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Abstract

The Dynamic Time Warping (DTW) is a popular similarity measure between time
series. The DTW fails to satisfy the triangle inequality and its computation requires
quadratic time. Hence, to find closest neighbors quickly, we use bounding tech-
niques. We can avoid most DTW computations with an inexpensive lower bound
(LB Keogh). We compare LB Keogh with a tighter lower bound (LB Improved).
We find that LB Improved-based search is faster. As an example, our approach is
2–3 times faster over random-walk and shape time series.
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1 Introduction

Dynamic Time Warping (DTW) was initially introduced to recognize spo-
ken words [1], but it has since been applied to a wide range of informa-
tion retrieval and database problems: handwriting recognition [2,3], signature
recognition [4,5], image de-interlacing [6], appearance matching for security
purposes [7], whale vocalization classification [8], query by humming [9,10],
classification of motor activities [11], face localization [12], chromosome classi-
fication [13], shape retrieval [14,15], and so on. Unlike the Euclidean distance,
DTW optimally aligns or “warps” the data points of two time series (see
Fig. 1).

When the distance between two time series forms a metric, such as the Eu-
clidean distance or the Hamming distance, several indexing or search tech-
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niques have been proposed [16–20]. However, even assuming that we have a
metric, Weber et al. have shown that the performance of any indexing scheme
degrades to that of a sequential scan, when there are more than a few dimen-
sions [21]. Otherwise—when the distance is not a metric or that the number
of dimensions is too large—we use bounding techniques such as the Generic
multimedia object indexing (GEMINI) [22]. We quickly discard (most) false
positives by computing a lower bound.

Fig. 1. Dynamic Time Warping example

Ratanamahatana and Keogh [23] argue that their lower bound (LB Keogh)
cannot be improved upon. To make their point, they report that LB Keogh
allows them to prune out over 90% of all DTW computations on several data
sets.

We are able to improve upon LB Keogh as follows. The first step of our two-
pass approach is LB Keogh itself. If this first lower bound is sufficient to dis-
card the candidate, then the computation terminates and the next candidate
is considered. Otherwise, we process the time series a second time to increase
the lower bound (see Fig. 5). If this second lower bound is large enough, the
candidate is pruned, otherwise we compute the full DTW. We show experi-
mentally that the two-pass approach can be several times faster.

The paper is organized as follows. In Section 4, we define the DTW in a generic
manner as the minimization of the lp norm (DTWp). Among other things, we
show that if x and y are separated by a constant (x ≥ c ≥ y or x ≤ c ≤ y) then
the DTW1 is the l1 norm (see Proposition 1). In Section 5, we compute generic
lower bounds on the DTW and their approximation errors using warping en-
velopes. In Section 6, we show how to compute the warping envelopes quickly.
The next two sections introduce LB Keogh and LB Improved respectively.
Section 9 presents the application of these lower bounds for multidimensional
indexing whereas the last section presents an experimental comparison.
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2 Conventions

Time series are arrays of values measured at certain times. For simplicity,
we assume a regular sampling rate so that time series are generic arrays of
floating-point values. Time series have length n and are indexed from 1 to
n. The lp norm of x is ‖x‖p = (

∑
i |xi|p)1/p for any integer 0 < p < ∞ and

‖x‖∞ = maxi |xi|. The lp distance between x and y is ‖x− y‖p and it satisfies
the triangle inequality ‖x − z‖p ≤ ‖x − y‖p + ‖y − z‖p for 1 ≤ p ≤ ∞. The
distance between a point x and a set or region S is d(x, S) = miny∈S d(x, y).
Other conventions are summarized in Table 1.

Table 1
Frequently used conventions

n length of a time series

‖x‖p lp norm

DTWp monotonic DTW

NDTWp non-monotonic DTW

w DTW locality constraint

U(x), L(x) warping envelope (see Section 5)

H(x, y) projection of x on y (see Equation 1)

3 Related Works

Beside DTW, several similarity metrics have been proposed including the di-
rected and general Hausdorff distance, Pearson’s correlation, nonlinear elastic
matching distance [24], Edit distance with Real Penalty (ERP) [25], Needleman-
Wunsch similarity [26], Smith-Waterman similarity [27], and SimilB [28].

Boundary-based lower-bound functions sometimes outperform LB Keogh [29].
We can also quantize [30] the time series.

Sakurai et al. [31] have shown that retrieval under the DTW can be faster by
mixing progressively finer resolution and by applying early abandoning [32] to
the dynamic programming computation.

3



4 Dynamic Time Warping

A many-to-many matching between the data points in time series x and the
data point in time series y matches every data point xi in x with at least one
data point yj in y, and every data point in y with at least a data point in x.
The set of matches (i, j) forms a warping path Γ. We define the DTW as the
minimization of the lp norm of the differences {xi− yj}(i,j)∈Γ over all warping
paths. A warping path is minimal if there is no subset Γ′ of Γ forming an
warping path: for simplicity we require all warping paths to be minimal.

