(}\left(G_{0}\right) \cong A(G), \tag{2.14}
\end{equation*}
$$

and if G is min. a. p., $\hat{\boldsymbol{A}\left(G_{0}\right)}$ consists of only constant functions on G_{0}. With regard to the mean of an a. p. function, we may suppose and easily prove that

$$
\begin{equation*}
M_{x}[\tilde{f}(x)]_{G}=M x_{0}\left[f\left(x_{0}\right)\right]_{G o}, \tag{2.15}
\end{equation*}
$$

for every $f \in \hat{\boldsymbol{A}\left(G_{0}\right)}$.
3. Duality theorem and B-algebra. ${ }^{9)}$ Let G be a topological group and G_{0} an Markoff-extension of G respectively. $\boldsymbol{M}\left(G_{0}\right)$ is complex. B-space of all bounded functions on G_{0} with uniform norm $\|f\|=\sup .\left|f\left(x_{0}\right)\right| ; f \in \boldsymbol{M}\left(G_{0}\right), x_{0} \in G_{0}$, while $\boldsymbol{D}\left(G_{0}\right)$ a normed subspace of $\boldsymbol{M}\left(G_{0}\right)$ which is the set of all finite linear aggregates of the elements of all irreducible mutually non-equivalent continuous normal representations $D^{\omega}\left(x_{0}\right)=\left(D_{i j}^{\omega}\left(x_{0}\right)\right)$, i.e. the set of all Fourier polynomials of $D_{i j}^{\omega}\left(x_{0}\right)$, where $\left\{D^{\omega}\right\}$ is a complete (mutually non-equivalent) representation system of finite degrees of G_{0}.
9) About B-algebras, see E. Hille 4), W. Ambrose 1), I. Kaplansky 9), etc.

Now we see immediately that $\boldsymbol{M}\left(G_{0}\right)$ itself is regarded as a B-algebra, while $\boldsymbol{D}\left(G_{0}\right)$ a normed subring. It is obvious that both $\boldsymbol{M}\left(G_{0}\right)$ and $\boldsymbol{D}\left(G_{0}\right)$ have the same algebraic unit $\boldsymbol{1}$ with $\|\boldsymbol{1}\|=1$.

Further, S is the total operator ring on $\overline{\boldsymbol{D}}\left(G_{0}\right)$ with the norm $\mid S \|=$ $\sup _{\|f\| \leq 1}\|S \cdot f\|$, that is, the set of all bounded linear operators on $D\left(G_{0}\right)$, then \mathcal{S} itself is also a B-algebra, where $\overline{\boldsymbol{D}}\left(G_{0}\right)$ means the completion of $\overline{\boldsymbol{D}}\left(G_{0}\right)$ by uniform norm in $\boldsymbol{M}\left(\boldsymbol{G}_{0}\right) ; \overline{\boldsymbol{D}}\left(\boldsymbol{G}_{0}\right)$ coincides with the set of aill continuous a. p. functions on $G_{0}, A\left(G_{0}\right)$. Next, we consider the set of all regular elements S of \mathbb{S}, which have in addition

$$
\begin{align*}
& \text { i) } \quad S(f \cdot g)=S(f) \cdot S(g), \tag{3.1}\\
& \text { ii) } \quad S(\bar{f})=\overline{S(f), \text { (bar means the conjugation) }}
\end{align*}
$$

and denote that by \mathbb{S}. \subseteq is obviously a subset of \boldsymbol{S}, but not a subalgebra. However, \subseteq forms a group contained in \boldsymbol{S}. In fact we have

$$
\begin{align*}
& S_{1} \cdot S_{2}^{-1}(f \cdot g)=S_{1} \cdot S_{2}^{-1}\left(S_{2} \cdot S_{2}^{-1}(f) \cdot S_{2} \cdot S_{2}^{-1}(g)\right)=S_{1} \cdot S_{2}^{-1} \cdot S_{2}\left(S_{2}^{-1}(f) \cdot S_{2}^{-1}(g)\right) \tag{3.2}\\
& = \\
& =S_{1}\left(S_{2}^{-1}(f) \cdot S_{2}^{-1}(g)\right)=S_{1} S_{2}^{-1}(f) \cdot S_{1} S_{2}^{-1}(g) \tag{3.3}\\
& \begin{aligned}
& S_{1} \cdot S_{2}^{-1}(\bar{f})\left.=S_{1} \cdot S_{2}^{-1}\left(\overline{S_{2} S_{2}^{-1}(f)}\right)=S_{1} \cdot S_{2}^{-1} \cdot S_{2}\left(\overline{\left.S_{2}^{-1}(f)\right)}=\overline{S_{1}\left(S_{2}^{-1} f\right.}\right)\right) \\
&\left.=\overline{S_{1} \cdot S_{2}^{-1}(f}\right)
\end{aligned}
\end{align*}
$$

