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0. Introduction

Let X, Y  be two spaces and / :  X - ^ Y h e  a map. Then, there are a fibre space 
and a cofibre space such that the projection and the injection are equivalent to 
/ ,  respectively. Hence, for any spaces U and F, we have the well-known exact 
sequences of sets of homotopy classes:

and
TziU, F f ) ------- ^ 7t{ U, X )  S u  n iU ,  Y )

7t(Cf, F) — >  rciY, V)  nCX,  F)

where F/  and C/ are the fibre and the cofibre, respectively.
The main purpose of this paper is to extend these exact sequences by one 

term, under the assumption that Ff  and C/ are homotopy equivalent to the loop 
space and the suspension of a space, commuting with operators and cooperators 
(in the sense of Eckmann- Hilton [2]), respectively.

In §§ 1-2, we shall deal with the notion of cofibre spaces following Eckmann 
and Hilton, [I] , [2], [3]. In §3, the theorem for cofibre spaces is proved, and in 
§§4-5, it is dualized for fibre spaces and the main theorem is proved.

The author wishes to express his sincere thanks to Professor M. Sugawara 
for valuable suggestions and discussions, and also to Professors M. Nakaoka and 
K. Mizuno for helpful advices and encouragement.

I. Cofifere spaces

Throughout this paper, unless otherwise stated, spaces will be arcwise con­
nected and have the homotopy type of a CIF-complex. On each space a base 
point is given, each map takes base point to base point and each homotopy 
leaves base point fixed.

The following definition of the cofibre space is due to Eckmann-Hilton [I].

D e f i n it i o n  ( I .  I )  A triple (A, q, B) of two spaces A, B and a map q\ A ^ B  
is called a cofibre space  (or a cofibration), if the following condition is satisfied: 
Let V be any space (which is not necessarily of the same homotopy type as a 
CTF-complex), and let ^o: A->V, ho: B-^ V be maps such that gQ=hq. Then, for



any given homotopy gt 1]) of ^o, there exists a homotopy ht of ho such

that gt^htq.
For a cofibre space (A ,q ,B ) ,  the identifying space C=B lqA  of B, shrinking 

qA to the base point, is called the co fibre; A  and B are called the cobase and the 

total space, respectively. We shall denote the identification map B-^C hy 7-

D efin ition  (1.2) Let (A, q, B) and (A\ q\ B' ) be two cofibre spaces whose 
cofibres have the same homotopy type. A  co fibre map / :  (A, q, B ) {A' , q\ B' )  

is a triple of maps (f, /, ?) such that the diagram
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A B L U  C

4 4 r
A ' - U  B ' - U  C '

is commutative and / is a homotopy equivalence.

D e f in it io n  (I. 3) Let A, JV, B be spaces and ^ ; A ^ A ' ,  (p : A —>B he maps. 

We shall define M(^, (p) to be the space obtained from the disjoint union A '^ B  

by identifying ^{a) € A ' and (p(a)^B for each a  ̂A. The natural maps 0)

and B —>M(i^,(p') are denoted by IaU and is, respectively, and iA'{ao)=iB(bo) is 

taken as the base point of M(^, 0) where ao € A', bo  ̂B are the base points.

D e f in it io n  (L  4) Let A, B be space and f :  A -^ B  he a map. The mapping 

cylinder B f  o f  f  is the space obtained from the disjoint union A x I ^ B  by identi­

fying Ca, O') ^AxO  with f (a )  €B for each a ^ A  and shrinking aoXi to the base 

point. The mapping cone Cf of / is the identifying space B f/ A x l .  In particular, 

the space Q  for the identity map i :  A -^ A  is the cone over A  and denoted by 

TA, The susiyension UA of A  is obtained from TA  by shrinking AxO  to the 

base point.

It is easy to prove the following lemma.

L e m m a  (1.5) Let A, B be spaces and f : A -^ B  he a map. Then, the triple 
(A, i f ,  Bf) is a cofibre space whose cofibre is the mapping cone C/ of /, where 

i f :  A -^ B f  is the natural injection. (W e shall call such a triple the co fibre space 
associated with the map /.)

