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Introduction

1. In the present paper, we shall make a survey of multiplicative linear 
functionals defined on not necessarily commutative B-algebras or B*-algebras.o)

In commutative cases, the notion of these functionals coincides with that of 
the so-called Gelf and's functions on maximal ideals, which have been studied 
by V. R. Smulian [13], I. Gelfand [ I ] ,  N , Dunford and E. H ille  [4], etc.

As well known, the existence of these functionals is equivalent to that of 
two-sided maximal ideals which are simultaneously maximal as left or right 
ideals. However their existence is not always assured in general cases, some 
results based on them should be yet expected; for instance, the functional 
radical (whose defi.nition shall be given later), which is always in existence and 
never meaningless, suggests the algebraic structure to a certain extent.

Multiplicative linear functionals are related to the spectrums closely in such 
a manner that, for every multiplicative linear each value (p(̂ x') belongs to 
the spectrum of x\ and conversely, if the commutativity holds. Though
the spectrum theory plays an important role in studying a B-algebra, it concerns 
itself in each element individually, while the theory of multiplicative linear 
functionals seems to be somewhat in the large.

( I )  is devoted to the investigation of multiplicative functionals' situation 
among usual linear ones. In (I I ),  the relation between algebraic and functional 
structures is indicated; that is our main intention. In the last (II I ),  we shall 
concern ourselves in the representation of B-algebras and resume the almost 
periodic algebras, which are discussed in our another paper ; S. Matsushita [10].

(I)

2. We shall recall some fundamental notions and fix our notations at first. 
Let 91 or ^ be the field of the reals or the complices respectively.

^X(0) is a Banach algebra ^B-algebra) over the scalar field which is 
or W'̂ "((S) is a B'l^-algebra over 0.

Here, a B^-algebra 5l^(S!) is a B-algebra which admits such a ^-operation that 
is a conjugate linear, involutely anti-automorphism for every a, b in 5F'(.f?), i, e,

0) We shall always assume that a B- or B*-algebra has unit e of norm I.



* i) Qaiâ V(JLib')̂  =  rxiâ  ̂+ â b̂  , where iu € ^ with conjugate at €

*2)  =  a,
*3)  (̂ ahy- =  , 

and fqrther has the norm condition;

(2.1) Il -  M il • M *!l .

For the first condition *̂ i) must be replaced by ;

* 1) ' ( « 1«  + a^hy' =- + a2b̂  , .
We shall sometimes abbreviate ^ (0 ), ^ * (0 ) to only, if there is no con
fusion, and always assume that % or W  has unit e of norm I.

A  B-algebra over %  {̂(3̂ 1), is embeded into that over ^ ; see I. Kaplansky 
[8], and if is commutative, is evidently a sub-algebra of

by the correspondence;

(2.2) 6(91*x9l*)($ ).

Conversely, if is commutative, the hermitian kernel of is a
B-algebra over %  all of whose elements are hermitian Ci. e, a=a^\

Here, the hermitian kernel of 51* means the set of all hermitian
elements, a=a^ , in W ,̂ An hermitian element is said to be self-adjoint, too. 
It is easy to see being a B-algebra, if and only it is commutative.
However is not commutative, becomes a complete normed algebra
except for the associativity of products, by the SegaVs product;

(2.3) aob =  \ iab+ba^^ '>

which is commutative, distributive and preserves hermitian elements; see I. E, 
Segal [12].

3. We shall next define tensors, multiplicative linear functionals, etc. 
According to O. Veblen, we consider a multilinear functional on
the 72“fold Kronecker products ••• x̂ X of 5X(0), whose values are con
tained in 0, for 72= 1 , 2,..., and call it a (covariant) ; 1-tensor is
nothing but a usual functional on I .  We suppose always thac, for a B*-algebra 
^"^(^), every ^-tensor has an added condition;

(3.1) i:Xa{^',... '= z \ a i, ••• ,an) ,

where means the conjugate value of r"* in I!; for 1-tensor z - (« )= rK «)»

(3.1) T^a^) K ^ )-
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1) This product is written in the form;

a 0 I) ^ ~  C((2 \-hŷ  -  (a -  6)2).
4

2) When 0  is reals, l-tensors (vectors) forms the conjugate space of as a vector space; 
the set of all contravariant vectors coincides with itself.



