STRUCTURE OF HEREDITARY ORDERS
OVER LOCAL RINGS

Manabu Harada
(Received April 15, 1963)

Let R be a noetherian integral domain and K its quotient field, and
Σ a semi-simple K-algebra with finite degree over K. If A is a subring
in Σ which is finitely generated R-module and $AK=\Sigma$, then we call it an
order. If A is a hereditary ring, we call it a hereditary order (briefly
h-order).

This order was defined in [1], and the author has substantially
studied properties of h-orders in [5], and shown that we may restrict
ourselves to the case where R is a Dedekind domain, and Σ is a central
simple K-algebra.

In this note, we shall obtain further results when R is a discrete
rank one valuation ring. Let R be such a ring, and Ω a maximal order
with radical \mathfrak{N}, and $\Omega/\mathfrak{N}=$ Δ_n; Δ division ring. Then we shall show the
following results: 1) Every h-order contains minimal h-orders Λ such
that $\Lambda/N(\Lambda)\approx \Sigma\oplus \Delta$, where $N(\Lambda)$ is the radical of Λ, (Section 3); 2) The
length of maximal chains for h-order is equal to n, and we can decide
all chains which pass a given h-order, (Section 5); 3) For two h-orders
Γ_1 and Γ_2, they are isomorphic if and only if they are of same form, (see
definition in Section 4); 4) The number of h-orders in a nonminimal
h-order is finite if and only if R/p is a finite field, where p is a maximal
ideal in R, (Section 6).

In order to obtain those results we shall use a fundamental property
of maximal two-sided ideals in Λ; \{\mathfrak{N}, $R^{-1}\mathfrak{N}$, $R^{-2}\mathfrak{N}$, ..., $R^{-r+1}\mathfrak{N}$\}
gives a complete set of maximal two-sided ideals in Λ, where $\mathfrak{N}=N(\Lambda)$,
(Section 2).

H. Higikata has also determined h-orders over local ring in [8] by
direct computation and the author owes his suggestions to rewrite this
paper, (Section 6). However, in this note we shall decide h-orders as a
ring, namely by making use of properties of idempotent ideals and
radical.

We only consider h-orders over local ring in this paper, except Section
1, and problems in the global case will be discussed in [7] and in a
special case, where Σ is the field of quaternions, we will be discussed in [6].

1. Notations and preliminary lemmas.

Throughout this note, we shall always assume that R is a discrete
rank one valuation ring and K is the quotient field of R, and that Λ, Γ',
Ω are h-orders over R in a central simple K-algebra Σ.

For two orders Λ, Γ', the left Γ'- and right Λ-module $C_Λ(Γ') = \{ x \in Σ, Γ'x \subseteq Λ \}$ is called "(right) conductor of Γ' over Λ". By [5], Theorem 1.7,
we obtain a one-to-one correspondence between order $Γ (\supseteq Λ)$ and two-sided
idempotent ideal \mathfrak{A} in Λ as follows:

$$Γ = \text{Hom}_R(\mathfrak{A}, \mathfrak{A}) \quad \text{and} \quad C_Λ(Γ) = \mathfrak{A}.$$

Furthermore, we have a one-to-one correspondence between two-sided
idempotent ideals \mathfrak{A} and two-sided ideals \mathfrak{M} containing the radical \mathfrak{R} of
an order $Λ$ by [5], Lemma 2.4:

$$\mathfrak{A} + \mathfrak{R} = \mathfrak{M}.$$

Let $Λ/\mathfrak{M} = Λ/\mathfrak{M}_1 \oplus \cdots \oplus Λ/\mathfrak{M}_n$, where the \mathfrak{M}_i's are maximal two-sided
ideals in Λ. Then \mathfrak{R} is uniquely as an intersection of some \mathfrak{M}_i's, say $\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \ldots, \mathfrak{M}_{i_r}$. We shall denote those relations by

$$\mathfrak{A} = I(\mathfrak{M}) = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \ldots, \mathfrak{M}_{i_r}).$$

Let $Λ/\mathfrak{M}_i = (Δ_i)_{ni}$; $Δ_i$ division ring. Then by [5], Theorem 4.6, we know that the $Δ_i$'s depend only on $Σ$, and we shall denote it by $Δ$. For
any order $Γ'$, we denote the radical of $Γ'$ by $N(Γ')$. Let $Γ \supseteq Λ$ be h-orders,
and $C(Γ') = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \ldots, \mathfrak{M}_{i_r})$. Then $C(Γ')/C(Γ')\mathfrak{R} \cong Λ/\mathfrak{M}_{i_1} \oplus \cdots \oplus Λ/\mathfrak{M}_{i_r}$
$\oplus C(Γ')\cap \mathfrak{R} /C(Γ')\mathfrak{R}$ as a right Λ-module; $(i_1, i_2, \ldots, i_r, j_1, j_2, \ldots, j_{n-r}) \equiv (1, 2, \ldots, n)$. By [5], Theorem 4.6 and its proof, we have

Lemma 1.1. $Γ'/N(Γ') \cong \text{Hom}_{Σ/\mathfrak{R}}(C(Γ')/C(Γ')\mathfrak{R}, C(Γ')/C(Γ')\mathfrak{R})$, and every
simple component of $C(Γ')\cap \mathfrak{R} /C(Γ')\mathfrak{R}$ appears in some $Λ/\mathfrak{M}_{j_t}, t=1, \ldots, n-r$.

Let \hat{R} be the completion of R with respect to the maximal ideal \mathfrak{p} in R, and \hat{K} its quotient field. Then $Σ = Λ \otimes \hat{K}$ is also central simple \hat{K}
-algebra and $\hat{Λ} = Λ \otimes \hat{R}$ is an order over \hat{R} in $Σ$. If $Ω$ is a maximal order
in $Σ$, then $Ω$ is also maximal in $Σ$ by [1], Proposition 2.5. Let $Γ'$ be
any order in $Ω$, then we can find some n such that $Ω/\mathfrak{p}^{n}Ω \subseteq Γ'$. Since
$Ω/\mathfrak{p}^{n}Ω \cong Ω/\mathfrak{p}^{n}Ω$ as a ring, there exists an order $Γ$ in $Ω$ such that $Γ = Γ'$. Furthermore, since $\otimes \hat{R}$ is an exact functor, we have

Proposition 1.1. Let $Ω$ be a maximal order in $Σ$. Then there is a
one-to-one correspondence between orders Γ in Ω and order $\hat{\Gamma}$ in $\hat{\Omega}$.

If Δ is an h-order then \mathfrak{N} is Δ-projective, and hence, $\hat{\mathfrak{N}}$ is $\hat{\Delta}$-projective. Therefore, by usual argument (cf. [2], p. 123, Exer. 11, and [5], Lemma 3.6), we have

Corollary. By the above correspondence h-orders in Ω correspond to those in $\hat{\Omega}$.

Proposition 1.2. Let Λ, Γ, and Ω be as above. If $\Delta = \alpha' \Gamma \alpha'^{-1}$ for a unit α' in $\hat{\Omega}$, then $\Lambda = \alpha \Gamma \alpha^{-1}$, and α is unit in Ω.

Proof. Since $\hat{\Omega}/\mathfrak{p} \hat{\Omega} \approx \Omega/\mathfrak{p}^n \Omega$ for some n, and $\mathfrak{p}^n \Omega$ is contained in $\mathcal{N}(\Omega)$, it is clear.

From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.

Let \mathcal{O} be as above. Then \mathcal{O} contains a unique maximal ideal (π), and every left or right ideal is two-sided and is equal to (π^r). From those propositions many results in h-orders over R are obtained from those in h-orders in the ring of matrices of maximal order \mathcal{O} in a division ring Λ' over a complete field. Furthermore, all h-orders in \mathcal{O}_n are decided by Higikata [8]. However, in this note, we shall discuss properties of h-orders as a hereditary ring, namely, by means of idempotent ideals and radical, except the following lemma and the last section.
Theorem 1.2. Let \(R \) be a Dedekind domain and \(P \) a finite set of primes in \(R \), and \(\Omega \) a maximal order over \(R \) in \(\Sigma \). For any given \(h \)-order \(\Lambda(p) \) in \(\Omega_p, p \in P \), there exists a unique \(h \)-order \(\Lambda \) in \(\Omega \) such that \(\Lambda_{p}=\Lambda(p) \) for \(p \in P \), and \(\Lambda_{q}=\Omega_{q} \) for \(q \notin P \).

Proof. First, we assume \(P = \{ p \} \). By [4], Theorem 3.3, \(\Lambda(p)=\Omega_{p} \cap \Omega_{r} \cap \cdots \cap \Omega_{i} : \Omega_{i} \) maximal order over \(R_{p} \). Let \(\Omega'_{i}=C_{\Omega}(\Omega'_{i}) \), then \(\Omega'_{i}=\text{Hom}_{R}(\Omega', \Omega) \) where \(\Omega'_{i}=\Omega_{p} \). Furthermore, \(\Omega'_{i} \supseteq \Omega_{p} \). Let \(\Omega_{i}=\mathcal{C}(\Omega'_{i}) \), then \(\mathcal{C}_{i}=\mathcal{C}_{i} \) and \(\mathcal{C}_{i}=\mathcal{C}_{i} \) since \(\mathcal{C}_{i} \supseteq \mathcal{C}_{i} \). Put \(\Omega_{i}=\text{Hom}_{R}(\mathcal{C}_{i}, \mathcal{C}_{i}) \) and \(\Lambda_{i}=\bigcap_{i} \). Then \(\Lambda_{p}=\bigcap_{i} \text{Hom}_{R}(\mathcal{C}_{i}, \mathcal{C}_{i}) = \bigcap_{i} \Omega_{i} \). Hence, \(\Lambda \) is a desired \(h \)-order. Let \(\Lambda_{p} \) be such an \(h \)-order as above for \(p \neq q \). Then \(\bigcap_{i} \Lambda_{p} \) has a property in the theorem.

By virtue of this theorem we shall study, in this paper, \(h \)-orders over a valuation ring.

2. Normal sequence.

Let \(\Lambda \) be an \(h \)-order and \(\mathcal{R} \) the radical of \(\Lambda \). Let \(\{ \mathcal{M}_{i} \}; i=1, \cdots, n \), be the set of maximal two-sided ideals in \(\Lambda \). Since \(\mathcal{R}^{-1}\mathcal{M}=\mathcal{M}^{-1} \) by [5], Theorem 6.1, \(\mathcal{M} \rightarrow \mathcal{M}^{-1} \) gives a one-to-one correspondence among two-sided ideals \(\mathcal{M} \) in \(\Lambda \), which preserves inclusion by [5], Proposition 4.1.

Theorem 2.1. Let \(\Lambda \) be an \(h \)-order with radical \(\mathcal{R} \) such that \(\Lambda/\mathcal{R} \supseteq \sum \mathcal{M}_{i} \). For any maximal two-sided ideal \(\mathcal{M} \) in \(\Lambda \), \(\{ \mathcal{M}, \mathcal{R}^{-1}\mathcal{M}, \mathcal{R}^{-2}\mathcal{M}, \cdots, \mathcal{R}^{-n+1}\mathcal{M} \} \) gives a complete set of maximal two-sided ideals in \(\Lambda \).