L e m m a  (1.6) Let (A , q, B) be a cofibre space whose cofibre is C, and 

/: A ->A" be a map. Then, {A\ iA', M ( f ,  q)) is a cofibre space having C as the 

cofibre, and there is a cofibre map /: (A, q, B) -^ (A\ iA' ,  M ( f ,  q ) ) ,  i.e., the follow­
ing diagram is commutative:



Proof. As easily seen, M (f ,  q)!iA'A'=B/qA = C, and the above diagram is 

commutative.
Let g i :  A ' —>V be a homotopy and h'o: M(/, be a map such that

g O = K iA'  ̂ Then, gs f :  A->V  is a homotopy of Kisq: A-^V, Therefore, we have 
a homotopy ht'. such that

ho = Kis and htq = g ' t f ,

because {A, q, B) is a cofibre space. These relations show that the homotopy 
h't: M(/, q) —> V of K , defined by

htiA' = g t , h'tis = ht, 

is well-defined. Hence, {A\ Ia ', M{f ,  q)) is a cofibre space. q.e.d.

D efinition  (1.7) The triple {A\ Ia% M(f ,  q)) of the above lemma is called 
the CO fibre space induced from {Ay q, B) by /, and its total space M(/, q) is denoted 
by f^{B'), Also, the above triple of maps (f, is, idc) is called the cofibre map 
induced by /. (See Hilton [3], §6.)

L emma (I. 8) Let (/, /, /) : (^ , q, B)-^{A\ q\ B') be a cofibre map, and 
{^A'\q'\B"') and (/ ,^ ,5 ):  (̂ A, q, B) ^  (_A\ q"  ̂B' ' ) be the cofibre space and the 
cofibre map induced by /, respectively. Then, there is a cofibre map {ida', /o, 7o)  ̂
CA\ q'\ B'O (A\ q\ B') such that f ^ g = f  and

Proof, By the definition of the induced cofibre space, B ' '= M { f ,  q), q"=iA', 
g=iB  and g=idc* Define the map 7o: B"->B'  by

f  A ' =^q' and f  qIb f .

By the definition of M(f,q ' )  and q' f^fq,  /o is well-defined and fog=f^iB^f, 
f  ̂ q" = f  Ĵ A' = q'• Hence 7o induces a map 7o: C=B"/q"A—>C = B'/q'Al . Since 7 
and f  are induced by 7 and respectively, f o g = /  shows that f oS  = f .  Therefore, 
7o is a homotopy equivalence, because 7 is so and S = idc- q.e.d.

Lemma  (1.9) Let (A, q, B) and (A, q\ B') be cofibre spacs over the same 
space A. Assume that there is a cofibre map /: (-A, q, B) —> (̂ 4, q\ B') such that 
/: A -^ A  is the identity map, and the total spaces B and B' are simply connected. 
Then, B and B'  are homotopy equivalent.

Proof. From the exactness of the homology sequence of cofibre spaces and 
Five Lemma, it follows that f ^iHi(B) ^ H i (B'\ for i^O.  Since B and B' are 
simply connected, f-A<: Tii(B) ^ , for Therefore, B and B'  are homotopy
equivalent, because they have the same homotopy type of a CM -̂complex. q.e.d.

From (L8 ), (L 9) and Van Kampen's Theorem [6], the next corollary follows 
immediately.
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C o r o l l a r y  (1.10) Let (A, q, B)  and (A\ q\ BO be cofibre spaces such that 

there is a cofibre map ( f, /, / ): (A, q, B)  (A\ q\ BO> I f  B, A  and B '  are simply 

connected, then B ' and are homotopy equivalent.

2. Exist ance of cofibre maps

Let (A, q, B)  be a cofibre space and B=Cg=TA^J B be the mapping cone of
Q

q: A —>B,
Let gt'. A - ^ B  be the homotopy defined by gt(a) =  (a, f ) , a ^ A ,  and /o: B - > B  

be the map defined h j  fo(b)=b, b^B.  Since f q̂ =  go and {A, q, B )  is a cofibre 

space, there is a homotopy ft: such that ftq=gt,  in particular, fiq {A )=bo.
Hence, /i defines a map

(2.1) e:  C - ^ B .

