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On the Uniform Topology of Bicompactifications.
By Jun-iti NAGATA.

In this note we shall characterise the uniform space, which is a
uniform subspace of its bicompactification /(&) or w(R)"?, by intro-
ducing the notion of u-normality. Then we shall study some properties
of u-normal spaces. Wé denote by R a uniform space having unifor-
mity {9, | X}. '

Let A and B be subsets of R and A ~ B=¢. When there exists
M, € {M,} such that S(4, M,) ~ B=¢, we say that A and B are
u-separated. It is easy to see that A and B are u-separated, when
and only when there exists a uniformly continuous function ¢ such
that

p@)=0(acd),
p(@)=1 (aeB),

‘A uniform space R is called a Cech u-normal space, when any
disjoint completely closed sets® of R are u-separated, and is called a
u-normal space, when any disjoint closed sets of R are u-separated.

Lemma 1. In order that R is Cech u-normal, it is mnecessary
and sufficient that every bounded continuous functions of R are wuni-
formly continuous.

Proof. Since for any disjoint completely closed sets ¥ and G,
there exists a bounded continuous function ¢ such that

p@)=0(aeF),
0<p(e)< 1.
p@)=1(eeq),
the sufficiency of the condition is obvious. '

Conversely let R be (\fech u-normal, then any finite open covering
N={N,|i=1,..., n} is an element of {I,}, if every N} are com-
pletely closed.*

For put Ni=F,, then N\F,=¢ or F, (Fy .. ~F)=10,
i=1

where F', and F, ~ ... ~ F, are completely closed. Hence there exists
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IR, € fWe,} such that ,
SF,, M) ~SFy ~ oo ~F,, M)=0¢.
Hence there exists a completely closed set H, such that
SWF,, MYS* (Fe ~ oo ~F,, M) H C(Fo m eee ~F).

This implies that H, ~ Fo ~ ... ~F,=0¢.

Assume that we get completely closed sets H,, ..., H, and elements
MWy, ..., M, of {IM,4 such that ‘

Hopoo ~Hi ~Fipy o ooe ~Fa=¢, HLOS(F,, My).

Since ¥,,, and H, ~ ... ~ H, ~ F;,s ~ ... ~ Fa are completely clo-
sed, there exists M, , € {IM,} such that

SFiyy, M) ASH) ~ ceo. ~H ~Fiyo oo ~F,, M )=2¢.
Hence there exists a completely closed set H,,, such that

S(Firs M) TS Hy A oo ~Hi A Fiys oo AF,, M) H,,

C(Hy ~ oo ~H, ~Fipg ~ e ~F.)

This implies that H, ~ ... ~ H, ~Hi\ ~Fiyo oo ~Fuo=0¢.
Therefore by induction there exist H,, ..., H, such that H, ~ ... ~ H,
=¢, H DODSF,, M.

Hence A SF, M) = e (S
i1
Put W A Dy p oo A M, =W € {3

Let M be an arbitrary element of M, then for every i there exists
M, c M, such that M, > M. Therefore it must be M ~ F,=¢ for
some i, because M . F, -+ ¢ (for all i) contradicts the condition (S§).
This implies M <" N, i.e. N e {M,}.

Now let ¢ be an arbitrary bounded continuous function of R such
that 0<"p<_ 1. We write

u,={U,| k=0, 1,.., 2°=24,

Ui=ia | kf2r < g (@) < #+2/20}.
Then, since U, is a finite open covering of R and every U; are com-
pletely closed, we get U, € {9 3.
Since a €S (b, 11,) implies | @ (@)—g¢ (b) | <_1/2n-1, @ is uniformly con-
tinuous.

Theorem 1. In order that the uniform topology of B(R) can be
reduced to thet of R, it is mnecessary ond sufficient that R is Cech
u-normel and totally bounded. (This shows a necessary and sufficient
condition for that 3(R) and the completion R* of R is identical.)

Proof. Necessity : Since 3 (R) is totally bounded, R is also totally
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bounded.
Let F and G be complete closed sets of R and ¥ ~ G =¢, then
there exists a continuous function ¢ such that
p@=0(eeF),
0<p(a)<1.
p@)=1(aeq),

When we inflate @ to the continuous functicn ¢* of B8(R), @* iS uni-
formly continuous from the bicompactness of B(R). This implies the
uniform continuity of ¢.

Hence F and G are u-separated, and R is Cech u-normal.

Sufficiency : Let R be homeomorphic to the subspace R,=f(R)
of its Tychonoff’s parallelotope P{I* |1}, (where I' is the set of all
continuous functions ¢ of R such that 0 < » < 1.)