Lemma 2. For each $\mathrm{S} \in \mathbb{S},\|S\|=1$.
Proof. From (3.1), i), we have for unit function $1 \in A\left(G_{0}\right)$

$$
\begin{equation*}
S(1)=1, \tag{3.4}
\end{equation*}
$$

and $1=\|\mathbf{1}\|=\|S(\mathbf{1})\| \leqq\|S\|$. On the other hand, for every $f \in A\left(G_{0}\right)$ with $\|f\| \leqq 1$, we have

$$
\begin{aligned}
\|S(f)\| & =\|S(f) \cdot \bar{S}(\bar{f})\|=\|S(f) S(\bar{f})\| \\
& =\|S(f \cdot \bar{f})\| \leqq\|S\|
\end{aligned}
$$

and hence $\|S\|^{2} \leqq\|S\|$, that is $\|S\| \leqq 1$. This completes the proof of Lemma. \mathbb{S} is not void, since every $S_{a_{0}}$ or ${ }_{a_{0}} S$ is contained in \mathbb{S}, where S_{a} or ${ }_{a_{0}} S$ is a translation operator such that

$$
\begin{equation*}
S_{a_{0}}(f)==f\left(x_{0} \cdot a_{0}\right) \quad \text { resp. } \quad{ }_{a_{0}} S(f)=f\left(a_{0}^{-1} \cdot x_{0}\right) \tag{3.5}
\end{equation*}
$$

for $a_{0}, x_{0} \in G_{0}$. Denoting the totality of such $S_{a_{0}}$ or $a_{0} S$ by $\mathfrak{S}_{G_{0}}$ or ${ }_{G_{0}} \subseteq$, we see that $\Im_{G_{0}}$ or ${ }_{G_{0}} \subseteq$ is a group which is algebraically isomorphic to G_{0}. The isomorphism is directly ontained from the maximal almost-periodicity of G_{0}. Though \mathfrak{S} has norm-topology, we introduce another topology, i.e. a weak topology in \mathcal{S} such that a neighborhood $U_{s_{0}}\left(f_{2}, \ldots, f_{n} ; \varepsilon\right)$ is defined as

$$
\begin{align*}
& U_{s_{0}}\left(f_{1}, f_{2}, \ldots f_{n} ; \varepsilon\right) \\
& =\left\{S\left\|S\left(f_{j}\right)-S_{0}\left(f_{j}\right)\right\|<\varepsilon\right\}, \tag{3.6}
\end{align*}
$$

for $j=1,2, \ldots, n$.
From Lemma 2, we have

$$
\begin{equation*}
\|S(f)\| \leq 1 \tag{3.7}
\end{equation*}
$$

for every $S \in \mathbb{S}$ and f with $\|f\| \leqq 1$. If $S \neq S^{\prime}$, there exists f_{0} with $\left\|f_{0}\right\| \leqq 1$ such that $S\left(f_{0}\right) \neq S^{\prime}\left(f_{0}\right)$. Then, due to A. Tychonoff, ${ }^{10)} \subseteq($ turns out to a bicompact group with the weak topology, and $\mathscr{S}_{G_{0}}$ is algebraically isomorphic and continuous image of G_{0}. According to the normal subgroup (the Markoff-kernel) H_{0} of G_{0}, there exists a normal subgroup $\mathfrak{S}_{\sigma_{0}}$ of $\mathcal{S}_{G_{0}}$ such that $\mathscr{S}_{G_{0}} / \mathscr{S}_{G_{0}}$ is the algebraically isomorphic and continuous image of $G_{0} / H_{0} ;$ i.e.

$$
\begin{equation*}
G \cong G_{0} / H_{0} \quad \gtrsim \subseteq_{G_{0}} / \mathscr{g}_{G_{0}} \tag{3.8}
\end{equation*}
$$

(al. isomorph.) (al. isomorph.)
homeomorph. continuous.
Denoting the commutor of ${ }_{\sigma_{0}}$ © in S by \mathbb{S}_{0}, we conclude:
Theorem 5. (Generalized Duality and Representation Theorem) With the definition above, we hold; for any topological group G,
i) \mathfrak{S}_{0} is a bicompact group in a B-algebra (operaor-algebra),
ii) there exists an algebraically isomorphic and continuous mapping ϕ of G onto \mathfrak{S}_{G} such that $\mathfrak{F} * \mathfrak{G}_{G}$ is a dense sub-group of \mathfrak{S}_{0} for a suitable normal

iii) if G is max. a. p., ϕ is a continuous isomorphism of G onto a dense sub-group \mathbb{S}_{G} of \mathbb{S}_{0}, and if G is bicompact, G is continuously isomorphic to \mathbb{S}_{0} itself.

