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ABSTRACT 

Particles suspended in seawater include sediments, phytoplankton, zooplankton, bacteria, viruses, and 

detritus, and are collectively referred to as suspended particulate matter, SPM. In coastal waters, SPM is 

transported over long distances and in the water column by biological, tide or wind-driven advection and 

resuspension processes, thus varying strongly in time and space. These strong dynamics challenge the 

traditional measurement of the concentration of SPM, [SPM], through filtration of seawater sampled from 

ships. Estimation of [SPM] from sensors recording optical scattering allows to cover larger temporal or 

spatial scales. So called ocean colour satellites, for example, have been used for the mapping of [SPM] on 

a global scale since the late 1970s.  These polar-orbiting satellites typically provide one image per day for 

the North Sea area. However, the sampling frequency of these satellites is a serious limitation in coastal 

waters where [SPM] changes rapidly during the day due to tides and winds. Optical instruments installed 

on moored platforms or on under-water vehicles can be operated continuously, but their spatial coverage 

is limited. This work aims to advance in situ and space-based optical techniques for [SPM] retrieval by 

investigating the natural variability in the relationship between [SPM] and light scattering by particles and 

by investigating whether the European geostationary meteorological SEVIRI sensor, which provides 

imagery every 15 minutes, can be used for the mapping of [SPM] in the southern North Sea.  

Based on an extensive in situ dataset, we show that [SPM] is best estimated from red light 

scattered in the back directions (backscattering). Moreover, the relationship between [SPM] and 

particulate backscattering is driven by the organic/inorganic composition of suspended particles, offering 

opportunities to improve [SPM] retrieval algorithms. We also show that SEVIRI successfully retrieves 

[SPM] and related parameters such as turbidity and the vertical light attenuation coefficient in turbid 

waters. Even though uncertainties are considerable in clear waters, this is a remarkable result for a 

meteorological sensor designed to monitor clouds and ice, much brighter targets than the sea! On cloud 

free days, tidal variability of [SPM] can now be resolved by remote sensing for the first time, offering 

new opportunities for monitoring of turbidity and ecosystem modelling. In June 2010 the first 

geostationary ocean colour sensor was launched into space which provides hourly multispectral imagery 

of Korean waters. Other geostationary ocean colour sensors are likely to become operational in the 

(near?) future over the rest of the world’s seas. This work allows us to maximally prepare for the coming 

of geostationary ocean colour satellites, which are expected to revolutionize optical oceanography.   
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RÉSUMÉ 

Les particules en suspension dans l'eau de mer incluent les sédiments, le phytoplancton, le zooplancton, 

les bactéries, les virus, et des détritus. Ces particules sont communément appelés matière en suspension 

(MES). Dans les eaux côtières, la MES peut parcourir de longues distances et être transportée 

verticalement à travers la colonne d'eau sous l'effet des vents et des marées favorisant les processus 

d'advection et de resuspension. Ceci implique une large variabilité spatio-temporelle de MES et 

quasiment impossible à reconstituer à travers les mesures traditionnelles des concentrations de MES, 

[MES], par filtration de l'eau de mer à bord de bateaux. La [MES] peut être obtenue à partir de capteurs 

optiques enregistrant la diffusion et déployés soit de manière in-situ, soit à partir d'un satellite dans 

l'espace. Depuis la fin des années 70, par exemple, les satellites « couleur de l'eau » permettent d'établir 

des cartes de [MES] globales. La fréquence d’une image par jour pour la mer du Nord de ces capteurs 

polaires représente un obstacle non-négligeable pour l'étude de variabilité de la [MES] dans les eaux 

côtières où la marée et les vents engendrent des variations rapides au cours de la journée. Cette limitation 

est d'autant plus importante pour les régions avec une couverture nuageuse fréquente. Les méthodes in-

situ à partir d’un navire autonome ou d'une plateforme amarrée permettent d'enregistrer des données en 

continu mais leur couverture spatiale reste néanmoins limitée.  Ce travail a pour objectif de mettre en 

avant les techniques de mesures in-situ et satellites de la [MES] en se concentrant principalement sur deux 

points. Premièrement, d’acquérir une meilleure connaissance de la variabilité de la relation entre la [MES] 

et la lumière diffuse, et deuxièmement, d’établir des cartes de [MES] dans la mer du Nord avec le capteur 

géostationnaire météorologique Européen (SEVIRI), qui donne des images chaque 15 minutes. 

La variabilité de la relation entre la [MES] et la lumière diffuse est étudiée à l'aide d'une banque 

de données in-situ. Nous démontrons que la [MES] est le mieux estimée à partir des mesures dans 

l'intervalle rouge du spectre de lumière rétro-diffuse. Par ailleurs, la relation entre la [MES] et la 

rétrodiffusion est gouvernée par la composition organique/inorganique des particules, ce qui représente 

des possibilités d'amélioration pour les algorithmes d'estimation de [MES] à partir de la couleur de l'eau. 

Nous démontrons aussi qu’avec SEVIRI il est possible d’estimer la [MES], la turbidité et le coefficient 

d'atténuation, deux variables étroitement liées à la [MES], avec généralement une bonne précision. Bien 

qu'il y ait d'importantes incertitudes dans les eaux claires, cette réussite est remarquable pour un capteur 

météorologique initialement conçu pour le suivi des nuages et des masses glacières, cibles beaucoup plus 

brillantes que la mer! Ce travail démontre pour la première fois que la variabilité de la [MES] à l'échelle 

temporelle des marées dans les eaux côtières au sud de la Mer du Nord peut être capturée et mesurée par 

le biais de la télédétection de la couleur de l'eau ; ce qui ouvre des opportunités pour le monitoring de la 
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turbidité et pour la modélisation des écosystèmes. Le premier capteur géostationnaire couleur de l’eau à 

été lancé en juin 2012, donnant des images multispectrale des eaux coréennes chaque heure. D’autres 

capteurs vont probablement suivre dans l’avenir (proche ?), couvrant le reste des eaux du globe. Ce travail 

nous permet de préparer, de façon optimale, l’arrivée de ces capteurs qui vont révolutionner 

l'océanographie optique. 
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SAMENVATTING 

De in zeewater aanwezige zwevende materie zoals sedimenten, fytoplankton, zooplankton, bacteriën, 

virussen en detritus, worden collectief “suspended particulate matter” (SPM) genoemd. In kustwateren 

worden deze deeltjes over lange afstanden en in de waterkolom getransporteerd door biologische 

processen of wind- of getijdenwerking, waardoor SPM sterk varieert in ruimte en tijd. Door deze sterke 

dynamiek wordt de traditionele bemonstering van de concentratie van SPM, [SPM], door middel van 

filtratie van zeewaterstalen aan boord van schepen ontoereikend. Optische technieken die gebruik maken 

van de lichtverstrooiingseigenschappen van SPM bieden een gebieds- of tijdsdekkend alternatief. 