Proof. We may assume that \(\mathcal{R}^{-i}\mathcal{M}=\mathcal{M} \). If \(i \leq n \), there exists an \(h \)-order \(\Omega \) such that \(C(\Omega) = I(\mathcal{M}, \mathcal{R}^{-1}\mathcal{M}, \cdots, \mathcal{R}^{-i-1}\mathcal{M}) \). Let \(\mathcal{C}=C(\Omega) \) and \(\mathcal{M}_{j}=\mathcal{R}^{-i}\mathcal{M}=\mathcal{M} \). \(\mathcal{R}^{-1}(\bigwedge_{j} \mathcal{M}_{j}) = \bigwedge_{j} \mathcal{M}_{j} \), and \(\mathcal{R}^{-1}\mathcal{C}=\mathcal{C} \) by the observation in Section 1. Since \(\mathcal{C} \cap \mathcal{R}/\mathcal{M}=\mathcal{C} \cap \mathcal{R}/\mathcal{M}, \mathcal{C}+\mathcal{M}/\mathcal{M} \) is contained in the annihilator of \(\mathcal{C} \cap \mathcal{R}/\mathcal{M} \) on \(\Lambda/\mathcal{M} \). However, by Lemma 1.1 \(\mathcal{C} \cap \mathcal{R}/\mathcal{M} \) contains only simple components which appear in \(\mathcal{C}+\mathcal{M}/\mathcal{M} \approx \Lambda/\mathcal{M}_{i} \cdots \mathcal{M}_{n-i} \) as a right \(\Lambda \)-module, which is a contradiction.

From this theorem we can find a sequence of maximal two-sided ideals \(\{ \mathcal{M}_{i} \}; i=1, \cdots, n \) in \(\Lambda \) such that \(\mathcal{R}^{-i}\mathcal{M}_{i}=\mathcal{M}_{i+1}, \mathcal{M}_{n+i}=\mathcal{M}_{i} \) for all \(i \). We shall call such a sequence \(\{ \mathcal{M}_{i} \} \) "a normal sequence".

Lemma 2.1. Let \(\Lambda \) be an \(h \)-order with radical \(\mathcal{R} \). If \(\Omega \) is an order containing properly \(\Lambda \), then \(\mathcal{R}^{-1}\mathcal{M} \) contains \(\Lambda \) and is not equal to \(\Omega \).
Proof. Let $C = C(\Omega)$. It is clear that $R^{-1}R$ is an order containing Λ, and that $C(R^{-1}R) = R^{-1}C$. Since $C = \Lambda$, $R^{-1}R = C$ by Theorem 2.1 and the observation in Section 1.

Proposition 2.1. Let Λ, R be as above. For a two-sided ideal \mathfrak{A} in Λ \mathfrak{A} is invertible in Λ if and only if $\mathfrak{A}R = \mathfrak{A}R$.

Proof. If \mathfrak{A} is invertible, then $\mathfrak{A} = \mathfrak{A}^*$ by [5], Theorem 6.1, and hence $\mathfrak{A}R = \mathfrak{A}R$. Conversely, let $\mathfrak{A}R = \mathfrak{A}R$, and $\Omega = \text{Hom}_\Lambda(\mathfrak{A}, \mathfrak{A}) = \text{Hom}_\Lambda(R^{-1}R, R^{-1}R) \supseteq R^{-1}R$. Since $\Omega, R^{-1}R$ contain same number of maximal two-sided ideals, $\Omega = R^{-1}R$. Therefore, $\Omega = \Lambda$ by Lemma 2.1, and hence \mathfrak{A} is invertible by [5], Section 2.

Lemma 2.2. Let Λ be an h-order, and $\{M_i\}_{i=1}^n$ the complete set of maximal two-sided ideals and \mathfrak{A} a two-sided ideal in Λ. If $\mathfrak{A}M_i = \mathfrak{A}M_i$ for all i, then \mathfrak{A} is principal, i.e., $\mathfrak{A} = \alpha\Lambda = \Lambda\alpha$.

Proof. Since $\mathfrak{A} = \bigcap M_i = \sum_{i_1 \ldots i_n} M_{i_1}M_{i_2} \ldots M_{i_n}$, $\mathfrak{A}R = \mathfrak{A}R$. Hence \mathfrak{A} is invertible by Proposition 2.1, and $\Lambda = \text{Hom}_\Lambda(\mathfrak{A}, \mathfrak{A})$. Since \mathfrak{A} is Λ-projective, we have a two-sided Λ-epimorphism $\psi: \Lambda \to \text{Hom}_\Lambda(\mathfrak{A}/\mathfrak{A}M_i, \mathfrak{A}/\mathfrak{A}M_i)$. Hence, $\mathfrak{A}/\mathfrak{A}M_i \subseteq \Sigma M_i$ as a right Λ-module. Therefore, $\mathfrak{A} = \alpha\Lambda$, and $\Lambda = \text{Hom}_\Lambda(\alpha\Lambda, \alpha\Lambda) = \Lambda\alpha^{-1}$.

In any h-order Λ, we have $N(\Lambda)^m = p\Lambda$ for some m, we call m “the ramification index of Λ”, and Λ “unramified” if $m = 1$.

Theorem 2.2. Let Λ be an h-order with radical R, and $\{M_i\}_{i=1}^n$ the set of maximal two-sided ideals. Then $\mathfrak{A}R$ is principal. For a two-sided ideal \mathfrak{A}, $\mathfrak{A}R = \mathfrak{A}R$ for all i if and only if $\mathfrak{A} = \mathfrak{A}R^r$ for some r. Let Ω be an order containing Λ, and s,t are ramification indices of Ω and Λ, respectively. Then $n \mid t$, and $t \mid sn$. Therefore, if Ω is unramified, then $n = t$, and $\mathfrak{A}M_i = \mathfrak{A}M_i$ for all i if and only if $\mathfrak{A} = \mathfrak{A}R^l$ for some l, (cf. Proposition 6.2).

Proof. The first part is clear by Theorem 2.1 and Lemma 2.2. Let $\mathfrak{A}R = \alpha\Lambda = \Lambda\alpha$. Since $\alpha^{-1}M_i\alpha = M_i$ for all i and $C = C(\Omega) = I(M_i, \ldots, M_i)$, $\alpha^{-1}\mathfrak{A}\alpha = \mathfrak{A}$. Therefore, $\Omega = \text{Hom}_\Lambda(\mathfrak{A}, \mathfrak{A}) = \text{Hom}_\Lambda(\alpha^{-1}\mathfrak{A}\alpha, \alpha^{-1}\mathfrak{A}\alpha) = \alpha^{-1}\Omega\alpha$. Thus $\alpha\Omega = \Omega\alpha$ is an invertible two-sided ideal in Ω, and hence, $\alpha\Omega = N(\Omega)^t$ by [5], Theorem 6.1. It is clear by Theorem 2.1 that $n \mid t$.

1) We call \mathfrak{A} invertible in Λ if $\mathfrak{A}^{-1}\mathfrak{A}^{-1} = \mathfrak{A}^{-1}\mathfrak{A} = \Lambda$; $\mathfrak{A}^{-1} = \{x \in \Sigma, \mathfrak{A}x \subseteq \Lambda\}$.
Furthermore, \(\mathfrak{M}' = (\mathfrak{M}'_n)^{\varphi} = \alpha^{t/n} \mathfrak{A} = \varphi \mathfrak{A} \). Therefore, \(\alpha^{t/n} = N(\Omega)^t = \varphi \Omega \), and hence, \(t - (t/n) = s \).

As an analogy to Lemma 2.2,

Proposition 2.2. Let \(\alpha \) be a non-zero divisor in \(\Lambda \). If \(\alpha^{-1} \mathfrak{M} \alpha \) is a maximal ideal in \(\Lambda \) for a maximal ideal \(\mathfrak{M} \), then \(\Delta \alpha \Lambda \) is principal ideal in \(\Lambda \).

Proof. Let \(\alpha^{-1} \mathfrak{M} \alpha = \mathfrak{M}' \), then \(\mathfrak{M} \alpha = \mathfrak{M} \mathfrak{M}' \), and \(\alpha^{-1} \mathfrak{M} = \mathfrak{M} \alpha^{-1} \). If we set \(\mathfrak{A} = \Delta \alpha \Lambda \), \(\mathfrak{A}' = \Delta \alpha^{-1} \Lambda \), then \(\mathfrak{M} \mathfrak{A} = \mathfrak{M} \mathfrak{A}' \) and \(\mathfrak{M} \mathfrak{M}' = \mathfrak{M} \mathfrak{M}' \). Since \(\mathfrak{M} \mathfrak{M}' = \mathfrak{M} \mathfrak{M}' = \alpha \mathfrak{M} \mathfrak{M}' \mathfrak{A}^{-1} \mathfrak{M} = \mathfrak{M} \), \(\mathfrak{M} \subseteq \text{Hom}_\mathfrak{A}(\mathfrak{M}, \mathfrak{M}) \). Similarly, we obtain \(\mathfrak{M} \subseteq \text{Hom}_\mathfrak{A}(\mathfrak{M}, \mathfrak{M}) \). Therefore, \(\mathfrak{M} \subseteq \text{Hom}_\Lambda(\mathfrak{M}, \mathfrak{M}) \cap \text{Hom}_\Lambda(\mathfrak{M}, \mathfrak{M}) = \Lambda \) by [5], Corollary 1.9 and Theorem 3.3. It is clear that \(\mathfrak{M} \subseteq \Lambda \), and hence \(\mathfrak{M}' = \Lambda \). Since \(\alpha^{-1} \subseteq \mathfrak{M}' = \Lambda \), \(\mathfrak{M} \leq \alpha \Lambda \), which implies \(\mathfrak{A} = \alpha \Lambda = \Delta \alpha \).

Next, we shall consider normal sequences of \(h \)-orders \(\Gamma \) and \(\Lambda \leq \Gamma \).

Before discussing that, we shall quote the following notations. Let \(\{\mathfrak{M}_i\}_{i=1}^n \) be the normal sequence of \(\Lambda \). We divide \(S = \{\mathfrak{M}_i\} \) to the subsets \(S^1, \cdots, S_r \), such that \(\bigcup S_i = S \), \(S_i \cap S_j = \emptyset \), and for any \(\mathfrak{M}_i \in S_j \), \(M_\mathfrak{M}_j \leq S_i \), \(M_\mathfrak{M}_j \leq \mathfrak{M}_i \), \(l < t \) if \(i < j \). Let \(S'_i = \{\mathfrak{M}_i, \mathfrak{M}_{i+1}, \cdots, \mathfrak{M}_{i+m_i-1}\} \), \(S_i = S'_i - \{\mathfrak{M}_{i+m_i-1}\} \). Then we call \(m_i \) the length of \(S_i \) or \(S'_i \). Let \(\Gamma \) be \(h \)-order containing \(\Lambda \). Then \(C(\Gamma) = I(\mathfrak{M}_i, \cdots, \mathfrak{M}_{i}) \), and by the above definition, \(C(\Gamma) \) corresponds uniquely to \(S_1, \cdots, S_r \); for example if \(C(\Gamma) = I(\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3, \mathfrak{M}_4) \), then \(S_1 = \{\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3\} \), \(S_2 = \emptyset \), \(S_3 = \{\mathfrak{M}_4\} \), \(S_4 = \emptyset \), for \(i \geq 3 \). Let \(\mathfrak{M} = I(S_1, S_2, \cdots, S_r) \). Then \(\Omega = \text{Hom}_\Lambda(\mathfrak{M}, \mathfrak{M}) \) is an order such that there exist no orders between \(\Omega \) and \(\Gamma \) by [5], Theorem 3.3.

Lemma 2.3. Let \(\Gamma \), \(\Lambda \), \(\mathfrak{M}_i \), and \(S_i \) be as above, then \(\{\mathfrak{M}_i \} \) is the set of maximal two-sided ideals in \(\Gamma \) if \(\Gamma \) is not maximal.

Proof. Since \(\mathfrak{M}_i \Gamma = C(\mathfrak{M}_i) \) by [5], Proposition 3.1, we may prove by [5], Theorem 1.7 that every maximal two-sided ideal \(\mathfrak{M}_i \) in \(\Gamma \) is idempotent. Since \(\mathfrak{M}_i \neq N(\Gamma) \), \(\mathfrak{M}_i \) is not inversible, and hence, \(\tau^{(\mathfrak{M}_i \Gamma)} \mathfrak{M}_i = \mathfrak{M}_i \) by [5], Section 2. Therefore, \(\mathfrak{M}_i \) is idempotent by [5], Lemma 1.5.

