algebra of stable Homotopy of moore space

By Noboru Yamamoto

(Received May 28, 1963)

0. Introduction

Let p denote an odd prime. A Moore space $M_{p}^{n}=M\left(n, Z_{p}\right)$ is a simply connected space with two non-vanishing (integral) homology groups $H_{0}\left(M_{p}^{n}\right)=Z$ and $H_{n}\left(M_{p}^{n}\right)=Z_{p}$. The $\bmod p$ cohomology structure of M_{p}^{n} is as follows: $H^{0}\left(M_{p}^{n} ; Z_{p}\right)=Z_{p}, H^{n}\left(M_{p}^{n} ; Z_{p}\right)=Z_{p}=\left\{e^{n}\right\}, H^{n+1}\left(M_{p}^{n} ; Z_{p}\right)=Z_{p}$ $=\left\{e^{n+1}\right\}, H^{i}\left(M_{p}^{n} ; Z_{p}\right)=0, \quad i \neq 0, n, n+1$, and $\Delta e^{n}=e^{n+1}$ for the $\bmod p$ Bockstein operator Δ, for $n \geqq 2$.

The m-th homotopy group $\pi_{m}\left(Z_{p} ; n, Z_{p}\right)$ of the Moore space $M\left(n, Z_{p}\right)$ with the coefficient group Z_{p} (or, briefly, the m-th mod p homotopy group of $\left.M\left(n, Z_{p}\right)\right)$ is the set of homotopy classes of maps $M_{p}^{m} \rightarrow M_{p}^{n}$ with the track addition (See [3]).

The set $\pi_{*}=\sum_{i} \pi_{N+i}\left(Z_{p} ; N, Z_{p}\right)$ (N denotes a sufficiently large integer) of the stable homotopy groups of the Moore space $M\left(N, Z_{p}\right)$ with the coefficient group Z_{p} (i.e., the stable $\bmod p$ homotopy groups of $M\left(N, Z_{p}\right)$) admits a ring structrue with respect to the composition. Really, it forms an algebra over the field Z_{p}.

In this paper, we shall investigate its structure by means of the results and the methods of Toda [10], [11], [12].

For simplicity, we shall denote $\pi_{N+i}\left(Z_{p} ; N, Z_{p}\right)$ by π_{i} and we shall say that an element of π_{i} is of dimension i.

Among the elements of π_{*}, δ denotes the element in π_{-1} such that $\delta^{*} e_{2}^{N}=(-1)^{N} e_{1}^{N}$ for the generators $e_{1}^{N} \in H^{N}\left(M_{p}^{N-1} ; Z_{p}\right)$ and $e_{2}^{N} \in H^{N}\left(M_{p}^{N} ; Z_{p}\right)$; ι denotes the class of the identity map of $M_{p}^{N} ; \alpha$ denotes the element in $\pi_{2(p-1)}$ such that $\mathcal{P}_{\alpha}^{1} e^{N+1}=(-1)^{N+1} e^{N+2(p-1)}$ for the generators $e^{N+1} \in$ $H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+k} \in H^{N+k}\left(M_{p}^{N+k} ; Z_{p}\right), k=2(p-1)$, where \mathcal{P}_{α}^{1} is the functional cohomological operation with respect to ρ^{1} and $\alpha ; \beta_{1}$ denotes the element in $\pi_{2 p(p-1)-1}$ such that $\alpha \beta_{1}=0$ and $\mathcal{P}_{\beta_{1}}^{p} e^{N+1}=(-1)^{N+1} e^{N+2 p(p-1)}$ for the generators $e^{N+1} \in H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+l} \in H^{N+l}\left(M_{p}^{N+l-1} ; Z_{p}\right)$, $l=2 p(p-1)$, where $\mathcal{P}_{\beta_{1}}^{n}$ is the functional cohomological operation with respect to \mathcal{P}^{p} and β_{1}; and, $\beta_{s}, 1<s<p$, denote the element in $\pi_{2\left(s_{p}+s-1\right)(p-1)-1}$
defined inductively by the stable secondary composition $\left\langle\beta_{s-1}, \alpha, \beta_{1}\right\rangle$, respectively.

Then, our main theorems are
Theorem I. A set of additive bases for π_{*} is as follows in $\operatorname{dim}<2 p^{2}(p-1)-4$:

$$
\begin{aligned}
& \delta, \iota, \\
& \alpha^{t}, \alpha^{t} \delta, \alpha^{t-1} \delta \alpha, \alpha^{t-1} \delta \alpha \delta, \quad \text { for } 1 \leqq t<p^{2}, \\
& \left(\beta_{1} \delta\right)^{r-1} \beta_{1}, \delta\left(\beta_{1} \delta\right)^{r-1} \beta_{1},\left(\beta_{1} \delta\right)^{r}, \delta\left(\beta_{1} \delta\right)^{r}, \quad \text { for } 1 \leqq r \leqq p, \\
& \alpha\left(\delta \beta_{1}\right)^{r}, \delta \alpha\left(\delta \beta_{1}\right)^{r}, \alpha\left(\delta \beta_{1}\right)^{r} \delta, \delta \alpha\left(\delta \beta_{1}\right)^{r} \delta, \quad \text { for } 1 \leqq r<p, \\
& \left(\beta_{1} \delta\right)^{r} \beta_{s}, \delta\left(\beta_{1} \delta\right)^{r} \beta_{s},\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \\
& \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s}, \delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s}, \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \\
& \delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \quad \text { for } 0 \leqq r, 2 \leqq s<p, \text { and } r+s<p .
\end{aligned}
$$

Theorem II. The ring π_{*}, in dim $<2 p^{2}(p-1)-4$, is generated by δ, α, and $\beta_{s}, 1 \leqq s<p$, with the following fundamental relations:
(i) $\delta^{2}=0, \alpha \beta_{s}=\beta_{s} \alpha=0, \beta_{s} \beta_{t}=0$,
(ii) $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}$,
(iii) $\alpha \delta \beta_{s}=\beta_{s} \delta \alpha$,
(iv) $\beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t-1}$.

Theorem III. The subring of π_{*} generated by δ and α has only two fundamental relations : $\delta^{2}=0$ and $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}$.

Thus, the subalgebra generated by δ is an exterior algebra and the subalgebra generated by α is a polynomial algebra.

The relation $\beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t-1}$, in π_{*}, implies the relation $\bar{\beta}_{s} \bar{\beta}_{t}=\frac{s t}{s+t-1} \bar{\beta}_{1} \bar{\beta}_{s+t-1}$ in the stable homotopy ring G_{*} of sphere, for a suitable choice of the element $\bar{\beta}_{s}$ in G_{*}. This is an answer to a problem of Toda [10].

The writer is deeply indebted to Professor H. Toda for many advices and kind criticisms. The writer wishes to express his sincere gratitude to Professor A. Komatu for constant encouragement given during the preparation of this paper.

1. Preliminaries

Throughout this paper, unless otherwise stated, all space are connected
and have the homotopy type of a $C W$-complex. There is given a base point on each space, all maps take base point to base point and all homotopies keep base point fixed. All groups are finitely generated and abelian. We shall denote the additive group of integers by Z, and the additive group of integers modulo an odd prime p by Z_{p}. The closed interval $[0,1]$ is denoted by I, and $f \simeq g$ denotes that two maps f and g are homotopic. Often a map and its homotopy class are denoted by the same letter.

Let X, Y be spaces with base points x_{0}, y_{0}, and $f: X \rightarrow Y$ a map. The mapping cylinder Y_{f} of f is the space obtained from the disjoint union $(X \times I) \cup Y$ by identifying $(x, 1) \in X \times I$ with $f(x) \in Y$ and shrinking $x_{0} \times I$ to the base point y_{0}.

The mapping cone C_{f} of f is the space obtained from Y_{f} by shrinking $X \times 0$ to the base point y_{0}. The space Y_{f} has the same homotopy type as Y and we may regard X as a subspace of Y_{f} by the inclusion map $i_{X}: X \rightarrow Y_{f}$ defined by $i_{X}(x)=(x, 0)$. If $Y=x_{0}$ and $f: X \rightarrow x_{0}$ is the constant map, the mapping cylinder of f is the cone $T X$ over X, and the mapping cone of f is the suspension $S X$ of X. The iterated suspension $S^{n} X$ of X is defined inductively by $S^{n} X=S\left(S^{n-1} X\right)$. Note that $S(T X)$ and $T(T X)$ are homeomorphic to $T(S X)$. If $X=S X^{\prime}$ for a space X^{\prime}, we can define a map $\varphi: X \rightarrow X \vee X\left(=X \times x_{0} \cup x_{0} \times X\right)$ by

$$
\varphi\left(x^{\prime}, t\right)=\left\{\begin{array}{ll}
\left(\left(x^{\prime}, 2 t\right), x_{0}\right) & 0 \leqq t \leqq 1 / 2, \tag{1.1}\\
\left(x_{0},\left(x^{\prime}, 2 t-1\right)\right) & 1 / 2 \leqq t \leqq 1,
\end{array} \quad x^{\prime} \in X^{\prime}\right.
$$

We can also define a map $\Phi^{\prime}: C_{f} \rightarrow S X \vee C_{f}$ by
(1.1) $)^{\prime} \varphi^{\prime}(y)=\left(x_{0}, y\right), y \in Y, \varphi^{\prime}(x, t)=\left\{\begin{array}{ll}\left.k(x, 2 t), y_{0}\right) & 0 \leqq t \leqq 1 / 2, \\ \left(x_{0},(x, 2 t-1)\right) & 1 / 2 \leqq t \leqq 1,\end{array} x \in X\right.$,
where $k: C_{f} \rightarrow S X$ is the shrinking map of $Y \subset C_{f}$. We shall also denote the space C_{f} by $Y \bigcup_{f} T X$ or $Y \bigcup_{a} T X$ where α is the homotopy class of f.

The loop space ΩX on X is the space of maps $\lambda:(I, \dot{I}) \rightarrow\left(X, x_{0}\right)$ with the compact open topology. The constant map $\lambda_{0}: I \rightarrow x_{0}$ is the base point of ΩX. The iterated loop space $\Omega^{n} X$ on X is defined inductively by $\Omega^{n} X=\Omega\left(\Omega^{n-1} X\right)$. Since X is assumed to have the homotopy type of a $C W$-complex, the loop space ΩX also has the homotopy type of a $C W$-complex [4].

We shall denote by $\pi(X, Y)$ the set of homotopy classes of maps $X \rightarrow Y$. For any pairs (X, A) and (Y, B) of spaces (i.e., $A \subset X$ and $B \subset Y)$,
the relative homotopy set $\pi(X, A ; Y, B)$ is the set of homotopy classes of maps $f:(X, A) \rightarrow(Y, B)$ (i.e., $f: X \rightarrow Y$ and $f(A) \subset B)$.

The following lemmas are well-known [3].
Lemma 1.1. If X is the suspension $S X^{\prime}$ of a space $X^{\prime}, \pi(X, Y)$ admits a natural group structure for any space Y. If X is the two-fold suspension $S^{2} X^{\prime \prime}$ of a space $X^{\prime \prime}$, the group $\pi(X, Y)$ is abelian.

Lemma 1.2. There is a natural isomorphism $\pi(X, \Omega Y) \approx \pi(S X, Y)$, for any spaces X and Y.

Let $\alpha \in \pi(X, Y)$ be the homotopy class of a map $f: X \rightarrow Y$, then the suspension $S \alpha \in \pi(S X, S Y)$ of α is the homotopy class of the map $S f$: $S X \rightarrow S Y$ defined by $S f(x, t)=(f(x), t), x \in X, t \in I$, and the loop $\Omega \alpha \in$ $\pi(\Omega X, \Omega Y)$ of α is the homotopy class of the map $\Omega f: \Omega X \rightarrow \Omega Y$ defined by $((\Omega f)(\lambda))(t)=f(\lambda(t)), \lambda \in \Omega X, t \in I$. They are well-defined and if $\pi(X, Y)$ admits a group structure, the correspondences $S_{*}: \pi(X, Y) \rightarrow \pi(S X, S Y)$, $\Omega_{*}: \pi(X, Y) \rightarrow \pi(\Omega X, \Omega Y)$ defined by $S_{*}(\alpha)=S \alpha, \Omega_{*}(\alpha)=\Omega \alpha$ are homomorphisms.

Let $f: X \rightarrow Y$ be a map, then we have the Puppe sequence of f [5]:

$$
X \xrightarrow{f} Y \xrightarrow{j} C_{f} \xrightarrow{k} S X \xrightarrow{S f} S Y \xrightarrow{S j} S C_{f} \xrightarrow{S k} S^{2} X \xrightarrow{S^{2} f} S^{2} Y \longrightarrow \cdots
$$

such that the following sequence is exact for any space U :

$$
\begin{gather*}
\pi(X, U) \stackrel{f^{*}}{\longleftarrow} \pi(Y, U) \stackrel{j^{*}}{\longleftarrow} \pi\left(C_{f}, U\right) \stackrel{k^{*}}{\longleftarrow} \pi(S X, U) \stackrel{(S f)^{*}}{\longleftarrow} \tag{1.2}\\
\pi(S Y, U) \stackrel{(S k)^{*}}{\longleftarrow} \pi\left(S C_{f}, U\right) \longleftarrow \cdots .
\end{gather*}
$$

Given a group H and an integer $n \geqq 2$, the Moore space [3] $M=$ $M(n, H)$ is a simply connected space having only two non-vanishing (integral) homology groups: $H_{0}(M)=Z, H_{n}(M)=H$. For a given pair of n and H, the space $M(n, H)$ is determined uniquely up to homotopy type, in particular, $M(n, Z)$ is the homotopy type of the n-sphere $S^{n}, M\left(n, Z_{p}\right)$ is the homotopy type of the cell complex $S^{n} \bigcup_{n} e^{n+1}$ where $e^{n+1}=T S^{n}$ is an ($n+1$)-cell and ι denotes the class of the identity map of S^{n}. It is easily seen that the suspension of $M(n-1, H)$ is an $M(n, H)$ for $n>2$, so that the set $\pi(M(n, H), X)$ admits an abelian group structure for any space X and $n>3$. It is called the n-th homotopy group of X with a coefficient group H and denoted by $\pi_{n}(H ; X)$. Similarly, for any pair (X, A), the n-th relative homotopy group $\pi_{n}(H ; X, A)$ of (X, A) with a coefficient group H is defined as the relative homotopy set $\pi(T M(n-1, H)$, $M(n-1, H) ; X, A)$, for $n>4$. We have the exact sequence
$\cdots \longrightarrow \pi_{n+1}(H ; X, A) \xrightarrow{d} \pi_{n}(H ; A) \xrightarrow{i_{*}} \pi_{n}(H ; X) \xrightarrow{j_{*}} \pi_{n}(H ; X, A) \longrightarrow \cdots$
for any pair (X, A), and the naturalities $d f_{*}=(f \mid A)_{*} d$ and $S_{*} f_{*}=(S f)_{*} S_{*}$

for a map $f:(X, A) \rightarrow(Y, B)$, and the suspension homomorphism S_{*}.
Given a group π and an integer $n \geqq 1$, the Eilenberg-MacLane space $K=K(\pi, n)$ is a space having only one non-vanishing homotopy group: $\pi_{n}(K)=\pi$. For a given pair of n and π, the space $K(\pi, n)$ is determined uniquely up to homotopy type. It is easily seen that the loop space on $K(\pi, n+1)$ is a $K(\pi, n)$, so that the set $\pi(X, K(\pi, n))$ admits an abelian group structure. It is the n-th cohomology group $H^{n}(X ; \pi)$ of X with a coefficient group π.