In computing the DTW distance, we commonly require the warping to remain
local. For time series x and y, we align values xi and yj only if |i − j| ≤ w
for some locality constraint w ≥ 0 [1]. When w = 0, the DTW becomes the lp
distance whereas when w ≥ n, the DTW has no locality constraint. The value
of the DTW diminishes monotonically as w increases. (We do not consider
other forms of locality constraints such as the Itakura parallelogram [33].)

Other than locality, DTW can be monotonic: if we align value xi with value
yj, then we cannot align value xi+1 with a value appearing before yj (yj′ for
j′ < j).

We note the DTW distance between x and y using the lp norm as DTWp(x, y)
when it is monotonic and as NDTWp(x, y) when monotonicity is not required.

By dynamic programming, the monotonic DTW requires O(wn) time. A typi-
cal value of w is n/10 [23] so that the DTW is in O(n2). To compute the DTW,
we use the following recursive formula. Given an array x, we write the suffix
starting at position i, x(i) = xi, xi+1, . . . , xn. The symbol ⊕ is the exclusive or.
Write qi,j = DTWp(x(i), y(j))

p so that DTWp(x, y) = p
√
q1,1, then

qi,j =



0 if |x(i)| = |(y(j)| = 0

∞
if |x(i)| = 0⊕ |y(j)| = 0

or |i− j| > w

|xi − yj|p+

min(qi+1,j, qi,j+1, qi+1,j+1)
otherwise.

For p =∞, we rewrite the preceding recursive formula with qi,j = DTW∞(x(i), y(j)),
and qi,j = max(|xi − yj|,min(qi+1,j, qi,j+1, qi+1,j+1)) when |x(i)| 6= 0, |y(j)| 6= 0,
and |i− j| ≤ w.

We can compute NDTW1 without locality constraint in O(n log n) [34]: if the
values of the time series are already sorted, the computation is in O(n) time.

We can express the solution of the DTW problem as an alignment of the two
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initial time series (such as x = 0, 1, 1, 0 and y = 0, 1, 0, 0) where some of the
values are repeated (such as x′ = 0, 1, 1, 0,0 and y′ = 0, 1,1, 0, 0). If we allow
non-monotonicity (NDTW), then values can also be inverted.

The non-monotonic DTW is no larger than the monotonic DTW which is itself
no larger than the lp norm: NDTWp(x, y) ≤ DTWp(x, y) ≤ ‖x − y‖p for all
0 < p ≤ ∞.

The DTW1 has the property that if the time series are value-separated, then
the DTW is the l1 norm as the next proposition shows. In Figs. 3 and 4, we
present value-separated functions: their DTW1 is the area between the curves.

Proposition 1 If x and y are such that either x ≥ c ≥ y or x ≤ c ≤ y for
some constant c, then DTW1(x, y) = NDTW1(x, y) = ‖x− y‖1.

PROOF. Assume x ≥ c ≥ y. Consider the two aligned (and extended) time
series x′, y′ such that NDTW1(x, y) = ‖x′ − y′‖1. We have that x′ ≥ c ≥ y′

and NDTW1(x, y) = ‖x′ − y′‖1 =
∑

i |x′i − y′i| =
∑

i |x′i − c| + |c − y′i| =
‖x′ − c‖1 + ‖c − y′‖1 ≥ ‖x − c‖1 + ‖c − y‖1 = ‖x − y‖1. Since we also have
NDTW1(x, y) ≤ DTW1(x, y) ≤ ‖x− y‖1, the equality follows.

Proposition 1 does not hold for p > 1: DTW2((0, 0, 1, 0), (2, 3, 2, 2)) =
√

17
whereas ‖(0, 0, 1, 0)− (2, 3, 2, 2)‖2 =

√
18.

5 Computing Lower Bounds on the DTW

Given a time series x, define U(x)i = maxk{xk| |k − i| ≤ w} and L(x)i =
mink{xk| |k − i| ≤ w} for i = 1, . . . , n. The pair U(x) and L(x) forms the
warping envelope of x (see Fig. 2). We leave the locality constraint w implicit.

The theorem of this section has an elementary proof requiring only the fol-
lowing technical lemma.

Lemma 1 If b ∈ [a, c] then (c− a)p ≥ (c− b)p + (b− a)p for 1 ≤ p <∞.

PROOF. For p = 1, (c − b)p + (b − a)p = (c − a)p. For p > 1, by deriving
(c − b)p + (b − a)p with respect to b, we can show that it is minimized when
b = (c+ a)/2 and maximized when b ∈ {a, c}. The maximal value is (c− a)p.
Hence the result.
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Fig. 2. Warping envelope example

The following theorem introduces a generic result that we use to derive two
lower bounds for the DTW including the original Keogh-Ratanamahatana
result [35]. Indeed, this new result not only implies the lower bound LB Keogh,
but it also provides a lower bound to the error made by LB Keogh, thus
allowing a tighter lower bound (LB Improved).

Theorem 1 Given two equal-length time series x and y and 1 ≤ p <∞, then
for any time series h satisfying xi ≥ hi ≥ U(y)i or xi ≤ hi ≤ L(y)i or hi = xi

for all indexes i, we have

DTWp(x, y)p ≥ NDTWp(x, y)p

≥ ‖x− h‖pp + NDTWp(h, y)p.