If 1-tensor satisfies the additional condition

(3. 2) =  (^(a) (p̂ b')

for every a, b in %  we call it a multiplicative linear functional on
The vector space over 0  of all 2̂-tensors is denoted by © ) or briefly

y ”(5X), while jg defined as 0  itself. The set of all multiplicative linear
functionals is denoted by 0^%), which is clearly a subset of

By analogy with G, Hochschild's methods [5], we define a coboundary opera
tion d(p with respect to each <p 6 as follows ;

(3 .3 ) ... ,an^O
=  (f(iai)-T\a2y ,an + l )

n
+ S C - iy * T % « i , ... .aiai+i, ... ,«w+i)

i = l
+ (_ l )w  + l.^w(^l ^... ,an')-(pQan + i')* 

which defines a homorphism of into fulfils an impartant
relation

(3.4) 8<p‘d(p — O .

If d(p-T^=0, is called an (w, cpycocycle and, if there exists a 
such that =  r” is called an (^, (pycoboundary \ the set of all (^, ^)-
cocycles is denoted by ^), while that of all (^, ^)-coboundaries by (p').
Since /̂=O (jv) € (Z)(I), d=dQ is in reason and represented as

(3. 5) (^r"*) («1,... , «w+i)
=  ( " " i y  (<2i, . . . »aiatJ î» ,  an-i-i)

which is independent of the choice of while is not.

We abbreviate d) or B \%  d) to Z\% ') or respectively.
By (3.4), it is clear that

(3.6) cp')

and their residue group (difference module)

is called the n-dimensioyial cp̂cohomology group of % over 0.
It would ba intersting to investigate the characters of thus defined coho

mology groups, but we restrict ourselves to only some remarks, here.

4. In the following 0  will be the reals Denote by the subspace
of y^(51), which consists of all r** such that v X e ,  ̂e)=̂ Oy and put

(4.1) »

which brings about a homomorphic mapping

(4. 2) C V'V}\) ,

that is,
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f  ”( « 1 ,..., On) =  t”( « i ,  ••..««) {modulo Â ”(3 l)),
then we hold

(4.3) ... .e ) =  r”(e , . . . , « ) .

According to the mapping (4.1), we get

ZX'iV) —  ̂Z\% ') C F ”(9 t).

If r”(e . ... .e ) (or f™(e. , e ) ) = l ,  r”(or f ” )  is said to be normalized. Then, 
for evety r” such that {mod. N\%y), we can normalized it by setting

(4.4) rK «i»  ••• >«m)  =  T”( a i . ... ,«w)/r”(e , .... e ) , 

and we see immediately that

rZ = ( f ’*)o =  f ”( « i . . an')h\e, , e)
by (4. 2), and again

(4.5) f^ =  (f«)o  (woJ. A^™(9 )̂).

Then we assert:

Theorem I. i ) I f  n is even,
A

a) all Z K %  (py are mutually disjointed,
A A

b) every Z \ %  is linearly independent o f  other Z \ %  (p̂ , (f=¥ip* withn A
respect to finite convex combinations', i.e., zZ=̂  where )»

(fj\ and ^^aj=h yields Z \ %  cpj') fo r suitable j,  say
;*o» and aj=^ for jA^jo.

ii )  I f  n is odd, every Z \ %  ^ )=0 {mod,

Lemma I. AU normalized f  in 't^ith f(^a^T^ on every squares
a^^% forms a (^regular^ convex set C^(^OCF^(^X), is contained in the set 
o f extremes o f wher means 0 -d ,

R. V. Kadison [7] has proved, for an ordered (not necessarily associative) 
algebra, that the convex set of normalized positive Qi. e- positive on positive 
elements) linear functionals has the extremes which coincide itself. To 
prove the above Lemma, we go somewhere analogously; by the assumption for 
/ in Ĉ Ĉ X), we hold the Cauchy-Schwarz's Lemma in a certain general situation 
such that

(4.6) ( / U ) ) 2 < W ) .

Using (3.3), we can prove easily that multiplicative / cannot be a midpoint 

of no segment of ^2  ̂CK^O-
Next we define a projection operator Pt from to

such that

(4. 7) (^PiT^y Qâ  =  r\ e , ..., e, a, e, ... , e~) .
(O
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A
Lemma 2. I f  n is evem for every r” and 'normalized
i )  =  PnTl -= (p ,
i i )  PiT^ =  fo r 2 ^ i , j < n - \ .

These are immediate results of (3.3).
P roo f o f  Theorem I :  a) of i )  and ii) are clear, b) of i )  is obtained by 

tlie above establised two Lemmas without difficulty ; if z l=  I ]  , To ^o)»
(fĵ y aj^O and Jlaj==I, it must be

J=I
(Po -= Pirg =  S^«XPir5) ■=^^^aj(pj , 

and according to Lemma I, it is absurd for <po-^-(pjy

Remark: The fact f  ̂  CK^l') being normalized and the property (3.6) imply 
that 11/11 =1 for every / in ; so to say, CK^O is on the surface of the
unit shere in which is weak^ compact. Since it is evident that CK^O
is weakly closed, CK^^) is regulary convex in the sense of M. Krein-V. Smulyan. 
Due to M- Krein and D- Milman [9], the existence of extreme points of 
is directly obtained.

