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GENERATION OF TRANSIENT NEARLY INERTIAL
INTERNAL WAVES BY THE INTERACTION BETWEEN
INTERNAL WAVES AND A GEOSTROPHIC SHEAR CURRENT

By Claude J. Frankignoul

Institut de Mathématique, Université de Liége,
4000, Liége

1« INTRODUCTION.

There is evidence that the nonlinear coupling between modes
is weak in the internal wave frequency range of the ocean-current
spectrum (Fofonoff, 1969, Hasselmann, 1968). Hence, other mecha-
nisms by which internal gravity waves exchange energy with their
surroundings or with other types of motion might be mainly res-
ponsible, in some cases, of the observed spectrum.

Such energy exchange occurs when internal waves are in the
presence of a mean shear flow (Bretherton, 1966, Phillips, 1966).
An early attempt to evaluate the influence of this mechanism on
the shape of the frequency spectra was made by Phillips (1966)
for a simple non-rotating model, His result must nevertheless
be interpreted with care, as they are restricted to a narrow band
of frequencies and obscured by an algebraic error.

The influence of a steady shear on the internal wave spectra
in a rotating medium has been recently investigated by Frankignoul
(1970), on the basis of Phillips'work. The mean shear current
was supposed to be in ageostrophic balance and the wave propaga-
tion directions isotropiocally distributed in the mean with res-
pect to the horizontal. The comparison of the equilibrium spec-
tral shapes with some relevant oceanic data indicated a good
agreement.

In most deep sea situations, it is known that, if a steady
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shear flow is to be assumed, the hypothesis of geostrophic ba-
lance is more relevant. In the present paper, attention will
be focused on the effect of a horizontal density gradient on
the time-behavior and the equilibrium spectral shapes of the
interhal waves. An attempt will be made to evaluate the in-

fluence of the dissipations.

2., DERIVATION OF THE WAVE EQUATION.

It is assumed thatthe fluid is incompressible and non-dissipa-
tive. The horizontal component of the earth rotation is negleecs
ted and the mean shear flow is supposed to be steady, unidirec-
tional and depending only upon the depth. To the Boussinesq

approximation, the linearised equations of motion reads

%-%—fv+wU'=—'g—; (1)
%% GparE 8= %ﬁ (2)
%% e gf ()
%+%+%§=O (4)
%—%-—VMZ+NN2=O )

where (U(z),0,0) is the mean velocity, (u,v,w) the fluctuating
ieHloGEEbvE, bl thie " filnc tuating part of the buoyancy, n the nonz=hy-

drostatic pressure per unit mass, f the Coriolis parameter.

N2 - - & S0 and M2 B B are the Brunt-VHisHlH4 frequency and
P, 02 Vs 0
its horizontal analogue, g is the gravitational acceleration,
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Geostrophic and hydrostatic equkiNtitbrhatail el d to

HURME e SRR (6)

whierestis the vertical slope of an isopycnal in the mean density

Erelldlee S Hor simplicity, it is assumed that

Ul(m) =

il

constant

(7)

2
N (z) i = constant .

il
I

For all these assumptions to be approximately valid, very small
and very large scale motions must be disregarded. A typical
region where the model applies roughly is the region below the
main thermocline, far from boundaries.

By elimination, one gets an equation for w

3 2 2 2 2
d 2 ol 2 8 2 ey SN e omwle | A2 oswie
E;g-v W+€?(f ;;5 + 2M ayaZ+N gh)w 2M°U T 2N f e 0.(8)

Instead of using a normal mode expansion, we assume a wave

decomposition of the form

o i) ei(kx+1y - kU'zt) (9)

k' and 1 being constant, on the basis of the stretching action of
the shear, as found by examination of the ray equations (Jones,
1969, Mooers, 1970). The time-origin is chosen when the wave-
number is horizontal so that negative time is allowed. In order
to set-up a model which is amenable to analysis, W is assumed to
be depth-independent. The medium is supposed tc be infinitely
deep and there is no boundary conditions.