We shall prove that R and R, with the weak uniform topology
by means of bounded continuous functions are uniformly homeomor-
phic. When this fact is proved, the sufficiency of this condition is
obvious.

We denote by R (¢, a) the uniform covering {N (¢ (@), a) | a € R}
of B,, where N (p(a), a)={f(@) || p(@)—¢p (@) | < af, (f is the homeo-
morphism between R and R,).

Now we consider an arbitrary uniform covering N =% (p,, a)) A
vee AR (pr, a;) of B,. Since by Lemma 1, @, is uniformly continuous,
there exists M, € {M,} such that beS (e, M,) implies | g; (@)—¢, () |
< a,. Putting M=, p ... , M., we get Me {M,} and (M) RN.

Conversely consider an arbitrary element 9 of {9,}, and let
W <M, WMF<IM,, and M, , M. € {M,}. Since R is totally hounded,
there exists a finite subcovering {W,; |i=1, ..., k} of M.. Let us
assume that S (M., M) M, e M, (i=1, ..., k), then we can const-
ruct continuous functions ¢, of R such that

i (@) =0 (e €M),
0<p <1,

pi (@) =1 (e € M5;),
Let o, beR, and b¢R (e, M), then ac M, implies b¢S (M., Ms),

whence @, (¢)=0, @,(b)=1. Hence putting N = M (¢, -%) A A
M (9% , %} , we get f1 () <M< M. Therefore B and B, are uni-

formly homeomorphic. Thus the proof is complete.
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Corollary 1. A completely regular space R has one and-only one
Cech u-normal and totelly bounded uniformily agreeing with its topolo-
gy.

Corollary 2. In order that o uniform space R is uniformly homeo-
morphic to a subspace of its Tychonoff’s parallelotope P, it is necessary
and sufficient that R is 6ech u-normal and totally bounded, where P
has the aweak wuniform {opology by means of bounded conlinuous fun-
ctions of E.

Corollary 3. In order that the uniform topology of w (R) can be
reduced to that of R, it is necessary and sufficient that R is wu-normal
and totally bounded. ’

Proof. The validity of this corollary is obvious from the fact
that B (R) and w (R) are identioal, when and only when R is normal:

We can prove Corollary 3 as follows, too.

Lemma 2. In order that two Cauchy filters F={F, | A} and &=
{G, | B} of R are equivalent, it is necessary and sufficient that S(F_,
M) ~ Gy ==¢ for all F eF, G,€& and M, € {IM,}.°

Pyroof. Necessity: Let § and & be equivalent, i.e. §~ ® be a
Cauchy filter, then for every M, e {I.}, there exist two sets FeF
and G €® such that a, be FF~ G implies b€ S (a, MN,).

Take arbitrary F €@ and G,€G, then F, ~F=¢, G, ~ G=¢.
Therefore, when we take two points € F', ~ F' and be G, ~ G, we see
that

S(F,, M) A Gy + -

Sufficiency : For an arbitrary M, e {M,}, we consider M, e {M,} such
that < M,, and assume that «, beF, or a, beG, implies
beS(a, M,).

If aeF,, beG,, then by the assumption there exists M e M, such
that M F,+¢, M ~ G, -+ ¢, and accordingly L, Ne M, such that
L M44¢, N M++¢, acL, be N. Hence there exists Pc IR,
such that e, be L~ M~ N PeM,, whence we get beS (s, M,).
Therefore § ~ & is a Cauchy filter, i.e. § and ® are equivalent.

Let B be a uniform space with the uniform topclogy {IR, | X}.
We classify all maximum Cauchy closed filters of R by equivalence,
and denote by R* the set of the classes {%}. We introduce a topology
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in R* by means of the closed basis: {{F} | @ o€ I} F eFo} (C B,
where F' is an arbitrary closed set of R, then it is obvious that R*
becomes a T,-space.

Lemma 3. {{} |78 (B} :FeF} =B} | yVa)F,eFe i}~

S(F,, M) ~F==¢(y M e {M,})}

Proof. Assume that Fe @ € {F}, then Fe {F} implies F~ -
Therefore by Lemma 2 we get S(F., M, ~F-=¢ for all F eF,
M, € {M,}.

Conversely assume that F,e§ ¢ {§} implies S(F,, M) ~ F-=¢.
Then 8={G|GDOSF,, M) ~F, F eF, M, e {M,}, G is closed.}
is a closed filter containing F, where we consider a fixed § . Further
we can see that & is a Cauchy filter.