Here, $\mathfrak{A} * \mathfrak{B}$ means a group-extension \mathfrak{G} of \mathfrak{B} by \mathfrak{A}, such that $\mathfrak{B} / \mathfrak{A}=\mathfrak{B}$.
To completes the proof of this theorem, it remains for us to prove the denseness of $\mathfrak{J} * ভ_{G}$ in ς_{0}. iii) is a direct result of it. However, we shall remark it soon after.
For each $S \in \mathbb{S}_{0}$, we put
(3.9) $\tilde{S}(f)=(S \cdot f)(e)$; for $f \in A\left(G_{0}\right), e=$ unit of G_{0},
and get the set $\tilde{\Phi}_{0}$ of such linear functionals \tilde{S}.
Lemma 3. $\tilde{ভ}_{0}$ is algebraically isomorphic to \mathbb{S}_{0}.
If $S_{1} \neq S_{2}$ in Θ_{0}, there exist $f \in \boldsymbol{A}\left(G_{0}\right)$ and $x_{0} \in G_{0}$ such that

$$
\left(S_{1} \cdot f\right)\left(x_{0}\right) \neq\left(S_{2} \cdot f\right)\left(x_{0}\right),
$$

and putting $S_{x_{0}} \cdot f=g$,

$$
\begin{aligned}
& \tilde{S}_{i}(g)=\left(S_{i} \cdot g\right)(e)=\left(S_{i} \cdot S_{x_{0}} f\right)(e) \\
& =S_{i} \cdot f\left(x_{0} \cdot e\right)=S_{i} \cdot f\left(x_{0}\right), \text { for } i=1,2 .
\end{aligned}
$$

It implies that $\tilde{S_{1}}(g)-1=\tilde{S}_{2}(g)$ from (3.8), thus $\tilde{\mathscr{S}}_{0}$ and Ξ_{0} are one-to-one corresponding.

Now we define the product in $\tilde{\mathbb{E}}_{0}$ by
10) An excellent proof has been obtained by C. Chevalley and O. Frink, Bull. A. S. S. 47 (1941).

$$
\begin{equation*}
\tilde{S}_{1} \cdot \tilde{S}_{2}=\widetilde{S_{1} \cdot S_{2}} \tag{3.10}
\end{equation*}
$$

and get the algebraic isomorphism between $\tilde{\mathscr{E}}_{0}$ and $\mathscr{ভ}_{0}$, i.e. $\tilde{\mathscr{S}}_{0}$ is a group which is isomorphic to $\mathbb{ভ}_{0}$.

Particularly, (3.9) is realized for $D\left(x_{0}\right)$ as the form such that

$$
\begin{equation*}
\tilde{S}_{1} \cdot \tilde{S}_{2}\left(D_{i j}\right)=\sum_{k} \tilde{S}_{1}\left(D_{i k}\right) \tilde{S}_{2}\left(D_{k j}\right), \tag{3.11}
\end{equation*}
$$

where $D\left(x_{0}\right)=\left(D_{i j} j\left(x_{0}\right)\right)$.
We next introduce a weak topology in ς_{0} by such the way that; a neighbor$\operatorname{hood} \tilde{U}_{\tilde{S}_{0}}\left(f_{1}, f_{2}, \ldots, f_{n} ; \varepsilon\right)$ is defined as

$$
\begin{equation*}
\tilde{U}_{\tilde{S}_{0}}=\left\{S| | \tilde{S}\left(f_{j}\right)-\tilde{S}_{0}\left(f_{j}\right) \mid<\varepsilon\right\} \tag{3.12}
\end{equation*}
$$

for $j=1,2, \ldots, n$. Then the correspondence of $\mathbb{ভ}_{0}$ onto $\tilde{ভ}_{0}$ is continuous and $\tilde{ভ}_{0}$ is bicompact. Of course, the inverse correspondence of $\widetilde{ভ}_{0}$ onto \mathbb{S}_{0} is also continuous i.e. \mathscr{S}_{0} and $\tilde{\mathscr{S}}_{0}$ are isomorphic.

Then we can modify the Theorem 5 as follows:
Theorem. 6. Usual Duality Theorem) For any topological G, there exists an algebraically isomorphic and continuous mapping $\tilde{\phi}$ of G onto $\tilde{\Phi}_{G}$, for which $\tilde{\mathfrak{y}}_{G} * \tilde{ভ}_{G}$ is a dense subgroup of a bicompact group $\tilde{\mathfrak{S}}_{0}$ for suitable $\tilde{\mathfrak{N}}_{G}$. If G is max. a. p., $\tilde{\phi}(G)=\tilde{ভ}_{G}$ and if G is bicompact, $\tilde{\phi}(G)=\tilde{ভ}_{0}$.

Proof of the denseness of $\tilde{\mathfrak{E}}_{G_{0}}=\tilde{\mathfrak{F}}_{G} * \tilde{ভ}_{G}$ in $\tilde{\mathfrak{G}}_{0}$: As G_{0} is max. a. p., from Theorem 7 later, we have

$$
\begin{equation*}
\boldsymbol{A}\left(G_{0}\right) \cong \boldsymbol{C}\left(\tilde{\Phi}_{0}\right) \quad \text { (in norm-preserving fashion) } \tag{3.13}
\end{equation*}
$$

If $\tilde{\varsigma}_{G_{0}}$ is not dense in $\tilde{ভ}_{0}$, there exists a point φ_{0} in $\tilde{ভ}_{0}-\bar{\varsigma}_{G 0}$ ($\bar{\varsigma}_{\sigma_{0}}$ being the closure of $\left.\tilde{\mathscr{S}}_{G_{0}}\right)$. By Urysohn's theorem, there exists a function $f \in \boldsymbol{C}\left(\tilde{\mathscr{S}}_{0}\right)$ such that

$$
f(\varphi)=\left\{\begin{array}{l}
1, \text { if } \varphi=\varphi_{0} \tag{3.14}\\
0, \text { if } \varphi \text { is in } \overline{\mathbb{E}}_{G_{0}}
\end{array}\right.
$$

But this is contradictory with (3.13). Thus, the denseness is proved, and moreover that in Theorem 5 is also complectely verified.