Next, let f :  B I A ^ C  be the map shrinking A x O =  T A to the base point, 

and P^A : HA"^C-^HA  be the projection. Define maps

(2.2) C -^  H A ^ C , d: C I A  

by
(j> =  f s ,  8 =  =  P s a Ts .

R e m a r k . The map  ̂ is unique up to a homotopy and defines the cooperator 

in the sense of Eckmann-Hilton [2].

The following lemma is clear.

L e m m a  (2.3) For the cofibre space (Z, iz, TZ )  with cofibre IZ ,  the map 

(j>z: I Z - ^  I Z ^  IZ ,  in (2.2), may be taken as the map defined by
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( I > z iz ,  t )  =  ( z ,  t / t o )  , O ^ t  ^ t o ,  

I  — f o /

for a fixed number to, 0 < ^ o < l.

Therefore, (j>z defines an iT-structure on IZ ,  i.e., pi^z'^id^z, where pi: I Z ^  

I Z -> I Z  is the projection onto the i-th. component, i =  I, 2. (See Eckmann-Hilton

[ I ] )
Now, let {A, q, B )  be a cofibre space whose cofibre C =  B /qA is homotopy 

equivalent to the suspension I Z  of a space Z.

We shall consider the following diagram:

(2. 4)

<t>z
I Z  IZ '^  I Z  

tc , fCo"^ tc
Q y

C — > IA '^  C

where k is a homotopy equivalence, Ko =  8k, <t>, 8  and <j>z are maps in (2.2) and (2.3).



Proposition (2.5) Let {A, q, B) be a cofibre space such that q is an inclusion 
map. Assume that the cofibre C of (A, q, B) is homotopy equivalent to the sus­
pension I Z  of a space Z, and the diagram (2. 4) is commutative. Then, there is 
a cofibre map h : (Z, iz, TZ) —> (Ay q, B),

Proof, Let 7: TZ-> TA"^B=B be the map defined by

7 = sfcy.

Then, the commutativity of the diagram (2.4) shows that

7 (Z x [0 , 2̂0] )  e  TA and 7(Zx[^o, I ] )  C 5 .

Define the homotopy hs: TZ-^ TZ  by

hs(z,t) = (2, ( l - s ) t  + t ŝ)y 

=  (^ ,0 ,

Then, h=id,  /2i(Zx[0,/0] ) czZx/o, hs\Z se i  and hsdzZ) dZx lO ,  tol 
ser.

Let fs i  TZ-^B  be the homotopy defined by

h  = fhs.

Then, f  0 = f  y f  i(Z  x ĵ O, ifol) Cl TAf-^By f  s\ Z 'x []/o> I ]  —7 IZx \Joy I], s and Js(SzZ) 
Cl TA, S^L Hence, 7i defines the maps

h: TZ -^B  and h = h \ Z : Z - ^ A ,

The map h: IZ ->C,  defined by

hr = Yh ,

is well-defined, and we have
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= PcTsKTiz, t)
= pc t̂criz, t) ,

where pc\ IA '^  C-^C is the projection onto C. Therefore, we have H=Pc^k,, 
because y is the identification map.

On the other hand, by the commutativity of (2.4) and (2.3),

Pc(j)K = pc(fCo ̂  Z =  iCp2̂ Z ̂  tC .

Hence,  ̂ is a homotopy equivalence, and therefore the triple (/z, h, h) is a cofibre 
map of {Zyizy TZ) into {A,q,B), q.e.d.

Remark. The maps ^z and 0 define the cooperators in (Z, iz, TZ) and 
^A,q,B), respectively. Hence, the commutativity of (2.4) means that the homo­
topy equivalence k commutes with the cooperators.



As a sufficient condition that the diagram (2.4) is commutative, we have 

the following lemma.