As only wave-number components in the direction of the
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mean shear undergo its influence, the form (9) is of no use if
IR =0 thieTel Hist no energy exchange between the shear flow and
the waves (at least to the Boussinesqg approximation, see Healey
and Leblond, 1969), and the present model does not apply. If
the wave propagates obliquely, its wave number is rotated and
increases as soon as it becomes horizontal. This was first no-
ted by Phillips (1966).
Using the form (9), equation (8) reduces to

-2 a 6}
K 3[('+T )W]+ aT[(1+2s sin.®T+F2T2)W] + 2(F2T+s sin @)W =

(10)

where & specifies the angle between the horizontal wave number

vector and the steady current direction, and where

= clols DR

(11)

3. ASYMPTOTIC SOLUTION FOR LARGE K2.

As in the previous works based on the wave decomposition

(9), an asymptotic solution can be found when K2 18 llarges s Thilg
corresponds usually to a very large dynamical stability of thie

meleme fallowk = L Lot thes firgit: order. in K—1, one has

2-1 %ii%fndT
W~ G(1+T7) (142 s sin & T+FoT2 ) (12)

where G is a constant and n the intrinsic frequency defined by

it

N

5]
il

3 2 DD
<1+2 SiESEN! 2 T+F T ) ; (13)
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The frequency n changes continuously with time and tends to the
inertial frequency as t increases, so that energy is transferred
towards low frequencies for T > Qc The frequency band in the
geostrophic case is larger than in the cases where there is no
mean flow or when the mean flow is in ageostrophic balance.
Taking for simplicity F2 and s2 much smaller than unity, as is

verified in most physical situations, the frequency limits are

given by

omTat 1
s sin @2 o o O
AQE ) < n ¢ N (l+siain o) . (14)
F
As discussed by Mooers (1970) in the case where & = 90°, only
the low frequency limit can be effectively affected.

The vertical component of the group velocity Cg, given by
on the !
o I wl G ,

allows for an estimation of the vertical distance d over which
the energy at any point runs from a time t1 to a time tz, lofy7 alisl=
tegrating (15) between t1 and t2. Wyrpaieel velve @i 6 dg dé

clonyriclsiplomidsiiniod s For i = 0F, t2 = 2 o, Powr eencdEilensg Teume v SaweE

D (39°20!'N,70°W) al a depth of 2000 meters, one has d_  ~ D20,
N being the horizontal wave-length. For not too large scale,
the vertical displacement of the wave energy is smallj; this
could partly justify the omission of boundary conditions. The

dispersion relation is
e e ) () e 20 o T (16)

where m is the vertical component of the wave number.
There is an energy exchange between the wave and the mean

flow. The mean Reynolds stress produced by the wave is given by
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=) SN S o R R (o T(1+T2) 2(1+2s sin @ T+F2T2)2 (7)

an overbar indicating the mean value. For T > O, the Reynolds
stress is negative and energy is extracted from the wave motion
and transferred to the mean current. The rate of energy transfer
is indicated by the behavior of the horizontal and vertical ki-

netic energy density of the wave

1 2 2 Do ; 2 2.1/2
i T (T2 ) 28 (M+25 'sin & T+E-T )1/ (18)

5 e
2 2
PG (1+T2) 2 (1+2s sin @ T+F2T2) k (19)

NI

v

After a time long enough, Eh tends to a constant value whereas
Ev vanishes, and the intrinsic frequency becomes the inertial
frequency. Hence, the effect of the shear is to transform the
internal wave motions into inertial oscillations, provided no-
thing interrups the process (see below).

If there is an energy transfer between waves and mean flow,
one cannot rigourously assume the steadiness of the mean current.
However, if the isotropy of the wave propagation directions is
assumed, all wave energy contributions to the mean current ba-
lance. Then, the assumption of a steady shear, though being
HSdveesEndi i olclaililiyiy e an. be gustified.

It must be noted that the transfer of the wave energy to
the mean flow is identical to the phenomenon of critical layer
absorption, as showed Booker and Bretherton (1967). No criti-
elgiliilevie ]l oecurs here as it corresponds to a fixed frequency
(normal mode decomposition), while, in Phillips!model, the fre-
quency is varying and the absorption of vertical momentum con-

Tinuous s
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4. SHEAR INSTABILITY AND DISSIPATIVE EFFECTS.

As an effect of the mean shear, the vertical scale of the
wave motion is reduced, increasing the shear produced by the
wave. This shear tends to become infinite as n tends to fy 80
that the Richardson number unavoidably becomes smaller than 1/4,

the critical value for shear instability (necessary but not suf-

ficient condition).