By Lemma 1.1, we obtain that \(\mathfrak{M} / \mathfrak{M}_i \mathfrak{M} \cong \mathfrak{M}_1 \oplus \mathfrak{M}_2 \cdots \oplus \mathfrak{M}_i \) as a right \(\Lambda \)-module, where \(\mathfrak{M}_i \) is a direct sum of simple components in \(\Lambda / \mathfrak{M}_i \mathfrak{M}_i \).

Lemma 2.4. Let \(\Lambda \), \(\Gamma \), \(\mathfrak{M}_i \) and \(\mathfrak{M} / \mathfrak{M}_i \mathfrak{M} \) be as above. Then by the isomorphism \(\varphi \) in Lemma 1.1: \(\Gamma / N(\Gamma) \cong \text{Hom}_\Lambda(\mathfrak{M} / \mathfrak{M}_i \mathfrak{M}, \mathfrak{M} / \mathfrak{M}_i \mathfrak{M}) \). Therefore, \(\mathfrak{M}_i \mathfrak{M} / N(\Gamma) \) corresponds to \(\text{Hom}_\Lambda(\mathfrak{M}_i \mathfrak{M} / \mathfrak{M}_i \mathfrak{M}, \mathfrak{M}_i \mathfrak{M} / \mathfrak{M}_i \mathfrak{M}) \).

2) \(\tau^{(\mathfrak{M}_i \Gamma)}(\mathfrak{M}) \) means the two-sided ideal in \(\Gamma \) generated images of \(f \); \(f \in \text{Hom}_\Gamma(\mathfrak{M}, \Gamma) \).
Proof. Since $\mathcal{C}_i\Gamma/N(\Gamma)$ is a maximal two-sided ideal in $\Gamma/N(\Gamma)$, $\mathcal{C}_i\Gamma/N(\Gamma)$ is characterized by the image of $\mathcal{C}/\mathcal{C}\mathcal{R}$ by $\varphi(\mathcal{C}_i\Gamma/N(\Gamma))$. $\mathcal{C}/\mathcal{C}\mathcal{R}=\Lambda/\mathcal{M}_{t_1+m_1-1}\oplus \cdots \oplus \Lambda/\mathcal{M}_{t_r+m_r-1}\oplus \mathcal{C}/\mathcal{R}/\mathcal{C}\mathcal{R}$, and $\mathcal{C}_i\Gamma(\mathcal{C}/\mathcal{C}\mathcal{R})=\mathcal{C}_i\mathcal{C}$ + $\mathcal{C}/\mathcal{C}\mathcal{R}=\mathcal{C}_i+\mathcal{C}/\mathcal{C}\mathcal{R} \supseteq \Lambda/\mathcal{M}_{t_1+m_1-1}\oplus \cdots \oplus \cdots \oplus \Lambda/\mathcal{M}_{t_r+m_r-1}$, which implies the lemma.

Lemma 2.5. Let Λ be an h-order with radical \mathcal{R} and normal sequence \mathcal{M}_i, $i=1, \ldots, r$. Then $\mathcal{M}_i/\mathcal{M}_i\mathcal{R} \cong \Lambda/\mathcal{M}_i \oplus \cdots \oplus \Lambda/\mathcal{M}_r \oplus \mathcal{O}_{i+1}$ as a right Λ-module. Hence, $\Omega_i/N(\Omega_i) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_{i-1}} \oplus \Delta_{m_i+r_i+1} \oplus \Delta_{m_i+2} \cdots \oplus \Delta_{m_r}$, where \mathcal{O}_{i+1} is a direct sum of m_i simple components of $\Lambda/\mathcal{M}_{i+1}$, and $\Lambda/\mathcal{M}_i = \Delta_{m_i}$ and $\Omega_i = \text{Hom}_\Lambda(\mathcal{M}_i, \mathcal{M}_i)$.

Proof. We obtain similarly to the proof of Lemma 2.2 that $\Lambda/\mathcal{M}_i \cong \text{Hom}_\Lambda(\mathcal{M}_{i+1}, \mathcal{M}_{i+1})$, since $\Lambda = \text{Hom}_\Lambda(\mathcal{R}, \mathcal{R})$ and $\mathcal{M}_i \mathcal{R} = \mathcal{M}_i \mathcal{R}_{i+1}$. Furthermore, since $\mathcal{M}_i = \text{C}(\text{Hom}_\Lambda(\mathcal{M}_i, \mathcal{M}_i))$, and $\mathcal{M}_i \mathcal{R} = \mathcal{M}_i \mathcal{R}_{i+1}$, we have the lemma by Lemma 1.1.

Corollary. Let Λ be an h-order with radical \mathcal{R} such that $\Lambda/\mathcal{R} \cong \sum_{i=1}^r \Delta_{m_i}$, then $\sum_{i=1}^r m_i$ does not depend on Λ, and the length of maximal chain for h-orders in Σ does not exceed $n = \sum_{i=1}^r m_i$.

Proof. Since, every maximal order is isomorphic, Σm_i does not depend on Λ. Since $n = \Sigma m_i \geq r$, the second part is clear by [5], Theorem 3.3.

Remark. We shall show that every length of maximal chain is equal to n in the following section.

Before proving one of the main theorems in this section we shall consider a special situation of Lemma 2.3. Let $\Gamma = \text{Hom}_\Lambda(\mathcal{M}_i, \mathcal{M}_i)$. Then $\mathcal{C}_i = I(\mathcal{M}_i, \mathcal{M}_i)$.

Lemma 2.6. Let Γ, Λ and \mathcal{C}_i be as above. Then $\{\mathcal{C}_i\Gamma\}$ $i=2, \ldots, r$ is the normal sequence in Γ.

Proof. Let $\mathcal{C}_1 = \mathcal{C}_i\Gamma$. Then $\Omega = \text{Hom}_\Lambda(\mathcal{C}_2, \mathcal{C}_2) = \text{Hom}_\Lambda(\mathcal{R}_2, \mathcal{R}_2)$. If Ω is maximal, then Γ contains only two maximal ideals, and hence, we have nothing to prove. Thus, we may assume $r \geq 4$. We denote $N(\Gamma), N(\Omega)$, $N(\Lambda)$ by \mathcal{R}, $\mathcal{R}', \mathcal{R}''$, respectively. Let $\Gamma_i = \text{Hom}_\Lambda(\mathcal{M}_i, \mathcal{M}_i) \subseteq \Omega$. Then $\mathcal{M}_i/\mathcal{M}_i\mathcal{R}'' = \Lambda/\mathcal{M}_i \oplus \Lambda/\mathcal{M}_i \oplus \Lambda/\mathcal{M}_i \oplus \cdots \oplus \Lambda/\mathcal{M}_i$ and $\mathcal{C}_2 + \mathcal{R}' / \mathcal{R}'' = \Lambda/\mathcal{M}_i \oplus \cdots \oplus \Lambda/\mathcal{M}_i$, and $\mathcal{C}_2\Gamma_i/N(\Gamma_i)$ is a maximal two-sided ideal, we obtain $\mathcal{C}_2 +$

3) \downarrow means that we omit ith component.
We consider a natural right \(\Lambda \)-homomorphism \(\varphi : C_2 / C_2 R^r \to M_i / M_i R^r \). Then \(\varphi (C_2 / C_2 R^r) = C_2 + M_2 R^r / M_2 R^r = \Lambda / M_2 \oplus \ldots \oplus \Lambda / M_r \). On the other hand \(C_2 / C_2 R^r = \Lambda / M_2 \oplus \ldots \oplus \Lambda / M_r \). Hence, \(C_2 \cap R' / C_2 R^r \) contains a direct sum of simple components which appear in \(\Lambda / M_i \). Let \(\{ D_i = I(C_2, C_i) \} \ i = 3, \ldots, r \) be the set of maximal ideals in \(\Omega \). Since \(\Omega = \text{Hom}_{r}(C_2, C_2) \), we obtain by Lemmas 2.4, 2.5, \(D_i / R_i \approx \Lambda / R_i \) as a ring for \(i \geq 3 \) except one \(k \) of indices \(i \). However, we have shown that \(C_2 / C_2 R^r \geq \Lambda / M_2 \oplus \ldots \oplus \Lambda / M_r \), and hence, we know \(k = 3 \). Therefore, by Lemma 2.5 we obtain \(R^{-1} R = C_3 \). Similarly, we can prove \(R^{-1} R = C_{i+1} \) for \(i \leq n-1 \). Therefore, we have proved the lemma by Theorem 2.1.

Now, we can prove the following theorem.

Theorem 2.3. Let \(\Lambda \) be an \(h \)-order with normal sequence \(\{ M_i \} i = 1, \ldots, n \). Then for an order \(\Gamma \) corresponding to a sequence \(\{ S_i \} i = 1, \ldots, r \), \(\{ C_i \} i = 1, \ldots, r \) is the normal sequence in \(\Gamma \). Furthermore, \(C(\Gamma) / C(\Gamma) R \approx R \oplus R R' \oplus \ldots \oplus R R^{(r)} \). Hence, \(\Gamma / N(\Gamma) \approx \Delta_1 \oplus \ldots \oplus \Delta_r \), where \(R_i \) is a simple component in \(\Lambda / M_{i+1} \), and \(l_i = \sum_{i=1}^{i+m_i-1} s_i \), and \(\Lambda / M_i = \Delta_i \), \(\mathcal{E}_i = I(S_i, \ldots, S_r) \).

Proof. We shall prove the theorem by induction on the number \(r \) of maximal two-sided ideals in \(\Gamma \). If \(r = n \), then \(\Lambda = \Gamma \). If \(r = n-1 \), then the theorem is true by Lemma 2.6. We assume \(r < n-1 \). Let \(\Gamma' \) be an order between \(\Lambda \) and \(\Gamma \) such that \(C(\Gamma) = \Gamma \{ S_0, S_1, \ldots, S_r \} \), and \(\{ S_0, S_1 \} = S_i, S_i = S_i \) for \(i \geq 2 \). Then \(\{ I(S_0, \ldots, S_i, \ldots, S_r) \Gamma \} i = 0, \ldots, r \) is the normal sequence in \(\Gamma' \) by induction hypothesis. Let \(\mathcal{E}_i = I(S_0, \ldots, S_i, \ldots, S_r) \Gamma \). Since \(S_0 = C(\Gamma) \Gamma \), \(\Gamma = \text{Hom}_{r}(\mathcal{E}_0, \mathcal{E}_0) \). Therefore, by Lemma 2.6, \(\{ I_\Gamma (\mathcal{E}_0, \mathcal{E}_0) \Gamma \} i = 1, \ldots, r \) is the normal sequence in \(\Gamma \). Since \(S_i = \{ S_0, S_i \} \), \(I_\Gamma (\mathcal{E}_0, \mathcal{E}_0) \Gamma = I(S_0, \ldots, S_i, \ldots, S_r) \Gamma \). Furthermore, \(\Gamma / N(\Gamma) \approx \Delta_1 \oplus \Delta_{i+1} \oplus \ldots \oplus \Delta_{r+1} \), where \(\Gamma' / N(\Gamma') \approx \Delta_{i'} \oplus \Delta_{i'} \oplus \ldots \oplus \Delta_{r'} \); \(l_i = l_i' \) for \(i \geq 2 \). Since \(\sum_{i=1}^{r} l_i = l_0 + l_1 + \ldots + l_r \). Thus we have proved the second part by Lemma 2.4.

