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The topology of a compact space is, as well known, characterized by the
lattice of its closed basis.

The purpose of this paper is to establish analogous theories in the case
of complete uniform spaces, i.e. we characterize the uniform topology of a
uniform space by the lattice of its uniform basis. Obviously, it is impossible
to characterize the uniform topology of a complete space by the lattice of an
arbitrary uniform basis?, for every metric space has the same lattice of uniform
basis {Mi, Ma, M3, ...}.

For example, let us consider the reason why the ring of all continuous
functions characterizes the topology of a compact space. Then we shall see
that it is the reason that for an arbitrary point @ and its arbitrary neighbour-
hood U, there exists a continuous function f such that f(a)=0, f(x)=1 (x€ U®).
Similarly if we assume the existence of uniform coverings with some local
properties in the lattice of uniform basis, then we can characterize the uniform
topology of a complete uniform spacz by such a lattice.

We concern ourselves with the lattice L(R) of uniform basis of a complete
uniform space R, satisfying the following conditions,

1) 2f My, My € L(R), then M, XMy € L(R),

2) if MIL(R), then for an arbitrary MEM there exists M(M) in L(R)

such that i) M&WM(M);
ii) M>M' DM implies M’ e M(M),

3) for an arbitrary point a€ R and its arbitrary neighbourhood U(a), there
exists M'(Ula)) in L(R) such that S(a, W (Ula)))CU(a)®, for a uniform
covering W' (a) defined for a, aé¢ M e W (U(a)) implies M ¢ W (a),

or 27) if MeL(R), then for an arbitrary M €I, there exists M(M) in L(R)
such that i) M&M(M);
ii) M’ €M, M DM imply M’ € M(M),
3’) for an arbitrary point a€ R and its arbitrary nei ghbourhood U(a),

1) If L(R) is a set of open uniform coverings of R, and if for every uniform covering {] of
R, there exists some element )t of L(R) such that 9N<]l, then we call L(R) a uniform
basis of R.

2) S(a,M)={Mlac M e
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there exist a neighbourhood V of a and a uniform covering W' (U(a)) in L(R)
such that S(V, M'(U(a)))CU(a);

for a uniform covering W'(a) defined for a, M e W (U(a)), M~V =¢ imply
M &M (a).

Remarks 1. The conditions 2) and 2’) show the existence of uniform
coverings which do not include a given uniform covering locally.

3) and 3’) show the existence of a uniform covering which is included by
a given uniform covering locally.

2. When we regard two coverings M, N such that M<N, M>N as the same
covering, L(R) is a lattice; otherwise L(R) is a directed system.

The following propositions are valid whichever we may choose, but we
regard here L(R) as a lattice for the simplicity of notations. Hence, for
example M ¢ ‘I means that for every open set M’DM, M’ ¢ M holds.

3. In this paper German capitals M, N, U, B, Q, ...... are used for uniform
open coverings of L(R) except in Lemma 5 and corollaries.

4. Condition 2’) is weaker than 2), and 3’) is stronger than 3). MM(M) in
2) and 2') are strictly denoted by (M, M), for M(M) is defined by M and M.

Definition. For two uniform coverings M, N, we denote by M<N the fact
that M<P and M<P VR hold for some uniform covering P.

Definition. A subset ux of L(R) satisfying the following conditions is called
an #7.b.-set,
there exists a uniform covering M(u) for u such that

(A) for an arbitrary uniform covering M, : MMM (1),
there exists M in x such that

i) MMy,

i) MLPr, P2 and MLV M () (G=1, 2) imply MLP1V R

for arbitrary uniform coverings P, Po,
(We shall denote such a relation between M and M, by M<M(M’' (1)) or simply
MM,

(B) for arbitrary coverings M; (=1, ..., k) of # and for arbitary uniform
covering U, there exists a uniform covering P such that

U, \/ MM (42) VP

Lemma 1. The family p(a) of all uniform coverings W (U(a)) € L(R)
which are defined for neighbourhoods U(a) of a such that Ula) € M'(a) by the
condition 3) or 3') is a n.b.—set if we consider W(a) in 2) or in 2') as W (p(a))
in the condition of n.b.—set.