Remark 1: This duality theorem is of the Tannaka-Krein's type and if G max. a. p., it is exactly the Tannaka-Krein's one. ${ }^{11)}$

But in general cases, the homomorphism are just in the opposite directions one another; in Tanaka-Krein's theorem the direction of homomorphic mapping is of G to G^{0} (=a certain group of functionals on $\boldsymbol{A}(G)$), while that of ours is of $G^{0}\left(=\tilde{\Phi}_{G_{0}}\right)$ to G.

[^1]For this reason, Tannaka-Krein's theorem concerns with the very case that G has a representation, but even when G is minimally a. p., our theorem has still a meaning.

Remark 2: The bicompact group \mathbb{S}_{0} is directıy characterized by the set of all linear multiplicative bounded functionals on $\boldsymbol{A}\left(G_{0}\right)$, which is denoted by Ω. Using a neighbourhood $U_{\varphi_{0}}^{0}\left(f_{1}^{0} f_{2}^{0}, \ldots, f_{n}^{0} ; \varepsilon\right)$ for $\varphi_{j}^{0} \in \Omega, f_{j}^{0} \in \boldsymbol{A}\left(G_{0}\right)$ with $\left\|f_{j}^{0}\right\| \leqq 1, j$ $=1,2, \ldots, n$, such that

$$
\begin{equation*}
U^{0} \varphi_{0}=\left\{\varphi \in \Omega| | \varphi\left(f_{j}^{0}\right)-\varphi_{0}\left(f_{j}^{0}\right) \mid<\varepsilon\right\}, \tag{3.15}
\end{equation*}
$$

Ω turns to be a weakly bicompact Handdroff space. We can easily verify that such neighbourhood system $\left\{U_{\varphi_{0}}\right\}$ is equivalent to that of $\left\{U_{\varphi_{0}}\right\}$, which is definedby

$$
\begin{gather*}
U_{\varphi_{0}}\left(f_{1}, f_{2}, \ldots, f_{n} ; \varepsilon\right) \tag{3.16}\\
=\left\{\varphi \in \Omega| | \varphi\left(f_{j}\right)-\varphi_{0}\left(f_{j}\right) \mid<\varepsilon\right\},
\end{gather*}
$$

where $f_{j} \in \boldsymbol{A}\left(G_{0}\right)$ for $j=1,2, \ldots, n$, whose norm is not necessarily $\leqq 1$. This implies that $f(\varphi)=\varphi(f), f \in \boldsymbol{A}\left(G_{0}\right), \varphi \in \mathscr{R}$, is (uniformıy) continuous on Ω.

From Lemma 4 stated later, we have $\boldsymbol{A}\left(G_{0}\right) \equiv \boldsymbol{C}(\mathscr{R})$ where $\boldsymbol{C}(\mathscr{R})$ is the B-algebra of all continuous functions on Ω. This fact together with Theorem 7 later implies

$$
\begin{equation*}
\boldsymbol{C}\left(\tilde{\mathbb{S}}_{0}\right) \approx \boldsymbol{C}(\mathbb{R}) \tag{3.17}
\end{equation*}
$$

in an algebraic and norm preserving fashion. From (3.15), it follows that Ω is homeomorphic to $\tilde{\mathscr{S}}_{0}$.

The linear multiplicative bounded functionals are studied by Vr Šmulian, I. Gelfand, E. Hille, etc. ${ }^{12)}$ Our further investigations of them will appear in another paper.

Remark 3. For a locally compact group, its irreducible representation theorem is given by Gelfand-Raikov, I. E. Segal, G. Mautner, and H. Yosizawa, ${ }^{13)}$ But our representation (Theorem 5) is complete only if the group is max a. p. The gap between these two representatious has been filled up in any case.
4. B^{*}-algebra of a. p. functions. The space of all continuous a. p. functions on $G, \boldsymbol{A}(G)$, is not only a B-algebra, but also a commutative B^{*}-algebra with the norm conditiond;

$$
\begin{align*}
& \left\|f \cdot f^{*}\right\|=\|f\| \cdot\|f *\|, \tag{4.1}\\
& \|f\|=\left\|f^{*}\right\| \tag{4.2}
\end{align*}
$$

that is, a B^{*}-algebra in the sense of C. E. Rickart and I. Kaplansky. ${ }^{14)}$ As *operation, we have only to put $f^{*}=\bar{f}$ (conjugate)
12) V. Smulian 23), and E. Hille, Proc. Nat. Acad. Sci., 30 (1944) and 4).
13) I. Gejfand and D. Raikov, Math Sbornik, 13 (1944).
I. E. Segal 20), G. Mautner 12), and H. Yoshizawa 28).
14) C. E. Rickart 16) and I. Kaplansky 9).