Let \(\Lambda \) be an \(h \)-order with \(\{ M_i \} i = 1, \ldots, r \). If \(\Lambda / M_i = \Delta_m \), then \((m_1, \ldots, m_r) \) is uniquely determined by \(\Lambda \) up to cyclic permutation. We call it a *form of \(\Lambda \). Furthermore, we know that \((m_1, \ldots, m_r) \) is a nonzero integral solution of

\[
\sum_{i=1}^{r} X_i = n.
\]

4) For any right \(\Lambda \)-module \(M \), \(M' \)-means a direct sum of \(t \) copies of \(M \).
Corollary. If Λ is a minimal h-order in Σ with normal sequence $\{\mathcal{M}_i\}_{i=1,\ldots,n}$ then for any nonzero integral solution (m_1,\ldots,m_r) of (1) there exists an h-order Γ, whose form is (m_1,\ldots,m_r).

Proof. We associate a solution (m_1,\ldots,m_r) to a set $\{S_1,\ldots,S_r\}$, $S_i = \{\mathcal{M}_{t_i},\ldots,\mathcal{M}_{t_i+m_i-1}\}$, where $t_i = m_i + \cdots + m_{i-1}$, $m_0 = 1$. Then $\Gamma = \text{Hom}^\ast_{\Omega}(\mathcal{I}(S_1,\ldots,S_r), \mathcal{I}(S_1,\ldots,S_r))$ is a desired order by the theorem.

By Theorem 1.1, we know that there exist minimal h-orders Λ in the central simple K-algebra, namely $\Lambda/N(\Lambda) = \Delta \oplus \cdots \oplus \Delta$. In this section, we shall show that every h-order contains minimal h-orders.

Lemma 3.1. Let Γ be an h-order and Λ, Λ' be h-orders in Γ such that there exist no orders between Γ and Λ, Λ', respectively. If $\mathcal{C} = \mathcal{C} \Delta(\Gamma)/\mathcal{N}$, then Λ is isomorphic to Λ' by an inner-automorphism of unit element in Γ, where $\mathcal{N} = N(\Gamma)$.

Proof. Let $\mathcal{C} = \mathcal{C} \Delta(\Gamma,l)$, $\mathcal{C}' = \mathcal{C} \Delta(\Gamma')$. Since $\mathcal{C}/\mathcal{N} \cong \mathcal{C}'/\mathcal{N}$, there exists a unit element e in Γ such that $\mathcal{C} = e^{-1} \mathcal{C}' e$. $\Gamma' = \text{Hom}^\ast_{\Delta}(\mathcal{C}, \mathcal{C}) = \text{Hom}^\ast_{\Delta}(e^{-1} \mathcal{C}' e, e^{-1} \mathcal{C}' e) = e^{-1} \text{Hom}^\ast_{\Delta}(\mathcal{C}', \mathcal{C}) e = e^{-1} \Gamma'' e$, where $\Gamma'' = \text{Hom}^\ast_{\Delta}(\mathcal{C}', \mathcal{C})$. On the other hand, by Theorem 2.3, we obtain that Γ' and Γ'' contains the same number of maximal two-sided ideals as those in Γ. Hence, $\Gamma' = e^{-1} \Gamma'' e$ by [5], Theorem 3.3. Furthermore, $\Lambda = \Delta \cap \Gamma' \cap \Gamma'' = e^{-1} (\Delta \cap \Gamma'' e) e = e^{-1} \Lambda' e$.

Lemma 3.2. Let $\Gamma \supseteq \Delta$ be h-orders, then $N(\Lambda) \supseteq N(\Gamma)$.

Proof. Let $\mathcal{N} = N(\Lambda)$, and $\mathcal{N}' = N(\Gamma)$. We may assume that there are no orders between Δ and Γ. Then $\mathcal{C} \Delta(\Gamma) = \mathcal{N}$ is a maximal two-sided ideal in Δ by Lemma 3.4. Hence, we obtain by Lemma 1.1 that $\mathcal{N}' \mathcal{N} \subseteq \mathcal{N} \mathcal{N}' \subseteq \mathcal{N}' \mathcal{N} \subseteq \mathcal{N}$. Therefore, $\mathcal{N}' = \mathcal{N} \mathcal{N} \subseteq \mathcal{N} \mathcal{N} = \mathcal{N}$. For any maximal two-sided ideal $\mathcal{N}' = \mathcal{N}$ in Λ, we have $\mathcal{N}' = \mathcal{N}'(\mathcal{M} + \mathcal{M}') \subseteq \mathcal{N} + \mathcal{M} \mathcal{M}' \subseteq \mathcal{M}'$ since $\Lambda = \mathcal{M} + \mathcal{M}'$. Therefore, $\mathcal{N}' \subseteq \mathcal{N} = \mathcal{N}$.

Theorem 3.1. Every h-order contains minimal h-orders.

Proof. We obtain a minimal h-order Δ by Theorem 1.1. Let Γ be h-order. Since every maximal order is isomorphic, we may assume Δ and Γ are contained in a maximal order. Let $\{\mathcal{M}_i\}_{i=1,\ldots,r}$ be the normal sequence of Γ with form (m_1,\ldots,m_r), and $\Omega = \text{Hom}^\ast_{\Delta}(\mathcal{M}_i, \mathcal{M}_i)$. We assume that $\Omega \supseteq \Delta$. Let $\mathcal{N} = N(\Omega)$, and $\mathcal{N}' = N(\Gamma)$. Since $\mathcal{N}' \supseteq \mathcal{N}$, $\mathcal{N} \supseteq \mathcal{N}$. Now, we consider a left ideal $\mathcal{M}_i/\mathcal{M}'$ in $\Omega/\mathcal{N} = \text{Hom}^\ast_{\mathcal{N}}(\mathcal{M}_i/\mathcal{M}, \mathcal{M})$. \(\square\)
\[\mathfrak{M}_i / \mathfrak{M}_i \mathfrak{N}' \]. Since \((\mathfrak{M}_i, \mathfrak{M}_j) = 1 \) if \(i \neq j \), there exist \(m \) in \(\mathfrak{M}_1 \) and \(y \) in \(\mathfrak{M}_2 \cdots \mathfrak{M}_r \), such that \(1 = m + y, m^2 - m = m(m - 1) \in \mathfrak{M}_1 \mathfrak{M}_2 \cdots \mathfrak{M}_r = \mathfrak{M}_1 (\mathfrak{M}_2 \cdots \mathfrak{M}_r) \subset \mathfrak{M}_1 \mathfrak{N}' \). Therefore, \(\mathfrak{M}_i / \mathfrak{M}_i \mathfrak{N}' = m\Lambda + \mathfrak{M}_i \mathfrak{N}' / \mathfrak{M}_i \mathfrak{N} \mathfrak{N}' / \mathfrak{M}_i \mathfrak{N} \). It is clear that \(\mathfrak{M}_i (\mathfrak{N}' / \mathfrak{M}_i \mathfrak{N}) = (0) \). Hence, \(\mathfrak{M}_i / \mathfrak{R} = (\mathfrak{N} / \mathfrak{R}) \mathfrak{M}_1 \mathfrak{N} / \mathfrak{N} \mathfrak{M}_i = \mathfrak{R} \mathfrak{M}_1 \). Therefore, \(\mathfrak{M}_i / \mathfrak{M}_i = \mathfrak{M}_i / \mathfrak{M}_i \mathfrak{N} \) by the above observation. Hence, \(\Gamma \) is isomorphic to \(\Gamma' \) which contains \(\Delta \). We can prove the theorem by induction.

Corollary. Every minimal \(h \)-order is isomorphic. If two minimal \(h \)-orders are contained in an order \(\Gamma \), then this isomorphism is given by a unit element in \(\Gamma \).

Proof. In the above, we use the fact that any \(h \)-order is isomorphic to an order containing a fixed minimal \(h \)-order, which implies the first part of the corollary. The second part is clear from the proof of the theorem.

Theorem 3.2. Let \(\Omega \) be a maximal order such that \(\Omega / N(\Omega) = \Delta_n \). Then every length of maximal chain for \(h \)-orders is equal to \(n \).

Proof. It is clear from Theorems 1.1 and 3.1.

4. Isomorphisms of \(h \)-orders.

In this section, we shall discuss isomorphisms over \(R \) among \(h \)-orders. For this purpose, we shall use the following definition. Let \(\Gamma_1, \Gamma_2 \) be \(h \)-orders containing an \(h \)-order \(\Lambda \). If there exists an isomorphism \(\theta \) of \(\Gamma_1 \) to \(\Gamma_2 \) such that \(\theta(\Lambda) = \Lambda \), we call \(\theta \) "isomorphism over \(\Lambda \)" and "\(\Gamma_1, \Gamma_2 \) are isomorphic over \(\Lambda \)". Let \(\Lambda \) be an \(h \)-order with normal sequence \(\{ \mathfrak{M}_i \} i = 1, \ldots, r \). Then we shall call that \(\Lambda \) is \(r \)th order, and the rank of \(\Lambda \) is \(r \). 1st order is nothing but maximal order \(\Omega \), and \(n \)th order is minimal if \(\Omega / N(\Omega) = \Delta_n \).

We have introduced an equation

\[\sum_{i=1}^{r} X_i = n \]

in Section 2. We shall only consider nonzero integral solutions of (1). Hence, by solution we mean always such solutions. We shall define a relation among solutions \((a_1, \ldots, a_r)\) as follows: \((a_1, \ldots, a_r) \equiv (a'_1, \ldots, a'_r)\) if they are only different by a cyclic permutation. We shall denote the
number of classes of solutions by $\varphi(n, r)$. It is clear that $\varphi(n, r) = \varphi(n, n-r)$, and that $\varphi(n, 2) = [n/2]$, and $\varphi(p, r) = \left(\frac{p}{r}\right) / p$, where p is prime and $\left[\frac{\cdot}{\cdot} \right]$ Gauss' number.

We note that every isomorphism is given by an inner-automorphism in Σ.

Let Λ be an h-order with radical \mathfrak{R}. If \mathfrak{R} is principal, we call Λ "a principal h-order". Every maximal order and minimal order are principal.

Theorem 4.1. Let Λ be an h-order with form (m_1, \ldots, m_r). Then Λ is principal if and only if $m_1 = \cdots = m_r$, (cf. [9], Theorem 1).

Proof. If $m_1 = \cdots = m_r$, Λ is principal by the fact $\Lambda = \text{Hom}_\mathfrak{R}(\mathfrak{R}, \mathfrak{R}) = \text{Hom}_\mathfrak{R}(\mathfrak{R}, \mathfrak{R})$ and by [5], Corollary 4.5. Conversely, if $N = \alpha \Lambda = \Delta \alpha$, then $\alpha^{-1}(\Lambda/\mathfrak{R}) \alpha = \Lambda/\alpha^{-1}\mathfrak{R}_t \alpha$ by Theorem 2.1, and hence, $m_i = m_{i+1}$ for all i.

Proposition 4.1. Let Λ be an h-order with radical \mathfrak{R}, and Γ_1, Γ_2 orders containing Λ. If Γ_1, Γ_2 are isomorphic over Λ, then this isomorphism is given by an element in \mathfrak{R}. In this case $C(\Gamma_i) = \mathfrak{R}^{-t} C(\Gamma_i) \mathfrak{R}^t$ for some t.

Proof. If $\beta^{-1} \Gamma_1 \beta = \Gamma_2$, and $\beta \Lambda \beta^{-1} = \Delta$ for $\beta \in \Sigma$, then we may assume that $\beta \in \Delta$. Since $\beta \Lambda = \Delta \beta$ is invertible two-sided ideal in Λ, $\beta \Lambda = \mathfrak{R}^t$ for some $t \geq 0$. It is clear that $C(\Gamma_i) = \beta^{-1} C(\Gamma_i) \beta = \mathfrak{R}^{-t} C(\Gamma_i) \mathfrak{R}^t$.