A space X is said to be n-connected if $\pi_{i}(X)=0$ for $0 \leqq i \leqq n$.
The following lemmas are well-known [2], [7].
Lemma 1. 3. Let X be ($m-1$)-connected and Y be $(n-1)$-connected $(m, n>1)$, and $f: X \rightarrow Y$ be a map. Then, $\psi^{*}: \pi_{r}\left(Y_{f}, X\right) \rightarrow \pi_{r}\left(C_{f}\right)$ are isomorphisms for $r<m+n-1$, where $\psi:\left(Y_{f}, X\right) \rightarrow\left(C_{f}, y_{0}\right)$ is the shrinking map of X.

Lemma 1.4. If X is an ($n-1$-connected space $(n>1)$, then
(i) the (homotopy) suspension homomorphisms $S_{*}: \pi_{r}(X) \rightarrow \pi_{r+1}(S X)$ are isomorphisms for $r<2 n-1$.
(ii) the cohomology suspension homomorphisms $\Omega_{*}: H^{r}(X ; \pi) \rightarrow H^{r-1}(\Omega X ; \pi)$ are isomorphisms for $r<2 n-1$.

Let $f: S^{2} \rightarrow S^{2}$ be a map of degree p, then the mapping cone C_{f} of f is an $M\left(2, Z_{p}\right)$. So that, by (1.2), the following sequence is exact for any space X :

$$
\begin{align*}
\cdots \longrightarrow & \pi_{r+1}(X) \xrightarrow{(p \iota)^{*}} \pi_{r+1}(X) \xrightarrow{k^{*}} \pi_{r}\left(Z_{p} ; X\right) \xrightarrow{j^{*}} \pi_{r}(X) \xrightarrow{(p \iota)^{*}} \\
\pi_{r}(X) \longrightarrow & \cdots \longrightarrow \pi_{3}(X) \longrightarrow \pi_{3}(X) \longrightarrow \pi_{2}\left(Z_{p} ; X\right) \longrightarrow \tag{1.3}\\
\pi_{2}(X) \longrightarrow & \pi_{2}(X) .
\end{align*}
$$

By the exactness of the above sequence and the five lemma, we have
Corollary 1.1. If X is an $(n-1)$-connected space ($n>1$), the suspension homomorphisms $S_{*}: \pi_{r}\left(Z_{p} ; X\right) \rightarrow \pi_{r+1}\left(Z_{p} ; S X\right)$ are isomorphisms for $r<2 n-2$.

Corollary 1.2. If X is ($m-1$)-connected, and Y is $(n-1)$-connected ($m, n>1$), then the homomorphisms $\psi_{*}: \pi_{r}\left(Z_{p} ; Y_{f}, X\right) \rightarrow \pi_{r}\left(Z_{p} ; C_{f}\right)$ are isomorphisms for $r<m+n-2$.

By the above corollary, we have an exact sequence

$$
\begin{aligned}
\pi_{2 s-3}\left(Z_{p} ; X\right) \xrightarrow{f_{*}} \pi_{2 s-3}\left(Z_{p} ; Y\right) \xrightarrow{j_{*}} \pi_{2 s-3}\left(Z_{p} ; C_{f}\right) \xrightarrow{\tau} \\
\pi_{2 s-4}\left(Z_{p} ; X\right) \xrightarrow{\tau} \cdots \xrightarrow{\longrightarrow} \pi_{r+1}\left(Z_{p} ; C_{f}\right) \xrightarrow{\tau} \pi_{r}\left(Z_{p} ; X\right) \xrightarrow{f_{*}} \\
\pi_{r}\left(Z_{p} ; Y\right) \xrightarrow{j_{*}} \pi_{r}\left(Z_{p} ; C_{f}\right) \xrightarrow{\tau} \pi_{r-1}\left(Z_{p} ; X\right) \longrightarrow
\end{aligned}
$$

where $\tau=S_{*}^{-1} k_{*}$ and $s=\operatorname{Min}(m, n)$.
Since S^{n} is $(n-1)$-connected and $S S^{n}=S^{n+1}$, Lemma 1.4 implies $S_{*}^{i}: \pi_{n+k}\left(S^{n}\right) \approx \pi_{n+k+i}\left(S^{n+i}\right)$ for $n>k+1$ and $i>0$. Therefore, we can define the k-th stable homotopy group G_{k} of sphere by

$$
G_{k}=\operatorname{dir} . \lim \left\{\pi_{n+k}\left(S^{n}\right), S_{*}\right\} \quad \text { for any integer } k .
$$

Similarly, we can define the k-th stable homotopy group π_{k} of Moore space $M\left(n, Z_{p}\right)$ with a coefficient group Z_{p} by

$$
\pi_{k}=\operatorname{dir} . \lim \left\{\pi_{n+k}\left(Z_{p} ; n, Z_{p}\right), S_{*}\right\} \quad \text { for any integer } k
$$

While, since $K(\pi, n)$ is $(n-1)$-connected and $\Omega K(\pi, n)=K(\pi, n-1)$, by Lemma 1.4, $\Omega_{*}^{i}: H^{n+k+i}(\pi, n+i ; G) \approx H^{n+k}(\pi, n ; G)$ for $n>k+1$ and $i>0$. So that we can define the k-th stable cohomology group $A^{k}(\pi, G)$ of $K(\pi, n)$ with a coefficient group G by

$$
A^{k}(\pi, G)=\text { inv. } \lim \left\{H^{n+k}(\pi, n ; G), \Omega_{*}\right\} \quad \text { for any integer } k
$$

Given $\alpha \in \pi_{q}(G ; n, H)$, the composition operation $\alpha_{X}: \pi_{n}(H ; X) \rightarrow$ $\pi_{q}(G ; X)$ is a correspondence defined by $\alpha_{X}(\beta)=\beta \cdot \alpha$ for any space X and $\beta \in \pi_{n}(H ; X)$. Obviously, it is natural with respect to any map $f: X \rightarrow Y$, i.e. $f_{*} \alpha_{X}=\alpha_{Y} f_{*}$.

Given $\theta \in H^{q}(\pi, n ; G)$, the composition operation $\theta_{X}: H^{n}(X ; \pi) \rightarrow$ $H^{q}(X ; G)$ is a correspondence defined by $\theta_{X}(u)=\theta \bullet u$ for any space X and $u \in H^{n}(X ; \pi)$. Obviously, it is natural with respet to any map $f: Y \rightarrow X$, i.e. $f^{*} \theta_{X}=\theta_{Y} f^{*}$.

A set $\alpha=\left\{\alpha_{X}\right\}$ of correspondences $\alpha_{X}: \pi_{n}(H ; X) \rightarrow \pi_{q}(G ; X)$ (resp. $\theta=\left\{\theta_{X}\right\}$ of $\left.\theta_{X}: H^{n}(X ; \pi) \rightarrow H^{q}(X ; G)\right)$ defined for any space X, is called homotopical operation of type ($n, q ; H, G$) (resp. cohomological operation of type ($n, q ; \pi, G)$) if it satisfies the naturality. The following lemmas are well-known.

Lemma 1.5. There is a one-to-one correspondence between elements of
$\pi_{q}(G: n, H)\left(\right.$ resp. $\left.H^{q}(\pi, n ; G)\right)$ and homotopical operations of type $(n, q ; H, G)$ (resp. cohomological operations of type ($n, q ; \pi, G$)).

Lemma 1.6. If $\alpha \in \pi_{q}(G ; n, H)$ (resp. $\left.\theta \in H^{q}(\pi, n ; G)\right)$ is a stable element, then the composition operation $\alpha_{X}\left(\right.$ resp. $\left.\theta_{X}\right)$ is a homomorphism.

The direct sum $\sum_{k} G_{k}$ (resp. $\left.\sum_{k} \pi_{k}, \sum_{k} A^{k}(\pi, \pi)\right)$ of stable groups has a multiplicative structure defined by the composition. In particular, $\varphi=\sum_{k} A^{k}=\sum_{k} A^{k}\left(Z_{p}, Z_{p}\right)$ is the $(\bmod p)$ Steenrod algebra.

The following lemma is well-known [1].
Lemma 1. 7. The $(\bmod p)$ Steenrod algebra φ is generated by $\Delta \in A^{1}$ and $\mathcal{P}^{p^{k}} \in A^{2 p^{k(p-1)}}(k=0,1,2, \cdots)$ satisfying the Adem's relations :

$$
\begin{aligned}
\mathcal{P}^{a} \mathcal{P}^{b}= & \sum_{i=0}^{(a / p)}(-1)^{a+i}\binom{(b-i)(p-1)-1}{a-p i} \mathcal{P}^{a+b-i} \mathcal{P}^{i}, \quad \text { if } a<p b, \\
\mathcal{P}^{a} \Delta \mathcal{P}^{b}= & \sum_{i=0}^{[a / p)}(-1)^{a+i}\binom{(b-i)(p-1)}{a-p i} \Delta \mathcal{P}^{a+b-i} \mathscr{P}^{i} \\
& +\sum_{i=0}^{(a /(p-1))}(-1)^{a+i-1}\binom{(b-i)(p-1)-1}{a-p i-1} \mathcal{P}^{a+b-i} \Delta \mathcal{P}^{i}, \quad \text { if } a \leqq p b .
\end{aligned}
$$

Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be map such that $g f \simeq O: X \rightarrow Z$ where O denotes the constant map $X \rightarrow z_{0}$. Then we have

Lemma 1.8. There is a map $\bar{g}: C_{f} \rightarrow Z$ such that the restriction $\bar{g} \mid Y$ of \bar{g} on $Y \subset C_{f}$ is g. For any two such maps \bar{g}_{1}, \bar{g}_{2}, we can define a map $d\left(\bar{g}_{1}, \bar{g}_{2}\right): S X \rightarrow Z$ such that $\bar{g}_{1} \simeq\left(d \vee g_{2}\right) \varphi^{\prime}$, where φ^{\prime} is themap defined in (1.1)'. Conversely, for any map $h: S X \rightarrow Z$, the map $\bar{g}^{\prime}=(h \vee \bar{g}) \varphi^{\prime}$ satisfies $\bar{g}^{\prime} \mid Y=g$.

Proof. Since $g f \simeq 0$, there is a homotopy $H: X \times I \rightarrow Z$ such that $H(x, 0)=z_{0}, H(x, 1)=g(f(x))$. Define the map $\bar{g}: C_{f} \rightarrow Z$ by

$$
\bar{g}(y)=g(y), y \in Y, \quad \bar{g}(x, t)=H(x, t), x \in X, t \in I .
$$

Then, since $H(x, 1)=g(f(x)), \bar{g}$ is well-defined and, by definition, $\bar{g} \mid Y=g$.
Let \bar{g}_{1}, \bar{g}_{2} be two such maps, then we define $d=d\left(\bar{g}_{1}, \bar{g}_{2}\right)$ by

$$
d(x, t)=\left\{\begin{array}{ll}
\bar{g}_{1}(x, 2 t), & 0 \leqq t \leqq 1 / 2, \\
\bar{g}_{2}(x, 2-2 t), & 1 / 2 \leqq t \leqq 1 .
\end{array} \quad x \in X\right.
$$

Since $\bar{g}_{1}(x, 1)=g(f(x))=\bar{g}_{2}(x, 1), d$ is well-defined. It is easily verified that $\bar{g}_{1} \simeq\left(d \vee \bar{g}_{2}\right) \varphi^{\prime}$ (rel. Y). The last assertion is obvious.

We shall denote by $\bar{\gamma}$ the homotopy class of \bar{g}, when γ is the class of g.

Similarly, we have
Lemma 1.9. There is a map $\tilde{f}: S X \rightarrow C_{g}$ such that

$$
\begin{array}{ll}
\tilde{f}(x, t)=(f(x), 2 t), & 0 \leqq t \leqq 1 / 2, \quad x \in X \\
\tilde{f}(x, t) \in Z, & 1 / 2 \leqq t \leqq 1, \quad
\end{array}
$$

hence $k_{g} \tilde{f} \simeq S f: S X \rightarrow S Y$, where $k_{g}: C_{g} \rightarrow S Y$ is the shrinking map of $Z \subset C_{g}$. For any two such maps $\tilde{f}_{1}, \tilde{f}_{2}$, we can define a map $d\left(\tilde{f}_{1}, \tilde{f}_{2}\right): S X \rightarrow Z$ such that $\tilde{f}_{1} \simeq\left(d \vee \tilde{f}_{2}\right) \mathcal{P}: S X \rightarrow C_{g}$ where ρ is the map defined in (1.1). Conversely, for any map $h: S X \rightarrow Z$, the map $\tilde{f}^{\prime}=(h \vee \tilde{f}) \varphi$ satisfies the same condition as \tilde{f}.