To calculate the frequency below which the motion might
become unstable, we define a minimum Richardson number by adding
the shear produced by the wave to the overall mean shear, which
can be neglected as K2 >> 1. Calling a the wave amplitude at
t = 0 and A the horizontal wave-length, a critical curve can
belfdrawn ‘in a (n, %) diagram (fig.1). The larger is the wave
amplitude, the smaller is the frequency below which instability
may occur. Let us mention that the appearance of a dynamical
instability does not imply that the wave itself is destroyed.

So far, dissipative effects have been neglected as is usual-
ly done in a wave theory. However, the evolution towards a
vanishingly small scale in the vertical direction accelerate
the viscous damping. This should prevent the wave from the
occurrence of shear instability, in some cases.

Detailed investigation of the combined effects of viscosity,
heat and salt diffusion leads to very tedious algebra, but bounds

of their influence can be obtained more easily by using

%¥ = %— + U %; = vﬁg in the basic equations ingtead of the former

value, According to the choice of v-kinematic viscosity or ther-
mal d¥ffusivity (the salinity being neglected)- one gets upper
or lower bounds of the dissipative effects. The analysis is
rigourous for unitary Prandlt number.

Calculation leads to an equivalent asymptotic solutionj; it
can be shown that solution (12) is still valid, except that there

i e gelclalpilemiaeill  sEee By



with (20)

T, corresponds either to the generation of the wave or to the time
of entrance of a wave in such a region of ‘shiear, and musit be in-—
troduced because the dissipations are irreversible.

It can be shown that, provided the ratio of the wave ampli-
tude to the wave length is not large, there will be no dynamical
instability. For illustration of the damping effect, one can
calculate that the amplitude of a wave (A=200 m) generated at
Sdte’D (2000 m) is reduced bysa fiacitor D svichs That & 05 <@ D <
b after the lapse of time necessary for the frequency to de-
gmelgisieltirom. N to 0,15 N.

The statement of section 5 must be modified to take into
account the phenomenom described in this section, In most cases,
the wave frequency will become rather close to £, but will never
reach it. Two mechanisms - shift towards lower frequencies (when
n becomes close to f), damping of the horizontal oscillations -
will strongly contribute to give a transient character to a given
low frequency Fourier component. Hence, the shear will act to
transform the internal waves into nearly inertial transient oscil-
ilaititonsl,s i f the dnertial angle of incidence of the wave is appro-
priafe.

The action of the shear on internal waves could then be an
important mechanism for the appearance of inertial oscillations
in deep sea, and the observed transient character of those waves

is easily explained in our model.
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5 EQUILIBRIUM SPECTRAL SHAPES.

ulen =S intte e S0 thic unusual wave decomposition (9) is
that it allows to derive equilibrium spectral shapes from simple
arguments.

In his paper, Phillips (1966) assumed there was a steady
source of internal waves which has been acting long enough for
a steady spectrum to dieivieilfopit it hioni s tihic frequency spectra can
pPERd it eld S siim pillySbelclausie, 'as eadoh wave Ha rotated, its amplitude,
velocity and frequency are modified. A fundamental problem is to
find a suitable eénergy source in deep sea, far from boundaries;
viexy little is known on this subject.

Phillips'results are based on the Doppler-shifted wave fre-
quency and their use for time-dependent spectra at a fixed point
must be interpreted with care. In fact, provided the source is
fixed and steady, there will be no BRINPEEEIL el awion i@ BheE S
quency spectra at a given place, but only a direct dependance to
the source frequency spectrum. Also, all wave energy transferred
to the mean flow will accumulate and U cannot be supposed to de-
pend only upon the depth, except to a rough approximation.

An assumption of more statistical character was made by
Erankignoul (1970) and will be used here.  We assume there is a
large supply of many waves coming in the regilont oft shiclar, dnt an
undetermined manner but isotropically distributed with respect to
the horizontal. This does not answer to the question of the
slonricesof thiet waviesl,s'but 1s not too restrictive. Because of the
isotropy of the wave propagation directions, all Doppler-Shift
effects balance in the mean and the frequency n can be used for
measurements at a fixed point, provided they are long enough.
Also, it is easy to see that the frequency spectra will be simi-
lar to the spectra obtained by assuming the existence of a steady
source (by considering a pair of waves, symetric about the hori-
zontal plane). Using Phillipst!method (1966) to derive the spec-
tral shapes, it is found that the horizontal and vertical kinetic

energy density spectra Eh and Ev , and the potential energy
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spectrum P¢¢ are respectively of the form