Proof. Firstly we show that p(e) satisfies (A) when L(R) satisfies 1), 2),
3). If M,<M'(a), then we denote by M the uniform covering WM'(M.) in
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condition 3) for M, such that a € M,€M,. And we denote by P the uniform
covering M(M) in condition 2) for M € M such that a € MCM,. Then obviously,
MLP, MIPV IR, i.e. M,

Now let MLP., MR VIW(a) (=1, 2), then since a¢ M €M implies
M & W (a), there exist My, M2€M such that a€ M1¢ PRy, a€ M2 ¢PB2. Hence
from S(a, MICM,, we get M, & L1V Ps, ie. M Py V P

p(a@) satisfies also (B). If M € u(a) (G=1,..., k) and N € L(R), then putting
P=MWU, YM,) for U such that e €U €ll, we get U{P and i\j/l M<BY M (a).

Next we consider the case that L(R) satisfies 1), 2'), 3’). If M, <M (a),
then we denote by I the uniform covering M/(M,) in 3’) for M, such that
that a € M, €M,, and by P M(M) in 2’). Then M<M,.

If MLPy, MRV M (@) (=1, 2), then since M~V =¢, M €M imply M;¢ %,
(=1, 2), there exist M.eM (=1, 2) such that M,¢P;, M;~V=F¢. Since
S(V, MCM,, we get Mo¢& PV Ry, ie. Mo PV PBa. u(a) satisfies also (B), for
Mewa) G=1,..,k), UEL(R) imply ULP, VIM<LBYM'(a) for acUc],
P=TU, VM.

Lemma 2. If L(R) satisfies conditions 1), 2'), and if 13 M<M, (M ()
for an n.b-set p, then there exists M, €M, such that
if MOMEDP, MTPVW(p) for any P L(R), then MCTS(S(Mz, M), M)

Proof. Let 4> M<M, (M'(p)), then since MM, <M (p), there exists
M1 €M such that MiCMz €M, ; M1¢By/, MIPy VI (u) for some By'.

Then we can show that Maé& Pe, M<By VIMM'(p) for an arbitrary T imply
MyCS(S(M 4, My), Ma).

To see this, assume that there exist M2 and P2’ such that M2¢ Py,
M P’ V() and MLS(S(Me, M), Mz). Then putting Qi=M(M1, My),
Q2=M(M2, M,) by condition 2’) and Pri=P1' vV Q1, Po=P’ V 2. we get MR,
MR VIV (D<P VM () (G=1, 2) from Mi¢ R/ VQy (i=1, 2).

In the other hand let M be an arbitrary element of M, then when
M~M,=¢, we get M ~M,=¢, M DM, and accordingly M€ Q,<<P. When
M~M,=¢, we get MCS(Mz Ma), MCS(S(Ma, M), My) M2, M PMa, and
accordingly M € Q3<Ps. Therefore we get M<P1V Pa, which contradicts the
condition (A) of a.

We shall denote by S(M, M) S(S(M,, M,), Mz) in this lemma, which is an
element of M **,

Lemma 3. If L(R) satisfies the condiiions 1),2’) and if p is a n.b—set of
L(R), then irzwlsom,, M )==¢ for arbitrary Wi, W' such that pd MMM (1)
G=1.., k.

Proof. Assume that () S(Wi, M=, 13 MMM (=L, ..., B,
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then we see that i\z/l MM () VP implies 11=£_Z\1 M.<PB, which contradicts the
condition (B) of .

Let U= ﬂ M; (M;€M;) be an arbitrary element of =AM, then since
ﬂ S(M,, SJR/) ¢ by the assumption, M;ZS(Ms, M) for some 7. Hence M, ¢ P

1mp11es MM () VB ; hence from MM () VP we get M €P. Therefore we
get U€EDP, ie. UP.