Corollary. If Λ is principal, then Γ_1 and Γ_2 are isomorphic over Λ if and only if $\mathfrak{R}(\Gamma_i) = \mathfrak{R}^{-t} C(\Gamma_i) \mathfrak{R}^t$ for some t, where $\mathfrak{R} = \mathfrak{R}(\Lambda)$.

Theorem 4.2. Let Λ be a principal h-order of a form (s, \ldots, s). Then the following statements are true:

1) Γ_1, Γ_2 are isomorphic if and only if Γ_1, Γ_2 are isomorphic over Λ.
2) The number of classes of isomorphic $m-r$th orders containing Λ is equal to $\varphi(m, r)$.
3) Those isomorphisms are given by inner-automorphisms of α^i for some i, where $N(\Lambda) = \alpha \Lambda = \Delta \alpha$.
4) Let Λ_1, Λ_2 be h-orders. Then Λ_1 and Λ_2 are isomorphic if and only if they are of same form.

Proof. Let Γ_1 and Γ_2 be $m-r$th orders and $C_{i} = C(\Omega_i)$ $i=1, 2$. Let

$C_{i} = I(\mathfrak{M}_{i_1}, \mathfrak{M}_{i_2}, \ldots, \mathfrak{M}_{i_{r}})$, $C_{2} = I(\mathfrak{M}_{j_1}, \mathfrak{M}_{j_2}, \ldots, \mathfrak{M}_{j_{r}})$, $i_1 < i_2 < \cdots < i_r$, $j_1 < j_2 < \cdots < j_r$, and $\{\mathfrak{M}_{i}\} i=1, \ldots, m$ the normal sequence of Λ. If Γ_1 and Γ_2
are isomorphic over Λ, then $\mathbb{C}=\alpha^{-t}\mathbb{C}\alpha^t$ for some t by the above corollary. Furthermore, $\alpha^{-t}\mathbb{M}_{i+t}\alpha^t=\mathbb{M}_{(i+t)}$, where $(i_{i_1}+t)\equiv i_1+t \mod m$, and $0<(i+t)\leq m$. Therefore, $(i_{i_1}+t), (i_{i_2}+t), \ldots, (i_{i_t}+t), (i_{i_{t+1}}+t), \ldots, (i_{i_{t+(r-s)}}+t))
\equiv (j_1, j_2, \ldots, j_r)$. We shall associate the set (j_1, j_2, \ldots, j_r) to a class of solution of (1) as follows: $x_1=j_2-j_1, \ldots, x_{r-1}=j_r-j_{r-1}, x_r=j_1+m-j_r$. Then (j_1, \ldots, j_r) and (i_1, \ldots, i_r) correspond to the same class. Conversely, for any $m-r$ th h-orders Γ_1 and Γ_2 if $(j_1, (j_i))$ correspond to the same class, then there exists some t such that $((i_i+t))= (j_i)$. Hence, let (x_1, \ldots, x_r) be any solution of (1). Let $C=I(\mathbb{M}_1, \mathbb{M}_{1+x_1}, \ldots, \mathbb{M}_{1+x_1+\cdots+x_{r-1}})$, then $\Gamma=\text{Hom}_\Lambda(C, \mathbb{C})$ is an h-order containing Λ and Γ corresponds to (x_1, \ldots, x_r) by the above mapping, which implies 2).
Next, we shall consider r th order Γ_i $(i=1, 2)$ containing Λ. If Γ_1 and Γ_2 are isomorphic, then they are of same form $(st_1, st_2, \ldots, st_r)$. If we associate (t_1, t_2, \ldots, t_r) to Γ_i, then Γ_1 and Γ_2 correspond to the same class of solution of (1) replacing n by m. Conversely, for any solution (t_j) of (1), we can find an order $\Gamma_i(\geq \Lambda)$ of a form (st_1, \ldots, st_r) by Theorem 2.3. Hence, the number of classes of isomorphic r th orders is equal to or larger than $\varphi(m, r)$. On the other hand, that number does not exceed the number of classes of isomorphic r th orders over Λ, which is equal to $\varphi(m, m-r)\geq \varphi(m, r)$ by 2). Therefore, we have proved 1). 3) is clear by 1) and Proposition 4.1. 4) is clear from the above and Theorem 3.1.

Corollary 4.1. Let Γ_1 and Γ_2 be isomorphic over Λ, then they are isomorphic over any principal h-orders Λ' contained in Λ. In this case the form of Λ has a periodicity.5)

Proof. The first part is clear by the theorem, and the isomorphism is given by α^t, where $\mathbb{R}=N(\Lambda')=\alpha \Lambda'$. Hence, $\alpha^{-t}\Lambda\alpha^t=\Lambda$, which means $C_\Lambda(\Lambda)=\mathbb{R}^{-t}C_\Lambda(\Lambda)\mathbb{R}$.

Corollary 4.2. Let Γ_1 and Γ_2 be h-orders contained in an order Ω, and which are isomorphic, then this isomorphism is given by a unit element in Ω and an element α^t, where α is a generator of radical of minimal h-order contained in Γ_1.

It is clear by Theorem 4.2 and Corollary to Theorem 3.1.

Corollary 4.3. For principal h-orders Γ_1, Γ_2, the following statements are equivalent:

5) If a form is the following type: $(m_1, m_2, \ldots, m_1, m_2, \ldots)$, then we call the form has a periodicity.
1) \(\Gamma_1 \) and \(\Gamma_2 \) are isomorphic,
2) \(\Gamma_1/N(\Gamma_1) \) and \(\Gamma_2/N(\Gamma_2) \) are isomorphic,
3) \(\Gamma_1 \) and \(\Gamma_2 \) are of the same rank.

Remark. The above corollary is not true for any \(h \)-order. For instance, let \(\{M_1, M_2, \ldots, M_s\} \) be the normal sequence of a minimal \(h \)-order \(\Lambda \) in \(K_s \), and \(\mathcal{E}_1=I(M_1, M_4, M_6), \mathcal{E}_2=I(M_1, M_4, M_6) \). Then \(\Gamma_1=\text{Hom}^A_\alpha(\mathcal{E}_1, \mathcal{E}_2) \) and \(\Gamma_2=\text{Hom}^A_\alpha(\mathcal{E}_2, \mathcal{E}_3) \) have different form \((1, 2, 3)\) and \((2, 1, 3)\), but \(\Gamma_2/N(\Gamma_1) \cong \Gamma_2/N(\Gamma_2) \).

Corollary 4.4. Let \(\Gamma_1 \) and \(\Gamma_2 \) be \(h \)-orders containing principal \(h \)-orders \(\Lambda_1 \), and \(\Lambda_2 \) such that there exist no orders between \(\Gamma_1 \) and \(\Lambda_1 \). Then the statements in Corollary 4.3 are true.

Proof. Every \(\Gamma \) containing \(\Lambda \) which satisfies the condition of the corollary is isomorphic by Theorems 2.3 and 4.2. Hence, the corollary is true by Corollary 4.2.

Corollary 4.5. Let \(n \) be the length of maximal chain for \(h \)-orders. If \(n \leq 5 \), (1) and 2) in Corollary 4.3 are equivalent for any orders. If \(n \leq 3 \), (1), (2), and 3) in Corollary 4.3. are equivalent for any orders.

We shall recall the definition of same type in [5], Section 4. If there exists a left \(\Gamma_1 \) and right \(\Gamma_2 \) ideal \(\mathfrak{A} \) in \(\Sigma \) for two orders \(\Gamma_1 \) and \(\Gamma_2 \) such that \(\Gamma_1=\text{Hom}^\alpha_2(\mathfrak{A}, \mathfrak{A}), \Gamma_2=\text{Hom}^\alpha_1(\mathfrak{A}, \mathfrak{A}) \), we call \(\Gamma_1 \) and \(\Gamma_2 \) belong to the same type”.

Lemma 4.1. Let \(\Lambda_1 \) and \(\Lambda_2 \) be \(h \)-orders which belong to the same type, and \(\Omega_1, \Omega_2 \) containing \(\Lambda_1, \Lambda_2 \), respectively. Then \(\Omega_1, \Omega_2 \) belong to the same type if and only if \(\Omega_1 \), \(\Omega_2 \) are of same rank.

Proof. By the assumption, we have a left \(\Lambda_1 \) and right \(\Lambda_2 \) ideal \(\mathfrak{A} \) such that \(\mathfrak{A}=\text{Hom}^\alpha_2(\mathfrak{A}, \mathfrak{A}), \Lambda_2=\text{Hom}^\alpha_1(\mathfrak{A}, \mathfrak{A}) \). Then \(\mathfrak{A}^{-1}=\Lambda_1, \mathfrak{A}^{-1}=\Lambda_2, \) and hence, \(\mathfrak{A}^{-1}\Lambda_1\mathfrak{A}=\Lambda_2, \mathfrak{A}\Lambda_2\mathfrak{A}^{-1}=\Lambda_1 \) by [5], Section 4. Let \(\mathcal{E}=C_\Lambda(\Omega_1). \) Then \(\Omega_1=\text{Hom}^\alpha_1(\mathcal{E}, \mathcal{E}) \). It is clear that \(\Omega_1=\text{Hom}^\alpha_1(\mathcal{E}, \mathcal{E})=\text{Hom}^{\alpha^{-1}}_\Lambda(\mathcal{E}\mathfrak{A}, \mathcal{E}\mathfrak{A})=\text{Hom}^\alpha_2(\mathcal{E}\mathfrak{A}, \mathcal{E}\mathfrak{A}). \) Let \(\Omega_2=\text{Hom}^\alpha_1(\mathcal{E}\mathfrak{A}, \mathcal{E}\mathfrak{A}) \), then \(\Omega_2 \geq \Lambda_2. \) Since \(\Omega_1, \Omega_2 \) belong to the same type, they are of same rank. Therefore, \(\Omega_2, \Omega_2 \) belong to the same type by [5], Theorem 4.2. Hence, \(\Omega_1, \Omega_2 \) belong to the same type.

The following theorem is a generalization of [5], Theorem 4.3.

Theorem 4.3. Let \(\Gamma_1, \Gamma_2 \) be orders in \(\Sigma \). Then \(\Gamma_1 \) and \(\Gamma_2 \) belong to the same type if and only if \(\Gamma_1 \) and \(\Gamma_2 \) are of same rank.
Proof. Let Λ_1, Λ_2 be minimal h-orders in Γ_1, Γ_2, respectively. Then $\Lambda_i = e \Lambda_i e^{-1}$ by Corollary to Theorem 3.1. Hence, $\Lambda_1 = \text{Hom}_A^e (e \Lambda_2, e \Lambda_2)$, and $\Lambda_2 = \text{Hom}_A^e (\Lambda_1 e, \Lambda_2 e)$. Thus, we obtain the theorem by Lemma 4.1.

5. Chain of h-orders.

In this section, we shall study by making use of arguments in the proof of Theorem 3.1 how we can find maximal chains of h-orders which pass a given h-order Γ. We have already known by [5], Theorem 3.3 how we can construct chains of h-orders containing Γ, which is determined by the structure of $\Gamma/\mathbb{N}(\Gamma)$.

First, we shall study a relation between left conductor $D(\)$ and right conductor $C(\)$.

Theorem 5.1. Let $\Gamma \triangleright \Lambda$ be h-orders. Then $C(\Gamma) = R D(\Gamma) R^{-1}$, where $R = N(\Lambda)$.