L e m m a  (2. 6) I f  Y  is the space obtained from X  by attaching cells, indepen­

dently to each other, (i.e., Y = X ^  or, more generally, if Y  is the space
t

obtained from X  by attaching a space TZ by a map u\ Z -^X , then, the com­

mutativity of (2.4) holds for the cofibre space (X , i f ,  Y / )  associated with the 

inclusion map / : Z  F.

Proof, I f  is sufficient to prove the latter case. Since Cf  is homotopy 

equivalent to YlfX,  it is also to I Z  by the map k: I Z - ^ C /  such that

=  (^ ,2 / - l) ,  1 / 2 ^ ^ ^ 1 .

Let (j>z: I Z - ^ I Z ^  I Z  and <j>: C / - ^ I X ^  Cf be tYe maps defined by

^z(z, f) =  {(z, 40, ô) , O ^  ^ ^  1/4,

=  (̂ 0, ( ,̂ (4^-1)/2)) , 1/4^ ^ ^  1/2,

=  (eo, (^ ,0 ) ,  1 / 2 ^ ^ ^ 1 ,

and

=  (jo,3^), F ,
Kx, t) =  (yo, (x, 20) , ^ € X, O ^   ̂̂  1/2 ,

=  (^o,Jo), l/ 2 ^ ^ ^ 3 / 4 ,

=  ((; ,̂ 4^-3), Jo) , G X, 3/4 ̂   ̂^  I .

Then, the commutativity of (2. 4) is easily verified. q.e.d.

3. An exact sequence

For given spaces X  and F, the set of homotopy classes of maps X -> F  is 

denoted by 7t(X, F ), and the constant map and the class containing it by the 

same letter 0.

T h e o r e m  (3.1) Let X  and Y  be simply connected spaces and / : X -^ F  be 

a map. Assume that the cofibre Cf of the cofibre space (X, if, Yf )  associated 

with / is homotopy equivalent to the suspension I Z  of a spaces Z  such that the 

diagram (2. 4) is commutative. Then, there exists a cofibre map h : (Z, iz, TZ )  
(X, if, Yf )  and the following sequence of sets of homotopy classes is exact for 

any space V :
/7̂ ^

n(Cf ,  y) - U  n(Y,  F) ^  k {X, F) —^  ;r(Z, 7) .

Proof, The exactness of the first three terms is well-known. (See Puppe 

[7], p. 305)
The existence of a cofibre map (h, Ti, %) : (Z, iz, TZ )  -> (X, if, Yf )  such that
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ifh==hiz is proved in (2.5). Since F is a deformation retract of F/, there is a 
retraction r :  Y f ' ^ Y  such that r i f = f .  Since TZ  is contractible, O and hence 
fh = rifh = rhiz^O. Therefore, we have i.e., K e r 3 Im

Conversely, let be a map such that Then, there is a map
G : T Z -> V defined by a null-homotopy of gh. We define the map G' : 
by

G'(Stz{z, 0 ) = G(g, t ) , Z  ̂Z, t & I ,
G'(ix(x)') = g{x) , x e X ,

where h^iTZ)  is the space defined in (1.7). Since X, Y  are simply connected, 
Yf  is homotopy equivalent to h^iTZ), by (1.10). Hence, there is a map G'': 
Y f ^ V  such that G " i f^ g .  Therefore, the map^^=G^7* Y —>V satisfies g ' f ^ g ,  
where j :  Y -> Y f  is the inclusion map. This shows that Ker/z*dim/*, and we 
have the exactness of the last three terms. q.e.d.