( I I )

5. In the following, (S is either ^ or ^ and 51(0) may be occasionally, 
specialized to 5F(©). Let 91 be the radical of 51, i, e- the set of aU x (quasi- 
nilpotents) such that e^axb has an inverse for every a, b in %  5̂  forms a 
two-sided ideal of % and coincides with the intersection of all left (right) 
maximal ideals of 51; see S- Perlis [11] and N - Jacobson [6].

Let 5̂0 be the functional-radical which is the set of all a; such that ^(a;)=0 
for all ^ It is easy to see being also a two-sided ideal of 5Io Moreover 
we hold:

Lemma 3. 5̂  C 5̂® •
In fact, if (̂a:)̂ ==0 for a (p and a; 6 putting a = el(p{x^y b = -e ,

we have
ip(̂ e-\raxb') -= K ^-(^/^ (a ;))) =

=  1 - 1  =  0 .

On the other hand, e-\-axb has an inverse and hence it must be (pie-\-axbyV^ \ 
these are contradictory. If only, it follows that and clearly •

Definition I :  O is said to be fu ll, semi'full or null  ̂if 5^^==(0), ^5  ̂ or 
respectively.

0 being null means that 0 consists of d alone and simultaneously 
is empty.

Since ab-ba^"^^ for every pair a, b in 51, the residue-algebra 51/̂  ̂ is com

mutative. Particularly if 0 is full, 51 itself becomes commutative.
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Another definition shall be given as follows:

Definition 2: The residue-class of which contains a is called «-class, 
denoting by Ca • Each element of Ce is called a quasi-unit or a functional-unit, 
which is characterized as such x that =  l  for all ,

It is manifest that, for every pair x, y in the same class, it holds (fix^=^(piy^ 
for all and if 0 is full, there exists tx <p in (0 (exactly in such that

for every x̂  y Moreover, the fullness of 0 implies that there is 

no quasi-unit in except the usual unit

Lemma 4. A quasi-unit a is written In the form a = e -u , u^W^, and i f  a 
is regular is also represented as the fo rm ; a=^e-Vy z; , where u and v 
are reversible one another-

In fact, Ce is the unit of 51/5̂® and hence a ^Ce means a~''^^Ce- It follows 
that v ^ u -v u = u  + v -u v = ^  from (^ e -v )ie -u ') =  ie -u^ (^e-v^=e-

Definition 3: A left (right) ideal 3 is said to be quasi-proper, if 3 has 

no quasi-unit.
Furthermore, we define another product, the cross product;

(5.1) a^b^a^ -b  — aby

which is associative, (^xZ>)xc=ax(^?xc), and ^zx0=0x«=0, but not always 
commutative.

Now we shall announce our principal theorems:

Theorem 2. The following three co)tditions are mutually equivalent; 
i )  0 is semi-full in %

ii) Every le ft or right maximal ideal is quasi-proper,
iii) forms a group with the product (5.1), or equivalently, every 

quasi-unit is regular- '̂^

Theorem 3. The following two conditions are equivalent one another for 
any B^-algebra, which is always semi-simple

i )  (2̂ (51*) is fu ll and so semi-full in 5l*(l^).
ii) is commutative-

6. Toprovethe Theorems, we shall begin with some preliminary Lemmas. 
Let / be a left maximal ideal of 5l(©).
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3) Underthecross product (5.1), 5̂  forms a group; thus i)-> iii) is somewhat trivial owing 
to this fact.

4) The set of quasi-nilpotent elements a, i.e. Iim {/T^][=^0 or equivalently e-\^u being
W-^oo

regular for every [j G 0 , contains the radical ^  evidently for any 5K0)-
From this fact, it follows immediately that with H H--l| a Ij 2 for every a e 51

is semi-simple and so is every B*-algebra.
This last result, the semi-simplicity of B*-algebras, is otherwise mentioned by K. 

Iseki before us; K. Iseki [15].



Lemma 5. I f  -  J , the intersection o f  5̂  ̂ and the complement o f  /,
is not empty> there exists a in 5̂  ̂ such that e-u^  ̂J-

P roo f: Since 5̂5- is not empty, it is possible that one might pick out an 
element arbitrarily. Then J is a left ideal which contains J
properly, and since J is maximal, J coincides with 51 itself. Hence e is 
represented as

e ^ a -u  + b, «€51 and
that is,

b =  e -a -u ,

where <2-W 6 5̂® and further Putting -w, such fulfils our statement.
The next Lemma is a direct result of the preceding.