For p =∞, a similar result is true: DTW∞(x, y) ≥ NDTW∞(x, y) ≥ max(‖x−
h‖∞,NDTW∞(h, y)).

PROOF. Suppose that 1 ≤ p < ∞. Let Γ be a warping path such that
NDTWp(x, y)p =

∑
(i,j)∈Γ |xi − yj|pp. By the constraint on h and Lemma 1,

we have that |xi − yj|p ≥ |xi − hi|p + |hi − yj|p for any (i, j) ∈ Γ since hi ∈
[min(xi, yj),max(xi, yj)]. Hence, we have that NDTWp(x, y)p ≥ ∑

(i,j)∈Γ |xi −
hi|p + |hi − yj|p ≥ ‖x − h‖pp +

∑
(i,j)∈Γ |hi − yj|p. This proves the result since∑

(i,j)∈Γ |hi − yj| ≥ NDTWp(h, y). For p =∞, we have that

NDTW∞(x, y) = max
(i,j)∈Γ

|xi − yj|

≤ max
(i,j)∈Γ

max(|xi − hi|, |hi − yj|)

= max(‖x− h‖∞,NDTW∞(h, y)),

concluding the proof.
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While Theorem 1 defines a lower bound (‖x−h‖p), the next proposition shows
that this lower bound must be a tight approximation as long as h is close to
y in the lp norm.

Proposition 2 Given two equal-length time series x and y, and 1 ≤ p ≤ ∞
with h as in Theorem 1, we have that ‖x−h‖p approximates both DTWp(x, y)
and NDTWp(x, y) within ‖h− y‖p.

PROOF. By the triangle inequality over lp, we have ‖x−h‖p+‖h−y‖p ≥ ‖x−
y‖p. Since ‖x−y‖p ≥ DTWp(x, y), we have ‖x−h‖p +‖h−y‖p ≥ DTWp(x, y),
and hence ‖h− y‖p ≥ DTWp(x, y)−‖x− h‖p. This proves the result since by
Theorem 1, we have that DTWp(x, y) ≥ NDTWp(x, y) ≥ ‖x− h‖p.

This bound on the approximation error is reasonably tight. If x and y are
separated by a constant, then DTW1(x, y) = ‖x − y‖1 by Proposition 1 and
‖x− y‖1 =

∑
i |xi− yi| =

∑
i |xi− hi|+ |hi− yi| = ‖x− h‖1 + ‖h− y‖1. Hence,

the approximation error is exactly ‖h− y‖1 in such instances.

6 Warping Envelopes

The computation of the warping envelope U(x), L(x) requires O(nw) time
using the naive approach of repeatedly computing the maximum and the min-
imum over windows. Instead, we compute the envelope with at most 3n com-
parisons between data-point values [36] using Algorithm 1.

7 LB Keogh

Let H(x, y) be the projection of x on y defined as

H(x, y)i =


U(y)i if xi ≥ U(y)i

L(y)i if xi ≤ L(y)i

xi otherwise,

(1)

for i = 1, 2, . . . , n. We have that H(x, y) is in the envelope of y. By Theorem 1
and setting h = H(x, y), we have that NDTWp(x, y)p ≥ ‖x − H(x, y)‖pp +
NDTWp(H(x, y), y)p for 1 ≤ p <∞. Write LB Keoghp(x, y) = ‖x−H(x, y)‖p
(see Fig. 3), then LB Keoghp(x, y) is a lower bound to NDTWp(x, y) and thus
DTWp(x, y). The following corollary follows from Theorem 1 and Proposi-
tion 2.
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Algorithm 1 Streaming algorithm to compute the warping envelope using
no more than 3n comparisons

input a time series y indexed from 1 to n
input some DTW locality constraint w
return warping envelope U,L (two time series of length n)
u, l ← empty double-ended queues, we append to “back”
append 1 to u and l
for i in {2, . . . , n} do

if i ≥ w + 1 then
Ui−w ← yfront(u), Li−w ← yfront(l)

if yi > yi−1 then
pop u from back
while yi > yback(u) do

pop u from back
else

pop l from back
while yi < yback(l) do

pop l from back
append i to u and l
if i = 2w + 1 + front(u) then

pop u from front
else if i = 2w + 1 + front(l) then

pop l from front
for i in {n+ 1, . . . , n+ w} do
Ui−w ← yfront(u), Li−w ← yfront(l)

if i-front(u)≥ 2w + 1 then
pop u from front

if i-front(l)≥ 2w + 1 then
pop l from front

-1

-0.5

 0

 0.5

 1

 1.5

 0  20  40  60  80  100  120

x
y

LB_Keogh

Fig. 3. LB Keogh example: the area of the marked region is LB Keogh1(x, y)
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Corollary 1 Given two equal-length time series x and y and 1 ≤ p ≤ ∞,
then

• LB Keoghp(x, y) is a lower bound to the DTW:

DTWp(x, y) ≥ NDTWp(x, y) ≥ LB Keoghp(x, y);

• the accuracy of LB Keogh is bounded by the distance to the envelope:

DTWp(x, y)− LB Keoghp(x, y) ≤ ‖max{U(y)i − yi, yi − L(y)i}i‖p

for all x.