Zogenaamde “ocean colour” satellieten bijvoorbeeld leveren beelden van o.a. [SPM] aan het 

zeeoppervlak op globale schaal sinds eind 1970, met een frequentie van één beeld per dag voor de 

Noordzee. Deze frequentie is echter onvoldoende in onze kustwateren waar [SPM] drastisch kan 

veranderen in enkele uren tijd. Optische instrumenten aan boord van schepen of op onderwatervoertuigen 

kunnen continu meten, maar de gebiedsdekking is beperkt. Dit werk heeft tot doel de 

lichtverstrooiingseigenschappen van SPM te karakterizeren en te onderzoeken of de Europese 

geostationaire weersatelliet, die elk kwartier een beeld geeft, kan worden gebruikt voor de kartering van 

[SPM] in de zuidelijke Noordzee.  

Op basis van een grote dataset van in situ metingen tonen wij aan dat [SPM] het nauwkeurigst 

kan worden bepaald door de meting van de verstrooiing van rood licht in achterwaartse richtingen 

(terugverstrooiing). Bovendien blijkt de relatie tussen [SPM] en terugverstrooiing afhankelijk van de 

organische-anorganische samenstelling van zwevende stof, wat mogelijkheden biedt tot het verfijnen van 

teledetectiealgoritmen voor [SPM]. Voorts tonen wij aan dat de Europese weersatelliet, SEVIRI, 

successvol kan worden aangewend voor de kartering van [SPM] en gerelateerde parameters zoals 

troebelheid en lichtdemping in de waterkolom. Hoewel met grote meetonzekerheid in klaar water toch 

een opmerkelijk resultaat voor een sensor die ontworpen werd voor detectie van wolken en ijs! Op 

wolkenvrije dagen wordt hierdoor de getijdendynamiek van [SPM] in de zuidelijke Noordzee voor het 

eerst detecteerbaar vanuit de ruimte, wat nieuwe mogelijkheden biedt voor de monitoring van 

waterkwaliteit en verbetering van ecosysteemmodellen. Sinds juni 2010 is de eerste geostationaire ocean 

colour satelliet een feit: elk uur een multispectraal beeld van Koreaanse wateren. Vermoedelijk zullen er 

in de (nabije?) toekomst meer volgen over Europa en Amerika. Dit werk laat toe ons maximaal voor te 

bereiden op de komst van zo’n satellieten, waarvan verwacht wordt dat zij een nieuwe revolutie in 

optische oceanografie zullen ontketenen.  
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v Azimuth angle, sensor and sun azimuth angle 

0 Incident flux, W nm
-1

 

a Absorbed flux, W nm
-1
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 m

-1
 

0
skyL

 
Sky radiance, W m

-2
 sr

-1
 m

-1
 



 xiii 

 

 

TOA
totL  Total radiance and reflectance at TOA, W m

-2
 sr

-1
 m

-1
 

0, w
TOA
w LL  Water-leaving radiance at TOA and above-water, W m
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Above-water marine reflectance on HRV grid, dimensionless 

TOA
wc
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
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T
SB
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GENERAL INTRODUCTION 

Coastal waters are important ecological systems and among the most productive natural systems on Earth. 

These waters are a complex mixture of constituents, which can be broadly classified into dissolved 

substances and suspended particulate matter, SPM. Suspended particles include microscopic algae, 

bacteria, viruses, zooplankton, detritus, and mineral particles brought to the sea by rivers or dust winds. 

Coastal waters are highly dynamic environments, where physical, biological, and geological processes 

contribute to rapid changes in seawater constituents, resulting in a high variability in space and time. This 

high spatio-temporal variability poses challenges for the adequate measurement of seawater constituents. 

Optical techniques can be used to retrieve quantitative information of certain seawater constituents, whose 

nature and quantity directly affect the optical properties of the water, resulting for example in colour upon 

interaction with sunlight. Traditional ship-based sampling of seawater constituents is costly, time 

consuming, and limited in space and time  whereas optical measurements can be acquired remotely (from 

satellites or aircrafts) or in situ (on ships, moored platforms, or autonomous underwater vehicles), 

allowing to sample at much higher spatial and temporal scales. To the extent that reliable relationships 

between constituents and optical properties can be determined, information on constituent characteristics 

may be available at the same set of scales. 

Suspended particles scatter light in all directions, with an intensity that is, to first order, 

determined by their concentration. Second order effects are caused by variations in particle size, shape, 

composition and internal structure. Of particular interest to remote sensing studies is the light scattered in 

the backward direction, which can be detected by a satellite sensor. In situ relationships between total 

light scattering and the dry weight concentration of SPM, [SPM], have been examined in open ocean and 

coastal waters since the early 1970s, when the first instrumentation became commercially available 

(Gibbs 1974; Carder et al. 1975; Pak and Zaneveld 1977). Good relationships are generally found, but 

reported values of mass-specific particulate scattering, i.e. scattering per unit [SPM], vary strongly (Hill et 

al. 2011). In situ instrumentation to record backscattering became commercially available only since the 

mid 1990’s and few studies (Snyder et al. 2008; Boss et al. 2009c; Deyong et al. 2009; Martinez-Vicente 

et al. 2010) have investigated relationships between backscattering and [SPM] in natural waters. Our 

present understanding of the effect of particle characteristics on scattering and backscattering is mainly 

based on laboratory measurements (Morel and Bricaud 1986; Volten et al. 1998; Stramski et al. 2002) 

and/or theoretical calculations (Morel and Ahn 1991; Kitchen and Zaneveld 1992; Babin et al. 2003; 

Clavano et al. 2007). To advance our understanding of optical variability in natural waters, studies 

combining measurements of scattering properties of SPM with investigations of the fundamental causes 
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driving their variability are needed. The first major objective of this work is to investigate the in situ 

relationships between (back)scattering properties and [SPM] and to investigate the natural variability of 

mass-specific (back)scattering properties with respect to particle density, composition, and size, based on 

an intensive sampling program in optically complex coastal and more offshore waters around Europe and 

French Guyana.  