We shall denote by $\tilde{\alpha}$ the homotopy class \tilde{f}, when α is the class of f.

2. Functional operations

In the remainder of this paper, unless otherwise stated, we shall be concerned with only stable elements (of homotopy and cohomology groups).

Let $\alpha \in \pi_{q}(G ; n, H), \beta \in \pi_{n}(H ; X)$, and $\gamma \in \pi(X, Y)$ be elements such that $\alpha_{X}(\beta)=0$ and $\gamma_{*}(\beta)=0$. Then, by Lemma 1.8 and 1.9, there are elements $\tilde{\alpha} \in \pi_{q+1}\left(G ; C_{\beta}\right) / j_{\beta_{*}} \pi_{q+1}(G ; X)$ and $\bar{\gamma} \in \pi\left(C_{\beta}, Y\right) / k_{\beta}^{*} \pi_{n+1}(H ; Y)$ such that $j_{\beta}^{*} \bar{\gamma}=\gamma, k_{\beta *} \tilde{\alpha}=S \alpha$ where $j_{\beta}: X \rightarrow C_{\beta}$ is the injection and $k_{\beta}: C_{\beta} \rightarrow$ $M(n+1, H)$ is the shrinking map of X. So that we can define an element $\{\gamma, \beta, \alpha\}$ in $\pi_{q+1}(G ; Y)$ modulo $\gamma_{*} \pi_{q+1}(G ; X)+(S \alpha)^{*} \pi_{n+1}(H ; Y)$ to be the coset of $\bar{\gamma} \cdot \widetilde{\alpha}$. It is called the secondary composition of $\gamma, \beta, \alpha[10 ;$ IV], [12; Chap. 1].

The following properties of the secondary compositions are wellknown [10], [12].

Lemma 2.1. (i) $\left\{\gamma_{1}+\gamma_{2}, \beta, \alpha\right\} \equiv\left\{\gamma_{1}, \beta, \alpha\right\}+\left\{\gamma_{2}, \beta, \alpha\right\}$ mod. $\operatorname{Im} \gamma_{1 *}+\operatorname{Im} \gamma_{2 *}+\operatorname{Im}(S \alpha)^{*}$,
(ii) $\left\{\gamma, \beta_{1}+\beta_{2}, \alpha\right\} \equiv\left\{\gamma, \beta_{1}, \alpha\right\}+\left\{\gamma, \beta_{2}, \alpha\right\} \quad \bmod \operatorname{Im} \gamma_{*}+\operatorname{Im}(S \alpha)^{*}$,
(iii) $\left\{\gamma, \beta, \alpha_{1}+\alpha_{2}\right\} \equiv\left\{\gamma, \beta, \alpha_{1}\right\}+\left\{\gamma, \beta, \alpha_{2}\right\}$

$$
\bmod . \operatorname{Im} \gamma_{*}+\operatorname{Im}\left(S \alpha_{1}\right)^{*}+\operatorname{Im}\left(S \alpha_{2}\right)^{*}
$$

Lemma 2.2. (i) $S\{\gamma, \beta, \alpha\} \equiv-\{S \gamma, S \beta, S \alpha\}$

$$
\bmod \operatorname{Im}(S \gamma)_{*}+\operatorname{Im}\left(S^{2} \alpha\right)^{*}
$$

(ii) if $\delta \cdot \gamma=0, \delta\{\gamma, \beta, \alpha\} \equiv-\{\delta, \gamma, \beta\} \cdot(S \alpha) \quad \bmod \operatorname{Im} \delta_{*}(S \alpha)^{*}$.

When $q=N+k+l+m, \quad n=N+k+l, X=M(N+k, H) \quad Y=M(N, H)$ for a sufficiently large integer N and $G=H$, we can define a stable secondary composition $\langle\gamma, \beta, \alpha\rangle$ such that $\langle\gamma, \beta, \alpha\rangle=(-1)^{N}\{\gamma, \beta, \alpha\}$ ([10], [12]).

Let $\theta \in H^{q}(\pi, n ; G), f: X \rightarrow Y$. A functional cohomological operation
[6], $\theta_{f}: H^{n}(Y ; \pi) \cap \operatorname{Ker} f^{*} \cap \operatorname{Ker} \theta_{Y} \rightarrow H^{q-1}(X ; G) / f^{*} H^{q-1}(Y ; G)+$ $(\Omega \theta)_{X} H^{n-1}(X ; \pi)$ is defined by

$$
\theta_{f}(u)=\text { the coset of } \Delta^{*-1} \theta_{(Y, X)} j^{*-1}(u)
$$

for $u \in H^{n}(Y ; \pi) \cap \operatorname{Ker} f^{*} \cap \operatorname{Ker} \theta_{Y}$ (i.e. $\left.f^{*}(u)=0, \theta_{Y}(u)=0\right)$.

The functional cohomological operation θ_{f} is also denoted by θ_{∞}, where α is the homotopy class of f.

The following properties of the functional cohomological operations are well-known [6], [9].

Lemma 2.3. Let $f: X \rightarrow Y, \theta \in H^{n^{\prime}}\left(\pi, n ; \pi^{\prime}\right), \theta^{\prime} \in H^{q}\left(\pi^{\prime}, n^{\prime} ; G\right)$, then (i) for $u \in H^{n}(Y ; \pi) \cap \operatorname{Ker} f^{*} \cap \operatorname{Ker} \theta_{Y}$,

$$
\left(\theta^{\prime} \theta\right)_{f}(u) \equiv \theta^{\prime}\left(\theta_{f}(u)\right) \quad \bmod \operatorname{Im}\left(\Omega\left(\theta^{\prime} \theta\right)\right)_{*}+\operatorname{Im} f^{*}
$$

(ii) for $u \in H^{n}(Y ; \pi) \cap \operatorname{Ker} f^{*} \cap \operatorname{Ker}\left(\theta^{\prime} \theta\right)_{Y}$,

$$
\left(\theta^{\prime} \theta\right)_{f}(u) \equiv \theta_{f}^{\prime}(\theta(u)) \quad \bmod \operatorname{Im}\left(\Omega \theta^{\prime}\right)_{*}+\operatorname{Im} f^{*}
$$

Lemma 2.4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $\theta \in H^{q}(\pi, n ; G)$, then (i) for $u \in H^{n}(Z ; \pi) \cap \operatorname{Ker} \theta_{Z} \cap \operatorname{Ker} g^{*}$,

$$
\theta_{g f}(u) \equiv f^{*}\left(\theta_{g}(u)\right) \quad \bmod . \operatorname{Im}(\Omega \theta)_{*}+\operatorname{Im} f^{*} g^{*},
$$

(ii) for $u \in H^{n}(Z ; \pi) \cap \operatorname{Ker} \theta_{Z} \cap \operatorname{Ker} f^{*} g^{*}$,

$$
\theta_{g f}(u) \equiv \theta_{f}\left(g^{*}(u)\right) \quad \bmod . \operatorname{Im}(\Omega \theta)_{*}+\operatorname{Im} f^{*}
$$

Lemma 2.5. Let X be the suspension of a space X^{\prime}, and $\alpha, \beta \in \pi(X, Y)$, $\theta \in H^{q}(\pi, n ; G) . \quad$ Then,

$$
\theta_{\alpha+\beta}(u)=\theta_{\alpha}(u)+\theta_{\beta}(u) \quad \bmod . \operatorname{Im}(\Omega \theta)_{*}+\operatorname{Im} \alpha^{*}+\operatorname{Im} \beta^{*},
$$

for $u \in H^{n}(Y ; \pi) \cap \operatorname{Ker} \theta_{Y} \cap \operatorname{Ker} \alpha^{*} \cap \operatorname{Ker} \beta^{*}$.
Let $\alpha \in \pi_{q}(G ; n, H), \beta \in \pi_{n}(H ; X), \gamma \in \pi(X, Y)$ be elements such that $\beta \alpha=0, \gamma \cdot \beta=0$. Then $\{\gamma, \beta, \alpha\}$ is defined to be the coset of $\bar{\gamma} \cdot \widetilde{\alpha}$. If $\{\gamma, \beta, \alpha\} \equiv 0$, there are $\widetilde{\alpha}_{0}$ and $\bar{\gamma}_{0}$ such that $\bar{\gamma}_{0} \ddot{\alpha}_{0}=0$. Hence, we have

Lemma 2.6. If $\{\gamma, \beta, \alpha\} \equiv 0$, there are elements ${\widetilde{\alpha_{0}}}_{0} \in \pi_{q+2}\left(G ; C_{\bar{\gamma}_{0}}\right) /$ $j_{\gamma_{0} * \pi_{q+2}}(G ; Y)$ and $\bar{\gamma}_{0} \in \pi\left(c_{\tilde{\alpha}_{0}}, Y\right) / k_{\tilde{x}_{0}}^{*} \pi_{q+2}(G ; Y)$ such that $j_{\tilde{\alpha}_{0}}^{*} \overline{\bar{\gamma}}_{0}=\bar{\gamma}_{0}, k_{\bar{\gamma}_{0} *} \widetilde{\widetilde{\alpha}}_{0}=$ S $\ddot{\alpha}_{0}$, (i.e. $j_{\beta}^{*} j_{\widetilde{\alpha}_{0}}^{*} \bar{\gamma}_{0}=\gamma, k_{\beta *} k_{\gamma_{0}} \widetilde{\widetilde{\alpha}}_{0}=S^{2} \alpha$), where $j_{\tilde{\alpha}_{0}}: C_{\beta} \rightarrow C_{\tilde{\alpha}_{0}}, j_{\bar{\gamma}_{0}}: Y \rightarrow C_{\bar{\gamma}_{0}}$ are injections and $k_{\tilde{\alpha}_{0}}: C_{\tilde{\alpha}_{0}} \rightarrow M(q+2, G), k_{\bar{\gamma}_{0}}: C_{\bar{\gamma}_{0}} \rightarrow S C_{\beta}$ are shrinking maps of C_{β} and Y respectively.

The following is a direct consequence of the definition of θ_{f}.
Leema 2.7. Let $f: X \rightarrow Y$ be a map, and $\theta \in H^{q}(\pi, n ; G)$. If $\theta_{f}(u) \equiv v$ for $u \in H^{n}(Y ; \pi)$ and $v \in H^{q-1}(X ; G)$, then $\theta\left(j^{*-1}(u)\right) \equiv \Delta^{*}(v)$ $\bmod . \Delta^{*}\left(\Omega \theta_{X}\right) H^{n-1}(X ; \pi)$.

3. p-component of homotopy groups of sphere [10]

In the following, p denotes an odd prime.
In [10], Toda determined the generators and the relations of the p-primary component $G_{k}(p)$ of the k-th stable homotopy groups of sphere for $k<2 p^{2}(p-1)-3$.

In this section we recall briefly his results.
Theorem 3.1. [10; Theorem 4.15]

$$
\begin{array}{ll}
G_{2 r p(p-1)-1}(p)=Z_{p}^{2}=\left\{\alpha_{r p}^{\prime}\right\} & \text { for } 1 \leqq r<p-1, \\
& =Z_{p^{2}}+Z_{p}=\left\{\alpha_{(p-1) p}^{\prime}\right\}+\left\{\alpha_{1} \beta_{1}^{p-1}\right\}
\end{array} \begin{array}{ll}
& \text { for } r=p-1, \\
& \text { for } 1 \leqq t<p^{2} \\
G_{2 t(p-1)-1}(p)=Z_{p}=\left\{\alpha_{t}\right\} & \text { and } t \equiv 0(\text { mod } p), \\
& \text { for } 0 \leqq s<r \leqq p-1, \\
G_{2\left(r_{p}+s\right)(p-1)-2(r-s)}(p)=Z_{p}=\left\{\beta_{1}^{r-s-1} \beta_{s+1}\right\} & \\
G_{2\left(p_{p}+s+1\right)(p-1)-2(r-s)-1}(p)=Z_{p}=\left\{\alpha_{1} \beta_{1}^{r-s-1} \beta_{s+1}\right\} & \text { for } 0 \leqq s<r \leqq p-1 \\
& \text { and } r-s \neq p-1, \\
G_{2 p(p-1)-2 t}(p)=Z_{p}=\left\{\beta_{1}^{p}\right\} & \text { otherwise for } k<2 p^{2}(p-1)-3 .
\end{array}
$$

There is a sequence of spaces $X_{0}, X_{1}, \cdots, X_{k}, \cdots$ such that X_{k+1} is a fibre space over X_{k} with the fibre $K\left(\pi_{N+k}\left(S^{N}\right), N+k-1\right)$ for a sufficiently large integer N, and with the projection $p_{k+1}: X_{k+1} \rightarrow X_{k}$, where $X_{0}=S^{N}$. It is easily seen that X_{k} is also a fibre space over S^{N} with the projection $p_{k}^{\prime}=p_{1} \cdots p_{k-1} p_{k}$, and that X_{k} is ($N+k-1$)-connected and $p_{k}^{\prime} *: \pi_{i}\left(X_{k}\right)$ $\approx \pi_{i}\left(S^{N}\right)$ for $i \geqq N+k$.