Suppose that G_{0} is max. a. p. and $\tilde{ভ}_{\sigma_{0}}$, $\tilde{ভ}_{0}$ have the same meaning as in the preceding. Then, for $S \in \mathbb{S}_{0}$, the function

$$
\begin{equation*}
f(\tilde{s})=\tilde{s}(f), \quad f \in \boldsymbol{A}\left(G_{0}\right) \tag{4.3}
\end{equation*}
$$

is a (uniformly) continuous function on $\tilde{\mathscr{S}}_{0}$. Thus, $\boldsymbol{A}\left(G_{0}\right)$ is a subring of $\boldsymbol{C}\left(\mathfrak{S}_{0}\right)$, the B^{*}-algebra of all continuous complex-valued functions on $\widetilde{\S}_{0}$.

Lemma 4. (Stone-Rickart) If for every pair of points S, S' in a bicompact space \mathfrak{S}, there exists an element f of the subring \mathfrak{M}_{0} of $\boldsymbol{C}(\mathbb{S})$ such that $f(s)$ $\neq f\left(s^{\prime}\right)$, then $\mathfrak{H}_{G} \equiv \boldsymbol{C}($ ($)$.

Originally, G. Šilov ${ }^{15)}$ proved this Lemma under the condition that \mathbb{S} is bicompact and metric. and later M. H. Stone ${ }^{16)}$ proved for real $\boldsymbol{C}($ ($)$.

Theorem 7. For max. a. p. Go, we have

$$
\begin{equation*}
\boldsymbol{A}\left(G_{0}\right) \cong C\left(\tilde{\mathbb{S}}_{0}\right) \tag{4.4}
\end{equation*}
$$

Denoting the set of all maximal ideals of $\boldsymbol{A}\left(G_{0}\right)$ by $\mathfrak{M}_{\sigma_{0}}$, Gelfand-Neumark ${ }^{1 \varepsilon}$) proved that

$$
\begin{equation*}
\boldsymbol{C}\left(M_{G_{0}}\right) \simeq \boldsymbol{A}\left(G_{0}\right), \tag{4.5}
\end{equation*}
$$

Then, we have
Corollary. we hold for max. a. p. G_{0},

$$
\begin{equation*}
\boldsymbol{C}\left(\tilde{\mathfrak{S}}_{0}\right) \cong \boldsymbol{C}\left(\mathfrak{M}_{\sigma_{0}}\right) \tag{4.6}
\end{equation*}
$$

Again, let G_{0} be an Markoff-extension of G. As in the preceding mentioned, we hold

$$
\begin{equation*}
A(G) \cong \hat{A}\left(G_{0}\right) \subset A\left(G_{0}\right)=\boldsymbol{C}\left(\tilde{\mathbb{S}}_{0}\right) \tag{4.7}
\end{equation*}
$$

Now, according to Šilov and Rickart, we decompose \subseteq_{0} to the direct sets (the continuous decomposition in the sense of P. Alexandroff)

$$
\begin{equation*}
\tilde{\mathfrak{G}}_{0}=\Sigma \oplus L(s), \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
L(s)=\left\{s^{\prime} \mid f \in \hat{A(}\left(G_{0}\right) \text { impiles } f(s)=f\left(s^{\prime}\right)\right\} . \tag{4.9}
\end{equation*}
$$

Denoting the unit of $\tilde{\mathfrak{S}}_{0}$ by s_{e}, we see immediately that $L\left(s_{e}\right)=L_{0}$ is a closed normal subgroup of $\tilde{ভ}_{0}$ such that

$$
\begin{equation*}
\mathfrak{Z} \cong \tilde{\Xi}_{0} / L_{0} \tag{4.10}
\end{equation*}
$$

where $\mathfrak{Z} \equiv\{L(s)\}$, and moreover $L_{0} \subset \bar{夕}_{G}$ (the closure of \mathfrak{S}_{G} in \mathbb{S}_{0}). Owing to Rickart, we have

$$
\begin{equation*}
\boldsymbol{C}(\mathscr{Z}) \cong \hat{\boldsymbol{A}}\left(G_{0}\right) \tag{4.11}
\end{equation*}
$$

15) G. Silov 22).
16) M. H. Stone 24).
17) Gelfiand and Silov, Rec. Math., N. S. 9 (1941) and C. Rickart 16), loc. cit.
18) I. Gelfand-M. Neumark 3).
and hence

$$
\begin{equation*}
\mathbf{C}\left(\tilde{ভ}_{0} / L_{0}\right)=\boldsymbol{C}(\mathfrak{Z}) \cong \hat{\boldsymbol{A}}\left(G_{0}\right) \cong \boldsymbol{A}(G) . \tag{4.12}
\end{equation*}
$$

Consequently, we come to the extended formula of Theorem 7 as follows;
Theorem 8. For any topological group G, there exists a bicompact topological group \mathfrak{B}_{G} such that

$$
\boldsymbol{A}(G) \cong \mathbf{C}\left(\mathbb{G}_{G}\right)
$$

in the norm preserving fashion: With the same definitions of \mathfrak{S}_{0} and L_{0} as in the preceding, \mathscr{G}_{G} is written in the form; $\mathscr{G}_{G}=\Im_{0} / L_{0}$.