Proof. Let $\{M_i\} i = 1, \ldots, r$ be the normal sequence in Λ, and let $\Gamma = \text{Hom}_A^e (M_2, M_1)$, then $D(\Gamma) = M_2$. There exists some M_i such that $\Gamma = \text{Hom}_A^e (M_i, M_i)$, and hence, $\{I(M_i, M_i)\} i = j$ is the normal sequence in Γ. Since $M_2/\mathbb{R} M_1 \Lambda M_1 \oplus \Lambda M_2 \oplus \ldots \oplus \Lambda M_r \oplus \mathbb{R} M_2$, where $\mathbb{R} = R/R M_2$ is a direct sum of m_2 simple components which appear in $\Lambda/\mathbb{R} M_2$, $M_i I(M_i, M_i) \Lambda M_i + R M_2/R M_2 = \Lambda M_1 \oplus \Lambda M_2 \oplus \ldots \oplus \Lambda M_r + R I(M_i, M_i) M_i \Lambda M_2$. Hence, if $i \neq j$, $\Gamma /I(M_i, M_i) \Lambda M_i \cong \Delta_{m_i}$ or $\Delta_{m_{i+1}}$ by Lemma 2.1. However, $\Gamma /I(M_i, M_i) \Lambda M_i = \Delta_{m_{i+1}}$ by Lemma 2.5, which is a contradiction. If $i = n$, then $\mathbb{R} M_n(I(M_n, M_n) M_n) = (0)$, and hence, $M_n I(M_n, M_n) M_n + R M_n/R M_2 = \Lambda M_1 \oplus \Lambda M_2 \oplus \ldots \oplus \Lambda M_{n-1}$, which also contradicts the fact that $I(M_n, M_n)$ is a maximal two-sided ideal. Let $\mathbb{R} = I(M_n, \ldots, M_1)$ and $\mathbb{D} = I(M_n, \ldots, M_1)$, then $\mathbb{R} = \mathbb{R}^{-1} \mathbb{D} \mathbb{R}$. We assume that $\Gamma = \text{Hom}_A^e (\mathbb{C}, \mathbb{C}) = \text{Hom}_A^e (\mathbb{D}, \mathbb{D})$. Then $\Omega = \text{Hom}_A^e (I(\mathbb{C}, M_{n+1}), I(\mathbb{C}, M_{n+1})) = \text{Hom}_A^e (I(\mathbb{C}, M_{n+1}), I(\mathbb{C}, M_{n+1}))$, by the first part. Hence, $\Omega = \text{Hom}_A^e (I(\mathbb{C}, M_{n+1}), I(\mathbb{C}, M_{n+1})) = \text{Hom}_A^e (I(\mathbb{C}, M_{n+1}), I(\mathbb{C}, M_{n+1})) \mathbb{R}^{-1}$, $\mathbb{R}^{-1} C(\Gamma) \mathbb{R}^{-1} \subset \mathbb{C}(\Gamma) \mathbb{R}^{-1}$, since $\mathbb{C}(\Gamma) = \mathbb{R} \mathbb{D} \mathbb{R}^{-1} \mathbb{D} \mathbb{R}^{-1}$.

Theorem 5.2. Let Λ be a principal h-order and Γ an order containing Λ. Then every h-order containing Λ which is isomorphic to Γ is written as $T(\Gamma)$, where T is the following functor: for $\Omega \triangleright \Lambda \Gamma(\Omega) = \text{Hom}_A^e (\mathbb{C}(\Omega), \mathbb{C}(\Omega))$, and $T'(\Omega) = T(T'(\Omega))$.

Proof. It is clear by Theorems 4.2 and 5.1, and Proposition 4.1.
We note that for two \(h \)-orders \(\Lambda \supseteq \Gamma \), \(C_r(\Lambda) \supseteq N(\Gamma) \) by Lemma 3.2.

Lemma 5.3. Let \(\Gamma \) be an \(r \)-th order with radical \(R \) and \(\mathcal{S} \) a left ideal containing \(R \) in \(\Gamma \) such that \(\mathcal{S}/R \cong \Delta_{m_1} \otimes \cdots \otimes \Delta_{m_l} \otimes I \otimes \Delta_{m_{l+1}} \otimes \cdots \otimes \Delta_{m_r} \); I a proper left ideal in \(\Delta_{m_1} \). Then \(\Gamma = \text{Hom}_h(\mathcal{S}, \mathcal{S}) \cap \text{Hom}_h(R, \mathcal{S}) = \Gamma \cap \text{Hom}_h(\mathcal{S}, \mathcal{S}) \) is an \(r+1 \)-th \(h \)-order and \(C(\Gamma) = \mathcal{S} \). Hence, \(\Gamma \) is uniquely determined by the rank and conductor. Furthermore, every \(r+1 \)-th \(h \)-order in \(\Gamma \) is expressed as above.

Proof. Since \(\mathcal{S}/R = \Gamma \), \(r(\mathcal{S}) = \Gamma \). If we put \(\Gamma' = \text{Hom}_h(\mathcal{S}, \mathcal{S}) \), then \(\Gamma' = \text{Hom}_h(\mathcal{S}, \mathcal{S}) \) by [1], Theorem A 2. By the same argument in the proof of Theorem 3.1, we can find an \(r+1 \)-th \(h \)-order \(\Lambda' \) such that \(C_{r+1}(\Gamma')/R \cong \mathcal{S}/R \). Hence, there exists a unit element \(e \in \Gamma \) such that \(C_{r+1}(\Gamma') = \mathcal{S}/R \). Furthermore, \(\Lambda' = \Gamma ' \cap \text{Hom}_h(\mathcal{S}, \mathcal{S}) \cap \text{Hom}_h(\mathcal{S}, \mathcal{S}) = \Gamma ' \cap \text{Hom}_h(\mathcal{S}, \mathcal{S}) = \mathcal{S}^{-1}(\Gamma ' \cap \mathcal{S}) \). Therefore, \(\Lambda = \Gamma ' \cap \mathcal{S} = \mathcal{S} \). Hence \(\Lambda = \Lambda' \). The last part is clear.

Let \(\Lambda \) be an \(h \)-order of form \((m_1, m_2, \ldots, m_r); \Lambda/N(\Lambda) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_r} \), and \(\mathcal{S}_{i,j} \) a left ideal in \(\Lambda \) such that \(\mathcal{S}_{i,j} \supseteq \mathcal{S}_i \), and \(\mathcal{S}_{i,j}/R = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_r} \), \(I_{i,j} \) a non-zero left ideal in \(\Delta_{m_i} \). We denote \(\text{Hom}_h(\mathcal{S}_{i,j}, \mathcal{S}_{i,j}) \) by \(\Delta(\mathcal{S}_{i,j}) \) and \(I_{i,j} \) by \(I(I_{i,j}) \). Let \(k(I_{i,j}) \) be the length of composition series of \(I_{i,j} \) as a left \(\Lambda \)-module.

Theorem 5.3. Let \(\Lambda \), \(\mathcal{S}_{i,j} \) be as above. Then \(\Gamma = \bigcap_{j=1}^{t, i=1} \Delta(\mathcal{S}_{i,j}) \) is an \(h \)-order if and only if \(I(I_{i,j}) \) is linearly ordered by inclusion for all \(i \). Every \(r+s(i) \)-th \(h \)-order in \(\Lambda \) is uniquely written as above.

Proof. We assume that \(\Gamma \) is an \(h \)-order and \(\Lambda \) is a minimal \(h \)-order in \(\Gamma \). Let \(S_i = \{ \mathcal{M}_{i_1}, \mathcal{M}_{i_2}, \ldots, \mathcal{M}_{i_{i+1}} \} \) be a set of maximal two-sided ideals in \(\Lambda \), such that \(C_{\Lambda_0}(\Lambda) = I(S_i, S_{i-1}, \ldots, S_1) \), (cf. Section 2). We denote \(\Lambda \cap \Delta(\mathcal{S}_{i,j}) \) by \(\Gamma_j \). Since \(\Gamma_j \) is an \(r+1 \)-th order from Lemma 2.5 we obtain \(C_{\Lambda_0}(\Gamma_j) = I(S_i, S_{i-1}, \ldots, S_1) \). We assume \(\rho(j_i) < \rho(j_1) \). Let \(\mathcal{G}_i = S_i - \{ \mathcal{M}_{p,j_1}, \mathcal{M}_{p,j_2} \} \), \(\mathcal{C} = I(S_i, S_{i-1}, \ldots, S_1) \). Then \(\Gamma' = \text{Hom}(\mathcal{C}, \mathcal{C}) \) is an \(r+2 \)-th \(h \)-order and \(\Gamma' = \Gamma_1 \cap \Gamma_2 \). Let \(\mathcal{R}_1 = I(S_i, S_{i-1}, S_i - \{ \mathcal{M}_{p,j_2} \}, \ldots, S_1) \) and \(\mathcal{R}_2 = I(S_i, \ldots, S_1 - \{ \mathcal{M}_{p,j_1} \}) \), then we obtain a normal sequence \(\{ \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \ldots \} \) in \(\Gamma' \) by Theorem 2.3, and \(C_{\Gamma'}(\Gamma_j) = \mathcal{R}_2 \). Since \(C_{\Gamma'}(\Lambda) = I(\mathcal{R}_1, \mathcal{R}_2) \), \(C_{\Gamma'}(\Lambda) = I(\mathcal{R}_1, \mathcal{R}_2) \) by the usual argument in Sections 2 and 3, where \(\Gamma' = \mathcal{R}_2 \), and \(I \) is a simple left ideal in \(\Delta_{m_1} \). On the other hand, since \(\mathcal{S}_{i,j} = C_{\Gamma_j}(\Lambda) = I(\mathcal{R}_1, \mathcal{R}_2) \Gamma_{j_2} \), and \(I(\mathcal{R}_1, \mathcal{R}_2) \Gamma_{j_2} \),
$I(\mathfrak{A}_1, \mathfrak{A}_2) \Gamma_{f_2}, \ldots$ is a normal sequence in Γ_{f_2}, we obtain $\mathfrak{A}_{i,f_2}/A(\Lambda) = \Delta_{m_1} \oplus \ldots \oplus \Delta_{m_{i-1}} \oplus I \oplus \Delta_{m_{i+1}} \oplus \ldots \approx C_{\phi}(\Lambda)/N(\Lambda)$. However, $\mathfrak{A}_{i,f_2} \supseteq C_{\phi}(\Lambda)$, and hence $\mathfrak{A}_{i,f_2} = C_{\phi}(\Lambda) \subseteq \mathfrak{A}_{i,j}$. Thus we have proved that $\{(\mathfrak{A}_{i,j})\}_j$ is linearly ordered for any i. Conversely, we assume that $\{(\mathfrak{A}_{i,j})\}_j$ is linearly ordered for all i, and $k(I_{i,j}) > k(I_{i,j}) > k(I_{i,j})$. Let Δ_i be a minimal order in Δ and $\{S_i\}$ be as above. If we denote $I(S_i, \ldots, S_i - M_{i+1} - k_{i,j}, \ldots, S_{i+1}, \ldots)$ by $S_{i,j}$, then $\Gamma_{i,j} = \text{Hom}_{\phi}(\mathfrak{A}_{i,j}, \mathfrak{A}_{i,j})$ is an $r + 1$-th order in Λ and $\mathfrak{A}_{i,j} = C_{\phi}(\Lambda) \approx \mathfrak{A}_{i,j}$. Furthermore, we know by the above argument that $\{(\mathfrak{A}_{i,j})\}_j$ is linearly ordered. Therefore, there exists a unit element \mathfrak{A} in \mathfrak{A} such that $\mathfrak{A}_{i,j} = \mathfrak{A}$ for all i, j. Hence $\Gamma = \Lambda \cap \bigcap_{i,j} \Delta(\mathfrak{A}_{i,j}) = \Lambda \cap \bigcap_{i,j} \mathfrak{A} = \mathfrak{A}$. The second part is clear from the proof.

From the above proof we have

Corollary 5.1. Let $\Gamma = \Lambda \cap \bigcap_{i,j} \Delta(\mathfrak{A}_{i,j})$, and $k(i, j) = k((\mathfrak{A}_{i,j}))$. If $k(i, j) > k(i, j')$, for $j < j'$, Γ is of a form $(m_i - k_{i,j}, k_{i,1} - k_{i,2}, \ldots, k_{i,s(i)}, \ldots, m_i - k_{i,j}, k_{i,j} - k_{i,j'}, \ldots, k_{i,s(i)}, \ldots)$.