From (3.10) and Theorem 3.11 of [10], we have
Theorem 3.2. $H^{N+k}\left(X_{k} ; Z_{p}\right)$ is generated by an element

$$
\begin{array}{ll}
a_{t} & \text { for } k=2 t(p-1)-1,1 \leqq t<p^{2} \text { and } t \neq(p-1) p \\
b_{s}^{(s-1)} & \text { for } k=2(s p+s-1)(p-1)-2 \text { and } 1 \leqq s<p
\end{array}
$$

and $a_{(p-1) p}$ is a generator of a subgroup of $H^{N+k}\left(X_{k} ; Z_{p}\right)=Z_{p}+Z_{p}$ for $k=2(p-1) p(p-1)-1$. They satisfy the relations :

$$
\begin{aligned}
& R_{t} a_{t}=0 \quad \text { for } 1 \leqq t<p^{2} \quad \text { and } \quad \Delta \mathcal{P}^{1} \Delta a_{r_{p-1}}=0 \quad \text { for } 1 \leqq r<p, \\
& \mathcal{P}^{1} b_{s}^{(s-1)}=0 \text { and } W_{s} b_{s}^{(s-1)}=0 \quad \text { for } 1 \leqq s<p
\end{aligned}
$$

where $R_{t}=(t+1) \mathcal{P}^{1} \Delta-t \Delta \mathcal{P}^{1}, W_{s}=(s+1) \mathcal{P}^{p} \mathcal{P}^{1} \Delta-s \mathcal{P}^{p+1} \Delta+(s-1) \Delta \mathcal{P}^{p+1}$.
Let $K^{\prime}=S^{N} \bigcup_{p_{k}^{\prime}} T X_{k}, k=2 p(p-1)-2$, then $\Delta^{*}: H^{i}\left(X_{k} ; Z_{p}\right) \approx H^{i+1}\left(K^{\prime} ; Z_{p}\right)$ $(i \neq N)$, and $j^{*}: H^{N}\left(K^{\prime} ; Z_{p}\right) \approx H^{N}\left(S^{N} ; Z_{p}\right)$, where Δ^{*} is the coboundary homomorphism and $j: S^{N} \rightarrow K^{\prime}$ is the injection. Put $a_{0}=j^{*}\left(e^{N}\right) \in H^{N}\left(K^{\prime} ; Z_{p}\right)$ for the fundamental class $e^{N} \in H^{N}\left(S^{N} ; Z_{p}\right)$, then by (3.12) of [10]

$$
\begin{equation*}
\Delta b_{1}=\mathcal{P}^{p} a_{0} \tag{3.1}
\end{equation*}
$$

in $H^{N+2 p(p-1)}\left(K^{\prime} ; Z_{p}\right)$ where $b_{1}=\Delta^{*}\left(b_{1}^{(0)}\right)$.
Finally, (4.10) of [10] implies
Lemma 3.1. Let K be an ($N+k-1$)-connected finite cell-complex, $f: K \rightarrow S^{N}$ a map. Then there is a map $g: K \rightarrow X_{k}$ such that $f=p_{k}^{\prime} g$.

4. Additive structure of $\boldsymbol{\pi}_{\boldsymbol{k}}$

Let N denote a sufficiently large integer.
Since the mapping cone of $p \iota \in \pi_{N}\left(S^{N}\right)$ is an $M\left(N, Z_{p}\right)$ by (1.4) and (1.3), we have the following exact sequences :

$$
\begin{align*}
& \cdots \longrightarrow G_{k} \xrightarrow{(p \iota)_{*}} G_{k} \xrightarrow{j_{*}} \pi_{N+k}\left(M_{p}^{N}\right) \xrightarrow{\tau} G_{k-1} \xrightarrow{(p \iota)_{*}} G_{k-1} \longrightarrow \cdots \tag{4.1}\\
& \cdots \longrightarrow \bar{G}_{k+1} \xrightarrow{(p \iota)^{*}} \bar{G}_{k+1} \xrightarrow{k^{*}} \pi_{k} \xrightarrow{j^{*}} \bar{G}_{k} \xrightarrow{(p \iota)^{*}} \bar{G}_{k} \longrightarrow \cdots
\end{align*}
$$

where $M_{p}^{N}=M\left(N, Z_{p}\right)$ and $\bar{G}_{k}=\pi_{N+k}\left(M_{p}^{N}\right)$.
Let G_{k}^{\prime} be the subgroup of G_{k} consisting of the elements whose orders are finite and prime to p, then $(p)_{*}: G_{k}^{\prime} \rightarrow G_{k}^{\prime}$ is an isomorphism. So that they have no influences upon $\pi_{N+k}\left(M_{p}^{N}\right)$ in (4.1). Thus, we may replace G_{k} by $G_{k}(p)$ in (4.1) for $k>0$.

Since p is an odd prime, the following is a direct consequence of (4.1) and (4.2).

Proposition 4. 1. $\pi_{-1}=Z_{p}=\left\{k^{*} j_{*}(\iota)\right\}$ and $\pi_{0}=Z_{p}=\left\{j^{*-1} j_{*}(\iota)\right\}$, where $\iota \in G_{0}$ is the class of the identity map of S^{N}.

It is readily seen that the set $\pi_{*}=\sum_{k} \pi_{k}$ admits a ring structure with respect to the composition such that $\pi_{i} \cdot \pi_{j}<\pi_{i+j}$. In particular, we have

Corollary 4.1. For any k, π_{k} is a π_{0}-module.
Since $\pi_{0}=Z_{p}$ is a field, π_{k} is a vector space over Z_{p}. Hence we have

Corollary 4.2. π_{*} is an algebra over Z_{p}.
PROPOSITION 4.2. $\pi_{k}=G_{k+1} \otimes Z_{p}+G_{k} \otimes Z_{p}+G_{k} * Z_{p}+G_{k-1} * Z_{p}$, where \otimes and $*$ denote the tensor and torsion product, respectively.

Proof. We may identify $\left(G_{k}\right)_{p}=G_{k} / p G_{k}$ with $G_{k} \otimes Z_{p}$ and ${ }_{p}\left(G_{k}\right)$ $=\left\{g \in G_{k} \mid p g=0\right\}$ with $G_{k} * Z_{p}$. So, by the exactness of (4.1) and since p is an odd prime,

$$
0 \longrightarrow G_{k} \otimes Z_{p} \xrightarrow{j_{*}} \bar{G}_{k} \xrightarrow{\tau} G_{k-1} * Z_{p} \longrightarrow 0
$$

is a split exact sequence. Hence, we have $\bar{G}_{k}=j_{*}\left(G_{k} \otimes Z_{p}\right)+\boldsymbol{\tau}^{-1}\left(G_{k-1} * Z_{p}\right)$ $=G_{k} \otimes Z_{p}+G_{k-1} * Z_{p}$. By (4.2), we have also a split exact sequence

$$
0 \longrightarrow \bar{G}_{k+1} \otimes Z_{p} \xrightarrow{k^{*}} \pi_{k} \xrightarrow{j^{*}} \bar{G}_{k^{*}} * Z_{p} \longrightarrow 0 .
$$

We shall denote a right inverse of τ (or j^{*}) of an element α by $\tau^{-1}(\alpha)$ (or $j^{*-1}(\alpha)$), though it is not uniquely determined. Since $\left(G \otimes Z_{p}\right) \otimes Z_{p}$ $=\left(G \otimes Z_{p}\right) * Z_{p}=G \otimes Z_{p}$ and $\left(G * Z_{p}\right) \otimes Z_{p}=\left(G * Z_{p}\right) * Z_{p}=G * Z_{p}$, we have

$$
\begin{aligned}
\pi_{k} & =k^{*} j_{*}\left(G_{k+1} \otimes Z_{p}\right)+j^{*-1} j_{*}\left(G_{k} \otimes Z_{p}\right)+k^{*} \tau^{-1}\left(G_{k} * Z_{p}\right)+j^{*-1} \tau^{-1}\left(G_{k-1} * Z_{p}\right) \\
& =G_{k+1} \otimes Z_{p}+G_{k} \otimes Z_{p}+G_{k^{*}} * Z_{p}+G_{k-1} * Z_{p} .
\end{aligned}
$$

Put $\delta=k^{*} j_{*}(\iota) \in \pi_{-1}$, then $\delta^{2} \in \pi_{-1} \cdot \pi_{-1}<\pi_{-2}=0$, and hence $\delta^{2}=0$.
Let $R_{\delta}, L_{\delta}: \pi_{k} \rightarrow \pi_{k-1}$ be homomorphisms defined by $R_{\delta}(\gamma)=\gamma \cdot \delta, L_{\delta}(\gamma)$ $=\delta \cdot \gamma$, for $\gamma \in \pi_{k}$, respectively. Then, we have

Proposition 4.3. The homomorphism R_{δ} maps $j^{*-1} \tau^{-1}\left(G_{k} * Z_{p}\right)<\pi_{k+1}$ isomorphically onto $k^{*} \tau^{-1}\left(G_{k} * Z_{p}\right) \subset \pi_{k}$ in such a way that $R_{\delta}\left(j^{*-1} \tau^{-1}(\psi)\right)$ $=k^{*} \tau^{-1}(\psi)$, for $\psi \in G_{k} * Z_{p}$. It also maps $j^{*-1} j_{*}\left(G_{k} \otimes Z_{p}\right) \subset \pi_{k}$ isomorphically onto $k^{*} j_{*}\left(G_{k} \otimes Z_{p}\right) \subset \pi_{k-1}$ in such a way that $R_{\delta}\left(j^{*-1} j_{*}(\mathcal{P})\right)=k^{*} j_{*}(\mathcal{P})$, for $\rho \in G_{k} \otimes Z_{p}$.

Proof. It suffice to prove the equalities. By the definition of δ, we have

$$
\begin{aligned}
R_{\delta}\left(j^{*-1} \tau^{-1}(\psi)\right) & =\left(j^{*-1} \tau^{-1}(\psi)\right)\left(k^{*} j_{*}(\iota)\right)=\left(k^{*} j_{*}\right)^{*}\left(j^{*-1} \tau^{-1}(\psi)\right) \\
& =k^{*}\left(j^{*} j^{*-1}\left(\tau^{-1}(\psi)\right)\right)=k^{*} \tau^{-1}(\psi),
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\delta}\left(j^{*-1} j_{*}(\mathcal{P})\right) & =\left(j^{*-1} j_{*}(\mathcal{P})\right)\left(k^{*} j_{*}(\iota)\right)=\left(k^{*} j_{*}\right)^{*}\left(j^{*-1} j_{*}(\mathcal{P})\right) \\
& =k^{*}\left(j^{*} j^{*-1}\left(j_{*}(\mathscr{P})\right)\right)=k^{*} j_{*}(\mathcal{P}) .
\end{aligned}
$$

Proposition 4.4. Assume that an element $\psi \in G_{k}$ satisfies $p \psi=0$ and is not divisible by p, then $L_{\delta}\left(j^{*-1} \tau^{-1}(\psi)\right)=j^{*-1} j_{*}(\psi)$.

Proof. Since $p \psi=0$ and ψ is not divisible by $p, \psi \in G_{k^{*}} Z_{p}$ and $\psi \in G_{k} \otimes Z_{p}$. So that, $j^{*-1} \tau^{-1}(\psi)$ and $j^{*-1} j_{*}(\psi)$ are well-defined. While, since we are only concerned with the stable elements, we may regard τ as k_{*}. Hence

$$
\begin{aligned}
L_{\delta}\left(j^{*-1} \tau^{-1}(\psi)\right) & =\left(k^{*} j_{*}(\iota)\right)\left(j^{*-1} \tau^{-1}(\psi)\right)=\left(k^{*} j_{*}\right)_{*}\left(j^{*-1} k_{*}^{-1}\left(\psi^{\prime}\right)\right) \\
& =j_{*}\left(k_{*} k_{*}^{-1}\left(j^{*-1}(\psi)\right)\right)=j^{*-1} j_{*}(\psi)
\end{aligned}
$$

Corollary 4.3. If $p G_{k}=0$, then L_{δ} maps $j^{*-1} \tau^{-1}\left(G_{k} * Z_{p}\right)<\pi_{k+1}$ isomorphically onto $j^{*-1} j_{*}\left(G_{k} \otimes Z_{p}\right) \subset \pi_{k}$.

Corollary 4.4. Let $\psi \in G_{k}$ be an element of order p and not divisible by p, then $\psi^{\prime} \delta$ and $\delta \psi^{\prime}$ are linearly independent, and $\delta \psi^{\prime} \delta \neq 0$ where $\psi^{\prime}=j^{*-1} \tau^{-1}(\psi) \in \pi_{k+1}$.

Lemma 4.1. Let $\psi^{\prime}=j^{*-1} \tau^{-1}(\psi)$ and $\mathscr{\varphi}^{\prime}=j^{*-1} \tau^{-1}(\mathcal{P})$ for $\psi, \varphi \in G_{*} * Z_{p}$. Then we have $j^{*-1} \tau^{-1}(\psi \varphi)=\psi^{\prime} \delta \varphi^{\prime}$, if $\psi \cdot \varphi \neq 0$.

Proof. By the definition of δ, ψ^{\prime}, and φ^{\prime},

$$
\begin{aligned}
\psi^{\prime} \delta \varphi^{\prime} & =\left(j^{*-1} \tau^{-1}(\psi)\right)\left(k^{*} j_{*}(\varphi)\right)\left(j^{*-1} \tau^{-1}(\varphi)\right)=j^{*}\left(j^{*-1} \tau^{-1}(\psi)\right) \cdot k_{*}\left(j^{*-1} \tau^{-1}(\mathcal{P})\right) \\
& =\tau^{-1}\left(j^{*} j^{*-1}(\psi)\right) \cdot j^{*-1}\left(k_{*} k_{*}^{-1}(\varphi)\right)=j^{*-1} \tau^{-1}(\psi \varphi) .
\end{aligned}
$$

Lemma 4.2. Let $\psi^{\prime}=j^{*-1} \tau^{-1}(\psi), \varphi^{\prime}=j^{*-1} \tau^{-1}(\varphi)$, for $\psi, \varphi \in G_{*} * Z_{p}$. Then, we have $\psi^{\prime} \mathcal{\varphi}^{\prime} \equiv j^{*-1} \tau^{-1}(\langle\psi, p \iota, \varphi\rangle) \bmod . j^{*-1} \tau^{-1}\left(\psi \cdot G_{*}+G_{*} \cdot \varphi\right)$.