4. Dual situation for fibre spaces

D efinition  (4.1) A  triple B) of two spaces E, B and a map p: E-^B
is called a (strong) fibre space, if the homotopy lifting property holds for any 
space U (which is not necessarily homotopy equivalent to a CPF-complex), i.e., 
for any homotopy g t : U->B of go=Pf^, there is a homotopy f t ’. U -^Eof  fo such 

that gt =Pft-
For a fibre space {E,p,B), the space F=p~~Kbo) is called the fibre; E and B 

are called the total space and the base, respectively. We shall denote the injection 
F-^E  by i,

D efinition  (4. 2) Let (E, p, B) and (E', p\ BO be two fibre spaces whose 
fibres F  and F '  are homotopy equivalent. A  triple of maps (7, 7, / ) is called a 
fibre map if the following diagram is commutative:
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F  — > E B
I f f
F '  E '  B'

and 7 is a homotopy equivalence.
The following proposition is well-known. (See Serre [8], p. 479)

P r o p o s it io n  (4.3) Let X, F be spaces, /: X —>Y be a map and Yf be its 
mapping cylinder. Then, the triple {^(Yy)  X, Yf),  p, Yf )  is a fibre space where 
S2(Yf  ; X, Yf )  is the set of all maps I : ([0, r ] ; 0, r) (Y f  ; X, Yf) ,  0 < r <  + oô  
with the compact open topology and p: Q(Yf\ X, Yf)  -^Yf  is the map defined 
by P(T) =Kr ) .  (We shall call such a triple the fibre space associated with the map /.) 

Now, assume that the fibre Ff = S2(Yf; X, ĵ o) of (S2(Yfi X, Yf) ,  p, Yf),  (yo



is the base point of Yf ) ,  is homotopy equivalent to the loop space QZ of a space 
Z, and we shall consider the following diagram:

Q i Y f ; X, ĵ o) X Q Y f  QiYf- ,  X,
K X /Co K

Y  (j)7 Y
Q Z x QZ  QZ

where ic: Q ( Y f )  X,  yo) QZ  is a homotopy equivalence, tco is its restriction to 
Q Y f  and  ̂: Q ( Y f )  X, yo) x Q Y f - > Q ( Y  f  ; X, yo) and ^z:  Q Z x Q Z - ^ Q Z  are the maps 
defined by the path addition ^ in the sense of Moore.

P r o p o s it io n  (4 . 5 ) Let X, Y  be two simplicial complexes and / :  X - ^ Y  he 
a simplicial map. Assume that the fibre Q ( Y f : X, yo) of the fibre space ( Q( Yf )  
X, Yf ) yp ,  Yf )  is homotopy equivalent to the loop space QZ  of a space Z, and 
the diagram ( 4 .4 )  is commutative. Then, there exists a fibre map (%, h, h) : 
( Q( Yf )  X, Y f ) , p, Y f ) - ^ ( L Z , p z , Z )  such that h: Q ( Y f )  X , y o ) - >QZ  is the given 
homotopy equivalence /c, where LZ  is the path space over Z.

The proof of this proposition will be given in the next section.

R e m a r k . The maps 0  and (ĵ z define the operators in ( Q( Yf )  X, Yf) ,  p, Yf)  
and (LZy pz ,  Z) ,  respectively, in the sense of Eckmann-Hilton [2]. Hence, the 
commutativity of (4. 4) means that the homotopy equivalence tc commutes with 
the operators.

T h e o r e m  (4.6) Let X, Y  be two spaces and / :  X-> Y  be a map. Assume 
that the fibre Ff  of the fibre space (Q(Yf )  X, Yf) ,  p, Yf)  associated with /  is 
homotopy equivalent to the loop space QZ of a space Z  such that the diagram 
(4. 4) is commutative. Then, the following sequence of sets of homotopy classes 
is exact for any space U :

7ziU,Ff) 7 i iU, X)  niU,  F) niU,  Z)  .