Space-based remote sensing of optical properties of seawater is achieved from so called ‘ocean 

colour’ satellite sensors. The goal of ocean colour remote sensing is to derive quantitative information on 

seawater constituents from variations in the spectral form and magnitude of light leaving the water. This 

requires effective removal of the atmospheric signal that is sensed by ocean colour sensors at the top of 

the atmosphere, the so called ‘atmospheric correction’. Ocean colour remote sensing began in 1978 with 

the launch of NASA's polar-orbiting Coastal Zone Color Scanner (CZCS, Hovis et al. 1980) satellite 

sensor. This proof-of-concept mission provided unprecedented imagery of phytoplankton biomass 

(chlorophyll a, Chl a) for the global open ocean until 1986, which revolutionized the field of biological 

oceanography. After a gap of 10 years, new polar-orbiting ocean colour sensors with improved 

radiometric, spectral, and spatial resolution were launched, including the Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS, Hooker et al. 1993) in 1997, and the Moderate Resolution Imaging Spectroradiometer 

(MODIS, Salomonson et al. 1987) and Medium Resolution Imaging Spectrometer (MERIS, Rast et al. 

1999) in 2002. These sensors have now become well-established sources of Chl a and [SPM] in open 

ocean and in coastal waters (McClain 2009), where new atmospheric corrections were developed (Moore 

et al. 1999; Ruddick et al. 2000; Stumpf et al. 2003a). Imagery of [SPM] from ocean colour satellites have 

been assimilated in modelling studies of sediment transport (Van Raaphorst et al. 1998; Fettweis and Van 

den Eynde 2003; Vos et al. 2000), coastal erosion, and ecosystems (Lacroix et al. 2007). There has also 

been considerable progress towards many new products including particulate and dissolved organic and 

inorganic carbon (Stramski et al. 1999; Vantrepotte et al. 2011), particle size distribution (Loisel et al. 

2006; Kostadinov et al. 2009), phytoplankton species composition (Alvain et al. 2008), vertical light 

attenuation (Stumpf et al. 1999), turbidity (Stumpf et al. 1999; Woodruff et al. 1999; Nechad et al. 2009) 

etc.  

However, the typical sampling frequency of these satellites of one image per cloud-free day at a 

given location is a serious limitation in coastal waters where seawater constituents change rapidly during 

the day due to tides and winds. This frequency is further reduced for regions of frequent cloud cover. 

Satellites in geostationary orbit can sample at frequencies of minutes to hours. The Geostationary Ocean 

Colour Imager (GOCI, Faure et al. 2008), launched by the Korean Space Agency in June 2010, is the first 

ocean colour sensor in geostationary orbit, providing hourly images of waters surrounding the Korean 

peninsula at a spatial resolution of 500 m. European and American space agencies also have plans to 
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launch geostationary ocean colour sensors covering the rest of the world’s seas. While we eagerly await 

the coming of these sensors, the potential of the readily available geostationary meteorological sensors for 

marine applications can be tested. The European geostationary meteorological SEVIRI sensor, for 

example, has a few broad spectral bands in the visible (VIS) and near-infrared (NIR), which may be all 

that is needed to detect [SPM] in turbid waters, as shown by Stumpf and Pennock 1989 for the Advanced 

Very High Resolution Radiometer (AVHRR). The second major objective of this work is to investigate 

whether the high spatio-temporal dynamics of [SPM] in the southern North Sea can be resolved by 

SEVIRI. 

This dissertation is organized as follows: Chapter 1 describes the constituents of seawater and 

their interaction with light, defines optical properties, and describes in situ optical instrumentation to 

familiarize the beginner with terms used throughout this work. In the second chapter, we focus on the 

measurement procedure for the dry weight concentration of suspended particulate material, [SPM], which 

is determined via filtration of seawater on glass-fiber filters. More specifically, we investigate procedural 

uncertainties related to salt retention, filter preparation, weighing, and handling in the laboratory, and 

filtration volume. We also investigate how turbidity measurements, which are simple and fast, can be 

used to optimize [SPM] measurement. In Chapter 3 we investigate the natural variability in the 

relationship between [SPM] and light scattering based on an extensive dataset of in situ measurements of 

optical properties, [SPM], particle density, and composition. This relationship is poorly characterized at 

present and directly affects the retrieval accuracy of [SPM] from optical measurements. In Chapter 4 we 

develop and validate the atmospheric correction for SEVIRI, to derive marine reflectance in SEVIRI’s red 

waveband, using the NIR band to correct for aerosol scattering. We further quantify uncertainties on the 

derived marine reflectance due to atmospheric correction and sensor digitization. The temporal dynamics 

of [SPM] and covarying parameters resolved by SEVIRI are then validated with in situ data in Chapter 5.  

The overall conclusions of this work are summarized in Chapter 6.  

This work resulted in three peer-reviewed publications, which are available in open access (use 

the web address to download the publications): 

 Neukermans, G., K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps. 2009. 

Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the 

Southern North Sea. Opt. Express 17: 14029-14052. Open access: 

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-17-16-14029&seq=0  

 Neukermans, G., H. Loisel, X. Meriaux, R. Astoreca, and D. McKee. 2012. In situ variability of 

mass-specific beam attenuation and backscattering of marine particles with respect to particle size, 

density, and composition. Limnol. Oceanogr. 57: 124–144, doi:110.4319/lo.2011.4357.4311.0124. 
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attenuation in the southern North Sea from the SEVIRI geostationary sensor. Remote Sens. Environ. 

(web address not available at the time of printing of this book) 
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Chapter 1 OPTICAL PROPERTIES AND SEAWATER 

CONSTITUENTS: DEFINITIONS AND MEASUREMENT 

This introductory chapter describes the constituents of seawater and their interaction with light. We 

further define optical properties and describe how they are measured in situ. This chapter is mainly based 

on textbooks in marine optics, including Mobley 1994; Kirk 1996; Jonasz and Fournier 2007; Babin et al. 

2008 and review papers such as Stramski et al. 2004.  