Proof. Let $\psi \in G_{k}, \varphi \in G_{l}$ and $\Phi: S^{N+k+l+1} \rightarrow S^{N}$ represent an element in $\langle\psi, p \iota, \phi\rangle$. Then, by the definition of secondary composition, it decomposes into a composition of two maps $S^{N+k+l+1} \xrightarrow{\widetilde{\mathcal{P}}} M_{p}^{N+l} \xrightarrow{\widetilde{\psi}} S^{N}$ where $\widetilde{\mathscr{P}}$ is an element such that $k_{*}(\widetilde{\mathcal{P}})=\varphi, \bar{\psi}$ is an element such that $j^{*}(\bar{\psi})=\psi$, for the shrinking map $k: M_{p}^{N+l} \rightarrow S^{N+l+1}$ of $S^{N+l} \subset M_{p}^{N+l}$, and the injection $j: S^{N+l} \rightarrow M_{p}^{N+l}$. So that, $j^{*-1} \tau^{-1}(\Phi): M_{p}^{N+k+l+1} \rightarrow M_{p}^{N-1}$ decomposes into a composition $M_{p}^{N+k+l+1} \xrightarrow{\varphi^{\prime \prime}} M_{p}^{N+l} \xrightarrow{\psi^{\prime \prime}} M_{p}^{N-1}$. But, by the definition, $\varphi^{\prime \prime}=j^{*-1} k_{*}^{-1}(\mathcal{P})=j^{*-1} \tau^{-1}(\mathcal{P})=\phi^{\prime}$ and $\psi^{\prime \prime}=j^{*-1} \tau^{-1}(\psi)=\psi^{\prime}$. Hence, we have $j^{*-1} \tau^{-1}(\langle\psi, p \iota, \varphi\rangle) \equiv \psi^{\prime} \varphi^{\prime}$.

Toda [11] proved that there are elements $\alpha_{t} \in\left\langle\alpha_{t-1}, p t, \alpha_{1}\right\rangle$ of order p in $G_{2 t(p-1)-1}$ for all integers $t \geqq 1$. Recently, he has also proved that the element α_{t} is not divisible by p if $t \not \equiv 0(\bmod p)$.

Therefore, by Lemma 4.2 and Corollary 4.4, we have
Proposition 4. 5. For all $t \geqq 1, \alpha^{t}=j^{*-1} \tau^{-1}\left(\alpha_{t}\right) \neq 0$, and for $t \neq 0$ $(\bmod p), \delta \alpha^{t} \delta \neq 0$.

Now we shall show some examples of the additive structures of π_{k}.
Example 4.1. By Theorem 3.1 and the above Proposition, $\pi_{2 t(p-1)}$ $=\left\{\alpha^{t}\right\}$, for $1 \leqq t<p^{2}, t \neq(p-1) p$, and $\alpha^{(p-1) p}$ generates a subgroup contained in $\pi_{2\left(\boldsymbol{p}^{-1)} \boldsymbol{p}^{(p-1)}\right.}$.

Example 4.2. By Corollary 4.3 and the above Proposition, $\alpha^{t} \delta$ and
$\delta \alpha^{t}$ are linearly independent in $\pi_{2 t(p-1)-1}$ for $t \equiv 0(\bmod p)$. In particular, $\pi_{4(p-1)-1}=\left\{\alpha^{2} \delta\right\}+\left\{\delta \alpha^{2}\right\}$.

Example 4.3. By Theorem 3.1 and Propositions 4.3, 4.4, $\pi_{2\left(s p^{+s-1)}\right.}(p-1)-1$ $=\left\{\alpha^{s p+s-1} \delta\right\}+\left\{\delta \alpha^{s p+s-1}\right\}+\left\{\beta_{s}^{\prime}\right\}$, for $1 \leqq s<p$, where $\beta_{s}^{\prime}=j^{*-1} \tau^{-1}\left(\beta_{s}\right)$, $\beta_{s} \in G_{2(s p+s-1)(p-1)-2}$. Since β_{s} is of order p and not divisible by p, by Corollary 4.4, $\beta_{s}^{\prime} \delta$ and $\delta \beta_{s}^{\prime}$ are linearly independent and $\delta \beta_{s}^{\prime} \delta \neq 0$.

Example 4.4. Since $\alpha_{1} \beta_{1}^{r} \beta_{s}$ is of order p and not divisible by p in G_{*} if $2 \leqq s<p, 0 \leqq r$, and $r+s<p$, we have $\delta \psi^{\prime} \delta \neq 0$ for $\psi^{\prime}=j^{*-1} \tau^{-1}\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right)$. While, by Lemma 4.1, we have $j^{*-1} \tau^{-1}\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right)=\alpha \delta\left(\beta_{1}^{\prime} \delta\right)^{r} \beta_{s}^{\prime}$ for β_{s}^{\prime} in the above example. Hence, $\delta \alpha \delta\left(\beta_{1}^{\prime} \delta\right)^{r} \beta_{s} \delta \neq 0$ if $2 \leqq s<p, 0 \leqq r$, and $r+s<p$.

Example 4.5. Similarly, $\delta\left(\beta_{1}^{\prime} \delta\right)^{p} \neq 0$ because β_{1}^{n} is of order p and not divisible by p in G_{*}.

5. Some base of $\boldsymbol{\pi}_{*}$

The following is easily verified.
Lemma 5.1. $H^{i}\left(M_{p}^{N} ; Z_{p}\right)=Z_{p}$ for $i=0, N, N+1$. Let e^{N} and e^{N+1} be generators, then $\Delta e^{N}=e^{N+1}$ for the mod p Backstein operator $\Delta ; H^{i}\left(M_{p}^{N} ; Z_{p}\right)$ $=0$ for $i \neq 0, N, N+1$.

For $\delta=k^{*} j_{*}(\iota) k^{*} j_{*}(\iota) \in \pi_{-1}$, it is clear that

$$
\begin{equation*}
\delta^{*} e_{2}^{N}=(-1)^{N} e_{1}^{N} \quad \text { and } \quad \delta^{*} e^{N+1}=0 \tag{5.1}
\end{equation*}
$$

where $e_{1}^{N} \in H^{N}\left(M_{p}^{N-1} ; Z_{p}\right), e_{2}^{N} \in H^{N}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+1} \in H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ are the generators.

Conversely, it is easily seen that the element $\delta^{\prime} \in \pi_{-1}$ satisfying (5.1) is uniquely determined and coincides with δ.

Lemma 5.2. Let $\psi^{\prime}=j^{*-1} \tau^{-1}(\psi), \psi \in G_{k} * Z_{p}$, and $\theta \in A^{k-1}$ be a cohomological operation. Then, $\theta_{\psi} e^{N}=(-1)^{N} x e^{N+k}$, if and only if $\theta_{\psi^{\prime}} \bar{e}^{N+1}$ $=(-1)^{N+1} x \bar{e}^{N+k+1}$ where $x \in Z_{p}$, and $e^{N} \in H^{N}\left(S^{N} ; Z_{p}\right), e^{N+k} \in H^{N+k}\left(S^{N+k} ; Z_{p}\right)$, $\bar{e}^{N+1} \in H^{N+1}\left(M_{p}^{N+1} ; Z_{p}\right)$ and $\bar{e}^{N+k+1} \in H^{N+k+1}\left(M^{N+k+1} ; Z_{p}\right)$ are the generators.

Proof. Note that if $j: S^{N} \rightarrow M_{p}^{N}$ is the injection and $k: M_{p}^{N} \rightarrow S^{N+1}$ is the map shrinking $S^{N} \subset M_{p}^{N}$, then $j^{*}\left(\bar{e}^{N}\right)=e^{N}$ and $k^{*}\left(e^{N+1}\right)=\bar{e}^{N+1}$.

Let $\theta_{\psi} e^{N}=(-1)^{N} x e^{N+k}$ then since τ may be regarded as k_{*} Lemma 2.4 implies,

$$
j^{*} \theta_{\psi^{\prime} \bar{e}^{N+1}=j^{*}\left(\theta_{\psi^{\prime}} k^{*}\left(e^{N+1}\right)\right) \equiv \theta_{\left.j^{*} k * * \psi^{\prime}\right)}\left(e^{N+1}\right)=\theta_{\psi}\left(e^{N+1}\right)=(-1)^{N+1} x e^{N+k+1} . . .2{ }^{2} .}
$$

While, $j^{*}: H^{N+k+1}\left(M_{p}^{N+k+1} ; Z_{p}\right) \rightarrow H^{N+k+1}\left(S^{N+k+1} ; Z_{p}\right)$ is an isomorphism
and the modulus groups are contained in $\theta_{*} H^{N+1}\left(M_{p}^{N+k+1} ; Z_{p}\right)+$ $\psi^{\prime} * H^{N+k+1}\left(M_{p}^{N} ; Z_{p}\right)=0$, so we have $\theta_{\psi^{\prime}} \bar{e}^{N+1}=(-1)^{N+1} x \bar{e}^{N+k+1}$. Conversely, let $\theta_{\psi} \bar{e}^{N+1}=(-1)^{N+1} x \bar{e}^{N+k+1}$ and $\theta_{\psi} e^{N}=(-1)^{N} y e^{N+k}$, then the above argument shows $x=y$.

Next, let $\alpha_{1} \in G_{2 p^{-3}}$ be the element defined [10; (4.5)] which satisfies $\mathcal{P}_{\alpha_{1}}^{1} e^{N}=(-1)^{N} e^{N+2 p-3}$ for the functional operation $\mathcal{P}_{\alpha_{1}}^{1}$. Therefore for $\alpha=j^{*-1} \tau^{-1}\left(\alpha_{1}\right) \in \pi_{2 p^{-2}}$ we have by the above lemma

$$
\begin{equation*}
\mathcal{P}_{\alpha}^{1} e^{N+1}=(-1)^{N+1} e^{N+2 p-2} \tag{5.2}
\end{equation*}
$$

where $e^{N+1} \in H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+2 p-2} \in H^{N+2 p-2}\left(M_{p}^{N+2 p-2} ; Z_{p}\right)$ are the generators.

Conversely, again by the above lemma, the element $\alpha^{\prime} \in \pi_{2 p^{-2}}$ satisfying (5.2) is uniquely determined and coincides with α.

Proposition 5.1. $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}$.
Proof. By Example 4.2, $\pi_{4(p-1)-1}=\left\{\alpha^{2} \delta\right\}+\left\{\delta \alpha^{2}\right\}$, so we may put $\alpha \delta \alpha=x \alpha^{2} \delta+y \delta \alpha^{2}$ with some coefficients x and y. Since $\delta^{2}=0, \delta \alpha \delta \alpha-x \delta \alpha^{2} \delta$ $=\delta \alpha(\delta \alpha-x \alpha \delta)=0$. Hence, by Lemma 1.8, there is a map $f: K \rightarrow M_{p}^{N}$ such that the class of the restriction $f \mid M_{p}^{N+2(p-1)-1}$ is $\delta \alpha$, where K $=M_{p}^{N+2 p-3} \bigcup_{\psi} T M_{p}^{N+4 p-6}, \psi=\delta \alpha-x \alpha \delta$. Hence, by Lemmas 2.4, 2.5, 2.7, 5.1, and (5.1), (5.2), we have

$$
\begin{aligned}
& \mathcal{P}_{j}^{1} e^{N}=e^{N+2 p-3} \quad \text { for } e^{N} \in H^{N}\left(M_{p}^{N} ; Z_{p}\right) \text { and } e^{N+2 p-3} \in H^{N+2 p-3}\left(K ; Z_{p}\right), \\
& \mathcal{P}^{1} e^{N+k}=e^{N+k+2 p-2}, \quad \mathcal{P}^{1} e^{N+k+1}=x e^{N+k+2 p-1} \quad \text { for } e^{N+k+i} \in H^{N+k+i}\left(K ; Z_{p}\right),
\end{aligned}
$$

where $k=2 p-3$ and $i=0,1,2 p-2,2 p-1$. By Lemma 1.7 (i.e. the Adem's relation), $2 \mathcal{P}^{1} \Delta \mathcal{P}^{1}=\mathcal{P}^{1} \mathcal{P}^{1} \Delta+\Delta \mathcal{P}^{1} \mathcal{P}^{1}$, and by Lemmas 2.3 and 2.5,

$$
2 x e^{N+k+2 p-1}=2 \mathcal{P}^{1} \Delta \mathcal{P}_{f}^{1} e^{N}=\mathcal{P}^{1} \mathcal{P}_{f}^{1} \Delta e^{N}+\Delta \mathcal{P}^{1} \mathcal{P}_{f}^{1} e^{N}=e^{N+k+2 p-1}
$$

So that $x=1 / 2$. Similarly, $y=1 / 2$ is deduced from $(\alpha \delta-y \delta \alpha) \alpha \delta=0$.
Corollary 5.1. (i) $\alpha^{s} \delta \alpha^{t}=t \quad \alpha^{s+t-1} \delta \alpha+(1-t) \alpha^{s+t} \delta, \quad$ for $s, t \geqq 0$.
(ii) $(s+t) \alpha^{s} \delta \alpha^{t}=s \alpha^{s+t} \delta+t \delta \alpha^{s-t}$, for $s, t \geqq 0$.
(iii) $\delta \alpha^{r p}=\alpha^{r} p \delta$, and $\delta \alpha^{r} \phi=0$, for $r \geqq 1$.
(iv) $\alpha^{s} \delta \alpha^{t} \delta=\delta \alpha^{t} \delta \alpha^{s}=t \alpha^{s+t-1} \delta \alpha \delta$, for $s, t \geqq 0$.

Proof. (i) Since $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}, 2 \alpha^{2} \delta \alpha=\alpha^{3} \delta+\alpha \delta \alpha^{2}$, so $\alpha \delta \alpha^{2}=2 \alpha^{2} \delta \alpha$ $-\alpha^{3} \delta$. Thus, inductively we have $\alpha \delta \alpha^{t}=t \alpha^{t} \delta \alpha+(1-t) \alpha^{t+1} \delta$. Hence, by multiplying α^{s-1} to the left, $\alpha^{s} \delta \alpha^{t}=t \alpha^{s+t-1} \delta \alpha+(1-t) \alpha^{s+t} \delta$.
(ii) By (i), we have $\delta \alpha^{s+t}=(s+t) \alpha^{s+t-1} \delta \alpha+(1-(s+t)) \alpha^{s+t} \delta$, so that $\alpha^{s+t-1} \delta \alpha$ $=\frac{1}{s+t}\left(\delta \alpha^{s+t}-(1-s-t) \alpha^{s+t} \delta\right)$ for $s+t \neq 0(\bmod p)$, and $\delta \alpha^{s+t}=\alpha^{s+t} \delta$ for
$s+t \equiv 0(\bmod p)$. Hence, by (i), we have $(s+t) \alpha^{s} \delta \alpha^{t}=s \alpha^{s+t} \delta+t \delta \alpha^{s+t}$. (iii) follows immediately from (ii), and (iv) follows immediately from (i) and (ii).