For, for an arbitrary M, € {9}, we take N, such that W* <M, ,
.and assume that ¢, beF_ (e€3) implies acS (b, M,). Ifa,be
S(F,, M,) ~F(€®), then there exist elements M and N of ‘J)k such
that ee M, beN; M ~S(F,, M)+¢, N ~ S(F,, M,)--¢. Hence
there exist P, @ ¢ M, such that

P M--¢p,Q N+-p; P~F =¢,Q ~F, ¢,
and LeWM, such that P A L--¢, @ ~ L 4=¢. Therefore there exists
K such that M~ P~Y L~ Q@Y NCKeWM,. Thus from ac M, beN,
we conclude that ae S (b, M,), i.e. & is a Cauchy filter.

Now we denote by &, a maximum closed filter containing @, then
Ge®, and F,e® imply S(F, M) ~ G (/) for all M, e [N, }.
For assume the contrary, i.e. S (F,, IM,) ~ G = ¢, then for M, € {WM,} :
Mo <M, , we get SF,, M,) ~ G=¢ from the fact that S(F,, M,)
< S(F,, M,). But this contradicts S(F,, M,)e®,, Ge®,. Thus
by Lemma 2 we conclude that F ~ ®,. Therefore &, is an element of
{%¥} containing F.

Thus the proof of Lemma 3 is complete.

For each M, ={M_ | A} e {M,} we put N, ={(M:) | A}, where M:
means the closure of M; in R*. Then we can see easily from Lemma
3 that {9, | X{ becomes a basis of a uniformity agreeing with the
topology of R*, and that R*= R and R* is complete.

If R is u-normal and totally bounded, from Lemma 2 and the me-
thod of introducing the topology into R* we see easily that R* is
identical with w (R). The converse is obvious.
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Therefore we can reproduce Corollary 3 in such a way. Though
we used the metod of Theorem 1 at first to study the relation between
R and its Tychonoff’s parallelotope, the last method has more genera-
lity, when we study uniform topologies of general bicompactificaticns.”

From now forth we study properties of u-normal spaces.

Theorem 2. Any topoiogical space R admits at most one wu-normal
metric (or enumerable uniformity), which is the finest 'un;ifov'm topology
(so called a-structure).

Proof. Since the u-separation of a u-normal space is difined by
means of its topology, and by virtue of the Lemma obtained by the
author,” the uniform topology of a metric space is defined by the
notion of u-separation, we get the uniqueness of such a uniform topo-
logy. '

We denote by {M,|n=1, 2,...} a basis of such a uniformity of
R. If we assume that there exists an open coverng 9% such that
W, <Y for all =, then taking N=N,, WN., N;, ...... such that
9, >N, N >Ng, ..., we see that the metric {9, oM, | n=1, 2,...}
is u-normal and is not equivalent with {I%,}. But the last result
contradicts the above mentioned uniqueness of such a uniformity. The-
refore {M¢,} must be the finest uniform topology of E.

Theorem 3. In order that a metric space R is u-normal, it is
necessary and sufficient that the set H of all points of accumulation
of R is bicompact, and for all & >0 there exists 6§ >0 such that
S¢(H)Y C Az, where

S:(Hy=fa|p(ab)< &, be Hj,
As  =fa|p@b)>s (vb-aj.

Proof. Necessity : Assume that H is not bicompact, and an open
covering WM of H has no finite subéovering. Since H is fully normal,
there exists an open covering 3 such that Jvxx< M.

If there exist N,, N,, ..., N,eR such that for every Ne%,
SN, N) ~S(N;, W) == ¢ holds for some i, then there exists M, such
that SV, IO~ SWV,, R M, e M, and this shows that 9t has a
finite subcovering {M, | i=1, ..., k}, which contradicts the assumption.
Therefore we can select N,, N,,..., such that

SINg, ) ~S(N,, Wy=¢  (i7).

Let a;, b,eN,; p(a; bz)<%~ .=+ 0 then from the method of selecting
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N, it must be {e;}={a,}, {b;{=1{b;}, whence they are disjoint, but not
u-separated, which contradicts the u-normality c¢f R. Hence H must
be bicompact.

Next, assume that S:(H)d- As for all §, then there exist ¢, € St (H)
and b, = @, such that p (e, b,) < ;—

We denote by &(a) inf{p(ea2)|a == a}, then, as e,, b, ¢ H, it must
be &(a,) >0, €(b)>0. Hence we can select a.c€ S:(H) and b=} a.
such that p (@, b.) < inf (€ (@), &(b,), &/3), then a,, b,, ¢, and b, are
different from the others. We can select in the same way a;, b;;
@y, by; ... such that {a;} ~{bij=¢, p(a;b,)<1/i+1 and {a,;}< S:(H).
Since every points of S:¢(H) are isolated, {a,j=f{a;}. Since p (b;, )
>¢&/2@eH), {b}=i{b,}. But {a,} and {b,} are not u-separated, which
contradicts the u-normality of E.