Corollary 5.2. Let $\{\Omega_i\}_{i=1}^n$ be \h-orders. Then $\bigcap_i \Omega_i$ is an \h-order if and only if intersection of any two of the Ω_i's is an \h-order.

Proof. Since every \h-order is written as an intersection of maximal orders, we may assume that the Ω_i's are maximal. If $\Omega_i \cap \Omega_i$ is an \h-order, then $\Omega_i = \text{Hom}_{\phi}(\mathfrak{A}_i, \mathfrak{A}_i)$, for a left ideal $\mathfrak{A}_i \supseteq \bigcap N(\Omega_i)$ in Ω_i. Let $\mathfrak{A}_i + \mathfrak{A}_j = \mathfrak{A}$. Then $\Omega_i \cap \Omega_j = \text{Hom}_{\phi}(\mathfrak{A}, \mathfrak{A})$. Hence Ω_i or Ω_j is equal to $\text{Hom}_{\phi}(\mathfrak{A}, \mathfrak{A})$ by [5], Theorem 3.3. Therefore, $\mathfrak{A} = \mathfrak{A}_i$ or \mathfrak{A}_j which shows that $\{(\mathfrak{A}_i)\}$ is linearly ordered. Hence $\bigcap \Omega_i$ is an \h-order by the theorem. Converse is clear by [5], Corollary 1.4.

Proposition 5.1. Let Λ be an \h-order and \mathfrak{A} a left ideal containing $N(\Lambda)$ such that $\mathfrak{A} \Lambda = \Lambda$. Then $\Gamma = \Lambda \cap \bigcap \mathfrak{A}$ is a unique maximal order among orders Γ in Λ such that $C_{\phi}(\Lambda) = \mathfrak{A}$. Hence \mathfrak{A} is idempotent.

Proof. Let $\mathfrak{A} = \bigcap \mathfrak{A}_i$; $\mathfrak{A}_i/\mathfrak{A} = \Delta_{m_1} \oplus \ldots \oplus \Delta_{m_r} \oplus \ldots \Delta_{m_r}$. Then $\Gamma = \Lambda \cap \bigcap_i \Delta(\mathfrak{A}_i)$. Hence, $C_{\phi}(\Lambda) \subseteq \bigcap C_{\phi}(\mathfrak{A}_i)(\Lambda) = \bigcap \mathfrak{A}_i = \mathfrak{A}$. It is clear that $C_{\phi}(\Lambda) \supseteq \mathfrak{A}$. If $C_{\phi}(\Lambda) = \mathfrak{A}$ for an \h-order $\Gamma \subseteq \mathfrak{A}$. Then $\Gamma \subseteq \Lambda \cap \text{Hom}_{\phi}(\mathfrak{A}, \mathfrak{A}) = \mathfrak{A}$, since $C_{\phi}(\Lambda)$ is a two-sided ideal in Γ.

Corollary 5.3. Let $\Gamma = \Lambda \cap \bigcap \mathfrak{A}$, then $C_{\phi}(\Lambda) = \bigcap \mathfrak{A}_i$.

Proof. Let $C_{\phi}(\Lambda) = \bigcap \mathfrak{A}_i$, where the \mathfrak{A}_i's are as in the proof of...
Corollary 5.2. \(\Gamma' = \Lambda \cap \text{Hom}_s(C_s(\Lambda), C_s(\Lambda)) \subseteq \Gamma \) and \(\Gamma' = \Lambda \cap \bigcap_i \Delta(Q_i) \).

Since \(\Delta(Q_i) \supseteq \Gamma' \), \(Q_i = Q_{k,j} \) for some \(k, j \). Hence \(\Delta(Q) = \bigcap_i Q_{i,j} \).

PROPOSITION 5.2. Let \(\Lambda \) be a principal \(h \)-order and \(\mathcal{Q} \) a left ideal in \(\Lambda \). Then \(\mathcal{Q} \) is principal if and only if \(\tau'_h(Q) = \Lambda \) and \(\Delta(Q) \) is principal.

Proof. If \(\mathcal{Q} = \Delta_\alpha \), then \(\Delta(Q) = \alpha^{-1} \Delta_\alpha \), and hence \(\Delta(Q) \) is principal, and \(\tau'_h(Q) = \Delta_\alpha^{-1} \Delta_\alpha = \Lambda \). If \(\tau'_h(Q) = \Lambda \), \(\Lambda = \text{Hom}_{\Delta(Q)}(Q, Q) \). Furthermore if \(\Delta(Q) \) is principal, \(\Lambda \) and \(\Delta(Q) \) have the same form, and hence \(\mathcal{Q} \) is principal by [5], Corollary 4.5.

We shall discuss further properties of one-sided ideals in the forthcoming paper [7].

PROPOSITION 5.3. For any \(r \)th order \(\Gamma \), there exist \(n-r+1 \) minimal \(h \)-orders \(\Lambda_i \) such that \(\Gamma = \bigcup \Lambda_i \), where \(n \) is the length of maximal chain for \(h \)-orders in \(\Sigma \).

Proof. We prove the proposition by induction on rank \(r \) of orders. If \(r = n \), then \(\Gamma \) is minimal. If \(\Gamma \) is an \(r \)th order \((r < n) \), then \(\Gamma / N(\Gamma) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_r} \), and \(m_i > 1 \) for some \(i \). Therefore, there exist two distinct left ideals \(\mathcal{Q}_1 \) and \(\mathcal{Q}_2 \) in \(\Gamma \) by Theorem 5.3 such that \(L_i = C_{\alpha_i}(\Gamma) \), and \(C_{\alpha_2}(\Gamma) = \mathcal{Q}_2 \) for some \(r+1 \)th orders \(\Omega_1 \) and \(\Omega_2 \). Since \(\Omega_1 \neq \Omega_2 \), \(\Gamma = \Omega_1 \cup \Omega_2 \). By induction hypothesis we obtain that \(\Omega_i = \bigcup_{j=1}^{r} \Lambda_{i,j} \), where the \(\Lambda_{i,j} \)'s are minimal \(h \)-orders. Since \(\Omega_1 \neq \Omega_2 \), there exists \(\Lambda_{2,j} \subset \Omega_1 \). Hence \(\Gamma = \Omega_1 \cup \Lambda_{2,j} = \bigcup_{i=1}^{r+1} \Lambda_i \).

6. Numbers of \(h \)-orders.

We shall count numbers of \(h \)-orders in an \(h \)-order.

LEMMA 6.1. Let \(\Gamma \supseteq \Delta \) be \(h \)-orders and \(\varepsilon \) a unit in \(\Gamma \). If \(\varepsilon^{-1} \Delta \varepsilon = \Delta \) then \(\varepsilon \in \Delta \).

Proof. Since \(\varepsilon \Delta = \Delta \varepsilon \) is a two-sided inversible ideal with respect to \(\Delta \) in \(\Sigma \), \(\Delta \varepsilon = \mathcal{R}^\rho \) by [5], Theorem 6.1, where \(\mathcal{R} = N(\Lambda) \). Let \(\mathcal{R}' = p \Delta \), then \(\Delta \varepsilon = \mathcal{R}^\rho = p^\rho \Delta \). Hence, \(\varepsilon^{-1} p^\rho \) is a unit in \(\Delta \), and hence in \(\Gamma \). Therefore, \(\rho = 0 \), which implies \(\Delta \varepsilon = \Delta \).

PROPOSITION 6.1. Let \(\Omega \) be an \(h \)-order. If \(\Gamma_1 \) and \(\Gamma_2 \) are isomorphic by an inner-automorphism in \(\Omega \) for \(\Gamma_1 \subseteq \Omega \) \((i = 1, 2)\), and \(\Gamma_1 \neq \Gamma_2 \), then \(\Gamma_1 \cap \Gamma_2 \) is not an \(h \)-order.

Proof. If \(\Gamma_1 \cap \Gamma_2 \) is \(h \)-order, there exists a minimal \(h \)-order \(\Lambda \) in
Tl and Fj. Since Ti and are isomorphic by an inner-automorphism in
\Omega, they are isomorphic over \Lambda by Theorem 4.2. Hence, £\Lambda \varepsilon^{-1} = \Lambda.
Therefore, \varepsilon is a unit in \Lambda, and in \Gamma_i, which is a contradiction to the
fact \Gamma_1 = \Gamma_2.

Corollary 6.1. Let \Omega be a maximal order and \Gamma_1, \Gamma_2 nonmaximal
distinct principal h-orders of same rank in \Omega, then \Gamma_1 \cap \Gamma_2 is not an h-
order.

Proof. Let \Lambda_1 and \Lambda_2 be minimal h-orders contained in \Gamma_1 and \Gamma_2,
respectively. Then \Lambda_i = \varepsilon^{-1} \Lambda_\varepsilon \varepsilon; \varepsilon unit in \Omega by Corollary to Theorem 3.1.
However, by Theorems 2.3 and 4.1, \Gamma_1 = \varepsilon^{-1} \Gamma_\varepsilon \varepsilon.

Corollary 6.2. Let \Omega be an h-order, and \{\Gamma_i\} the set of r th h-orders
between \Omega and a fixed minimal h-order \Lambda in \Omega. Then every r th order in
\Omega is isomorphic by inner-automorphism in \Omega to some \Gamma_i, and those iso-
morphic classes by units in \Omega do not meet each other.

It is clear by the proof of Theorem 3.1 and the proposition.

Theorem 6.1. The following conditions are equivalent:
1) The number of h-orders in a maximal order is finite,
2) The number of h-orders in a nonminimal h-order is finite.
3) \(R/\wp\) is a finite field.

To prove this we use the following elementary property.

Lemma 6.2. Let \(B = \Delta_n\) be a simple ring and \(L = B \oplus \cdots \oplus B\).
then for any unit element \(\varepsilon\) in \(B\) \(L \varepsilon = L\) if and only if
\[\varepsilon = \begin{pmatrix} \varepsilon_1 & 0 \\ C & \varepsilon_2 \end{pmatrix}\]
\(\varepsilon_1, \varepsilon_2\) are units in \(\Delta_r\) and \(\Delta_{n-r}\), and \(C\) is an arbitrary element in \((n-r) \times r\)
matrices over \(\Delta\).

Proof of Theorem 6.1. Let \(\Gamma\) be a nonminimal r th h-order. By Theo-
rem 5.3 \(r+1\) th h-orders contained in \(\Gamma\) correspond uniquely to left ideals
\(\mathcal{S}_i; \mathcal{S}_i/N(\Gamma) = \Delta_{m_1} \oplus \cdots \oplus \Delta_{m_r}\). Hence, the number of \(r+1\) h-
orders in \(\Gamma\) is equal to the number of those left ideals. The number of left ideals in \(\Gamma/N(\Gamma)\) which are isomorphic to \(\mathcal{S}_i/N(\Gamma)\) is equal to
\([\Gamma/N(\Gamma)]^* : 1]/[E(\mathcal{S}_i) : 1]\), where \(*\) means the group of units and
\(E(\mathcal{S}_i) = \{\varepsilon \in (\Gamma/N(\Gamma))^*; (\mathcal{S}_i/N(\Gamma)) \subseteq \mathcal{S}_i/N(\Gamma)\}\). Since \([\Delta : R/\wp] < \infty\),
\([\Gamma/N(\Gamma)]^* : 1]/[E(\mathcal{S}_i) : 1] < \infty\) if and only if \([R/\wp : 1] < \infty\) by Lemma 6.1. Thus, we
obtain 2) \Rightarrow 3). Since the length of maximal chain is finite, we have 1) \(\Rightarrow 2 \).