By this lemma {SCW, M) | pd MMM (1)} is a cauchy filter.

Therefore from the completeness of R we get N{SCOMN, M) | 22 MM,
M ()} =a€R. Thus a point a€ R corresponds to an n.b.—set x. We shall
denote by p—>a this correspondence.

Definition. For two n.b.—sets g, v, we shall denote by u~v the following
relation between u and v,
for each M, € L(R), there exists Mo € L(R) such that Mo (L) A M/ (V) ; if
M1 € 2, Ma €y, MM, Me<Mo and if M1 Py, P1<P1 Y Mo, M2 P2, M2 P2 V Neo,
then ML Py V' Re holds.

Lemma 4. In order thai p~v, it is necessary and sufficient that 1 and v
correspond 1o one and the same point a by the above correspondence. i.e. p—ra,
yv—ra.

Proof. Firstly we show that pg—a, v—>a imply a~v. Let M, be an
arbitrary covering of L(R), and let a€ M,€M,. Then let us take NVio € L(R)
such that S(a, MF)C M, Mo (1) A W (V).3

If Mep, Mey, M<Mo (Z=1, 2), then since a€SM,, M), we get
S(My, M)C M, (=1, 2). Let Py, B2 be arbitrary uniform coverings such that
ML, MR Y Mo (=1, 2), then since MoV () A M (v), there exist M €My
(=1, 2) such that M; ¢, M;CS(M,NMo) (=1, 2). Hence M:CM, ; hence we
get Mo & P,V Py, ie. Mol V Po.

Conversely we show that u—>a, v—>b, a=Fb imply pXv (the negation of u~v).
Take a definite M, such that S(S(e, Mz)M,) ~S(b, M)=¢. Then let WMo be
an arbitrary uniform covering of L(R) such that Me<<M' () A M'(v). For these
M, and Mo, we take M (i=1,2) such that S(a, MFF)CTM’ € My, S, N C
M" M, and M; (Z=1, 2) such that Ty €, M2 €v ; PH<TH<NMo, NMe<M2<Nto.
Then M1CS(My, M )CM’ and M2CS(M2, N2)TM” hold for M €M, such that
M¢ R/, M<P/ VMo (i=1, 2). Puatting Q/=MM;, M.V M), Po=Fs/ VO
(1=1,2), we get TPV Mo,V Mo and MY from M ¢ P

Next let M be an arbitrary element of M., then either M ~S(a, M,)=¢ or
M ~S(b, M,)=¢ bholds from the property of IM,.

If M~S(a, M,)=¢, then M ~M’'=¢ and M DM ; hence M € Q< Fu.

3) M={M|M e M3
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If M~S(, M)=¢, then M € Q2'<P» holds in the same way. Therefore we
get M< Py V Py, ie. p~v.

Now we classify all n.b.—sets of L(R) by the relation ~, and we denote by
by €(R) the family of all classes. Then there exists a one-to-one correspondence
between R and {(R) as we have seen. We denote by £(A) the image of a
subset 4 of R in &(R) by this correspondence.

We define uniform coverings in this set (R) as follows.

Definition. We call a covering {2(U,)} of Q(R) a uniform covering of L(R)
when {&U,)} satisfies the following condition:

When we choose an element ¢ from each class {#} of ¥(R) in an arbitrary
way, there exists 1€ £(R) such that
if p € U, (81U, € {8(U,)}, then we can choose certain g1, g2 from {u,} so
that there exist Mos<<M' () (¢=1,2) for which w3 M<Me: (¢=1, 2) imply
PR Y Moz, MRV Ny and U<R, VN2 for certain N, i (Z=1, 2).

Lemma 5. In order that {QU,)} is a uniform covering of L(R), it is
necessary and sufficient that {U,} is a uniform covering of R.