Algorithm 2 shows how LB Keogh can be used to find a nearest neighbor
in a time series database. We used DTW1 for all implementations (see Ap-
pendix C). The computation of the envelope of the query time series is done
once (see line 4). The lower bound is computed in lines 7 to 12. If the lower
bound is sufficiently large, the DTW is not computed (see line 13). Ignoring
the computation of the full DTW, at most (2N + 3)n comparisons between
data points are required to process a database containing N time series.

Algorithm 2 LB Keogh-based Nearest-Neighbor algorithm
1: input a time series y indexed from 1 to n
2: input a set S of candidate time series
3: return the nearest neighbor B to y in S under DTW1

4: U,L← envelope(y)
5: b←∞ {b stores minx∈S DTW1(x, y)}
6: for candidate x in S do
7: β ← 0 {β stores the lower bound}
8: for i ∈ {1, 2, . . . , n} do
9: if xi > Ui then

10: β ← β + xi − Ui

11: else if xi < Li then
12: β ← β + Li − xi

13: if β < b then
14: t← DTW1(a, c) {We compute the full DTW.}
15: if t < b then
16: b← t
17: B ← c

8 LB Improved

In the previous Section, we saw that NDTWp(x, y)p ≥ LB Keoghp(x, y)p +
NDTWp(H(x, y), y)p for 1 ≤ p <∞. In turn, we have NDTWp(H(x, y), y) ≥

9
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Fig. 4. LB Improved example: the area of the marked region is LB Improved1(x, y)

LB Keoghp(y,H(x, y)). Hence, write

LB Improvedp(x, y)p = LB Keoghp(x, y)p + LB Keoghp(y,H(x, y))p

for 1 ≤ p <∞. By definition, we have LB Improvedp(x, y) ≥ LB Keoghp(x, y).
Intuitively, whereas LB Keoghp(x, y) measures the distance between x and the
envelope of y, LB Keoghp(y,H(x, y)) measures the distance between y and the
envelope of the projection of x on y (see Fig. 4). The next corollary shows that
LB Improved is a lower bound to the DTW.

Corollary 2 Given two equal-length time series x and y and 1 ≤ p <∞, then
LB Improvedp(x, y) is a lower bound to the DTW: DTWp(x, y) ≥ NDTWp(x, y) ≥
LB Improvedp(x, y).

PROOF. Recall that LB Keoghp(x, y) = ‖x −H(x, y)‖p. First apply Theo-
rem 1: DTWp(x, y)p ≥ NDTWp(x, y)p ≥ LB Keoghp(x, y)p+NDTWp(H(x, y), y)p.
Apply Theorem 1 once more: NDTWp(y,H(x, y))p ≥ LB Keoghp(y,H(x, y))p.
By substitution, we get DTWp(x, y)p ≥ NDTWp(x, y)p ≥ LB Keoghp(x, y)p +
LB Keoghp(y,H(x, y))p thus proving the result.

Algorithm 3 shows how to apply LB Improved as a two-step process (see
Fig. 5). Initially, for each candidate x, we compute the lower bound LB Keogh1(x, y)
(see lines 8 to 15). If this lower bound is sufficiently large, the candidate is dis-
carded (see line 16), otherwise we add LB Keogh1(y,H(x, y)) to LB Keogh1(x, y),
in effect computing LB Improved1(x, y) (see lines 17 to 22). If this larger lower
bound is sufficiently large, the candidate is finally discarded (see line 23). Oth-
erwise, we compute the full DTW. If α is the fraction of candidates pruned by
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LB Keogh, at most (2N + 3)n+ 5(1−α)Nn comparisons between data points
are required to process a database containing N time series.

Algorithm 3 LB Improved-based Nearest-Neighbor algorithm
1: input a time series y indexed from 1 to n
2: input a set S of candidate time series
3: return the nearest neighbor B to y in S under DTW1

4: U,L← envelope(y)
5: b←∞ {b stores minx∈S DTW1(x, y)}
6: for candidate x in S do
7: copy x to x′ {x′ will store the projection of x on y}
8: β ← 0 {β stores the lower bound}
9: for i ∈ {1, 2, . . . , n} do

10: if xi > Ui then
11: β ← β + xi − Ui

12: x′i = Ui

13: else if xi < Li then
14: β ← β + Li − xi

15: x′i = Li

16: if β < b then
17: U ′, L′ ← envelope(x′)
18: for i ∈ {1, 2, . . . , n} do
19: if yi > U ′i then
20: β ← β + yi − U ′i
21: else if yi < L′i then
22: β ← β + L′i − yi

23: if β < b then
24: t← DTW1(a, c) {We compute the full DTW.}
25: if t < b then
26: b← t
27: B ← c

9 Using a multidimensional indexing structure

The running time of Algorithms 2 and 3 may be improved if we use a multi-
dimensional index such as an R*-tree [37]. Unfortunately, the performance of
such an index diminishes quickly as the number of dimensions increases [21].
To solve this problem, several dimensionality reduction techniques are possible
such as piecewise linear [38–40] segmentation. Following Zhu and Shasha [10],
we project time series and their envelopes on a d-dimensional space using
piecewise sums: Pd(x) = (

