SUBSAMPLING ACCURACY IN BEAM TRAWL CATCHES

Figure 1: Catch Sorting in Proaress

Introduction

In commercial beam trawling data on fish catches is routinely available, while composition of invertebrate discards is ignored. However, from an ecosystem perspective such data is equally important yet is highly labor intensive to acquire. Subsampling the discards, and accepting the error this inherently imposes, is the only option. Here we investigate these error rates, which will allow for more accurate data or estimates in discard composition.

Fiqure 2: Trawling Location

Discussion

(A) Species Abundances

All hauls were highly dominated by starfish and sea urchins. A majority of species was found to be rare.

(B) Species Richness

An average of 23 species per trawl was found. Despite large differences in catch weight there was comparatively little variation in number of species. Most trawls follow a similarly shaped curve regardless of their weight or number of species. For N1 the confidence interval showed a constant range over al subsample sizes.

(C) Sampling Error

Results for N1 are given as example, other trawls revealed similar patterns. Average error decreased with increasing subsample size. Rare species showed the highest error rates while common species had intermediate error rates. For abundant \& dominant species errors were up to 10 times lower and surprisingly similar to each other. This indicates that after a certain abundance threshold is reached(around 5ind. $/ 10 \mathrm{~kg}$), error rate is unlikely to drop much further, even at highest abundances.

Future Prospects

Currently most results are represent all trawls individually. In the next step, we aim to produce overall results for all trawls combined. Interpolation and/or a general linear mixed model approach should allow for this, while also accounting for the complex interdependence of all data points.