1.1 Seawater constituents 

Natural seawater is composed of water with inorganic salts and gasses dissolved in it, as well as 

particulate and dissolved materials of inorganic or organic origin, living or non-living. These 

constituents cover a broad size range, spanning several orders of magnitude from water molecules of 

size ~0.1nm to large particles and gas bubbles of several mm in size (see Figure 1.1). In optical 

oceanography, the constituents of natural seawater are traditionally divided into broad categories 

including pure seawater, dissolved matter (DM), and suspended particulate matter (SPM). The 

separation between SPM and DM is determined operationally based on filtration of seawater through a 

certain type of filter with a certain pore size. SPM is commonly defined as all matter retained on a GF/F 

glass fiber filter which effectively retain particles larger than about 0.4 m to 0.7m, although it is noted 

that retention size may depend on filtration volume (Sheldon 1972; Sheldon and Sutcliffe 1969). We 

further note that this size cut-off is quite arbitrary and is to be appropriately chosen depending on the 

optical application. 

Living biological particles include viruses, bacteria, phytoplankton, and zooplankton, whereas 

non-living particulate matter includes organic detritus (bodies or fragments of dead organisms as well as 

fecal material) and inorganic particles (minerals such as clay, feldspars, sand, quartz, and calcite). 

Inorganic particles in marine waters may originate from atmospheric dust, transported to the sea by 

winds, eroded soil transported by rivers, or bottom sediments suspended in the water column by currents 

and tides. Mixed organic–inorganic types also occur and may exists as single cells such as 

coccolithophores (phytoplankton with calcium carbonate plates), but also as amorphous agglomerations 

of many organic and inorganic particles held together by a sugar-based mucus. These aggregates are also 

called flocs or ‘marine snow’. Suspended particles thus exhibit an enormous diversity in terms of particle 

size, shape (see Figure 1.2), internal structure, and composition (i.e., refractive index), which all influence 

their optical properties.  
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Figure 1.1. Size spectrum of seawater constituents between 0.1 nm and 1cm. Arrow ends indicate approximate 

boundaries for different constituent categories (source: Stramski et al. 2004). 
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Figure 1.2. Scanning Electron Microscopy images of particles retained on a GF/F glass fiber filter for a sample 

collected in the southern North Sea in September 2011, showing the enormous diversity in particle shapes and 

sizes. (A) Large diatom chains (microphytoplankton), large diatoms, and mineral particles. (B, C, D) Smaller 

particles: nanophytoplankton, and small minerogenic particles. (C) diatoms attached to a mineral particle. (D) 

coccolithophores. 

1.2 Optical properties 

Seawater constituents interact with light through the wavelength dependent processes of scattering and 

absorption, giving the water its colour upon interaction with visible sunlight. Quantitative information on 

seawater constituents can be obtained from optical techniques, which may be operated in situ (optical 

instruments deployed on ships, moored platforms, or autonomous underwater vehicles) or remotely 

(sensors operated from aircrafts or satellites). Both techniques have different spatial, spectral, temporal, 

and technical capabilities and limitations, some of which are discussed here.  

A distinction is traditionally made (Preisendorfer 1961) between inherent optical properties 

(IOPs), which depend only on the properties of the medium and its constituents, and apparent optical 

properties (AOPs), which depend both on the IOPs and on the way the medium is illuminated. In this 
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section we define the fundamental IOPs and AOPs, give their inter-relationships, discuss measurement 

techniques and give an overview of how IOPs and AOPs relate to seawater constituents.  

1.2.1 Inherent optical properties (IOPs) 

1.2.1.1 DEFINITION OF IOPS 

When light propagates through ocean water, it interacts with molecules and particles of the medium 

mainly through elastic scattering and absorption of photons. While the former involves the redirection of 

energy with respect to its initial direction of propagation without a change in photon energy, the latter 

involves the conversion of photon energy into other forms such as heat or biomass. Other secondary 

interactions include inelastic processes such as fluorescence by dissolved organic matter and 

phytoplankton pigments, and Raman scattering by the water molecules.  

 Consider a infinitely narrow collimated beam of monochromatic radiation (wavelength ) of 

spectral radiant power or flux 0() (W nm
-1

) incident on a layer of water of thickness dx as 

schematically illustrated in Figure 1.3(A). A part a() of the incident power 0() is absorbed within the 

layer of water, another part b() is scattered out from it in all directions. The remaining power t() is 

transmitted through the layer with no change in direction. In the case of elastic scattering, energy is 

conserved so that: 

 )()()()(0  tba   (1.1) 

The spectral absorption and scattering coefficients, a() and b(), respectively, relate the absorbed and 

scattered power to the incident power when travelling through an infinitely thin layer of water of 

thickness dx (units: m
-1

): 

 dxad a )()()( 0    (1.2) 

 dxbd b )()()( 0  
 

(1.3) 

The sum of these coefficients gives the beam attenuation coefficient c() (units: m
-1

): 

 )()()(  bac   (1.4) 

Let )()()(  bac ddd   represent the loss of power by absorption and scattering when the 

beam passes through the thin layer, then:  

 dxcd c )()()( 0    (1.5) 
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Figure 1.3.  Schematical geometrical configurations used to define absorption, scattering, and attenuation 

coefficients. (A) Fluxes of light when passing through a volume of seawater (after Morel 2008), (B) The elementary 

volume of thickness dx, seen as a point source from which originates the scattered radiation in all directions (after  

Morel 2008 and Mobley 1994) 

 

Consider the power b() scattered out of the beam into a solid angle  in direction () 

represented by its nadir and azimuthal scattering angles  and with respect to the direction of the 

incident beam (see Figure 1.3(B)). The intensity of light scattered by an infinitesimal volume in an 

infinitesimal solid angle dcontaining (), dI() (units: W sr
-1

 nm
-1

), is db()/d.  Analogous 

to the definitions of a() and b(), the scattered intensity is proportional to the incident power and the 

elementary thickness via the angular volume scattering function (VSF), (,,) (units: m
-1

 sr
-1

): 

 dxdI )(),,(),,( 0  
 

(1.6) 

or 

  ddxd b  )(),,(),,( 0
2   (1.7) 

The total power lost from the beam by elastic scattering is gained over all other directions and is thus 

obtained by integrating Eq. (1.7) over all solid angles:  

  



4

0

0  ),,()()( ddxd b  (1.8) 