Proof. Firstly we prove that if {U,} is a uniform covering of R, then
{(U )} is a uniform covering of &(R). We take 1€ L(R) such that W**<{U,}.
Let 2,¢ UL, po—>ay then a,¢U,. Now we see that for an arbitrary
point a1 of {a,} and some a2 of {a,}, a2 ¢ S(a1, U¥). For S(a1, W)CU, for some
a from W¥2<Z{U,} ; hence a, ¢ S(a1, U*) from a,¢U,. We denote by a: this a,.
We take u; such that m—>a: (£=1.2) as the ones in the above definition.
And we take Mo €L(R) (i=1, 2) such that Mu<lM (1) ; S(as, Me™)CUY,
a; €U e, If M; (=1, 2) is arbitrary coverings such that a2 MM<<Moq,
then there exist P and M;€M; (¢=1, 2) such that M:& Py, Mi<PuVMe; and
then a, € S(M, Mor) DM, (i=1,2) ; hence M,CV// (i=1,2). Putting N=MM(M;,
M;: V1) by conditions 2/), we get MRV N.. Then each U € U satisfies either
@€ SWU, M) or a:¢ (U, W). If a1¢SW, W), then Uy ~U=¢, and U~M1=¢ ;
hence U DPM; and accordingly U € Rt If a2¢ S(U, 1), then U €Nz in the same
way. Therefore U<V N, ie. {¥U,)} is a uniform covering of L(R).
Conversely we show that if {U,} is not a uniform covering of R, then
{8(U,)} is not a uniform covering of £(R). Let U be a certain uniform covering
of L(R), then since {U,} is not uniform covering, U< {U,} holds; hence
there exists U € I such that U~ U,==¢ for all U, € {U,}. Take a,€U-U,° for
each U,, then p,¢ Q(U,) for u, such that p,—>a,. We chose ui1, p2 from {u,}
in an arbitrary way, and consider arbitrary uniform coverings Mo (7=1, 2)
such that Moe.<M’(1y). For these s and Mos, we choose No: and M, € 1y (=1, 2)
such that S(ai, ReF*F)CU, M<RoeMos (=1, 2). Then a: € SN, Not)CU.
Now assume that Du<<TV Mo and U< VY Re. If UERy, then for each
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element M of My, we see that M € 1 when MCS(M, No1)CU and that M €P;
from PLu<P1 VY Mo1 when MLS(My, No1). Hence Du<Pr V. If U € N2, we see
that Ma<PB2 VN2 in the same way. Hence {¥L(U,)} is not a uniform covering
of 2(R) by the definition of uniform covering of L(R).

By this lemma we see that ¥(R) with the uniform coverings defined above
is a uniform space uniformly homeomorphic with R. Since the uniform space
Q(R) is defined only by the lattice-order < from L(R), if R: and R:; are com-
plete uniform spaces, a lattice isomorphism between L(R1) and L(R:) generates
a uniform homeomorphism between L(R:) and L(R:2). Hence we get the
following theorem.

Theorem. I order that two complete unif orm spaces Ry and Rz are uni formly
homeomorphic, it is necessary and su fficient that L(R1) and L(R3) are latiice-
isomorphic, where L(R.) and L(R3) are lattices of uniform bases satisfying
conditions 1), 2), 3) or conditions 1), 2’), 3).

Corollary 1. If R is a compleie uniform space without isolated point, then
the uniform topolog& of R is characterized by any lattice L(R) of uniform basis
of R satisfying the following three conditions,

(1) Ms, My € L(R) implies My A My € L(R),

M, € L(R) imply \pﬁw €L(R),
(2) there exist a certain uniform covering M€ L(R) and W' such that
MEM implies M &M/,
B) if MEL(R), a€R, and U(a) is a neighbourhood of a, then for some
uni form covering W={Uo, U} such that UoCU(a), a¢U.
NoMe L(R) holds.®

Proof. If a€ M <M, then since R has no isolated point, there exist points
b, ¢ such that b,c€ M ; b-=c; b, c+a, Take M(a) such that c¢ S(b, M(a)), then
for W' (@)= A M(a), L(R) satisfies conditions 1), 2'), 3’).