Sufficiency : Assume that closed sets ' and G of R are disjoint
but not u-separated, then there exist two sequences of points {e,} and
{b,}such that a,€ G, b,e G and p (a,b)< Ii. If {a,} is cofinal in H,
there exists a cluster point ¢ cf {e,} frcm the biccmpactness of H,
and it becomes at the same time a cluster point of {0,}, which means
a€F G, and this is a contradiction.

If {a,} is cofinal in H’, since p(a,b,)< 1/i, {a,} is residual in
every A and accordingly in every S.(H) by assumpticn. Hence we
can assume that a,€8(H) and & —0 (i—c0), i.e. we can select
h,€ H such that p (e, #,)< &, . From the bicompactness of H, {A,}
has a cluster point %, which is at the same time a cluster point of
{a,} and {b,}. Therefore Ze F .~ G, which contradicts the assumption.
This contradiction completes the proof of Theorem 3.

Corollary 4. A u-normal metric space R is bicompact, if every
Az (8 >0) are finite sets, (for example when R has no isolated point )

Corollary 5. Any u-normal metric space is complete.

Theorem 4. In order that a metrizable space R is homeomorphic
to a u-normal metric space, it is necessary and sufficient that the set
H of all points of accumulation of R is bicompact.

Proof. Necessity of the condition is obvious from Theorem 3.

Sufficiency : We shall show that the enumerable set &,={S,,, (@),
x | ee H, € H°} of open coverings is a basis for the a-structure of
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R, where S, (@) =fz | p (x a)< 1/n}.
Let M be an arbitrary open covering of R and

HC\/M, (M, eM).
=1
- LA
Let us select k clcsed sefs N, such that N, C M, ,i\/ N,=H, then
=1

. . 1
irrl'—‘11~1-]-kd (N, MD> n

For, if d (N,, M{) =0, then there exist a,¢ N, and b,c M{ such that
p(a;b)< 1/j. Since N, is bicompct, f{e,} has a cluster point @,
which is a cluster point of {b,} at the same time. Therefcre
a €N, ~ M¢, which contradicts the assumpticn, i.e. it must be d (N, ,

M%) >0 and accordingly min d (NV,, M,?)>_71[.
I=1.0.k

Then it is easy to see that &,< MM for this % ; hence {&,} is a
basis for the a-structure of R, and the metric by means of {&,} is
u-normal.

Now let us consider the case of non-metric spaces. If R is
u-normal, then it is obvious that any Cauchy sequence of points ccn-
verges, but, when we concern ourslves with general directed sets of
points, it is difficult to study relations between u-normality and ccm-
pleteness.

In the general case we get the following

Theorem 5. If & fully normal space R is a wu-normal, locally
complete and uniformly connected space™, then R is complete.

Proof. Let R be a uniform space satisfying the assumpticn, and
let {0t} be a basis for its uniformity such that every 9%, consist of
connected sets only.

~ 1. Since R is fully normal and locally complete, by the result of
A. H. Stone® we get a neighbourhood-finite open covering 1 = {U_ | A}
such that U are complete and an open covering 8 ={V_} such that
V,U,. For these coverings we construct continuous functions f,
such that
f.@=1(aeV,),
0<7,(0)< 1.
fo(@=0 (ae Uy,
We denote by A ={8} the collection of finite sets consisting of «, and



36 Jun-iti NAGATA

by 7 (8) the number of 5. Put

Ne=fa|gv:f, (@) >v@ed), f,(@)<_v(ag?d)
for some & such that =»(8)=~Fk}, then {N,| k=1, 2...} is an open
covering of R. Put

My=fa|gv:f, (@ >v(@ed), f, (@< v(agd}i,
then M; is an open set, and “~{M§" |d€A, n(8)=Fk{=N,, where
M@ =M, ~ N,.
We notice that M@, M¥ =¢(n (9)=n (3")=Fk, & =8, and MF V =¢
(ag¢d), i,e, M meets a finite number of V, only. Since 3 ={N,} is
enumerable, by K. Morita’s theorem it has a star-finite refinement
Pr=fP, | i=1, 2,..}.0
Let B={P, |i=1,2,...4, Q= {Q, | i=1, 2...} be open coverings such
that P, C P, Q,CP,.
If P,N,, then ®, ={M} ~V, P, |8cA, n(®)=1k, acd} is a
star-finite refinement of ¥ in P,.

oo

2. When we construct S7=\/S8"(Q,, Q), then S and S; are

n=l

disjoint or identical : hence every elements of any . € {IN,} are
contained in some Sy, because they are connected.