Corollary 5.2. For $t \geqq 1, \alpha^{t} \delta$ and $\alpha^{t-1} \delta \alpha$ are linearly independent, and $\alpha^{t-1} \delta \alpha \delta \neq 0$.

Proof. Let $x \alpha^{t} \delta+y \alpha^{t-1} \delta \alpha=0$, then, by multiplying δ to the right, we have $y \alpha^{t-1} \delta \alpha \delta=0$. If $\alpha^{t-1} \delta \alpha \delta=0, \alpha^{s} \delta \alpha \delta=0$ for $s \geqq t-1$, so we may suppose $t \neq 0(\bmod p)$. Then, by (ii) of the above Corollary, $t \alpha^{t-1} \delta \alpha \delta$ $=\delta \alpha^{t} \delta$. But, by Proposition 4.6, $\delta \alpha^{t} \delta \neq 0$, which is a contradiction. Hence that, $y=0$ and $x=0$.

Put $\beta_{1}^{\prime}=j^{*-1} \tau^{-1}\left(\beta_{1}\right) \in \pi_{2 p(p-1)-1}$, for $\beta_{1} \in G_{2 p(p-1)-2}$. Let $f: M_{p}^{N+2 p(p-1)-2} \rightarrow$ M_{p}^{N-1} represent β_{1}^{\prime}, then $f^{\prime}=\bar{k} f \neq 0: M_{p}^{N+2 p(p-1)-2} \rightarrow M_{p}^{N} \rightarrow S^{N}$ where \bar{k} is the map shrinking $S^{N-1} \subset M_{p}^{N-1}$. Since $M_{p}^{N+2 p(p-1)-2}$ is $(N+2 p(p-1)-3)$ connected, by Lemma 3.1, there is a map $g: M_{p}^{N+k} \rightarrow X_{k}$ such that $f^{\prime}=p_{k}^{\prime} g$, $k=2 p(p-1)-2$, and $g_{*}: \pi_{i}\left(M_{p}^{N+k}\right) \rightarrow \pi_{i}\left(X_{k}\right)$ is an isomorphism for $i<N+k$ and an epimorphism for $i=N+k$. By the theorem of Whitehead [8; p. 276], $g^{*}: H^{i}\left(X_{k} ; Z_{p}\right) \rightarrow H^{i}\left(M_{p}^{N+k} ; Z_{p}\right)$ is a monomorphism for $i=N+k$. So $g^{*}\left(b_{1}^{(0)}\right)=(-1)^{N} x e^{N+k}$ for the generators $e^{N+k} \in H^{N+k}\left(M_{p}^{N+k} ; Z_{p}\right), \quad b_{1}^{(0)} \in$ $H^{N+k}\left(X_{k} ; Z_{p}\right)$, and a coefficient $x \equiv 0(\bmod p)$.

Let $K=S^{N} \bigcup_{f^{\prime}} T M_{p}^{N+k}, K^{\prime}=S^{N} \bigcup_{p_{k}^{\prime}} T X_{k}$ and $j: S^{N} \rightarrow K, j^{\prime}: S^{N} \rightarrow K^{\prime}$ be the injections. Then, there is a map $\bar{g}: K \rightarrow K^{\prime}$ such that $\bar{g} j=j^{\prime}$, and hence the following diagram is commutative :

So, easily we have $g^{*}\left(a_{0}\right)=e^{N}$ for the generators $a_{0} \in H^{N}\left(K^{\prime} ; Z_{p}\right)$ and $e^{N} \in H^{N}\left(K ; Z_{p}\right)$. While, by (3.1), $\Delta b_{1}=\mathcal{Q}^{p} a_{0}$ for $b_{1}=\Delta^{*}\left(b_{1}^{(0)}\right) \in H^{N+k+1}\left(K^{\prime} ; Z_{p}\right)$. Hence, for $e^{N+k+1}=\Delta^{*}\left(e^{N+k}\right) \in H^{N+k+1}\left(K ; Z_{p}\right)$, we have

$$
\begin{aligned}
\Delta x e^{N+k+1} & =\Delta\left(\Delta^{*}\left(x e^{N+k}\right)\right)=(-1)^{N} \Delta\left(\Delta^{*} g^{*}\left(b_{1}^{(0)}\right)\right) \\
& =(-1)^{N} \Delta\left(\bar{g}^{*} \Delta^{*}\left(b_{1}^{(0)}\right)\right)=(-1)^{N} \Delta \bar{g}^{*}\left(b_{1}\right) \\
& =(-1)^{N} \bar{g}^{*}\left(\Delta b_{1}\right)=(-1)^{N} \bar{g}^{*}\left(\bigodot^{p} a_{0}\right)=(-1)^{N} \bigodot^{p} e^{N} .
\end{aligned}
$$

It is easily seen that the coefficient x does not depend on N. Since $x \equiv 0(\bmod p)$ and Z_{p} is a field, there is a number $x^{\prime} \in Z_{p}$ such that $x x^{\prime} \equiv 1$ $(\bmod p)$.

Let $\beta_{1}^{\prime \prime}=\beta_{1}^{\prime} \cdot\left(x^{\prime} \iota\right) \in \pi_{2 p(p-1)-1}$, then we have $\Delta e^{N+k+1}=(-1)^{N+1} \mathcal{P}_{\beta_{1}^{\prime \prime}}^{\prime \prime} e^{N+1}$
for the generators $e^{N+1} \in H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+k+1}\left(M_{p}^{N+k+1} ; Z_{p}\right), k$ $=2 p(p-1)-2$.

By Corollary 5.2, $\pi_{2\left(p^{+1)(p-1)-1}\right.}=\left\{\alpha^{p+1} \delta\right\}+\left\{\alpha^{p} \delta \alpha\right\}$, so we may put $\alpha \beta_{1}^{\prime \prime}=x \alpha^{p+1} \delta+y \alpha^{p} \delta \alpha$ for some coefficients x and y. Hence, putting

$$
\beta_{1}=\beta_{1}^{\prime \prime}-x \alpha^{p} \delta-y \alpha^{p-1} \delta \alpha,
$$

we have

$$
\alpha \beta_{1}=\alpha \beta_{1}^{\prime \prime}-x \alpha^{p+1} \delta-y \alpha^{p} \delta \alpha=0 .
$$

It is easily verified that

$$
\begin{aligned}
\mathcal{P}_{\beta_{1}}^{n} e^{N+1} & =\mathcal{P}_{\beta_{1}^{\prime \prime}}^{n} e^{N+1}-x \mathcal{P}_{\alpha^{p}}^{p} e^{N+1}-y \mathcal{P}_{\alpha}^{p} p_{p-1} \delta_{\delta_{a}} e^{N+1} \\
& =(-1)^{N+1} \Delta e^{N+2 p(p-1)-1} .
\end{aligned}
$$

By Theorem 3.1 and Corollary 5.2,

$$
\alpha^{*}: \pi_{2(p+1)(p-1)-1} \rightarrow \pi_{2(p+2)(p-1)-1}
$$

is an isomorphism. While, $\alpha_{*}\left(\beta_{1} \alpha\right)=\alpha \beta_{1} \alpha=0$, so $\beta_{1} \alpha=0$. Thus, we have
Proposition 5.2. There is an element $\beta_{1} \in \pi_{2 p(p-1)-1}$ such that

$$
\begin{equation*}
\mathcal{P}_{\beta_{1}}^{p} e^{N+1}=(-1)^{N+1} \Delta e^{N+2 p(p-1)-1} \tag{5.3}
\end{equation*}
$$

for the generators $e^{N+1} \in H^{N+1}\left(M_{p}^{N} ; Z_{p}\right)$ and $e^{N+k} \in H^{N+k}\left(M_{p}^{N+k} ; Z_{p}\right), k$ $=2 p(p-1)-1$, and $\alpha \beta_{1}=\beta_{1} \alpha=0$.

Conversely, it is easily seen that the element $\tilde{\beta}_{1} \in \pi_{2 p^{(p-1)-1}}$ satisfying (5.3) and $\alpha \tilde{\beta}_{1}=\tilde{\beta}_{1} \alpha=0$ is uniquely determined and coincides with β_{1}.

Since $\alpha \beta_{1}=\beta_{1} \alpha=0$, we can define the secondary composition $\left\{\beta_{1}, \alpha, \beta_{1}\right\}$. If $\left\{\beta_{1}, \alpha, \beta_{1}\right\} \equiv 0$, by Lemma 2.6 , there is a map $f: K \rightarrow M_{p}^{N-1}$ such that the class of the restriction $f \mid M_{p}^{N+k}$ is β_{1} where $K=M_{p}^{N+k} \bigcup_{\alpha} T M_{p}^{N+k+2(p-1)}$ $\bigcup_{\beta_{1}} T M_{p}^{N+k^{\prime}}, k=2 p(p-1)-2$, and $k^{\prime}=2(2 p+1)(p-1)-2$. So $\bar{k} f \neq 0: K \rightarrow$ $M_{p}^{N-1} \rightarrow S^{N}$ where \bar{k} is the map shrinking $S^{N-1} \subset M_{p}^{N-1}$. Since K is ($N+k-1$)-connected, similarly as in the proof of Proposition 5.1, there is a map $g: K \rightarrow X_{k}$ such that $g^{*}: H^{N+k}\left(X_{k} ; Z_{p}\right) \rightarrow H^{N+k}\left(K ; Z_{p}\right)$ is a monomorphism. Hence $g^{*}\left(b_{1}^{(0)}\right)=x e^{N+k}$ for the generators $b_{1}^{(0)} \in H^{N+k}\left(X_{k} ; Z_{p}\right)$, $e^{N+k} \in H^{N+k}\left(K ; Z_{p}\right)$ and a coefficient $x \not \equiv 0(\bmod p)$. While, by Lemma 2.7 and (5.1), (5.3), we have

$$
\begin{align*}
& \Delta e^{N+k}=e^{N+k+1}, \mathcal{P}^{1} e^{N+k+1}= \pm e^{N+k+2 p-1}, \Delta e^{N+k+2 p-1}=e^{N+k+2 p}, \\
& \mathcal{P}^{p} e^{N+k+2 p}= \pm \Delta e^{N+k^{\prime}+1}= \pm e^{N+k^{\prime}+2}, \tag{5.4}
\end{align*}
$$

for the generators $e^{N+i} \in H^{N+i}\left(K ; Z_{p}\right)$, where $i=k, k+1, k+2 p-1, k+2 p$,
$k^{\prime}+2, k^{\prime}+3$. By Theorem 3.2, $W_{1} b_{1}^{(0)}=0$, so, by the Adem's relation $\mathcal{P}^{p} \Delta-\Delta \mathcal{P}^{p}=\mathcal{Q}^{1} \Delta \rho^{p-1}$, we have

$$
\begin{aligned}
0 & =g^{*}\left(\Delta W_{1} b_{1}^{(0)}\right)=\Delta W_{1} g^{*}\left(b_{1}^{(0)}\right)=\left(2 \Delta \mathcal{P}^{p} \mathcal{P}^{1} \Delta-\Delta \mathcal{P}^{p+1} \Delta\right)\left(x e^{N+k}\right) \\
& =2 x \Delta \mathcal{P}^{p} \mathcal{P}^{1} \Delta e^{N+k}=2 x\left(\mathcal{P}^{p} \Delta \mathcal{P}^{1} \Delta-\mathcal{P}^{1} \Delta \mathcal{P}^{p-1} \mathcal{P}^{1} \Delta\right) e^{N+k} \\
& =2 x \mathcal{P}^{p} \Delta \mathcal{P}^{1} \Delta e^{N+k}= \pm 2 x e^{N+k+2} \neq 0,
\end{aligned}
$$

which is a contradiction. Thus, $\left\{\beta_{1}, \alpha, \beta_{1}\right\} \equiv 0$.
Proposition 5.3. For $1 \leqq s<p-1$, there is an element $\beta_{s} \in$ $\pi_{2\left(p_{p}^{+s-1)(p-1)-1}\right.}$ such that $\alpha \beta_{s}=\beta_{s} \alpha=0$ and $\left\{\beta_{s}, \alpha, \beta_{1}\right\} \equiv 0$.

Proof. By the above argument, this assertion is true for $s=1$. Suppose, inductively, that $\beta_{s-1}(s>1)$ satisfying the condition is defined then the stable secondary composition $\left\langle\beta_{s-1}, \alpha, \beta_{1}\right\rangle$ defines a unique non-trivial element β_{s} in $\pi_{2\left(s p^{+s-1)(p-1)-1}\right.}$, because $\beta_{s-1} \bullet \pi_{2\left(p^{+1)(p-1)}\right.}=0$ and $\pi_{2(s-1)\left(p^{+1)(p-1)}\right.} \cdot \beta_{1}=0$.