If we want to count the number of \(h \)-orders in \(\Gamma \), we may use the argument in the proof of Theorem 6.1. However, it is complicated a little. By virtue of Corollary 6.2, we may fix a minimal \(h \)-order in \(\Lambda \). From this point, we shall study the numbers of \(h \)-orders in the special case as follows.

In Section 1, we have noted that we may restrict \(R \) to the case of a complete, discrete valuation ring. By \(\wedge \) we mean completion with respect to the maximal ideal \(p \) in \(R \). Let \(\Omega \) be a maximal order with radical \(\mathcal{R} \); \(\Omega/\mathcal{R} = \Delta_n \). Let \(\mathcal{S} = T_n' \); \(T \) division ring, then \(\mathcal{O} = \mathcal{O}' \), where \(\mathcal{O} \) is a unique maximal order with radical \((\pi) \) in \(T \). Since \(\Omega/\mathcal{R} = \mathcal{O}/\mathcal{R} \), \(n' = n \).

In order to decide all types of \(h \)-orders in \(\mathcal{S} \), we may consider \(h \)-orders containing a fixed minimal \(h \)-order by Theorem 3.1. By Lemma 1.2, we obtain a minimal \(A \)-order \(A \), which we shall fix in this section; namely

\[
\Lambda = \{(a_{i,j}) \in \Sigma, a_{i,j} \in \mathcal{O}, a_{i,j} \in (\pi) \text{ for } i > j\},
\]

\[
N(\Lambda) = \{(a_{i,j}) \in \Lambda, a_{i,j} \in (\pi)\} = \mathcal{R},
\]

\[
\mathcal{R}^{-1} = \{(a_{i,j}) \in \Sigma, a_{i,j} \in \mathcal{O} \text{ if } i = n, i = 1; a_{j,j} \in (\pi) \text{ if } i+1 < j \text{ and } a_{n,1} \in (1/\pi)\mathcal{O}\}.
\]

From now on we denote \(\mathcal{S}, \mathcal{O}, \mathcal{K} \) by \(\Sigma, \mathcal{O}, R \), respectively.

Let \(\mathcal{M}_i = \{(a_{i,j}) \in \Lambda, a_{ji} \in (\pi)\} \). Then the \(\mathcal{M}_i \)'s are the set of maximal two-sided ideals in \(\Lambda \). Since \(e_{i-1,1} \pi e_{i,1} e_{i-1,1} = \pi e_{i-1,1} e_{i,1} \in \mathcal{R}^{-1} \mathcal{M}_i \mathcal{R} \), we know that \(\mathcal{R}^{-1} \mathcal{M}_i \mathcal{R} = \mathcal{M}_{i-1} \). Hence, \(\{\mathcal{M}_n, \mathcal{M}_{n-1}, \ldots, \mathcal{M}_1\} \) is the normal sequence in \(\Lambda \). We can easily check that \(\Gamma_i = \text{Hom}_K(\mathcal{M}_i, \mathcal{M}_i) \) = the ring generated by \(\Lambda \) and \(e_{i-1,1} \) if \(i = 1 \), and that \(\Gamma_i = \text{Hom}_K(\mathcal{M}_i, \mathcal{M}_i) = \{(a_{i,j}) \in \Sigma, a_{i,j} \in (\pi) \text{ for } i < j, a_{i,j} \in \mathcal{O} \text{ for } i = n, j = 1, \text{ and } a_{n,1} \in (1/\pi)\mathcal{O}\} \). Hence, \(\{\Gamma_1, \ldots, \Gamma_n\} \) is a complete set of \(n-1 \)th order in \(\mathcal{O} \). For any order \(\Gamma \) between \(\Omega \) and \(\Lambda \), \(C(\Gamma) = I(\mathcal{M}_{i_1}, \ldots, \mathcal{M}_{i_p}) (i_j > 1) \). Then \(\Gamma \) is the ring generated by \(\Lambda \) and \(\{e_{j-1,1}\} \) \(j = i_1, \ldots, i_p \).

Summarizing the above, we have

Theorem 6.2. Every \(h \)-order in \(\Sigma \) is isomorphic to the following type

6) Those types are changed by the suggestion of Mr. Higikata.
where \(n = \sum m_i \), and \(\mathcal{O}(i \times j) \): all \((i \times j)\) matrices over \(\mathcal{O} \).

We shall return to problem of counting the number of \(h \)-orders. By virtue of Theorem 6.1, we may assume that \(\overline{\mathbb{R}}/\mathfrak{p} \) is a finite field and hence, \(\mathcal{O}/\pi = \text{GF}(p^m) \).

Lemma 6.3. Let \(\Gamma, \Omega \) be as above. Then the number of isomorphic classes of \(\Gamma \) by unit element in \(\Omega \) is equal to \([(\Omega/\pi\Omega)^* : (\Gamma/\pi\Omega)^*] \).

Proof. By Lemma 6.1, this number is equal to \([\Omega^* : 1^*] \), and by the above remark \(\pi\Gamma \leq N(\Gamma') \). Hence, we have \((\Omega/\pi\Omega)^*/(\Gamma/\pi\Omega)^* \cong \Omega^*/1^* \).

Lemma 6.4. \([(\Omega/\pi\Omega)^* : (\Gamma/\pi\Omega)^*] = (p^m - 1)(p^{m-1} - 1) \cdots (p^{m^{(n-1)}} - 1) / \prod_{i=1}^r (p^{m_i - m} - p^m - p^{m_i - m_i - 1}) \).

Proof. It is clear that \(/ \mathcal{O}(\pi\Omega) = (\mathcal{O}/\pi)^\times \) and \([(\mathcal{O}/\pi)^\times : 1] = [GL(n, p^m) : 1] = (p^m - 1)(p^{m-1} - 1) \cdots (p^{m^{(n-1)}} - 1) \) by [4], p. 77, Theorem 99. \(\Gamma/\pi\Omega = \left\{ \begin{array}{c} B_{1,1} \\ \vdots \end{array} \right\} \\ \left(\begin{array}{c} \ast \\ B_{r,r} \end{array} \right) \), and hence, \(r(\in \Gamma/\pi\Omega) \) is unit if and only if the \(B_{1,1}, \ldots, B_{r,r} \) are unit in \((\mathcal{O}/\pi)m_i \). Therefore, \([(\Gamma/\pi\Omega)^* : 1] = \prod_{i=1}^r (GL(m_i, p^m) : 1) p^{m^*} \) s = \(\sum_{i=1}^r m_i(n - m_i - m_2 - \cdots - m_i) \).

By Corollary 6.4, and Theorem 4.1, we have

Theorem 6.3. The number of \(r \)th \(h \)-orders in a maximal order is equal to

\[
\sum_{m_1 + m_2 + \cdots + m_r = m} \{ p^{m_1 - 1}(p^{m_2} - p^m) \cdots (p^{m_r} - p^{m^{(n-1)}}) / \prod_{i=1}^r (p^{m_1} - 1)(p^{m_i} - p^m) \cdots (p^{m_i - m_i - 1}) \}^{(p^{m_1} - p^{m_i}) \cdots (p^{m_i - m_i - 1})} \}
\]

The number of \(r \)th principal \(h \)-orders in \(r \)th principal \(h \)-order is equal to

\[
\{ p^{m_1} - 1(p^{m_2} - p^m) \cdots (p^{m_r} - p^{m^{(n-1)}}) \}^{r} / \\
\{ p^{m_1} - 1(p^{m_2} - p^m) \cdots (p^{m_r} - p^{m^{(n-1)}}) \}^{r} p^{(m_1^2 + r^2 - r^2 p^r)}. \]

Especially, the number of minimal \(h \)-orders in a maximal order is equal to
We shall describe \(\Lambda \) as follows:

\[
\Lambda = \begin{pmatrix}
\pi A_{1,1} & \pi A_{1,2} & \cdots & \pi A_{1,m} \\
A_{2,1} & A_{2,2} & \cdots & A_{2,m} \\
A_{m,1} & A_{m,2} & \cdots & A_{m,m}
\end{pmatrix}; \quad A_{i,j} \text{ is matrices of } m_i \times m_j \text{ over } \mathfrak{O}.
\]

Since

\[
N = \begin{pmatrix}
\pi A_{1,1} & \pi A_{1,2} & \cdots & \pi A_{1,m} \\
A_{2,1} & A_{2,2} & \cdots & A_{2,m} \\
A_{m,1} & A_{m,2} & \cdots & A_{m,m}
\end{pmatrix}; \quad N^n = \pi \Lambda.
\]

Let \(t \) be the ramification index of a maximal order, namely \(\pi^t = pe, \)

\(e \in \mathfrak{O}. \) Then we have a explicit result of Theorem 2.2.

Proposition 6.2. Let \(\Lambda \) be an \(r \)th order, then its ramification index is equal to \(tr. \)

Proposition 6.3. Let \(\Lambda \) be an \(r \)th principal order, and \(\alpha \) an element in \(\Lambda \) such that \(\Delta \alpha^{n/r} = N(\Lambda) \) for some \(n. \) Then \(\Gamma = \Lambda \cap \alpha^{-1} \Delta \alpha \cap \cdots \cap \alpha^{-(n/r)-1} \Delta \alpha^{i-(n/r)} \) is an \(n \)th principal order, and any \(n \)th principal order \(\Gamma \) in \(\Lambda \) is written as above and \(N(\Gamma) = \alpha \Gamma = \Gamma \alpha, \) where \(r | n. \)

Proof. If \(\Gamma \) is an \(n \)th principal order with \(N(\Gamma) = \alpha \Gamma \) in \(\Lambda, \) we can easily show, by Theorems 2.1 and 2.3, that \(\Delta \alpha^{n/r} = \Delta \alpha^{n/r} \) and \(\Gamma = \Lambda \cap \alpha^{-1} \Delta \alpha \cap \cdots \cap \alpha^{-(n/r)-1} \Delta \alpha^{i-(n/r)}. \) Since \(\alpha^{n/r} = \Delta \alpha^{n/r}, \) \(\alpha^{n/r} = N(\Lambda) \). However \(\alpha^{n/r} = \beta \Lambda, \) and hence \(i = 1 \) by Proposition 6.2. Therefore, \(\Delta \alpha^{n/r} = N(\Lambda). \) Conversely if \(\Delta \alpha^{n/r} = N(\Lambda), \) \(\Delta \alpha^{i} \) is a left ideal in \(\Lambda \) containing \(N(\Lambda) \) for \(i \leq n/r, \) and \(\Delta \alpha^{i}/\Delta \alpha^{i+1} \cong \Lambda/\alpha \) as a left \(\Lambda \)-module. If \(\Delta \alpha \Delta = \Lambda, \) \(\Lambda/\Lambda \alpha = \bigoplus_{i=1}^{n/r} I_{i} \), \(\Delta \alpha^{i}/N(\Lambda) = \bigoplus_{i=1}^{(n/r)-1} I_{i} \). Then \(\Gamma = \Lambda \cap \bigoplus_{i=1}^{(n/r)-1} \mathbf{Hom}_{\Lambda}(\Delta \alpha^{i}, \Delta \alpha^{j}) \cap \bigoplus_{i=1}^{(n/r)-1} \mathbf{Hom}_{\Lambda}(\Delta \alpha^{n/r-1}, \Delta \alpha^{n/r-1}) \) is a principal \(n \)th order by Corollary 5.1. It is clear that \(\alpha \Gamma = \Gamma \alpha. \) Hence \(\alpha \Gamma = N(\Gamma)/\beta \Gamma. \) However, \(\psi = (\alpha^{n/r})_{\alpha} = \beta \psi_{\alpha} \), where \(\epsilon, \epsilon' \) and \(\epsilon'' \) are units in \(\Lambda. \) Hence \(i = 1. \)
Bibliography

4. L. Dickson, Linear groups, New York, 1900.