Lemma 6. i f  and only i f  J is quasi-proper, and true is this for a
right maximal ideal-

These facts together with the properties of the radical establish the equi
valency of i )  and ii) in Theorem 2. The fact that all left or right maximal 
ideals is quasi-proper implies all quasi-units are regular and conversely, and 
only the regularity of all quasi-units makes them into a group owing to Lemma 4. 
This is equivalent to the fact that becomes a group by the product (5.1), O 
being its identity. Thus Theorem 2 is completely proved.

Remark: If 51 is a B^-algebra the product (5.1) has the property;

(6.1) =

The proof of i)-^ ii) in Theorem 3 is already mentioned and somewhat trivial. 
What remains for us to prove is that the commutativity of 5l*(l^) implies 
being empty, which comes from the following Theorem.

Theorem 4. (i?. Y , Kadison^ A commutative B^-algebra 5l*(l^) is repre
sented as the ring  o f  continuous functions on 531, isomorphically and isometric- 
ally, where DJZ means the bicompact set o f  all maximal ideals o f  i)I(. )̂.

Remark I :  R .V - Kadison [7] has proved this Theorem as an application 

of a representation theory of strictly real algebras with Hewitt's condition, not 
analitically but ordered-aigebraicaily, using the spectrum theory.

But in the following proof, we avail ourselves of L Gelfand's results 
without reserve.

Remark 2: We leave the topologization and bicompactification of to /. 
Gelfand and G- Silov [2].

P ro o f : i )  7J(5F) is dense in a commutative B-algebra /^(W*) over ^  with
ii â  Ii =  il a !! 2 for every a G //(51*), because H «2 p ^  y \\ ^  \\  ̂\\ , y jj
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=  Ilall^. Owing to 7. Gelfand [ I ] ,  H iW ') is isometricaily isomorphic to 
C (^ ir), which is the rings of all continuous (real) functions on the (weakly) 
bicompact set Wh of all maximal idea] of iJ(^F), since

Consequently, 5^onH(5l*) is empty, and further 5̂® itself must venish, since 
€5̂  ̂yields in 7f(5I*). Then is non-void, and I I  a I !  =sup.| ^(^z)|.(p̂ ô

By the way, to prove Theorems only all these are sufficient,
ii )  Every a is decomposed uniquely as follows ;

(6.2) a ai + ia2 >
(6.3) ai-ia^y

where and =  both of which belong to Then we
have, for

Il a =  11 a\ -̂ia2 I i ^ l K « i  +  ’̂« 2)P  
=  IK ^ i) + <2-2)  P 
=  (pKa{)+ (pKa^)
=  (piaT)+(p{al') =- (fial-VaV) .

Since a\-\-al^ we see

!I «1 + ̂ 2 11 =  sup. lK « l  + « i ) l-(p̂ ô
Consequently, ! I  a I l  > -  I I  di +  al ! I  and similarly H  11 . ; >  I l  a\-\-al 11 »  

which brings us

(6.4) II -  II « ^ ' 1 1  =^y/ + al I! ,

for II a II - 11 11 =  Il a-a^ Il =  11 a\ + a\ H >
Then we hold

!I Il =  Il a\-al + 2i-a\a2 I'
=  I! +  IP
=  Il ( « i +  « l)2  Iî  =  11 ai-\-al Il == 11 Iî  •

Due to I. Gefand again, we establish the isomertrically isomorphism; 51*(,'̂ !)

Corollary 4.1. For 5l(^ )̂ with Il Ii I! «  ! I ^  , is semi-full if and only
if is commutative.

Corollary 4.2. If a B" -̂aIgebra l̂"î (l?) is non-com,mutative, so is ^ 0.5)

( I I I )

7. As already mentioned, CK^O is weakly bicompact and 0̂  is weakly closed 
in C^(5I)» is also bicompact. Furthermore, «(<^ )=K ^ )» is considered
as a (uniformly) continuous function on 0̂  with respect to the weak topology 
of 0^, ^^(^), is a zero-function. Thus we get

5) If B^-algebra is non-commutative, (2) (^l*) is never semi-full from the semi-simplicity 
of



Theorem 5. Qor 51 itself> i f  Q(W) is fu ll\  is isomorphically mapped
into which is the ring o f all continuous functions on bicompact •

The totality of such a; that for  ̂ formes clearly a two-sided
maximal ideal of %  denoting it by