By Lemma 2.2,

$$
\left\langle\beta_{s-1}, \alpha, \beta_{1}\right\rangle \cdot \alpha \equiv \beta_{s-1}\left\langle\alpha, \beta_{1}, \alpha\right\rangle \text { modulo } \beta_{s-1} \bullet \pi_{2(p+1)(p-1)} \cdot \alpha
$$

and since $\beta_{s-1} \cdot\left\langle\alpha, \beta_{1}, \alpha\right\rangle\left\langle\beta_{s-1} \cdot \pi_{2\left(p^{+2)}\left(p^{-1}\right)\right.}=\beta_{s-1} \cdot \pi_{2\left(p^{+1)\left(p^{-1}\right)}\right.} \cdot \alpha=0\right.$, we have $\beta_{s} \alpha=0$. Also, we have

$$
\alpha \beta_{s}=\alpha \cdot\left\langle\beta_{s-1}, \alpha, \beta_{1}\right\rangle=-\left\langle\alpha, \beta_{s-1}, \alpha\right\rangle \cdot \beta_{1}=0
$$

Hence, $\left\{\beta_{s}, \alpha, \beta_{1}\right\}$ can be defined. If $\left\{\beta_{s}, \alpha, \beta_{1}\right\} \equiv 0$, by Lemma 2.6, there is a map $f: K \rightarrow M_{p}^{N-1}$ such that the class of the restriction $f \mid M_{p}^{N+k}$ is β_{s}, where $K=M_{v}^{N+k} \bigcup_{\alpha} T M_{p}^{N+k+2 p-2} \bigcup_{\beta_{1}} T M_{p}^{N+k^{\prime}}, k=2(s p+s-1)(p-1)-2$ and $k^{\prime}=2((s+1) p+s)(p-1)-2$. So that, there is a map $g: K \rightarrow X_{k}$ such that $g^{*}: H^{N+k}\left(X_{k} ; Z_{p}\right) \rightarrow H^{N+k}\left(K ; Z_{p}\right)$ is a monomorphism. Hence $g^{*}\left(b_{s}^{(s-1)}\right)=x e^{N+k}$ for the generators $b_{s}^{(s-1)} \in H^{N+k}\left(X_{k} ; Z_{p}\right), e^{N+k} \in$ $H^{N+k}\left(K ; Z_{p}\right)$ and a coefficient $x \equiv 0(\bmod p)$. Since $W_{s} b_{s}^{(s-1)}=0$ and the relation (5.4) holds in $H^{*}\left(K ; Z_{p}\right)$, we have

$$
\begin{aligned}
0 & =g^{*}\left(\Delta W_{s} b_{s}^{(s-1)}\right)=\Delta W_{s} g *\left(b_{s}^{(s-1)}\right)=\Delta W_{s}\left(x e^{N+k}\right) \\
& = \pm(s+1) x e^{N+k^{\prime}+2} \neq 0
\end{aligned}
$$

which is a contradiction.
In the case when $s=p-1$, similarly to the above, we have an element $\beta_{p^{-1}} \in \pi_{2\left(p^{-2)(p-1)-1}\right.}$ such that

$$
\begin{equation*}
\alpha \beta_{p^{-1}}=\beta_{p^{-1}} \alpha=0 \tag{5.5}
\end{equation*}
$$

Corollary 5. 3. For $1 \leqq s<p, \beta_{s}, \alpha^{s p+s-1} \delta$ and $\alpha^{s p+s-2} \delta \alpha$ are linearly independent.

Proof. Let $x \alpha^{s p+s-1} \delta+y \alpha^{s p+s-2} \delta \alpha+z \beta_{s}=0$, then, by multiplying α to the left, we have $x \alpha^{s p+s} \delta+y \alpha^{s+s-1} \delta \alpha=0$. But, by Corollary 5.2, $x=y=0$, so $z=0$.

Corollary 5.4. (i) For $1 \leqq s<p, \delta \beta_{s} \delta \neq 0$.
(ii) For $2 \leqq s<p, 0 \leqq r$ and $r+s<p, \delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta \neq 0$.
(iii) $\delta\left(\beta_{1} \delta\right)^{p} \neq 0$.

Proof. (i) By Example 4.3, $\beta_{s} \in \pi_{2\left(s_{p}+s-1\right)(p-1)-1}=\left\{\alpha^{s p+s-1} \delta\right\}+\left\{\alpha^{s p+s-2} \delta \alpha\right\}$ $+\left\{\beta_{s}^{\prime}\right\}$, where $\beta_{s}^{\prime}=j^{*-1} \tau^{-1}\left(\beta_{s}\right), \beta_{s} \in G_{2\left(s_{p}+s-1\right)\left(p^{-1}\right)-2}$, so we may put β_{s} $x_{s} \alpha^{s p+s-1} \delta+y_{s} \alpha^{s p+s-2} \delta \alpha+z_{s} \beta_{s}^{\prime}$. Since $\beta_{s}, \alpha^{s p+s-2} \delta$ and $\alpha^{s p+s-1} \delta \alpha$ are linearly independent, we have $z_{s} \equiv 0(\bmod p)$. Hence, by Corollary 5.1, (iv), and Example 4.3, we have $\delta \beta_{s} \delta=z_{s} \delta \beta_{s}^{\prime} \delta \neq 0$. Similarly $\delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta$ $=z_{1}^{r} z_{s} \delta \alpha \delta\left(\beta_{1}^{\prime} \delta\right)^{r} \beta_{s}^{\prime} \delta \neq 0$ by Example 4.4, and $\delta\left(\beta_{1} \delta\right)^{p}=z_{1}^{p} \delta\left(\beta_{1}^{\prime} \delta\right)^{p} \neq 0$ by Example 4.5.

6. Multiplicative structure of $\boldsymbol{\pi}_{*}$

Now, we shall study some relations among δ, α and β_{s}.
Lemma 6.1. Let $\psi^{\prime} \equiv x j^{*-1} \tau^{-1}(\psi) \bmod \pi_{k+1} /\left\{j^{*-1} \tau^{-1}(\psi)\right\}$ for $\psi \in G_{k} * Z_{p}$, and $\varphi^{\prime} \equiv y j^{*-1} \tau^{-1}(\mathcal{P}) \bmod \pi_{l+1} /\left\{j^{*-1} \tau^{-1}(\mathcal{P})\right\}$ for $\varphi \in G_{l} * Z_{p}$, where x, y are some coefficients $\equiv 0(\bmod p), \psi \cdot \varphi \neq 0$, and $k l \equiv 0(\bmod 2)$. Then,

$$
\psi^{\prime} \delta \varphi^{\prime} \equiv \varphi^{\prime} \delta \psi^{\prime} \bmod \pi_{k+l+1} /\left\{j^{*-1} \tau^{-1}(\psi \varphi)\right\}
$$

Proof. By Lemma 4.1, we have $\left(j^{*-1} \tau^{-1}(\psi)\right) \delta\left(j^{*-1} \tau^{-1}(\varphi)\right)=j^{*-1} \tau^{-1}(\psi \varphi)$ and $\left(j^{*-1} \tau^{-1}(\mathscr{\varphi})\right) \delta\left(j^{*-1} \tau^{-1}(\psi)\right)=j^{*-1} \tau^{-1}(\varphi \psi)$. While, since $k l \equiv 0(\bmod 2)$, we have $\psi \varphi=\varphi \psi$ in G_{*}. So that,

$$
\begin{aligned}
\psi^{\prime} \delta \mathscr{P}^{\prime} & \equiv x y\left(j^{*-1} \tau^{-1}(\psi)\right) \delta\left(j^{*-1} \tau^{-1}(\mathcal{P})\right)=x y j^{*-1} \tau^{-1}(\psi \varphi) \\
& =x y j^{*-1} \tau^{-1}(\mathcal{P} \psi) \equiv \varphi^{\prime} \delta \psi^{\prime}
\end{aligned}
$$

modulo $\left(\pi_{k+1} /\left\{j^{*-1} \tau^{-1}(\psi)\right\}\right) \delta\left(\pi_{l+1} /\left\{j^{*-1} \tau^{-1}(\mathcal{P})\right\}\right) \subset \pi_{k+l+1} /\left\{j^{*-1} \tau^{-1}(\psi \mathcal{P})\right\}$.
Proposition 6.1. (i) For $1 \leqq s<p, \alpha \delta \beta_{s}=\beta_{s} \delta \alpha$.
(ii) For $1 \leqq s<p-1, \beta_{1} \delta \beta_{s}=\beta_{s} \delta \beta_{1}$.
(iii) For $1 \leqq s, t<p$ and $s+t<p, \beta_{s} \beta_{t}=0$.

Proof. (i) By the definition,

$$
\alpha=j^{*-1} \tau^{-1}\left(\alpha_{1}\right) \text { and } \beta_{s} \equiv x j^{*-1} \tau^{-1}\left(\beta_{s}\right) \bmod \pi_{k} /\left\{j^{*-1} \tau^{-1}\left(\beta_{s}\right)\right\}
$$

for $\alpha_{1} \in G_{2 p^{-3}}, \beta_{s} \in G_{k}, k=2(s p+s-1)(p-1)-2$, and a coefficient $x \neq 0$
$(\bmod p)$. So, by Lemma 6.1, $\alpha \delta \beta_{s} \equiv \beta_{s} \delta \alpha \bmod \pi_{2 s\left(p^{+1)(p-1)-2}\right.} /\left\{j^{*-1} \tau^{-1}\left(\alpha_{1} \beta_{s}\right)\right\}$. While, by Theorem 3.1 andP roposition 4.2, $\pi_{2 s\left(p^{+1)(p-1)-2}\right.} /\left\{j^{*-1} \tau^{-1}\left(\alpha_{1} \beta_{s}\right)\right\}$ $=\left\{\alpha^{s p+s-1} \delta \alpha \delta\right\}$, so we may put $\alpha \delta \beta_{s}=\beta_{s} \delta \alpha+x \alpha^{s p+s-1} \delta \alpha \delta$ for a coefficient x. But

$$
0=\alpha^{2} \delta \beta_{s} \alpha=\alpha \beta_{s} \delta \alpha^{2}+x \alpha^{s p+s} \delta \alpha \delta \alpha=x \alpha^{s p+s} \delta \alpha \delta \alpha
$$

and $\alpha^{s p+s} \delta \alpha \delta \alpha \neq 0$, so that $x=0$,
(ii) Similarly to (i), $\beta_{1} \delta \beta_{s}=\beta_{s} \delta \beta_{1} \bmod \pi_{2\left((s+1) p^{+s-1)(p-1)-3}\right.} /\left\{\beta_{1} \delta \beta_{s}\right\}$. While, by Theorem 3.1 and Proposition 4.2, $\pi_{2\left((s+1) p^{+s-1)(p-1)-3}\right.}=Z_{p}=\left\{\beta_{1} \delta \beta_{s}\right\}$. So that $\beta_{1} \delta \beta_{s}=\beta_{s} \delta \beta_{1}$.
(iii) Since $\beta_{s} \beta_{t} \in \pi_{2 k(p-1)-2}=\left\{\alpha^{k-1} \delta \alpha \delta\right\}, k=(s+t) p+s+t-2$, we may put $\beta_{s} \beta_{t}=x \alpha^{k-1} \delta \alpha \delta$. But, $0=\alpha \beta_{s} \beta_{t}=x \alpha^{k} \delta \alpha \delta$ and $\alpha^{k} \delta \alpha \delta \neq 0$, so $x=0$.

Added in proof. When $p=3, \beta_{1} \beta_{1} \in \pi_{22}=\left\{\alpha^{5} \delta \alpha \delta\right\}+\left\{\delta \alpha \delta\left(\beta_{1} \delta\right)^{2}\right\}$, so the above argument is not valid. We have no idea to know whether $\beta_{1} \beta_{1}=0$ or not. So, Theorem II (ii) should be understood that $\beta_{s} \beta_{t}=0$ if $p \neq 3$, and also propositions in section 7 are valid under the assumption $p \neq 3$.

Corollary 6.1. For $1 \leqq s<p, \alpha^{2} \delta \beta_{s}=\alpha \delta \beta_{s} \delta \alpha=0$.
Now, we have the following theorems:
Theorem I. A set of additive bases for π_{*}, is as follows in dim $<2 p^{2}(p-1)-4$:

$$
\begin{aligned}
& \delta, \iota, \\
& \alpha^{t}, \alpha^{t} \delta, \alpha^{t-1} \delta \alpha, \alpha^{t-1} \delta \alpha \delta, \text { for } 1 \leqq t<p^{2}, \\
& \left(\beta_{1} \delta\right)^{r-1} \beta_{1}, \delta\left(\beta_{1} \delta\right)^{r-1} \beta_{1},\left(\beta_{1} \delta\right)^{r}, \delta\left(\beta_{1} \delta\right)^{r}, \text { for } 1 \leqq r \leqq p \\
& \alpha\left(\delta \beta_{1}\right)^{r}, \delta \alpha\left(\delta \beta_{1}\right)^{r}, \alpha\left(\delta \beta_{1}\right)^{r} \delta, \delta \alpha\left(\delta \beta_{1}\right)^{r} \delta, \text { for } 1 \leqq r<p, \\
& \left(\beta_{1} \delta\right)^{r} \beta_{s}, \delta\left(\beta_{1} \delta\right)^{r} \beta_{s},\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \\
& \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s}, \delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s}, \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta \\
& \quad \delta \alpha \delta\left(\beta_{1} \delta\right)^{r} \beta_{s} \delta, \text { for } 0 \leqq r, 2 \leqq s<p, \text { and } r+s<p
\end{aligned}
$$

Theorem II. The ring π_{*}, in $\operatorname{dim}<2 p^{2}(p-1)-4$, is generated by γ, α, and $\beta_{s}, 1 \leqq s<p$, with the following fundamental relations:
(i) $\delta^{2}=0, \quad \alpha \beta_{s}=\beta_{s} \alpha=0, \quad \beta_{s} \beta_{t}=0$,
(ii) $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}$,
(iii) $\alpha \delta \beta_{s}=\beta_{s} \delta \alpha$,
(iv) $\beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t+1}$.

Remark. The class ι of the identity map $M_{p}^{N} \rightarrow M_{p}^{N}$ is the identity element of π_{*}.

The proof of (iv) will be given in the next section.
Theorem III. The subring of π_{*} generated by δ and α has only two fundamental relations: $\delta^{2}=0$ and $2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}$.

7. Secondary compositions

Following the method of Toda [10; IV], we shall study some secondary compositions.