Combining with Eq. (1.3) gives the relationship between b() and (,,):  
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   
 


2

0 0

4

0

  sin),,( ),,()( dddb  (1.9) 

In natural waters, particles are assumed to be randomly oriented, so that: 

 



0

 sin),(2)( db  (1.10) 

Eq. (1.9) and (1.10) show that b() is an IOP obtained by integration of (,,) over all scattering 

directions  and Integration over the back directions, gives the backscattering coefficient:  

 





2/

 sin),(2)( dbb  (1.11) 

This coefficient is of particular importance to remote sensing, as remote sensing reflectance is 

approximately proportional to bb/(a+bb) (Gordon et al. 1988, see Eq. (1.27)). The ratio 

)(/)()(
~

 bbb bb   is referred to as the backscattering ratio or backscattering fraction. The quantity 

)(/),(),(
~

 b is the scattering phase function (units: sr
-1

), which provides a convenient 

measure of the angular distribution of scattered intensity regardless of the overall magnitude of scattering. 

Note that integration of ),(
~

 over back directions yields )(
~

bb .  

1.2.1.2 PARTITIONING OF IOPS 

IOPs are additive, meaning that for a seawater sample containing a mixture of constituents, the absorption 

and scattering coefficients of the various constituents are independent, and the total coefficient is obtained 

from summation of all constituents. Bulk IOPs are the sum of the IOPs for pure seawater itself and all its 

individual constituents. In practice, components are grouped based on operational or functional criteria. 

As described previously, two general categories of seawater constituents have been considered, DOM and 

SPM, giving the following partitioning of a and bb: 

 )()()()(  pDOMw aaaa   (1.12) 

 )()()(  bpbwb bbb   (1.13) 

where the w, DOM, and p subscripts denote the contributions from pure seawater, DOM, and SPM, 

respectively. Eq. (1.13) can be written analogously for b. The absorption by particulate material is 

commonly separated further into phytoplankton (ph subscript) and non-algal particles (NAP subscript) 

because these are spectrally very different. An illustration of spectral variability of absorption and 

backscattering for each component is shown in Figure 1.4 and the resulting above-water remote sensing 

reflectance (after Eq.(1.21)) is also shown. Input concentrations typical for southern North Sea coastal 
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waters were taken: [NAP]=10 g m
-3

 , aDOM(443nm)=0.01 m
-1

 , and Chl a=1 mg m
-3

 . The IOPs of pure 

seawater are considered known at visible wavelengths (Morel 1974; Pope and Fry 1997, see Figure 1.4), 

where the backscattering coefficient is half of the total scattering coefficient.  

 

 

Figure 1.4. (top) Spectral absorption and backscattering coefficients of pure seawater, phytoplankton, non-algal 

particles, and DOM (denoted by ‘w’, ‘ph’, ‘NAP’ and ‘CDOM’, respectively). Pure water absorption and scattering 

after Morel 1974; Pope and Fry 1997, respectively. (bottom) the resulting remote sensing reflectance computed 

from Eq. (1.21).  

1.2.1.3 CONCENTRATION-SPECIFIC IOPS 

To first order, IOPs vary with the concentration of seawater constituents. In the case of particles, the most 

widely used parameter for concentration is the dry weight concentration, [SPM], expressed in mg L
-1

 or g 

m
-3

. Concentration-specific IOPs, i.e. IOPs normalized by the constituent concentration, typically are less 

variable than absolute IOPs, responding to changes in the characteristics of the material in a given 

category. IOPs may be decomposed into concentration-specific IOPs as follows: 



12 Chapter 1 SEAWATER CONSTITUENTS AND OPTICAL PROPERTIES 

 

 

 )()()()( *  m
ppDOMDOMw aCaCaa   (1.14) 

 )()()(  m
bppbwb bCbb   (1.15) 

where C denotes the concentration of the constituents, and the m superscript denotes the mass-specific 

particulate IOPs. Note that Eq. (1.15) assumes that dissolved substances do not contribute significantly to 

the bulk scattering and backscattering coefficients.  Pure seawater absorbs and scatters light, but is not an 

important source of IOP variability in natural waters, although there is some small variability at certain 

wavelengths associated with temperature and salinity variations (Pegau et al. 1997; Zhang et al. 2009). 

1.2.2 Apparent optical properties (AOPs) 

AOPs, such as the variously defined reflectances, depend strongly enough on the IOPs that they can be 

characteristic of a water body and its constituents, but light field geometry must also be taken into account 

to completely explain their variability. AOPs are determined from measurements of radiometric quantities 

such as downwelling or upwelling plane irradiance, and upwelling radiance.  

When describing the radiant field inside a scattering and absorbing medium, radiance is the 

fundamental radiometric quantity. The geometry of the light field is shown in Figure 1.5A. Spectral 

radiance is defined as the power or flux in a specified direction (,) per unit solid angle, , per unit area, 

A, and per wavelength interval, d, or intensity per unit area, per unit wavelength interval (units: W m
-2

 

sr
-1 

nm
-1

): 

 









dAd

dI

ddAd

d
L

)()(
),,(

2





  (1.16) 

The downwelling spectral irradiance on a horizontal plane at depth z, ),( zEd  , is the integral of all 

spectral radiances ),,( L  at depth z headed downward from the upper hemisphere weighted by the 

cosine of the incidence angle (see Figure 1.5B) (units: W m
-2

 nm
-1

): 

 
 

ddzLzEd   sincos),,,(),(
2

0

2/

0

   (1.17) 

Similarly, an upward spectral irradiance can be defined, ),( zEu  , involving an integration over the lower 

hemisphere:  

 
 



ddzLzEu   sincos),,,(),(
2

0 2/

   (1.18) 

The total spectral scalar irradiance, ),(0 zE  defined as (units: W m
-2

 nm
-1

): 
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 
 

ddzLzE   sin),,,(),(
2

0 0

0    (1.19) 

expresses the total radiant power incident from all directions on a infinitesimal sphere (it is also called 

‘flux density’). It is important to note the different angular weightings applied to the planar 

(downward/upward) irradiances, ),( zEd   and ),( zEu  , and the spherical (scalar) irradiance, ),(0 zE 
. 

These definitions imply the use of different measurement geometries for instruments, respectively flat 

“cosine” collectors for Ed(,z) and Eu(,z), and spherical collectors for E0(,z).
 

