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1. Introduction

Let M be a 2-dimensional manifold imbedded in the 4-dimensional Euclidean
space R4 Let & (M) be thefundamental group of R*—M. In the case that M is
a spinning sphere S, namely a sphere obtained by rotating an arc about a 2-dimen-
sional plane, the group & (S) was investigated by E. Artin [1], E. R. Van Kampen
[2] and J. J. Andrews and M. L. Curtis [3].

The presentation of §(S) was discussed by R.H. Fox [4] and S. Kinoshita [5],
where S is a knotted 2-sphere in general. Their method, the so called moving
picture method, concerned with the slice knots or the null-equivalent knots, which
appear as an intersection of S and a 3-dimensional subspace of R4

This paper contains the method of the Wirtinger’s presentation of F (M) by
the classical projection method as in the knot theory. In this direction the principle
of the method has been given by S. Kinoshita [6].

As an application of this method, a parallelism between knots in R3® and
knotted 2-spheres in R* will be discussed.

2. Preliminaries

Let R+ be the 4-dimensional Euclidean space with a coordinate system (x,y,
z,u). Let R?® be the 3-dimensional subspace of R* defined by #=0. With every
point P=(x,,z,u) of a complex M in R4, we associate the point P*= (x,y,z,0)
and u=u(P). We call P* the trace and u the height of a point P respectively
and denote by P=[P* u(P)]. The set of traces of points of M will be denoted
by M*. The projection ¢ : P-> P* is defined as usual.

Throughout this paper terminologies are used in the semi-linear point of view.
Hence complexes are polyhedral and mappings are simplicial.

Let M be a 2-dimensional closed orientable manifold. It is no loss of generality
to assume the following condition :

(2.1) If Py,..., P, arevertices of M, then the system of points (P:*,..., Py
is in general position in R3.

Let P*¢ M*. 1If there exist at least two points of M such that their traces
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coincide with P*, then we say P* a cutting point of M™*. The set of cutting
points of M* is denoted by I'(M*), and called the cutting of M™.

In virtue of (2.1), 2-dimensional simplexes of M* have an intersection only
in the following cases (Fig. 1).

(ay) (az) (b)
Fig. 1
Hence I'(M*) consists of segments, each of whose endpoints belongs to only one
1-dimensional simplex. Notice that the common vertex of two simplexes in Fig.
1,(b) is not a point of I"(M*). We call such a point a singular cutting point of M*.
We can also assume the following conditions by a slight modification of
vertices of M.

(2.2) A segment of '(M*) is the intersection of just two simplexes.
(2.3) There exist just three simplexes through a double point of I'(M*).

Since an endpoint of a segment of I'(M*) belongs to only one 1-dimen-
sional simplex as shown in Fig. 1, we have:

(2.4) I'(M*) consists of the following two kinds of polygons :
(1) closed polygons,

(2) polygonal arcs, whose endpoints are different ov coincided singular cutting
points.

3. The linking

Let M be a 2-dimensional closed orientable manifold in R4, Let f be a conti-
nuous mapping of the unit circle
c1:  xE+yi=1
into R*—M. Put c=f(cy). The vertices of ¢* may be considered to be in general
position in R3.
If f can be extended to F which maps the unit disk
Dy: x2+y2=1
into R*—M, then we say that ¢ does not link homotopically with M. Conversely,
if such an extension does not exist, then we say that ¢ links homotopically with M.
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(3.1) If ¢*~M*=0, lhen c does not link homotopically with M.

Proof. Let (Q,r) be the polar coordinate of D;, where Q€c; and 0=r=1.
Let ¢y,2 be a circle of »=1/2. Take a positive number % such that

2> max #(P)—min u(f(@))|.
PCM QECy
Put
FQ,r)=[f(@), u( f(Q)+2(1—r)h], 1/2=r=1.
Since F(Q,»)*=f(Q)* F is a continuous mapping of Dy—D;,, into R*—M. It is
obvious that F(ci,2) is null-homotopic in the half-space defined by u,2_h+2n€igl,
u(f(Q)). Hence ¢ is null-homotopic in R*—M.

Consequently if ¢ links with A homotopically, then we have c¢*~M*540.
Suppose that c¢*~M* consists of two points A* and B*. Let A;€c and A, €M
be the points such that Af=Af=A* We define sgn A* as follows:

{+1 if u(A1)>u(Az),
sgn A*= )
-1 if u(A1)<u(As).
sgn B* is defined in the same way.

(8.2) If sgn A*-sgn B*=+1, then c¢ does not link with M homotopically.

Proof. Suppose that sgn A*=sgn B*=+1, The same proof as (3.1) assures
the statement.