This theorem together with the preceding theorem has the same meaning as the representation theorem of a commutative B^{*}-algebra in the sense of I. E. Segai ${ }^{19}$, I. Kaplansky ${ }^{20}$, and R. V. Kadison ${ }^{21)}$, which is written in the form; $\boldsymbol{A}(G) \cong \boldsymbol{C}(X)$ for a suitable bicompact Hausdorff space X.

Next we consider a Lebesgue integral on \mathscr{C}_{G} with respect to the Haar's measure m on it ;

$$
\begin{equation*}
\mu(f)=\int f^{0}(a) d m(a), \tag{4.13}
\end{equation*}
$$

for every $f \in \boldsymbol{A}(G)$ with the corresponding f^{0} in $\boldsymbol{C}\left(\mathscr{G}_{G}\right)$ and $\int d m(\boldsymbol{a})=1$. G itself being considered as the group of measure-preserving automorphisms of [$\left.\mathscr{C}_{G}\right]$, for each $a_{0} \in G$, we have

$$
\begin{gather*}
\mu\left(S_{a_{0}} \cdot f\right)=\int f^{0}\left(a_{0} a\right) d m(a) \tag{4.14}\\
\left.=\int f_{0}(a) d m^{\prime} a_{0}^{-1} a\right)=\int f^{0}(a) d m(a)=\mu(f),
\end{gather*}
$$

that is, $\mu\left(S_{a_{0}} f\right)=\mu(f)$. It is clear that, for $f^{-}(x)=f\left(x^{-1}\right)$, we hold $\mu\left(f^{-}\right)$ $=\mu(f)$. These implies that $\mu(f)$ satiffies the all properties of a mean value in $\boldsymbol{A}(G)$, and from the uniqueness of mean values ${ }^{22)}$, we get

Corellary. The mean valke $\mu(f)$ of an element (a.p. function) of $A(G)$ is represented in the form;

$$
\mu(f)=\int_{\mathscr{S}_{G}} f(\boldsymbol{a}) d m(\boldsymbol{a})
$$

Theorem 8, with the Corollary, has been otherwise prouved in I. E. Segal 19).
5. Application to locally compact cases. Group-algebras. In this section, we shall restrict ourselves in the case that G is locally bicompact. We begin by defining the group-algebra $L(G)$ of G in the sense of I. E. Segal ${ }^{233}$ with respect to the right-invariant Harr's measure on G; the multiplication and the norm are respectively defined as follows:
19) I. E. Segal 20), about C*-algebras.
20) I. Kaplansky 9), loc. cit.
21) R. v. Kadison 7).
22) J. von Neumann 15), S. Bochner and J. von Neumann 2), and further W Maak 12).
23) I. E. Segal 18), 19).

$$
f \times g=\int_{G} f\left(x y^{-1}\right) g(y) d y \text { and }\|f\|=\int_{G}|f(x)| d x
$$

Let G_{0} be an Markoff extension of G, and $D\left(x_{0}\right)$ a complex irreducible continuous normal representation of G_{0}. Then $\left.\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; x_{1}, x_{2}, \ldots, x_{n}\right) \in G$, is a continuous function on $G \times G \cdots \times G$ (n times) ; cf. (2.11). Now we define that

$$
\begin{gather*}
D\left(f_{1}\right) \times D\left(f_{2}\right) \times \cdots \times D\left(f_{n}\right) \\
=\iint_{G \times G \times \cdots \times G} \cdots \int_{n} f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \ldots f_{n}\left(x_{n}\right) \cdot D\left(x_{1}\right) * D\left(x_{2}\right) * \cdots * D\left(x_{n}\right) \tag{5.1}\\
=\int_{\left.G \times x_{1}\right)}^{\iint_{n} \cdots \int_{\times} \cdots x_{2} \ldots d x_{n},} f_{1} D\left(x_{1}\right) \cdot f_{2} D\left(x_{2}\right) \ldots f_{n} D(x) \Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
d x_{1} d x \ldots d x_{n},
\end{gather*}
$$

where $f_{k} \in \boldsymbol{L}(G), f_{k} \cdot D\left(x_{k}\right)=f_{k}\left(x_{k}\right) \cdot D\left(x_{k}\right)$.
Since $\Delta(x)=1$ for $x \in G$, we see immediately that, when $n=1$,

$$
\begin{equation*}
D(f)=\int_{G} f(x) D(x) d x \tag{5.2}
\end{equation*}
$$

and for complex numbers α, β,

$$
\begin{gather*}
D(\kappa f+\beta g)=\alpha D(f)+\beta D(g) \tag{5.3}\\
\|D(f)\| \leqq M^{D} .\|f\|, \tag{5.4}
\end{gather*}
$$

where $\|D\|$ means the usual norm of matrices, i.e. $\|D\|=\left(\sum_{i, j}\left|D_{i j}\right|^{2}\right)^{1 / 2}$, and M^{D} depends upon D only. (5.4) comes from the fact that each $\left|D_{i j}\right|$ is bounded.