 

 

Figure 1.5.  Geometrical configuration used for defining radiance (A), plane irradiance (B), and the coefficient for 

downwelling irradiance, Kd (B) (source: Morel 2008).  

1.2.2.1 REFLECTANCES 

The irradiance reflectance is a dimensionless quantity defined as the ratio of the upward to the downward 

spectral irradiance at depth z: 

 
),(

),(
),(

zE

zE
zR

d

u




   (1.20) 

Ocean colour is defined by spectral variations in irradiance reflectance just below the sea surface, z=’0-‘. 

)0,( R describes the capacity of seawater to return radiation towards the atmosphere. In the context of 

remote sensing, it is common to deal with remote sensing reflectance, rsR (units: sr
-1

), which is closely 

related to )(R , but makes use of upwelling radiance rather than irradiance, and is defined just above the 

air-sea interface (z=’0+’) as: 



14 Chapter 1 SEAWATER CONSTITUENTS AND OPTICAL PROPERTIES 
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)0,,,(
)0,,,(











d

w
rs

E

L
R  (1.21) 

where )0,,,( wL  is a radiance scattered from the ocean interior and leaving the ocean in a direction 

(,) and )0,( dE  is the downward irradiance just above the surface. In other words, rsR  decomposes 

R into its component radiances as a function of the viewing angles and . rsR is a measure of how much 

of the downwelling light that is incident onto the water surface is eventually returned through the surface 

in direction (,), so that it can be detected by a radiometer pointed in the opposite direction. Superscripts 

0+ or 0- are commonly used to indicate above-water or subsurface, respectively.  

The marine reflectance or water-leaving reflectance, )()(0  rsw R
, is also frequently used. 

In turbid water remote-sensing applications, the angular dependence of rsR
 
is often ignored.  

1.2.2.2 DIFFUSE ATTENUATION COEFFICIENTS 

The vertical attenuation of irradiance in the water column is typically approximately exponential:  

 












 

z

ddd zdzKEzE
0

),(exp)0,(),(   (1.22) 

The spectral diffuse attenuation coefficient for downwelling irradiance at depth z, ),( zKd  , defines the 

rate of decrease of downwelling irradiance at a given depth z. See Figure 1.5B for light field geometry. 

Solving Eq. (1.22) for ),( zKd   gives: 

 ),(ln
),(

),(
),( zEd

zE

zdE
dzzK d

d

d
d 




   (1.23) 

This coefficient is used in models of light penetration, for example to compute primary production as a 

function of light availability at depth (Behrenfeld and Falkowski 1997) and is also often used as an index 

of water clarity (Stumpf et al. 1999; Woodruff et al. 1999).   

The most commonly used parameter in ecological studies is the diffuse attenuation coefficient of 

photosynthetically available radiation (PAR) at depth z, )(PAR zK . PAR is a broad band (350-700 nm), 

spectrally integrated flux of quanta per unit time at depth z (units: photons s
-1

 m
-2

): 

  


dzE
hc

z
nm

nm

),()(PAR 0

700

350

  (1.24) 
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where h is Plank’s constant , c is the speed of light in vacuum, and E0 is the spectral scalar irradiance 

defined in (1.19). Defining )(PAR zK as the vertically averaged )(PAR zK between the surface and depth 

z:  

 
z

z
zdzK

z
zK

z

PAR

)0(PARln)(PARln
)(

1
)(

0

PAR


   (1.25) 

Eq. (1.22) can be rewritten: 

  zzKz )(exp)0(PAR)(PAR PAR  (1.26) 

In vertically well-mixed waters )(PAR zK is commonly assumed to be only weakly depth dependent 

(Rochford et al. 2001; Rasmus et al. 2004; Carter et al. 2005) and the )(PAR zK  
is usually calculated 

within the euphotic zone, where )(PAR z falls down to 1% of its subsurface value. Several studies have, 

however, demonstrated significant depth dependence of )(PAR zK (Morel 1988; Lee et al. 2005; Lee 

2009) even in well-mixed water columns because of vertical variation in the angular and/or spectral 

distribution of radiance. 

1.2.3 Link between IOPs and AOPs 

The radiative transfer equation describes the propagation of light (radiance) through seawater 

characterized by its IOPs. This equation has no analytical solutions, but approximate numerical solutions 

can be computed, for example with the commercial Hydrolight software package (Mobley 1994). 

Simplified analytical models link IOPs to AOPs, such as the simplified reflectance model based 

on a first order version of the model of Gordon et al. 1988: 

 
)()(

)(
)(






b

b
rs

ba

b

Q

f
r




  (1.27) 

where rsr is the subsurface remote sensing reflectance: 
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)0,,,(
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









d

w
rs

E

L
r  (1.28) 

'f is a varying dimensionless factor (Morel and Gentili 1991) and Q  is the ratio of subsurface upwelling 

irradiance to the subsurface upwelling radiance in the viewing direction. The subsurface reflectance can 

be related to the marine reflectance and to the remote sensing reflectance by: 

 )()()(0  rsrsw Rr 
 (1.29) 
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where  represents reflection and refraction effects at the sea surface  (Morel and Gentili 1996). A 

typical value of 
'
/ 0.13f Q  for sediment-dominated waters (Loisel and Morel 2001) and =0.529 

(Morel and Gentili 1996).  

An approximation of subsurface Kd to IOPs based on empirical work and Monte Carlo 

simulations (Gordon 1989) gives: 

 
d

b
d

ba
K






)()(
04.1)0,(




 

(1.30) 

where d is the average cosine of the downwelling light just beneath the surface. Morel and Loisel 1998 

empirically modeled Kd of the euphotic zone as function of a and b: 

 

2/1
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d

d

 

(1.31) 

Where G(d) is a model parameter which varies with d and the VSF of the water medium.  