In the case that sgn A*=sgn B*= —1, take a negaive number A’ such that

#’< —| min w(P)—max u( f(Q))|
PEM QECy
instead of % in the proof of (3.1).

(8.3) sgn A*.sgn B*=—1, then c links with M homotopically.

Proof. Suppose that sgn A*=+1 and sgn B*=—1. Assume that ¢ does not
link homotopically with M. Then there exists an extension F of f over D; such
that F(D;)CR+*—M. Since c¢*~M* consists of two points A* and B*, F(Dy)*~M*
contains a cutting of polygonal arc, whose endpoints are A* and B*. Therefore
there exist an arc a; connecting Ay and By on F(D,), and an arc a, connecting
A, and B, on M such that af=aj.

Let Py €ay and P, €@, be two variable points such that P¥=PF If P;=A,
and P,=A,, then we have u(P;)>u(P,). If Py=B, and P,=B,, then we have
u(Py)<u(Pp). Therefore there exist points P¥ on af=af and Pyi€aq, Pe€as
such that Pf=Pk= P and u(Py,) =u(Pys). Hence

Po1=Py,. This contradicts the assumption. ¢
We have the following corollary from (3. 2).
(3.4) Let ¢ be a continuous image of an arc A
ci in R*—M. Let A* and B* be successive points ~ .

of ¢*~M* on c*, where A* and B* can be connected
by an arc on M*—I'(M*). If sgn A*=sgn B Fig. 2
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then A* and B* can be cancelled, and vice versa.
4: The fundamental groups

In virtue of the conditions in §2, I'(M*) separates M* into several domains
3#,..., 3% each of which has an orientation induced by the orientation of M.
We represent the orientation of ¥ by a small vector v; such that the direction
of v; coincides with the direction of a right-handed screw twisting along the
orientation of X7.

Let 7* be a simple arc of I'(M™). From (2.2) there exist domains X%, 3%.,;
X%, 3%, such that 7* is a common boundary of these domains. Suppose that
3in3i1=Ti 2jn3;,1=Tj are arcs in R, such that 7¥=7%=7*If u(7)>u(T)),
then we call 3;UJX;.1 the over surface, and ;U3 ;.. the under surface. To
represent the relation of these surface, we use the following notations, cancelling
the vector of the under surface (Fig. 3).

Z; 3
i Z?n z ‘l_) Zin
pal L
u(TD>u(T;) u(T)<u(T;)
Fig. 3

The direction of the vector corresponds to the orientation of the over surface.

For each 37, we take a small circle ¢ such that IF~cf consists of points
A¥, Bf where sgn A¥=+1, sgn Bf=—1, and 3%~cf=0 for j5i. We define the
orientation of ¢} such that it coincides with the direction of v; at the point A}
It is obvious that each c} defines a equivalent class of ¢; in R4— M.

(4.1) ¢; and c; are homotopic in R*— M.

Proof. If i=j, then the statement is obvious. Let us prove that ¢; and c;,1
in Fig. 3 are homotopic in R*—M.

Suppose that ﬁﬁ}ﬂ is the under surface. Let T be a tube such that 7.‘*=
ci—c¥, and T*~ ZF_ 2%, consists of two longitudes a*= A¥A¥., B*= B¥BX,.
Put a1 =¢ 1(@*)~ T, a2=0"2(a*) ~ 2;02 ;1 and B1=¢ ()T, Bo=0"2(B*) A
¥,02;+1. Deform T such that u(a;)>u(ay) and u(8;)<u(F;). Then we have
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TCR*—X,0% 1. Put 8*=T*~X50 2%, and 6:=071(0")~ T, 62=¢"2(6%)
S;uXjr1. Deform T so far as #(81)<u(8:) but w(ay)>u(as). Then we have
TCR*—M. Hence c; and c,;,; are homotopic in R*—M. Other cases are proved
successibly.

Take a base point O in R®—M*, Let wi be an arbitrary path connecting O
and an arbitrary point P of ¢f. We define the signs of points w¥.~M* be all +1.

Denote the closed path

O— P¥—Pf—>0
wF o wf

by ¢f . It is obvious that the equivalent class of the closed path ¢; in R*—M
corresponding to o7 does not depend on the choice of w} and c,*.

(4.2) Theorem. oy,...,0, form a generator system of F (M) with the base
point O.

Proof. Suppose that w is an arbitrary oriented closed path in R*—M with
the base point O. Let P* be a point of w*~X}. We make o; correspond to P*
in the following manner:

1) If sgn P*=+1, then P¥* —> 1,

2) If sgn P*=—1 and the direction of v, coincides with the direction of w*
at the point P*, then P* — 071,

3) If sgn P*=—1 and v, and w* have the opposite directions at the point
P* then P* — g,

Thus a word w(s) corresponds to w. It is obvious from (3.4) that a representa-
tive of w(s) is equivalent to w.