We generate a normed ring $\boldsymbol{R}_{D}(\boldsymbol{L}(\boldsymbol{G}))$, or briefly $\boldsymbol{R}_{D}(\boldsymbol{L})$, from $D(f), f \in \boldsymbol{L}(\boldsymbol{G})$, by the usual addition of matrices and the multiplication (5.3).

Then we assert:
Theorem 9. $\boldsymbol{R}_{D}(\boldsymbol{L})$ is continuously homomorphic to $\boldsymbol{I}(G)$.
To prove the theorem, we have only to show thar $D(f) \times D(g)=D(f \times g)$.
In fact, we hold;

$$
\begin{aligned}
D(f) \times D(g) & =\int_{G \times G} \int_{G} f(x) \cdot g(x) D(x) D(y) \Delta(x, y) d x d y \\
& =\int_{G \times G} f\left(x y^{-1}\right) g(y) D\left(x y^{-1}\right) D(y) \Delta\left(x y^{-1}, y\right) d x d y \\
& =\int_{G \times G} f\left(x y^{-1}\right) g(y) D\left(x y^{-1} \cdot y\right) D\left(y^{-1} \cdot\left(x y^{-1}\right)^{\cdot-1} x\right) d x d y \\
& =\int_{G} D(x) \int_{G} f\left(x y^{-1}\right) g(y) d y d x \\
& =\int_{G} f \times g(x) D(x) d x=D(f \times g) .
\end{aligned}
$$

Let $\psi\left(x_{1}, x_{2}\right)$ be a complex continuous function on $G \times G$, then we have
Lemma 5. If we hold

$$
\begin{equation*}
\int_{G \times G} \int_{G} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \psi\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=0 \tag{5.5}
\end{equation*}
$$

for arbitrary $f_{k} \in(G), k=1,2$, it must be $\psi\left(x_{1}, x_{2}\right)$ for any $x_{k} \in G$.
Remark. This lemma is easily extended to the case that $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is continuous on $G \times G \times \ldots G$, and

$$
\begin{align*}
& \iint_{G \times G \times \ldots \times G} \ldots f_{1}\left(\mathrm{x}_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right) \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{5.6}\\
& \quad \cdot d x_{1} d x_{2} \ldots d x_{n}=0
\end{align*}
$$

Proof of Lemma. ψ being real at first, the set P_{ψ} of such points in $G \times G$ that $\psi<0$ is open. For any points $p\left(x_{1}, x_{2}\right) \in P_{\psi}$, we can select a neighborhood of $x_{k}, U_{k}=U\left(x_{k}\right)$, in G, such that the open rectangle $U_{1} \times U_{2} \subset P_{\psi}$.

For each U_{k}, we can find a neighbourhood $V_{k}=V\left(x_{k}\right) \subset U_{k}$, whose closure \bar{V}_{k} is bicompact, then $\bar{V}_{1} \times \bar{V}_{2} \subset \bar{P}_{\psi}$.

Now we define a characteristic function f_{0} of (the compact carrier) \bar{V}_{k}, as f_{k} in (5.7), such that

$$
f_{k}^{0}=\left\{\begin{array}{l}
1 \text { on } \bar{V}_{k} \tag{5.7}\\
0 \text { on } G--\bar{V}_{k}
\end{array}\right.
$$

then it is necessarily that each f_{0} belongs to $L(G)$ and

$$
\begin{aligned}
& \int_{G \times G} \int_{G} f_{1}^{0}\left(x_{1}\right) f_{2}^{0}\left(x_{2}\right) \psi\left(x_{1}, x_{2},\right) d x_{1} d x_{2} \\
= & \int_{V_{1} \times V_{2}} \int_{1} \psi\left(x_{1}, x_{2}\right) d x_{1}, d x_{2}>0
\end{aligned}
$$

This is contradictory with (5.7); that is, P_{ψ} is necessarily of measure 0 on $G \times G$. With respect to N_{ψ} which is the set of such points that $\psi<0$, we go analogously as above, adopting a negative characteristic function as f_{k}^{0}, and at last hold that N_{ψ} is also of measure 0 . Thus $\psi=0$ identically: If ψ is complex, decomposing it to $\psi_{1}+i \psi_{2}$ (ψ_{1} and ψ_{2} are real), we can leasily obtain the Lemma.

Now, we put

$$
\begin{equation*}
\Phi_{D}\left(x_{1}, x_{2}\right)=D\left(x_{1}\right) \times D\left(x_{2}\right)-D\left(x_{1}\right) D\left(x_{2}\right), \tag{5,8}
\end{equation*}
$$

for $x_{1}, x_{2} \in G$, and $\Phi_{D}=\left(\psi_{i j}^{D}\right)$. If $D\left(f_{1}\right) \times D\left(f_{2}\right)=D\left(f_{1}\right) D\left(f_{2}\right)$ for any $f_{k} \in \boldsymbol{L}(G)$, $k=1$, 2 , we have

$$
\int_{G \times G} \int_{G} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \Phi_{D}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=0,
$$

and, from Lemma 5 , we assert that $\Phi_{D}=0$ (0 -matrix with same degree as D), i.e.

$$
D\left(x_{1}\right) D\left(x_{2}\right) \Delta\left(x_{1}, x_{2}\right)=D\left(x_{1}\right) D\left(x_{2}\right),
$$

namely

$$
\Delta\left(x_{1}, x_{2}\right)=E .
$$

Owing to Section 2, (5.9) shows that such $D(x)$ is nothing but the representation of G.