1.3 Measuring optical properties 

1.3.1 IOPs 

1.3.1.1 BEAM ATTENUATION 

Beam attenuation, c(), can be obtained by measuring the loss of power of an unpolarized collimated 

monochromatic light beam with incident power 0() over a finite distance l within a homogeneous 

medium. The remaining (transmitted) flux at distance l, l(), relates to c() via integration of Eq. (1.5) 

between 0 and l: 

  lcl )(exp)()( 0    (1.32) 

and thus: 

 















)(

)(
ln

1
)(

0 


 l

l
c  (1.33) 

This is the principle by which c meters, also called beam attenuation meters or transmissometers, 

function. Transmissometers have been routinely used since the 1970’s, although with different 

characterisations, such as wavelength of the source beam, beam width, instrument path length, l, detector 

design etc. The path length should be such that multiple scattering in the measuring volume is negligible, 

but large enough so that attenuation is detectable (e.g., a 5 cm path length in turbid coastal waters and a 

25 cm path length in clear oceanic waters).  
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The measurement of the transmitted flux l() requires the use of collimating optics to exclude 

light scattered in the near-forward direction, which is significant since the VSF of particles is strongly 

forward peaked. Ideally, the transmissometer should have an acceptance angle for scattered light of 0°, 

but this cannot be achieved in practice while allowing transmitted light to be detected. Consequently, all 

transmissometers accept some near-forward scattered light with measured attenuation cm(), related to the 

true c(): 

 
a

dccm




0

 sin ),(2)()(  (1.34) 

where the error term is dependent on the acceptance angle of the instrumenta  and on the VSF (Boss et 

al. 2009b). Most transmissometers have in-watera  between 0.01° and 1.2°. Since the VSF is strongly 

forward peaked for larger particles, the error term increases with increasing particle size for a givena  , 

as shown by  Figure 1.7 from Boss et al. 2009b.  

 

 

Figure 1.6.  Typical transmissometer design (source: Pegau et al. 2003). 

 

Transmissometers are usually operated near =660nm where absorption by dissolved substances 

aDOM is negligible so that after Eqs. (1.12) and (1.13): 

 )660()660()660( pw ccc   (1.35) 

Transmissometers are blanked with ultrapure Milli-Q water so that the particulate beam attenuation 

coefficient, cp, can be directly measured.  
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Figure 1.7.  Source: Boss et al. 2009b (instruments compared in his paper are the WET Labs C-Star, WET Labs ac-

9, LISST 100-B, and LISST-100X-FLOC) 

1.3.1.2 COMBINED MEASUREMENTS OF ABSORPTION AND ATTENUATION 

The development of multi-wavelength and hyperspectral combination a and c meters in the mid 1990s 

(Moore et al. 1992; Pegau et al. 1995) led to significant advancements in the measurement of IOPs. The 

most widely used instruments are the WET Labs ac-9 (9 wavelengths) and ac-s (hyperspectral), where 

a() is determined based on the reflective tube principle (Zaneveld et al. 1990; Kirk 1992). Instrument 

design is similar to transmissometer design, except that the configuration is optimized to collect as much 

scattered light as possible, allowing measurement of 0()-a(). The optical path is surrounded by a 

quartz reflective tube, reflecting forward scattered light back into the sampling path. For natural particle 

suspensions the majority of light is scattered forward, but a small amount of light will be lost by 

backscattering or imperfect reflection at the walls, and needs to be accounted for (Sullivan et al. 2006) in 

order not to overestimate a(). Additional corrections for the dependency of a() on temperature and 
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salinity are needed (Pegau et al. 1997). Measurement uncertainties of optical properties using the ac-9 

instrument have been reported by Leymarie et al. 2010.  

 The simultaneous c() and a()  measurements are blanked to ultrapure Milli-Q water so that the 

combined attenuation and absorption due to dissolved and particulate matter are measured directly. The 

particulate scattering coefficient, bp(), can be derived from these by difference.  

1.3.1.3 VOLUME SCATTERING FUNCTION AND BACKSCATTERING COEFFICIENTS 

Measurement of the VSF over the full angular range (between 0° and 180°) involves making a large 

number of measurements at discrete angles, each covering a large dynamic range especially in the near-

forward angles. Instruments satisfying these complex requirements have been developed (Petzold 1972; 

Lee and Lewis 2003; Sullivan and Twardowski 2009; Twardowski et al. 2012), but none are 

commercially available at present. Since the late 1990s, bb() has been routinely determined from one or a 

couple of measurements of the VSF in the backward direction. Measurement of () at a single angle 

m>90° has been found to be significantly correlated to bb() (Oishi 1990; Boss and Pegau 2001Oishi 

1990; Maffione and Dana 1997) via a proportionality factor : 

 ),(2)(  mbb   (1.36) 

Errors are minimized to a few percent at m between 117° en 120° (Oishi 1990; Boss and Pegau 2001) 

where is independent of the contribution of w() to () (Boss and Pegau 2001). Removal of the 

variable contribution of w() to () prior to conversion leads to more accurate results, especially in 

clear waters (Boss and Pegau 2001), hence: 

   )(),(),(2)(  bwmwmpb bb   (1.37) 

where p is the proportionality factor between p(m) and bbp() defined analogously to in Eq. (1.36). 

Values of w(m) and bbw() for pure seawater from Zhang et al. (2009) are thought to be accurate 

within 2%. Empirically determined p factors as a function of m are reported by Sullivan and 

Twardowski 2009 and have lowest uncertainty of maximally 2% in the range 110°-120°. The WET Labs 

BB-9 and the HOBI Labs Hydroscat instruments are widely used multi-wavelength backscattering 

instruments based on a single angle measurement of (). In practice, the measured (m) is the result 

of a weighted portion of () in the vicinity of m, described by an instrument geometry dependent 

angular weighting function W():  

 


dWm )(),(),(
0

  (1.38) 
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The configuration of the WET Labs ECO BB-9 instrument, used in this study, and its angular weighting 

function is shown in Figure 1.8. 

 

 

Figure 1.8.  Schematic of a volume scattering measurement for the WET Labs ECO BB-9 instrument and its angular 

weighting function (centroid anglem=124°). 

1.3.1.4  TURBIDITY  

Turbidity, defined by ISO 7027 (1999) as ‘the reduction of transparency of a liquid caused by the 

presence of undissolved matter’, can be determined either semi-quantitatively (e.g., Secchi disk, turbidity 

tube) or quantitatively using optical instrumentation (light attenuation and side scatter). Measurements of 

turbidity with Secchi disks or turbidity tubes have been registered for over a century and constitute a 

valuable historic archive. They are simple, but somewhat subjective and not very precise. Further 

analytical test methods for turbidity are given by EPA 1993 and APHA 1998.  