2 ) 2 5
E o T°(1+2s sin“ oT+F TZ)(S sin®T2+(1—F2)T—S sin & ) ! (25)

2 2 -
E,< (1+2s sin®oT+F Tz)(s sin®T2+(1—F2)T-s sin &) L (228)
2 - 2 2 : =1
Pq)q)o((1+T )(s sin © T°+(1-F°)T - s gin @) 5 (25))
To express the spectra in function of the frequency, formula

(13) must be used. A simple analytical form is found when
® =0
AL
25 808 5D -
E, € n°(N°-n )2 (el (24)
1

i il
E o n2(N2—n2)’2 (nz—fZ)_Z (25))

1 1
B 1 G

g (26)

The hypothesis of geostrophic balance only affects the low
frequency part of Ev and Pwm - they show a peak at the inertial
frequency - , as compared with results obtained in the ageostro-
phic case, otherwise very similar.

To compare (24) - (26) with observations, it must be noted
that both ends of the curves cannot be representative of the
ocean-current spectra. Indeed, at very low frequency, the waves
we have studied are subject to shear instability, whereas at very
high frequencies, the model itself is invalid, since the micro-
structure has been neglected and only a mean N has been used.

As, in the real oceans, other motions are also present at very
low and very high frequency, a good agreement cannot be expected
near the limits of the internal wave frequency range.

Thiesmodel can be tested in a region, far from boundaries,

where the mean Brunt-Vaisala frequency is roughly constant - this
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is often observed below the main thermocline - and where there
is a mean shear which is roughly steady and unidirectional, at
least in periods long enough for the transfer process to occur.
The value of the shear affects only the time scale of the fre-
giueniciy sintr iGNy T thie waves, and contributions from different pe-
riods of time where the model e viailaid s Wil ISl o did 8 diny  Bihfe slame way s
no matter what is the direction and magnitude of the mean shear.

Measurements made at Site D (39°20!'N,70°W), below the main
thermocline, seem t0 be suitable for a comparison with the com-
puted spectral shapes (FrankignOul, 1970). Pig. 2 shows a com-
parison between the calculated horizontal kinetic energy spectrum
and observations made at a depth of 2000 meter, in a region where
the model applied best. The agreement is good, as in the ageos-
trophic case. There is no other really relevant observations
which can be used to check the ealtindsStaE ot hieRem o ol S iy
(Frankignoul, 1970), comparison has been made with vertical ki-
netic energy and temperature fluctuations spectra recorded at
the lower edge of the thermocline (where N is not constant) but
the accuracy of the measurements is weak and the model rather
inappropriate so that no conclusion can be drawn.

The effects of the dissipation on the equilibrium spectra
cannot be investigated in detail but it can be seen intuitively
that they will not seriously affect the value (24)-(26) in con-
sidering two waves coming in the region of shear, with propaga-
tion directions symetric about the horizontal plane. The fre-
quency of one wave is shifted towards higher frequencies, while
the frequency of the other one is shifted towards lower fre-
quencies. As the dissipation depends only upon the time elapsed,
the low and high frequency regions of the spectra will be affec-
ted in a similar way and the spectral shape will not be influen-

ced by the dissipations.
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6. CONCLUSIONS.

The effect of a constant steady and unidirectional shear
on internal waves is to modify their frequency, wave-number and
amplitude, and finally to transform them into inertial oscilla-
wal@ing o auEe @il vertical kinetic energy has been transferred
to the mean current. Consideration of dissipative effects in-
troduces a limited life-time of the wave and gives a transient
character to the low-frequency waves, in agreement with the ob-
servations of inertial oscillations.

The good agreement between spectra of the horizontal kinetic
energy computed from the model and some relevant observations
bears out the interest of studying the effect of the shear on

internal waves.
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LEGENDS FOR FIGURES.

Figure 1. Curves relating the non-dimensional frequency under

which instability may occur to the ratio of the wave amplitude
vombhielwavie length, at t = 0,

Numerical values correspond to
salwE g 20000 i

Dissipations are neglected.

Figure 2. A comparison of the horizontal kinetic energy density

spectrum observed at Site D, 39°20!N,70°W; (2206, 2000m, June

1967) with the calculated spectrum. Arbitrary magnitude of the

computed curve has been chosen to fit the observations.
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