Proo/. The exactness of the first three terms is well-known. (For example, 
see Nomura [5], p. 118)

Since X, Y  have the homotopy type of a C !^-complex, and any C TF-complex 
has the homotopy type of a simplicial complex (see Milnor [4], Theorem 2), we 
may replace X, Y  by simplicial complexes Kx,  K r ,  respectively, and /  by a 
simplicial map <p. Hence, it is easily seen that Q ( K c p ; K x ,  K cp )  is homotopy 
equivalent to Q ( Y f )  X, Yf)  where Kcp is the mapping cylinder of <p: K x - ^ K y . 
Since the commutativity of (4.4) for ( Q(Yf )  X,  Yf ) ,  p, Yf)  implies that for 
( Q( Kc p )  K x ,  Kcp),  P, Kcp),  (4,5) shows the existence of a fibre map h: ( Q ( K c p )  K x ,  

Kcp),  p, Kcp) (LZ, pz ,  Z)  such that pzh = hp. Since LZ  is contractible, we have 
hp'^O. On the other hand, the injection map ix' -  K x ^ >  Q ( K c p )  K x ,  Kcp) is a 
homotopy equivalence and p ix=   ̂ Hence we have =  i.e., K e t h^lDlm (p ,̂
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Conversely, let U - ^ Y  he a map such that hg^O.  Then, there is a map 
G : U —>LZ defined by a null-homotopy of hg, As is well-known, Kx,  K<p)
is homotopy equivalent to the space which consists of all pairs ( y , l ) ,  y^Kcp, 
I ^ L Z  such that h^y) = P z( I ) . Therefore, there is a map g ' : U-^S^(Kcp; Kx,  Kcp) 
defined by g  and G, and satisfies pg' ^  g. This shows that there is a map 
g"  \ U - > K x  such that <pg''^g, and we have Ker h^dlm<p^.

Since X, Y  are homotopy equivalent to Kx,  K r ,  and /  is equivalent to <p, the 
exactness of the last three terms is proved. q.e.d.

T h e o r e m  (4. 7) Let X  and Y  be spaces and / :  F  be a map. Let F /  be 
the fibre S2(Yf \X,  yo) of the fibre space associated with / ,  and Cf be the cofibre 
Y f I i f X  of the cofibre space associated with /.

1) Assume that X  and Y  are simply connected, and C/ is homotopy equivalent 
to the suspension of a space Z  such that the diagram (2. 4) is commutative. Then, 
the following sequence is exact for any space V :

Tt(Cf,  F) t: ( Y,  V)  7t(X, F) K(Ff,  V) .

2) Assume that Ff  is homotopy equivalent to the loop space of a space Z'  
such that the diagram (4.4) is commutative. Then, the following sequence is 
exact for any space U :

i:k
Tt(U,  Ff )  k (U,  X )  k (U,  y ) n(U,  Cf)  .

Proof. I) By (4.6), the sequence

7t(Z, Ff )  ;r(Z, Z) 7t(Z, T)

is exact. On the other hand, by (2. 5), there is a map h \ Z - ^ X  such that fh'^O,  
Hence, there is a map u : Z-^F f  such that in

Consider the following diagram

7t(C/, F) TT(F, y) ^  7t(X, 7 ) ----> 7T(Z, 7)

r:(Ff, y )
where the horizontal sequence is exact, by (3.1). If a^Tz(X, V) is an element 
such that i^^(a:)=0, then we have h^(a) =u^i^(a) =0.  Therefore, there is an 
element /3€7t(F, 7 ) such that f^'(^)=a.  Hence, Ker f*cz:Im/^i^. K er/'^^Im/'*^ 
is obviuos.

2) A similar argument is valid for this case. q .e .d .

The following corollary is an immediate consequence of (4. 7).

C o r o l l a r y  (4.8) I) Under the same assumptions of (4.7), I), / * :  7t(F, 7) 
->n(X,  7) is onto for any space 7  if, and only if, Ff  is contractible in X,

2) Under the same assumptions of (4. 7), 2), f-  ̂\ n(U, X )  -^tc(U, Y)  is onto 
for any space U if, and only if, r^O .
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5. Proof of ( 4 .5 )

For a convenience, we shall denote F / by Y, S2(Y; X, Y) h j  E, Q ( Y ; X, yo) 
by F and the portion of E over a subset Y' of F  by I Y \  Also, denote the 
^-skeleton of Y  by Y^.

Define the maps hoi E \Y ^ —>LZ and h :  Y^->Z  by

hoQ) = , ioT v e Y ,  i e  E \ v ,
and

hoip) = Zo (base point of Z), 

where h  is a fixed path starting at yo and ending at v. Then obviuosly we have 
Pzh =  hop, and ho\F=tc.