Let (¢t | T) be an arbitrary Cauchy directed set of points, then ¢
is residual in some- Sy by the above fact.

We shall prove that there exists MM, e {M,}{ such that for some
m, every elements M of M,, in which ¢ is residual, is contained in

n\an @Q,, Q) =3"
To see this, assume that the contrary holds. Let 9, be an arbi-
trary element of {M.{, and let M} <M, , M, € {M,§. If o is residual

in M,cM,, then every elements of M,, in which ¢ is residual, meet
M,. Hence when S (M,, M,) C M,cIM,, from the assumption we get

M, 8" (=\) 8" (Q,, Q) for all m.
Be=y
Since M»"’ is connected, Mx ~ (Sﬂ'—"sn) == ¢ (’n > ny), when M:v/\ S™ == ¢
Therefore two closed sets F = O (S:n-1—8-1) and G = O (Szn— 2y
n=1 n=1

are disjoint but not u-separated, which contradicts the u-normality of
R. '

3. We denote by 9, an element of {9} such that every elements
of M., in which ¢ is residual, are contained in S™ for a definite m.
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If S"=\7/Q,, then B, ={8" P, | i=1..hk} is a finite open co-
=1

vering of S™. Hence from the u-normality of S™, we get a refinement
M, e {M,} of B, in S™.

Let Mx <M, A M,, M, € {M,}, and let (¢t | T) be residual in a
definite element M, of M,. Let M be an arbitrary element of ., in
which ¢ (¢ | €) is residual, then M C S (M,, M) M, e M, ; M S (M,,
m,) CM,eM,, for some M, and M,. Since ¢ (t|Z) is residual in
M, we get M, S™.

On the other hand from M,eM, we get M, ~ S™ P, ~S™, whence

MCM,~M,=M, ~ 8" ~M, P, S"P,
for a definite P, and for every M €M,, in which ¢ (¢ | ¥) is residual.
4. Since from 3 for every WM, < M,, WM, € {M,} and for every

MeMm,, in which ¢ (£|2) is residual, we get M C P,, it must be for
a definite Ms, =, MC\JS" (M5, », B,) for such M, where
n=1

M;, 1=Mék)AVaAPtE%i; FtCNlc'
(See the last part of 1.)

Since P, is u-normal, by the same method as in 2 we can prove
that there exists M e M, < M, such that ¢ (¢ | T) is residual in M, and

4

z
MCN\J S"(Ms,, B,) for some I. Since W, is star-finite, \/S" (M5, «,
1

n= n=1

;) is a union of some finite number of Mz, ..

14 -
Since @ (t | X) is residual in \J S* (M3, «, W;), it must be residual
. n=1

in a definite element M;,. of 2¥,. From the fact that M;, . V.,
we get the completeness of Mj;, ., whence ¢ (f | T) must converge.
Thus the proof of Theorem 5 is complete.

Notes.

1) We denote by 8 (R) éech’s bicompactification of R and by w (R) Wallman’s one.

2) A closed set F of R is called a completely closed set, when there exists a conti-
nuous function ¢ of R such that

F={a|o¢(a)=0}.

3) We denote by N°¢ the complement of N.

4) In this note we consider filters consisting of closad sets only.

5) See N. A. Shanin, On Special Extensions of Topological Spaces, and his other
papers, C. R. URSS, 38 (1943) No. 1, No. 4, No. 5-6.

6) On the Lattices of Functions on Topological Spaces and of Functions on Uniform
Spaces, Osaka Math. Journal, 1(1949) No. 2, Lemma 2.
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7) We mean by a uniformly connected space a uniform space, which has a basis
{Mo} for its uniformity such that every Yz consist of connected sets only.
8). A. H. Stone, On Paracompactness and Product Space, Bull. of Amer. Math. 54 (1948)

No. 10.
An open covering 1l of R is called neighbourhood-finite, when each point £ of R has a

neighbourhood V (x), which meets only finite number of elements of. 1.
U is called star-finite, when each element of 11 meets only finite numbter of elemets of

n. .
9) K. Morita, Star-Finite Converings and the Star-Finite Property, Math. Japonicae,

Vol. 1, No. 2.
To see this in this case, for example consider an open covering I = {Mr}, M C Nx.

and construct continuous functions fx such that

fr(a) =k (ac Mz),
0= fr(a)=k.

fi(a) =0 (a¢ Ny),
Putting f=sup fx, Lo ={a|[n-1< f(a)<n+1}, Q={L, | n=0, 1, 2, ..... 3,
we get a star-finite refinement £ A of M .
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