∑
i∈Cj

xi)j where C1, C2, . . . , Cd is a disjoint cover
of {1, 2, . . . , n}. Unlike Zhu and Shasha, we do not require the intervals to
have equal length. The l1 distance between Pd(y) and the minimum bound-
ing hyperrectangle containing Pd(L(x)) and Pd(U(x)) is a lower bound to the

11
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Fig. 5. Computation of LB Improved as in Algorithm 3

DTW1(x, y):

DTW1(x, y) ≥ LB Keogh1(x, y)

=
n∑

i=1

d(xi, [L(y)i, U(y)i])

≥
d∑

j=1

d(Pd(x)j, [Pd(L(y))j, Pd(U(y))j]).
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For our experiments, we chose the cover Cj = [1 + (j − 1)bn/dc, jbn/dc] for
j = 1, . . . , d− 1 and Cd = [1 + (d− 1)bn/dc, n].

We can summarize the Zhu-Shasha R*-tree algorithm as follows:

(1) for each time series x in the database, add Pd(x) to the R*-tree;
(2) given a query time series y, compute its envelope E = Pd(L(y)), Pd(U(y));
(3) starting with b = ∞, iterate over all candidate Pd(x) at a l1 distance b

from the envelope E using the R*-tree, once a candidate is found, update
b with DTW1(x, y) and repeat until you have exhausted all candidates.

This algorithm is correct because the distance between E and Pd(x) is a lower
bound to DTW1(x, y). However, dimensionality reduction diminishes the prun-
ing power of LB Keogh : d(E,Pd(x)) ≤ LB Keogh1(x, y). Hence, we propose
a new algorithm (R*-Tree+LB Keogh) where instead of immediately up-
dating b with DTW1(x, y), we first compute the LB Keogh lower bound be-
tween x and y. Only when it is less than b, do we compute the full DTW.
Finally, as a third algorithm (R*-Tree+LB Improved), we first compute
LB Keogh, and if it is less than b, then we compute LB Improved, and only
when it is also lower than b do we compute the DTW, as in Algorithm 3.
R*-tree+LB Improved has maximal pruning power, whereas Zhu-Shasha
R*-tree has the lesser pruning power of the three alternatives.

10 Comparing Zhu-Shasha R*-tree, LB Keogh, and LB Improved

In this section, we benchmark algorithms Zhu-Shasha R*-tree, R*-tree+
LB Keogh, and R*-tree+LB Improved. We know that the LB Improved
approach has at least the pruning power of the other methods, but does more
pruning translate into a faster nearest-neighbor retrieval under the DTW dis-
tance?

We implemented the algorithms in C++ using an external-memory R*-tree.
The time series are stored on disk in a binary flat file. We used the GNU
GCC 4.0.2 compiler on an Apple Mac Pro, having two Intel Xeon dual-core
processors running at 2.66 GHz with 2 GiB of RAM. No thrashing was ob-
served. We measured the wall-clock total time. In all experiments, we bench-
mark nearest-neighbor retrieval under the DTW1. By default, the locality con-
straint w is set at 10% (w = n/10). To ensure reproducibility, our source code
is freely available [41], including the script used to generate synthetic data
sets. We compute the full DTW using a O(nw)-time dynamic programming
algorithm.

The R*-tree was implemented using the Spatial Index library [42]. In informal
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tests, we found that a projection on an 8-dimensional space, as described by
Zhu and Shasha, gave good results: substantially larger (d > 10) or smaller
(d < 6) settings gave poorer performance. We used a 4,096-byte page size and
a 10-entry internal memory buffer.

For R*-tree+ LB Keogh and R*-tree+LB Improved, we experimented
with early abandoning [32] to cancel the computation of the lower bound as
soon as the error is too large. While it often improved retrieval time slightly for
both LB Keogh and LB Improved, the difference was always small (less than
≈ 1%). One explanation is that the candidates produced by the Zhu-Shasha
R*-tree are rarely poor enough to warrant efficient early abandoning.

We do not report our benchmarking results over the simple Algorithms 2
and 3. In almost all cases, the R*-tree equivalent—R*-tree+ LB Keogh or
R*-tree+LB Improved—was at least slightly better and sometimes several
times faster.

10.1 Synthetic data sets

We tested our algorithms using the Cylinder-Bell-Funnel [43] and Control
Charts [44] data sets, as well as over two databases of random walks. We
generated 256-sample and 1 000-sample random-walk time series using the
formula xi = xi−1 +N(0, 1) and x1 = 0.

For each data set, we generated a database of 50 000 time series by adding ran-
domly chosen items. Figs. 6, 7, 8 and 9 show the average timings and pruning
ratio averaged over 20 queries based on randomly chosen time series as we con-
sider larger and large fraction of the database. LB Improved prunes between
2 and 4 times more candidates than LB Keogh. R*-tree+LB Improved is
faster than Zhu-Shasha R*-tree by a factor between 0 and 6.