Then we get easily the equality $D\left(f_{1}\right) \times D\left(f_{2}\right) \times \cdots \times D\left(f_{n}\right)=D\left(f_{1}\right) D\left(f_{2}\right) \cdots D\left(f_{n}\right)$ for arbitrary $f_{k} \in(G)$ and $n ; k=1,2, \ldots, n$.

Theorem of Iwasawa. ${ }^{44}$ The continuous normal representations of G and the continuous representations of $\mathbf{L}(G)$ are one-to-one corresponding by the relation

$$
D(f)=\int_{G} f(x) D(x) d x . .^{25)}
$$

All these circumstances convince us of some analogy between the $*$-operation in the representation of G and the \times-operation in that of $\boldsymbol{L}(G)$ and corresponding to the corollary in Section 2, we hold

Theorem 10. A×-representation of $\boldsymbol{R}_{D}(\boldsymbol{L}(G))$ coincides with the usual one, that is, the representation by the matric-algebra, if and only if $D(x)$ is a continuous normal representation of G. Every finite rep. of $\mathbf{L}(G)$ is a special \times-rep. as above.

Remark: A shorter proof of the Iwasawa's theorem will soon appear elsewhere.

References

1) W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer Math. Soc., 57 (1945).
2) S. Bochner and J. von Neumann, Almost periodic functions in groups, II, Trans. Amer. Math. Soc., 37 (1935).
3) Gelfand and M. Neumark, On the imbedding of normed rings etc. Rec. Math. (1941).
4) E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publications, 31, New York (1948).
5) K. Iwasawa, note in Zenkoku Shijo Sugaku Danwakai, written in Japanese, 246, Ser. 1, Osaka (1942).
6) K. Iwasawa, On group rings of topological groups, proc. Imp. Acad., 20 (1944).
7) R. V. Kadison, A representation theory for commutative topological algebra, (1950)
8) S. Kakutani, Free topological groups and infinite direct product spaces, Proc. Imp. Acad., 20 (1944).
9) I. Kaplansky, Normed algebras, Duke Math. J., vol 16 (1949).
10) M. Krein, On positive functionals on almost periodic functions, C. R. URSS, 30 (1941).
11) A. Markoff, On free topological group, C. R. URSS, 31 (1941).
12) W. Maak, Fastperiodishe Functionen, (1951)
13) F. I. Mautner. Unitary representations of iocally compact groups, Ann, of Math. 51 (1950).
14) T. Nakayama, Note on free topological groups, Proc. Imp. Acad., 19 (1943).
15) J. von Neumann, Almost periodic functions in groups, I Trans. Amer. Math. Soc., 36 (1934).
16) K. Iwasawa 5) and 6)
17) Thees results may be extended to $\mathbf{L}^{(1, P)}(G)$ without difficulty, for $p \geqq 2$.
18) C. E. Rickart, Banach algebra with an adjoint operation, Ann. of Math., 47 (1946).
19) P. Samuel, Universal mappings and free topological groups, Bull A. M. S. 54 (1948).
20) I. E. Segal, The group ring of localıy compact groups, I, Proc. Nat. Acad, Sci., U. S. A. (1940).
21) I. E. Segal, The group-algebra of a locally compact group, Trans. Amer. Math. Soc., 61 (1947)
22) I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc., 53 (1947).
23) I. E. Segal, Two-sided ideals in operator algebras, Ann. of Math., vol. 50 (1949).
24) G. Silov, Ideals and subrings of the rings of coctinuous functions, C. R. URSS, 27 (1939).
25) V. Smulian, On multiplicative linear functionals in certain special normed rings, C. R. URSS, 26 (1940).
26) M. H. Stone, Application of the theory of Booleanr ings to general topology, Trans. Amer. Math. Soc., vol 41 (1937).
27) T. Tannaka, Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. Jrl., 45 (1938).
28) A. Weil, Sur les espaces à structure uniform sur la topologie générale, Actualités scientifiques et Ind., Paris (1938).
29) K. Yoshida, On the duality theorem of non-commutative compact groups, Proc. Imp. Acad. 19 (1943).
30) H. Yosizawa, Unitary representations of locally compact groups, Osaka Math. Journ., 1 (1949).

[^0]: 1) Recently, Banach representation theory has been developed as in 13), 19), 20), etc. But in them, groups are restricted in locally compact case.
 2) T. Tannaka 24), and M. Krein 10).
 3) K. Iwasawa 5) and 6).
 4) A. Markoff 11) and S. Kakutani 8).
[^1]: 11) T. Tannaka 25) and M. Krein 10), loc. cit. An excellent and plain proof is shown by K. Yosida 27). Also see I. E. Segal 20).