(4.3) If Z,05,.1 is the over surface, then we have the following relations :

(1 oj'ej1=1,

(2) o708 0,078=1,
where €= +1 or —1 according as the direction of the vector of the over surface
coincides or not with the direction *——> 3%,

Proof. (1) is obvious from (4.1). Let us prove (2) in the case of ¢=+1.
Let T be the tube in the proof of (4.1). Take a curve w,

;» i+1 connecting P,
and P,y on 7. The closed path

i
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€ Wi+l Wi
—> Pyy — P,—> P, —> P,y —> O

is represented by ¢jo,071. It is obvious that this closed path is homotopic to o;.1
(Fig. 5). Hence o;,1=0j0,07%.

Fig. 5

(4.4) Theorem. The relations (4.3) corresponding to all arcs of I'(M*) form
a system of defining relations of F(M).

Proof. 1If there exist no singular cutting points, then the statement is obvious.
Suppose that there exist some singular cutting points. Let ¢ be a closed path
which is null-homotopic in R4—M. There exist continuous mappings'f, F such
that f(cy1)=0, F(D1)CR*—M and F|ci=f, where ¢; and D; are as in §3. By

a slight modification of F we have F(D)*CR3—(I"(M*)—-r'(M*)). Hence ¢ can
be represented as a consequence of relations (4. 3).

5. Spheres in R¢

Let % be a knot in R®. A construction of a 2-sphere S in R4, whose funda-
mental group §(S) is isomorpic to F(k), was given in [3] by rotating an arc
along a plane in R¢. Let us discuss the same problem by the projection method.

(5.1) Let k be a knot in R®. There exists a torus T, in RB* such that F(T)
is isomorphic to F(k).
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Proof. In the Wirtinger’s presentation, the defining relations of (M) are
given in the same form as the defining relations of %(k). So we construct 7} in
the following correspondence (Fig. 6), where tubes represented by dotted lines,
which show that they go through the other tubes, correspond to the cross points
of the under-going arcs of 2. The inessential generators are omitted.

S;1=8718;8; 0;=0i06;,105"

Fig. 6

It is obvious that ¥(7T}:) is isomorphic to F(k).

Now let us construct a knotted 2-sphere S, in R* from 7} as follows. Let
P be an arbitrary point of 2 Take a meridian circle ¢ on 7, corresponding to
the point P. Cut the torus 7 into a tube 7, by a plane through ¢, and add
two disks to the terminals of T;. Then we get a knotted sphere S, in R+, We
say that T, and S, are Similar to k.

(5.2) Theorem. If S; is similar to k, then F(S,) is isomorphic to F(k).

Proof. Suppose that the presentation of F(k) is given as follows:

Generators : (S1,..., )
S1 =S€I‘SQSTLEI

Relations: (R,) q:oveeererevunennn (€;=11)
S, =S5 s En

Let P be a point of a segment s, of the projection of %, and @, R be the
endpoints of s,. Let s;, and s, be the subsegment of s, such that s,=@QP and
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sm=PR. If we take a system of generators (ss,...,Sm Sm. . .,S,) instead of (sy,...,
Sm ..., Ss), then we have relations (R}) replacing s, in (R;) by s, or s,/ and a

new relation s, =s,’ as a system of defining relations of F(k). By a geometrical
consideration, we can prove that the relation s;,=s, is an induced relation of the
relations of (R}).

On the other hand the presentation of % (S:) is given by the generators (o4,

..., 0m 0Om, ...,0,) and relations corresponding to (R;). Hence F(S;) is isomorphic

to (k).

Example 1.
D3

\\
Sa S
Generators: sy, Ss, Ss. Generators: o1, 05,05, 03

$1=83S2531 01=0303 031

Relations : {32 =5483871 Relations : {ag =¢4103071
S3=85251S51 g3 =040105"1

Fig. 7

The first relation of &F(S) in Fig. 7 is cancelled. We can prove that the projec-
tion S* in Fig. 7 is deformed into the projection S’* in Fig. 8 by a deformation
of S into S’ in R+,

It is worthy of notice that if T is not a similar torus of knots, then F(S) is
not always isomorphic to F(7T) as shown in Example 2.
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Example 2. We get the torus 7 in Fig. 9 by changing the relation of heights
of the torus in Fig. 7. If we cut the torus 7 by the plane A, then we get the
same sphere as in Fig. 8. But if we cut 7 by the plane B, then we get a
sphere which is the same as Example 10, p. 135 in [4]. Obviously the funda-
mental groups of these spheres are not coincide.
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