We saw almost no performance gain over Zhu-Shasha R*-tree with simple
time series such as the Cylinder-Bell-Funnel or the Control Charts data sets.
However, in these cases, even LB Improved has modest pruning powers of 40%
and 15%. Low pruning means that the computational cost is dominated by
the cost of the full DTW.

10.2 Shape data sets

We also considered a large collection of time-series derived from shapes [45,46].
The first data set is made of heterogeneous shapes which resulted in 5 844
1 024-sample times series. The second data set is an arrow-head data set
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Fig. 6. Nearest-Neighbor Retrieval for the 256-sample random-walk data set
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Fig. 7. Nearest-Neighbor Retrieval for the Cylinder-Bell-Funnel data set
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Fig. 8. Nearest-Neighbor Retrieval for the Control Charts data set

with of 15 000 251-sample time series. We extracted 50 time series from
each data set, and we present the average nearest-neighbor retrieval times
and pruning power as we consider various fractions of each database (see
Figs. 10 and 11). The results are similar: LB Improved has twice the prun-
ing power than LB Keogh, R*-tree+LB Improved is twice as fast as R*-
tree+LB Keogh and over 3 times faster than the Zhu-Shasha R*-tree.

15



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  5  10  15  20  25  30  35  40  45  50

ti
m

e
 (

s
)

database size (in thousands)

Zhu-Shasha R*-Tree
R*-Tree + LB_Keogh

R*-Tree + LB_Improved

(a) Average Retrieval Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5  10  15  20  25  30  35  40  45  50

fu
ll 

D
T

W
  

(%
)

database size (in thousands)

Zhu-Shasha R*-Tree
R*-Tree + LB_Keogh

R*-Tree + LB_Improved

(b) Pruning Power

Fig. 9. Nearest-Neighbor Retrieval for the 1000-sample random-walk data set

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

ti
m

e
 (

s
)

database size (in thousands)

Zhu-Shasha R*-Tree
R*-Tree + LB_Keogh

R*-Tree + LB_Improved

(a) Average Retrieval Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

fu
ll 

D
T

W
  

(%
)

database size (in thousands)

Zhu-Shasha R*-Tree
R*-Tree + LB_Keogh

R*-Tree + LB_Improved

(b) Pruning Power

Fig. 10. Nearest-Neighbor Retrieval for the heterogeneous shape data set
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Fig. 11. Nearest-Neighbor Retrieval for the arrow-head shape data set

10.3 Locality constraint

The locality constraint has an effect on retrieval times: a large value of w makes
the problem more difficult and reduces the pruning power of all methods.
In Figs. 12 and 13, we present the retrieval times for w = 5% and w =
20%. The benefits of R*-tree+LB Improved remain though they are less
significant for small locality constraints. Nevertheless, even in this case, R*-
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Fig. 12. Average Nearest-Neighbor Retrieval Time for the 256-sample random-walk
data set
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Fig. 13. Average Nearest-Neighbor Retrieval Time for the arrow-head shape data
set

tree+LB Improved can still be three times faster than Zhu-Shasha R*-
tree. For all our data sets and for all values of w ∈ {5%, 10%, 20%}, R*-
tree+LB Improved was always at least as fast as the Zhu-Shasha R*-tree
algorithm alone.

11 Conclusion

We have shown that a two-pass pruning technique can improve the retrieval
speed by three times or more in several time-series databases. In our imple-
mentation, LB Improved required slightly more computation than LB Keogh,
but its added pruning power was enough to make the overall computation sev-
eral times faster. Moreover, we showed that pruning candidates left from the
Zhu-Shasha R*-tree with the full LB Keogh alone—without dimensionality
reduction—was enough to significantly boost the speed and pruning power.
On some synthetic data sets, neither LB Keogh nor LB Improved were able
to prune enough candidates, making all algorithms comparable in speed.
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A Some Properties of Dynamic Time Warping

The DTW distance can be counterintuitive. As an example, if x, y, z are three
time series such that x ≤ y ≤ z pointwise, then it does not follow that
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DTWp(x, z) ≥ DTWp(z, y). Indeed, choose x = 7, 0, 1, 0, y = 7, 0, 5, 0, and
z = 7, 7, 7, 0, then DTW∞(z, y) = 5 and DTW∞(z, x) = 1. Hence, we review
some of the mathematical properties of the DTW.

The warping path aligns xi from time series x and yj from time series y if
(i, j) ∈ Γ. The next proposition is a general constraint on warping paths.

Proposition 3 Consider any two time series x and y. For any minimal warp-
ing path, if xi is aligned with yj, then either xi is aligned only with yj or yj

is aligned only with xi. Therefore the length of a minimal warping path is at
most 2n− 2 when n > 1.

PROOF. Suppose that the result is not true. Then there is xk, xi and yl, yj

such that xk and xi are aligned with yj, and yl and yj are aligned with xi.
We can delete (k, j) from the warping path and still have a warping path. A
contradiction.

Next, we show that warping path is no longer than 2n − 2. Let n1 be the
number of points in x aligned with only one point in y, and let n2 be the
number of points in y aligned with only one point in x. The cardinality of
a minimal warping path is bounded by n1 + n2. If n1 = n or n2 = n, then
n1 = n2 = n and the warping path has cardinality n which is no larger than
2n− 2 for n > 1. Otherwise, n1 ≤ n− 1 and n2 ≤ n− 1, and n1 +n2 < 2n− 2.