We shall prove the proposition by the induction on the dimension of skeleton 
of Y  under the following assumption:

Assumption (5.1)^ : For ^ ^ 0 , maps hk' .E\Y^-^LZ  and hk: Y  ̂ Z  are defined 
such that

P^k  = hkp,
and the following diagram is commutative:

Q { Y ) X , y o ) x Q { Y ) y o , Y ^ )  ----> J ^ ( F ; Z ,  F^)
(5.2) hk

Q Z x L Z  ------- > L Z

where hi'. Q ( Y  \ yo, Y^) -^LZ  is the restriction of ^  to i^(F ; 3 0̂, F^) c i Q ( Y ; X ,  Y^) 
and the horizontal maps are defined by the path additions.

The assumption (5.1);^ is satisfied when k=0.  For, if I ^ Q ( Y )  X, yo) and 
Jl^Q(Y)  yo,v) ,

tcQC) ^hv(^) =  fc(l)

=  h , a ^ / 2 ) .

Now, assume (5.1) n - i : Let be an /^-simplex of F. Each point y  of is 
represented by

y = (jc, t) , X  ̂ , t  ̂ I ,
such that

{x, 0) = and (x, I) =  v ,

for a fixed point v in Hence, there is a continuous set of paths iXy,y  ̂s",
definep by

= (x, t  + s) , 0 ^ s <  1 - t , for = (x, t) .

Define the maps gs^ : s^—>LZ  and : s^->Z  by

(:r, t) =  hn-i (IV ̂  , O ^   ̂^  1/2 ,
= hn-^Qv  ̂uqO I  (2 -2 0  , 1/2 ^   ̂^  I ,
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and
hs«{x, O = pzgs^ix,  t) ,

where Iv is a fixed path starting at and ending at v, and l \ t=l \ \Q,  tr~\, for 
/ :  [ 0 , r ] - Z .
Then, by (5.1) „-i,

hs«(,x) =  pzhn-iOv'^ = hn-ipOv'^ = h„-x{x) , fov X   ̂ s” .

Therefore, h s " \ s”= h n - i .

Let My, y =  (.X, t ) , be the path defined by

Since pix' ^ i s  homotopic in L F  to the constant path, fixing its 
end points, let F„: s” - ^LY  be its homotopy such that

Fo(x) =  I ,  Flix) = constant path at x.

Define the map Us” '■ E\ s” ^ L Z  by

hs-(I) =  hn^i (I^ lJ.'v  ̂ ex')), O ^ 1 / 2 ,
= k(/ V V ^/ -1V V  /-I) y g^„( y ) ,  1/2 ^  i ^  I ,

for y = ( x , t )  and l ^E\ y .  Then, if y = ( x , l / 2 )  and l ^E\ y ,

hn-x fii ̂  F o )  =  hn-1  ( /  V V V / - I  V ^  V ^ - 1 )

=  hn-x  ( /  V V ^ - 1  V V J - I  V V ^ - I )

= (by (5.2))
= k(/V ^'V ^/-1V^^V/-1) ^gsn(y-) ,

since My =  fĴ x, O ^ if^ l/2 . Therefore, hs» is well-defined.
If i eE\x,x=( .x,0' )e ' s",

since and Fi are constant paths. Hence As«l (F |s”) =^«-1 .
It is easily verified that pzhs” =  hs”p, and also

K(l)^^s«(/i) =h s " ( j ^P)

for I d Q i Y -  X,yo) ,  p e Q( Y- ,  y„, s”).
Thus, the maps Ji„: E \ Y ”—>LZ and hn' Y ”-^Z,  defined by

h „ \(E \s”') =Jis» , and hn\s” =  hs« ,

for a simplex s” € F ”, are well-defined and satisfy the inductive assumption (5.1) «. 
This completes the proof of Proposition (4. 5).

On the exact sequence fo r  a special cofibre space and its  dual 77
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