Similarly to Lemma 4.8, iii) of [10], we have
Lemma 7.1. Let $\alpha \in \pi_{q}(G ; n, H), \alpha^{\prime} \in \pi_{q}\left(G ; n^{\prime}, H^{\prime}\right), \beta \in \pi_{n}(H ; X)$, $\beta^{\prime} \in \pi_{n^{\prime}}\left(H^{\prime} ; X\right)$, and $\gamma \in \pi(X, Y)$ be elements such that $\beta \alpha=\beta^{\prime} \alpha^{\prime}=0, \gamma \beta=$ $\gamma \beta^{\prime}=0$ and $\{\gamma, \beta, \alpha\}+\left\{\gamma, \beta^{\prime}, \alpha^{\prime}\right\} \equiv 0$. Then there is an element $\bar{\gamma} \in \pi(K, Y)$ such that $j^{*}(\bar{\gamma})=\gamma$ where $K=X \bigcup_{\left(\beta, \beta^{\prime}\right)} T\left(M(n, H) \vee M\left(n^{\prime}, H^{\prime}\right)\right) \bigcup_{\alpha \vee \alpha^{\prime}} T M(q+1, G)$, and $j: X \rightarrow K$ is the injection.

Also, similarly to Theorem 4.3, ii) of [10], we have
Lemma 7.2. Let $\alpha \in \pi_{h}, \beta \in \pi_{k}, \gamma \in \pi_{l}, \delta \in \pi_{m}, \varepsilon \in \pi_{n}$ be stable elements such that $\beta \alpha=\gamma \beta=\delta \gamma=\varepsilon \delta=0,\langle\delta, \gamma, \beta\rangle \cdot \alpha \equiv 0$ and $\varepsilon \cdot\langle\delta, \gamma, \beta\rangle \equiv 0$. Then,

$$
\begin{gathered}
\langle\langle\varepsilon, \delta, \gamma\rangle, \beta, \alpha\rangle+(-1)^{h}\langle\varepsilon,\langle\delta, \gamma, \beta\rangle, \alpha\rangle+(-1)^{k+k}\langle\varepsilon, \delta,\langle\gamma, \beta, \alpha\rangle\rangle \equiv 0 \\
\text { modulo } \operatorname{Im} \varepsilon_{*}+\operatorname{Im} \alpha^{*}+\operatorname{Im}\langle\varepsilon, \delta, \gamma\rangle_{*}+\operatorname{Im}\langle\gamma, \beta, \alpha\rangle^{*}
\end{gathered}
$$

PROPOSITION 7.1. For $1 \leqq s<p-1,\left\langle\beta_{s}, \beta_{1}, \alpha\right\rangle \equiv-\frac{s}{s+1} \beta_{s+1}$ modulo $\left\{\alpha^{(s+1) p+s} \delta\right\}+\left\{\alpha^{(s+1) p+s-1} \delta \alpha\right\}$.

Proof. Since $\left\langle\beta_{s}, \beta_{1}, \alpha\right\rangle\left\langle\pi_{2((s+1) p+s)(p-1)-1}\right.$, we may put $\left\langle\beta_{s}, \beta_{1}, \alpha\right\rangle \equiv$ $x \beta_{s+1}$. So that $\left\langle\beta_{s}, \beta_{1}, \alpha\right\rangle-x\left\langle\beta_{s}, \alpha, \beta_{1}\right\rangle \equiv 0$. By Lemma 7.1, we have a map $f: K \rightarrow M_{p}^{N-1}$ such that the class of $f \mid M_{p}^{N+k}$ is β_{s} where $K=M_{p}^{N+k} \cup T\left(M_{p}^{N+k+l} \vee M_{p}^{N+k+m}\right) \cup T M_{p}^{N+k+l+m+1}, k=2(s p+s-1)(p-1)-2$, $l=2(p-1), m=2 p(p-1)-1$. Therefore, similarly to the proof of Proposition 5.3, there is a map $g ; K \rightarrow X_{k}$ such that $g^{*}\left(b_{s}^{(s-1)}\right)=y e^{N+k}, y \neq 0(\bmod p)$. While, as is easily seen, the following relations hold in $H^{*}\left(K ; Z_{p}\right)$:

$$
\begin{aligned}
& \Delta e^{N+k}=e^{N+k+1}, \mathcal{P}^{p} e^{N+k}=(-1)^{N+k} e^{N+k+m+1}, \mathcal{P}^{p} e^{N+k+1}=(-1)^{N+k+1} e^{N+k+m+2}, \\
& \mathcal{P}^{1} e^{N+k+1}=(-1)^{N+k+1} e^{N+k+l+1}, \mathcal{P}^{1} e^{N+k+m+1}=0, \\
& \mathcal{P}^{p} e^{N+k+l+1}=(-1)^{N+k+l+2} x e^{N+k+l+m+2}, \mathcal{P}^{1} e^{N+k+m+2}=(-1)^{N+k+m+2} e^{N+k+l+m+2} .
\end{aligned}
$$

By Theorem 3.2,

$$
\begin{aligned}
0 & =g^{*}\left(W_{s} b_{s}^{(s-1)}\right)=W_{s} g^{*}\left(b_{s}^{(s-1)}\right)=y W_{s} e^{N+k} \\
& =y\left((s+1) \mathscr{P}^{p} \mathscr{P}^{1} \Delta-s \mathscr{P}^{1} \mathscr{P}^{p} \Delta+(s-1) \Delta \mathscr{P}^{1} \mathcal{P}^{p}\right) e^{N+k} \\
& =y\left((s+1)(-1)^{l+3} x e^{N+k+l+m+2}-s(-1)^{m+3} e^{N+k+l+m+2}\right),
\end{aligned}
$$

since $y \neq 0$, we have $(s+1) x+s=0$, so that $x=-\frac{s}{s+1}$.
Proposition 7.2. For $1 \leqq s<p-1,\left\langle\beta_{1} \alpha, \beta_{s}\right\rangle=\beta_{s+1}$.
Proof. By Lemma 7.2, we have

$$
\begin{aligned}
\left\langle\left\langle\beta_{1}, \alpha, \beta_{s-1}\right\rangle, \alpha, \beta_{1}\right\rangle & +(-1)^{h}\left\langle\beta_{1},\left\langle\alpha, \beta_{s-1}, \alpha\right\rangle, \beta_{1}\right\rangle \\
& +(-1)^{h+k}\left\langle\beta_{1}, \alpha,\left\langle\beta_{s-1}, \alpha, \beta_{1}\right\rangle\right\rangle \equiv 0,
\end{aligned}
$$

modulo $\operatorname{Im} \beta_{1^{*}}+\operatorname{Im} \beta_{1}^{*}+\operatorname{Im} \beta_{s^{*}}+\operatorname{Im} \beta_{s}^{*}=0$, where $h=2 p(p-1)-1$ and k $=2(p-1)$. Since for $s=1,\left\langle\beta_{1}, \alpha, \beta_{1}\right\rangle=\beta_{2}$, so inductively we may assume that $\left\langle\beta_{1}, \alpha, \beta_{s-1}\right\rangle=\beta_{s}$. While, $\left\langle\beta_{s}, \alpha, \beta_{1}\right\rangle=\beta_{s+1},\left\langle\alpha, \beta_{\mathrm{s}-1}, \alpha\right\rangle=x \alpha^{(s+1) p+s}$, and $\left\langle\beta_{1}, x \alpha^{(+1) p+s}, \beta_{1}\right\rangle=\left\langle\beta_{1} \alpha, x \alpha^{(s+1) p+s-1}, \beta_{1}\right\rangle=0$. Hence, $\beta_{s+1}-\left\langle\beta_{1}, \alpha, \beta_{\text {• }}\right\rangle=0$.

Similarly we have
Corollary 7.1. For $s+t<p,\left\langle\beta_{s}, \alpha, \beta_{t}\right\rangle=\beta_{s+t}$.
Corollary 7.2. For $s+t<p,\left\langle\beta_{s}, \beta_{t}, \alpha\right\rangle \equiv(-1)^{t} \frac{s}{s+t} \beta_{s+t}$.
PROPOSITION 7.3. For $1 \leqq s<p-2,\left\langle\alpha, \beta_{1}, \beta_{s}\right\rangle=-\frac{s}{s+1} \beta_{s+1}$.
Proof. We may put $\left\langle\alpha, \beta_{1}, \beta_{s}\right\rangle=x \beta_{s+1}$, for a coefficient x. By Lemma 7.2, we have

$$
\left\langle\left\langle\beta_{1}, \alpha, \beta_{1}\right\rangle, \beta_{s}, \alpha\right\rangle-\left\langle\beta_{1},\left\langle\alpha, \beta_{1}, \beta_{s}\right\rangle, \alpha\right\rangle-\left\langle\beta_{1}, \alpha,\left\langle\beta_{1}, \beta_{s}, \alpha\right\rangle\right\rangle \equiv 0
$$

so that $\left\langle\beta_{2}, \beta_{s}, \alpha\right\rangle-x\left\langle\beta_{1}, \beta_{s+1}, \alpha\right\rangle-(-1)^{s} \frac{1}{s+1}\left\langle\beta_{1}, \alpha, \beta_{s+1}\right\rangle \equiv 0$. Thus, $(-1)^{s} \frac{2}{s+2} \beta_{s+2}-(-1)^{s+1} \frac{x}{s+2} \beta_{s+2}-(-1)^{s} \frac{1}{s+1} \beta_{s+2} \equiv 0$. Hence, we have $x=-\frac{s}{s+1}$.

Corollary 7. 3. For $s+t<p-1,\left\langle\alpha, \beta_{t}, \beta_{s}\right\rangle \equiv(-1)^{t} \frac{s}{s+t} \beta_{s+t}$.
Proposition 7. 4. For $s+t<p, \beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t-1}$.
Proof. Put $\beta_{s} \delta \beta_{t}=x_{s, t} \beta_{1} \delta \beta_{s+t-1}$ for a coefficient $x_{s, t}$. Then, by Proposition 6.1, (ii), $\beta_{s} \delta \beta_{1}=\beta_{1} \delta \beta_{s}$, so $x_{s, 1}=1$. For $t>1$, by Proposition 7.1,

$$
\begin{aligned}
\beta_{s} \delta \beta_{t} & \equiv \frac{t}{t-1} \beta_{s} \delta\left\langle\beta_{t-1}, \beta_{1}, \alpha\right\rangle \equiv \frac{t}{t-1}\left\langle\beta_{s} \delta \beta_{t-1}, \beta_{1}, \alpha\right\rangle \\
& =\frac{t}{t-1}\left\langle x_{s, t-1} \beta_{1} \delta \beta_{s+t-2}, \beta_{1}, \alpha\right\rangle \equiv \frac{t}{t-1} x_{s, t-1} \beta_{1} \delta\left\langle\beta_{s+t-2}, \beta_{1}, \alpha\right\rangle \\
& \equiv \frac{t}{t-1} x_{s, t-1} \frac{s+t-2}{s+t-1} \beta_{1} \delta \beta_{s+t-1} .
\end{aligned}
$$

So that,

$$
\begin{aligned}
x_{s, t} & =\frac{t}{t-1} \frac{s+t-2}{s+t-1} x_{s, t-1}=\frac{t}{t-1} \frac{s+t-2}{s+t-1} \frac{t-1}{t-2} \frac{s+t-3}{s+t-2} \cdots \frac{2}{1} \frac{s}{s+1} x_{s, 1} \\
& =\frac{s t}{s+t-1} .
\end{aligned}
$$

Now, we must calculate the modulus groups. But, a simple calculation shows that all these groups are 0 . Hence, we have $\beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t-1}$.

Corollary 7. 4. For $s+t=s^{\prime}+t^{\prime}<p, \frac{1}{t s} \beta_{s} \delta \beta_{t}=\frac{1}{s^{\prime} t^{\prime}} \beta_{s^{\prime}} \delta \beta_{t^{\prime}}$.
Remark. In [10;IV], Toda defined the element β_{s} as a non-trivial element of $G_{2\left(s p^{+}-1\right)\left(p^{-1}\right)-2}=Z_{p}$. So, we may choose $\bar{\beta}_{s} \in G_{*}$ as $\bar{\beta}_{s}=\tau j^{*}\left(\beta_{s}\right)$ for $\beta_{s} \in \pi_{2\left(s^{+s-1)(p-1)-1}\right.}$. By Lemma 4.1, we have that $\tau j^{*}\left(\beta_{s} \delta \beta_{t}\right)=\bar{\beta}_{s} \bar{\beta}_{t}$. So that, the relation $\beta_{s} \delta \beta_{t}=\frac{s t}{s+t-1} \beta_{1} \delta \beta_{s+t-1}$ for $s+t<p$ implies that $\bar{\beta}_{s} \bar{\beta}_{t}=\frac{s t}{s+t-1} \bar{\beta}_{1} \bar{\beta}_{s+t-1}$ for $s+t<p$ in G_{*}. This is an answer to the problem of Toda [10; IV, p. 326].

References

1. J. Adem, Relations on iterated reduced powers, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 636-638.
2. A. L. Blakers and W. S. Massey, The homotopy groups of a triad I, II, Ann. of Math., 53 (1951), 161-205; 55 (1952), 192-201.
3. P. J. Hilton, Homotopy theory and duality, Cornell University, 1959.
4. J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280.
5. D. Puppe, Homotopiemengen und ihre indizierten Abbildungen I, Math. Zeit., 69 (1958), 299-344.
6. F. P. Peterson and N. Stein, Secondary cohomology operations: two formulas, Amer. J. of Math., 81 (1959), 281-305.
7. J. P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
8. -, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.
9. E. Spanier, Secondary operations on mappings and cohomology, Ann. of Math., 75 (1962), 260-282.
10. H. Toda, p-primary components of homotopy groups I, II, III, IV, Mem. of Coll. of Sci. Univ. of Kyoto, 31 (1958), 129-142; 143-160; 191-210; and 32 (1959), 297-332.
11. -, On unstable homotopy of stheres and classical groups, Proc. Nat. Acad. Sci. U. S. A., 46 (1960), 1102-1105.
12. - Composition methods in homotopy groups of spheres, Princeton, 1962.