The next lemma shows that the DTW becomes the lp distance when either x
or y is constant.

Lemma 2 For any 0 < p ≤ ∞, if y = c is a constant, then NDTWp(x, y) =
DTWp(x, y) = ‖x− y‖p.

When p = ∞, a stronger result is true: if y = x + c for some constant c,
then NDTW∞(x, y) = DTW∞(x, y) = ‖x − y‖∞. Indeed, NDTW∞(x, y) ≥
|max(y)−max(x)| = c = ‖x− y‖∞ ≥ ‖x− y‖∞ which shows the result. This
same result is not true for p < ∞: for x = 0, 1, 2 and y = 1, 2, 3, we have
‖x− y‖p = p

√
3 whereas DTWp(x, y) = p

√
2. However, the DTW is translation

invariant: DTWp(x, z) = DTWp(x+b, z+b) and NDTWp(x, z) = NDTWp(x+
b, z + b) for any scalar b and 0 < p ≤ ∞.

In classical analysis, we have that n1/p−1/q‖x‖q ≥ ‖x‖p [47] for 1 ≤ p < q ≤
∞. A similar results is true for the DTW and it allows us to conclude that
DTWp(x, y) and NDTWp(x, y) decrease monotonically as p increases.

Proposition 4 For 1 ≤ p < q ≤ ∞, we have that (2n−2)1/p−1/qDTWq(x, y) ≥
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DTWp(x, y) where n is the length of x and y. The result also holds for the non-
monotonic DTW.

PROOF. Assume n > 1. The argument is the same for the monotonic or
non-monotonic DTW. Given x, y consider the two aligned (and extended) time
series x′, y′ such that DTWq(x, y) = ‖x′− y′‖q. Let nx′ be the length of x′ and
ny′ be the length of y′. As a consequence of Proposition 3, we have nx′ = ny′ ≤
2n− 2. From classical analysis, we have n

1/p−1/q
x′ ‖x′ − y′‖q ≥ ‖x′ − y′‖p, hence

|2n−2|1/p−1/q‖x′−y′‖q ≥ ‖x′−y′‖p or |2n−2|1/p−1/qDTWq(x, y) ≥ ‖x′−y′‖p.
Since x′, y′ represent a valid warping path of x, y, then ‖x′−y′‖p ≥ DTWp(x, y)
which concludes the proof.

B The Triangle Inequality

The DTW is commonly used as a similarity measure: x and y are similar if
DTWp(x, y) is small. Similarity measures often define equivalence relations:
A ∼ A for all A (reflexivity), A ∼ B ⇒ B ∼ A (symmetry) and A ∼ B ∧B ∼
C ⇒ A ∼ C (transitivity).

The DTW is reflexive and symmetric, but it is not transitive. Indeed, consider
the following time series:

X = 0, 0, . . . , 0, 0︸ ︷︷ ︸
2m+1 times

,

Y = 0, 0, . . . , 0, 0︸ ︷︷ ︸
m times

, ε, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m times

,

Z = 0, ε, ε, . . . , ε, ε︸ ︷︷ ︸
2m−1 times

, 0.

We have that NDTWp(X, Y ) = DTWp(X, Y ) = |ε|, NDTWp(Y, Z) = DTWp(Y, Z) =

0, NDTWp(X,Z) = DTWp(X,Z) = p

√
(2m− 1)|ε| for 1 ≤ p < ∞ and

w = m − 1. Hence, for ε small and n � 1/ε, we have that X ∼ Y and
Y ∼ Z, but X 6∼ Z. This example proves the following lemma.

Lemma 3 For 1 ≤ p < ∞ and w > 0, neither DTWp nor NDTWp satis-
fies a triangle inequality of the form d(x, y) + d(y, z) ≥ cd(x, z) where c is
independent of the length of the time series and of the locality constraint.

This theoretical result is somewhat at odd with practical experience. Casacu-
berta et al. found no triangle inequality violation in about 15 million triplets
of voice recordings [48]. To determine whether we could expect violations
of the triangle inequality in practice, we ran the following experiment. We
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used 3 types of 100-sample time series: white-noise times series defined by
xi = N(0, 1) where N is the normal distribution, random-walk time series
defined by xi = xi−1 +N(0, 1) and x1 = 0, and the Cylinder-Bell-Funnel time
series proposed by Saito [43]. For each type, we generated 100 000 triples of
time series x, y, z and we computed the histogram of the function

C(x, y, z) =
DTWp(x, z)

DTWp(x, y) + DTWp(y, z)

for p = 1 and p = 2. The DTW is computed without time constraints. Over
the white-noise and Cylinder-Bell-Funnel time series, we failed to find a single
violation of the triangle inequality: a triple x, y, z for which C(x, y, z) > 1.
However, for the random-walk time series, we found that 20% and 15% of the
triples violated the triangle inequality for DTW1 and DTW2.

The DTW satisfies a weak triangle inequality as the next theorem shows.