Corollary 2 If R is a connected complete space, then the uniform topology
of R is characterized by any lattice L(R) of uniform basis satisfying the
Sfollowing three conditions.

(1) My, My € L(R) implies My A My € L(R),

M, € L(R) imply ysmw € L(R),

(2) MeL(R) implies MW+ € L(R),

3) if MeL(R), a€R, and U(a) is a neighbourhood of a, then for some

uni form covering W={Us, U} such that UsCU(a), a €U, U AM € L(R) holds.

Proof. Let Mec L(R), M*=={R}, then S(S(M, M), M) &M for each M € M.
For if S(S(M, M), MYC Mo €M, then since S(S(M, M), MYCTS(M, M), tor each

4 UM={SUo, M), M|M~Uo=23} 11
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M’ e M, either M/ ~S(M, M)=¢ or M/CS(M, M) holds, which contradicts the
connectedness of R. Let a€ N € W¥¥%, and let b,c€ N ; b=c ; b,cFa. If we take
M(a) such that cé S, M(a)), then for M (@)=M(a) AM, and for W' (U(a))
= A Mk L(R) satisfies conditions 1), 2'), 3/).

Corollary 3. If R is a complete uni form space without isolated point, then
the uniform topology of R is characterized by any lattice L(R) of uniform basis
satisfying the following two conditions,

(1) My, My € L(R) implies My o My € L(R),

M, € L(R) imply /M, € LIR),

(2) MeMeL(R) implies ©(M, M) € L(R).»

Proof. It is obvious that L(R) satisfies conditions 1), 2'), 3"),

Corollary 4. If R is a compleie uni form space without isolated point, then
the uni form topology of Ri s characterized by any lattice L(R) of uniform basis
satisfying the following three conditions,

(1) Mg, My € L(R) imply M, XMy € L(R),

(2) MeMeL(R) implies ©(M, M) € L(R),

(3) if Me L(R), and if each element M of W' is either an element of M

or a sum of two elements of, M, then M’ € L(R).

Proof. It is obvious that L(R) satisfies conditions 1), 2), 3).

Applying the theorem to the case of topological spaces, we get the following.

Corollary 5. In order that two fully normal spaces R1 and Re are homeomor-
Dhic, it is necessary and su fficient that there exists a lattice-isomorphism between
L(R1) and L(Ry2), lattices of bases of open coverings satisfyving conditions 1),
2), 3) or conditions 1), 2"), 3’) of the theorem.

Corollary 6. The topology of a fully normal space R is characterized by
any lattice L(R) of basis of neighbourhood-finite open coverings satisfying the
Jollowing tow conditions,

(1) B, Bye L(R) implies B, X By € L(R),

(2) if BeL(R),acR, and U(a) is a neighbourhood of a, then for some

open covering W={Uo, U} such that UoCU(a), a¢ U, UAD € L(R) holds.

Proof. Let B be an arbitrary open covering of L(R), and V be an element
of B. We take a €V and a neighbourhood N(a) of a such that N(a) meets
only a {inite number of elemets of B, V1, ..., Vi. We assume that V. DV holds
only for V1, ..., Va. By condition (2) there exists an open covering U= {U,, U}
such that WA B € L(R) ; UsCN (@), a¢ U, and there exist W= {Uc:, Ui} (i=1,..., k)

such that WABEL(R) ; UuCV ~Vi, V-Vi>a ¢Ts. Then M(V, %>=/h\ WA ll
=1

A8 € L(R) satisfies condition 2) of L(R) in the theorem: V ¢ M(V,B); Vo bV,
VoeB imply Vo €M(V, B). We can see easily that conditions 3) is satisfied, too.

5 &M, M)={S(M, M), “{M'| M’ ~M=¢, M’ cIM3}}.