Conversely, if is commutative, for every maximal ideal M  of 51, the 

Gelfand's fimction M(<2)= a (M ),  M 6 5JI, is multiplicative on 51, denothing it by 
Thus, and 0̂  is one-to-one corresponded;

(7^1^ I M e m ---

and M (K M ) )  =  M, ^ (M (^ ))  =  ̂ . Since, and has the same topology, is 
homeomorphic to ;

(7.2)

Corollary 5.1. 7/51 is commutative, is always semi-full, i-e- =
In fact, from (7. 2) and Theorem 5,

51/91« ^  d m )  ^  C (^ l) ^  51/5̂ , 

and which imply the last isomorphism is due to the representa
tion theorem of normed rings, see I. Gelfand [ I ] .  Thus Theorem 5 is regarded 
as a certain extension of this.

Thereby, for a commutative 51(0), we hold

(7. 3) I! a Ii =  sup. I^z(M)I-= sup. \ (p(a)\,

which is already used in the proof of Theorem 4 above.
If e — â  has no inverse for every a of norm I  in 5l(©), we say that 51(0) 

has the Hewitt’s property; see E- Hewitt [7].

Lemma 7. I f  51(0) has the Hewitfs property, 11 a'̂  Il ^  11 «  Il̂  •

P ro o f : Suppose that H a"̂  W <Ĉ\\ a , then â lW a is of norm less than I, 
that is,

11 ^-(^-(«/11 a\ ) 2)11 ^  ll(<z2/ii a 11̂ )11 < 1 .

By Hilb's theorem, e — (̂ â l\ a 11̂ ) has an inverse; this is contradictory with 
the Hewitt's property. Thus, it must be 11 a'^Ŵ WaŴ -̂

Corollary 5.2. I f  51(91) with the Hewitfs property is commutative, 5l(9i) 

is represented as real C(%), I  being bicompact-
This is proved by Corollary 4.1, and Theorem 5.
It is indicated by R. V. Kadison ingeniously that 51(0) with the dense subal

gebra which is strictly real, i.e. e-Va  ̂ has always an inverse, and has the 
Hewitt's property, is commutative and hence represented as real C(%), R- F. 
Kadison [7].

Multiplicative Linear Functionals on B-algehras 23



8. Finally, we vsball consider the cavse that becomevS a topological group. 

Let G be a maximally almost periodic group and the commutative B'^-algebra 

of all continuous complex-valued almost periodic functions in G ; such may 

be called an almost periodic algebra on G-
Now we shall consider which has ever been considered by K- Yosida

[14] to prove the Tannaka-Krein/s duality theorem. The following discussions 

have the same outlines as in [14] but some distinctions in the methods; these 

are rather in conjunction with our previous note [10].

Lemma 8. G is dense in ivith respect to the weak topology

o f 0% •

P roo f: We denote the elements of by a> b» etc. and those of G by Xy y» 

etc. Then putting

(8.1) (fJia') ^  aix^ , 

and it is obvious that the mapping

(8.2) X ^G —

translates continuously and uniquely G into 0%.

As is full, isomertrically from Theorem 5. If the closure G

of the image of G by the mapping (8. 2) is not equal to the whole then there 

exists a point in 0%-G  and a function / in C(<^®) such that

I  for (p =  (fQy
O for (p in G,

by Urysohn's theorem. But it is contradictory with
Thus, the assumption must be taken away, and the proof is complete.

Now we recall the bicompact group @o in [10], which is proved to contain 

G as a dense subgroup; must be in agreement with @o as a topological 

space. According to the product of ®o» turns out a bicompact group.

Conversely, if 0(51*) is a group for a commutative B*-algebra it holds
that 5l*(^)^^C((^^) by Theorem 5, and hence is considered as an almost 

periodic algebra on 0 .̂ Thus, we establish :

Theorem 6. A necessary and sufficient condition that 0®(1*) be a compact 

group for a commutative 5I*(^) is that 51* is isometric ally isomorphic to an 

almost periodic algebra on a certain maximally almost periodic group G- In  

the case, 0̂  contains G as a dense subgroup- I f  G is bicompacty G ^ 0 ^.

Summerizing the above obtained results, we shall denote the family of all
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bicompact Hausdorff spaces by and that of all commutative B*-algebras by 
and consider the mapping between 8 and ;

I - X = C ( X )  for X e © ; © ----> 3 ,
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then we hold ;

(8.5) — -X  =  X  and 

and if X  is replaced by a bicompact group G,

(8.6) _ ^ G  =  G, 

which is just the duality theorem of T. Tannaka.
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