Theorem 2 Given any 3 same-length time series x, y, z and 1 ≤ p ≤ ∞, we
have

DTWp(x, y) + DTWp(y, z) ≥ DTWp(x, z)

min(2w + 1, n)1/p

where w is the locality constraint. The result also holds for the non-monotonic
DTW.

PROOF. Let Γ and Γ′ be minimal warping paths between x and y and be-
tween y and z. Let Γ′′ = {(i, j, k)|(i, j) ∈ Γ and (j, k) ∈ Γ′}. Iterate through
the tuples (i, j, k) in Γ′′ and construct the same-length time series x′′, y′′, z′′

from xi, yj, and zk. By the locality constraint any match (i, j) ∈ Γ cor-
responds to at most min(2w + 1, n) tuples of the form (i, j, ·) ∈ Γ′′, and
similarly for any match (j, k) ∈ Γ′. Assume 1 ≤ p < ∞. We have that
‖x′′−y′′‖pp =

∑
(i,j,k)∈Γ′′ |xi−yj|p ≤ min(2w+1, n)DTWp(x, y)p and ‖y′′−z′′‖pp =∑

(i,j,k)∈Γ′′ |yj − zk|p ≤ min(2w + 1, n)DTWp(y, z)p. By the triangle inequality
in lp, we have

min(2w + 1, n)1/p(DTWp(x, y) + DTWp(y, z)) ≥ ‖x′′ − y′′‖p + ‖y′′ − z′′‖p
≥ ‖x′′ − z′′‖p ≥ DTWp(x, z).

For p =∞, max(i,j,k)∈Γ′′ ‖xi−yj‖pp = DTW∞(x, y)p and max(i,j,k)∈Γ′′ |yj−zk|p =
DTW∞(y, z)p, thus proving the result by the triangle inequality over l∞. The
proof is the same for the non-monotonic DTW.

The constant min(2w+1, n)1/p is tight. Consider the example with time series
X, Y, Z presented before Lemma 3. We have DTWp(X, Y )+DTWp(Y, Z) = |ε|
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and DTWp(X,Z) = p

√
(2w + 1)|ε|. Therefore, we have

DTWp(X, Y ) + DTWp(Y, Z) =
DTWp(X,Z)

min(2w + 1, n)1/p
.

A consequence of this theorem is that DTW∞ satisfies the traditional triangle
inequality.

Corollary 3 The triangle inequality d(x, y)+d(y, z) ≥ d(x, z) holds for DTW∞
and NDTW∞.

Hence the DTW∞ is a pseudometric: it is a metric over equivalence classes
defined by x ∼ y if and only if DTW∞(x, y) = 0. When no locality constraint
is enforced (w ≥ n), DTW∞ is equivalent to the discrete Fréchet distance [49].

C Which is the Best Distance Measure?

The DTW can be seen as the minimization of the lp distance under warping.
Which p should we choose? Legrand et al. reported best results for chromosome
classification using DTW1 [13] as opposed to using DTW2. However, they did
not quantify the benefits of DTW1. Morse and Patel reported similar results
with both DTW1 and DTW2 [50].

While they do not consider the DTW, Aggarwal et al. [51] argue that out of
the usual lp norms, only the l1 norm, and to a lesser extend the l2 norm, ex-
press a qualitatively meaningful distance when there are numerous dimensions.
They even report on classification-accuracy experiments where fractional lp
distances such as l0.1 and l0.5 fare better. François et al. [52] made the theo-
retical result more precise showing that under uniformity assumptions, lesser
values of p are always better.

To compare DTW1, DTW2, DTW4 and DTW∞, we considered four different
synthetic time-series data sets: Cylinder-Bell-Funnel [43], Control Charts [44],
Waveform [53], and Wave+Noise [54]. The time series in each data sets have
lengths 128, 60, 21, and 40. The Control Charts data set has 6 classes of time
series whereas the other 3 data sets have 3 classes each. For each data set, we
generated various databases having a different number of instances per class:
between 1 and 9 inclusively for Cylinder-Bell-Funnel and Control Charts, and
between 1 and 99 for Waveform and Wave+Noise. For a given data set and
a given number of instances, 50 different databases were generated. For each
database, we generated 500 new instances chosen from a random class and we
found a nearest neighbor in the database using DTWp for p = 1, 2, 4,∞ and
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Fig. C.1. Classification accuracy versus the number of instances of each class in four
data sets

using a time constraint of w = n/10. When the instance is of the same class
as the nearest neighbor, we considered that the classification was a success.

The average classification accuracies for the 4 data sets, and for various num-
ber of instances per class is given in Fig. C.1. The average is taken over
25 000 classification tests (50× 500), over 50 different databases.

Only when there are one or two instances of each class is DTW∞ competitive.
Otherwise, the accuracy of the DTW∞-based classification does not improve
as we add more instances of each class. For the Waveform data set, DTW1

and DTW2 have comparable accuracies. For the other 3 data sets, DTW1 has
a better nearest-neighbor classification accuracy than DTW2. Classification
with DTW4 has almost always a lower accuracy than either DTW1 or DTW2.

Based on these results, DTW1 is a good choice to classify time series whereas
DTW2 is a close second.
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