Many instruments for quantitative measurement of turbidity (turbidimeters) compliant with the 

ISO 7027 requirements are commercially available in a variety of designs: portable (Orbeco-Hellige 

TB200, HF Scientific Micro 100, LaMotte 2020wi, Thermo Scientific Orion AQ4500), laboratory (Hanna 

HI 88713, HI 83414, HI 88703, Hach 2100AN), or submersible (Hydrolab 4-Beam turbidity sensor, 

Forest Technology Systems DTS-12, Greenspan sensors, ...). A complete overview of turbidity sensors 

and specifications is given by Andrews (USGS National Field Manual for the Collection of Water-

Quality Data, Techniques of Water-Resources Investigations, Book 9) and can be found at 

http://water.usgs.gov/owq/turbidity_codes.xls.    

  Turbidity sensors have the advantage of being relatively inexpensive, compared to the 

instruments measuring IOPs in SI units. Measurements of turbidity may be expressed in Formazine 

Nephelometric Units (FNU), Nephelometric Turbidity Units (NTU), Formazin Turbidity Units (FTU), or 
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Nephelometric Turbidity Ratio Units (NTRU) etc., depending on the measurement method and the 

spectral characteristics of the incident light.  

Even if two turbidity instruments of different design are calibrated with the same suspension of 

formazine, they will not give the same output in natural seawater because of their different configurations. 

Because turbidity measurements should always be interpreted with reference to the measurement 

(instrumentation) method and because some methods, particularly the EPA method based on a lamp with 

peak spectral response “between 400nm and 600nm”, are imprecisely defined, the optics community has 

not been so enthusiastic about them. However, many scientists involved in water quality monitoring, 

particularly of inland waters, but also, more recently of marine waters (Nechad et al. 2009), consider 

turbidity as a key parameter, one that is explicitly required by the EU Marine Strategy Framework 

Directive.  

The Hach 2100P portable turbidity instrument used in this work is an ISO compliant turbidity 

instrument. It measures the ratio of LED light scattered at an angle of 90° ±2.5° at a wavelength of 860 

nm ±60 nm to forward transmitted light, as compared to the same ratio for a standard suspension of 

Formazine, which is supplied in sealed vials with long-term stability as a calibration reference. Turbidity 

recorded in this way (by nephelometry) is expressed in Formazine Nephelometric Units (FNU). 

1.3.2 AOPs 

AOPs are recorded by optical radiometers which collect a spectral radiant flux, either a radiance, L, or an 

irradiance, E. Methods for marine optical radiometry can be roughly separated in above-water and in-

water systems. In-water systems can provide a characterization of the radiometric properties of the water 

column through radiance and irradiance measurements from a variety of configurations and deployment 

gears, such as profilers or buoys. Vertical irradiance profiles allow the derivation of ),( zK
d
 after Eq. 

(1.23). Derivation of )(0 
wL , however, requires the extrapolation of in-water radiometric measurements 

from below the sea surface to above the sea surface, which is a significant source of uncertainty, 

particularly in high attenuation, turbid waters and for red and NIR wavelengths. In this work, above-water 

radiometry was used to determine above-water reflectance. 

1.3.2.1 ABOVE-WATER RADIOMETRY 

Above-water radiometry allows to determine )(0  
w  from simultaneous above-water measurements of 

downwelling irradiance, )(0 
dE , total upwelling radiance (i.e., from the water and from the air-sea 
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interface) at a zenith angle of 40°, )(0 
seaL , and sky radiance, )(0 

skyL , in the direction of the region of 

sky that reflects into the sea-viewing sensor as follows: 
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where sky is the air-water interface reflection coefficient for radiance equal to the Fresnel reflection 

coefficient in the case of a flat sea surface (Mueller et al. 2000). The sky  coefficient is expected to vary 

strongly with wind speed for clear sky conditions because of reflection of brighter parts of the sky in the 

case of higher waves (Mobley 1999), but is approximately independent of wind speed for cloudy 

conditions, giving (Ruddick et al. 2006):  
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(1.40) 

The accuracy of the )(0  
w  measurement depends heavily on the capability of correcting for air-sea 

interface reflections. 

 In this work, three TriOS-RAMSES hyperspectral radiometers were simultaneously deployed to 

record )(0 
dE , )(0 

seaL , and )(0 
skyL  over the wavelength range of 350–950 nm at 2.5 nm resolution. 

The radiometers were mounted on a steel frame as shown in Figure 1.9. Zenith angles of the sea- and sky-

viewing radiance sensors were 40°. The frame was fixed to the prow of the ship, facing forward to 

minimize ship shadow and reflection (Hooker and Morel 2003). The ship was maneuvered on station to 

point the radiance sensors at a relative azimuth angle of 135° away from the sun, as shown in Figure 1.9. 

The reader is referred to Ruddick et al. 2006, including the Web Appendices, for details on measurement 

protocol and data treatment. 

 



Chapter 1 SEAWATER CONSTITUENTS AND OPTICAL PROPERTIES 23 

 

 

 

Figure 1.9.  (left) Frame with three Trios-RAMSES hyperspectral radiometers, installed on the prow of a research 

vessel. (right) Details of measurement configuration. 
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Chapter 2 TURBIDITY MEASUREMENTS TO OPTIMIZE 

MEASUREMENTS OF SUSPENDED PARTICULATE MATTER 

CONCENTRATION 

This chapter is in preparation for submission to Limnology and Oceanography 

Methods 

 
 

Abstract  

The dry weight concentration of suspended particulate material, [SPM] (units: mg L
-1

), is measured by 

passing a known volume of seawater through a pre-weighed filter and re-weighing the filter after drying. 

This is apparently a simple procedure, but accuracy and precision of [SPM] measurements vary widely 

depending on the measurement protocol and the experience and skills of the person filtering. We show 

that measurements of  turbidity, T (units: FNU), which are low cost, simple, and fast, can be used to (i) 

optimally set the filtration volume, (ii) to detect problems with the mixing of the sample during 

subsampling for filtration, and (iii) to quality control [SPM] data. A relationship between T and ‘optimal 

filtration volume’, Vopt, the volume at which enough matter is retained by the filter for precise 

measurement, but not so much that the filter clogs, is set-up. This relationship is based on an assessment 

of procedural uncertainties in the [SPM] measurement, including salt retention, filter preparation, 

weighing, and handling in the laboratory and at sea and on a value for minimum relative precision 

between replicates. The role of filtration volume on the precision of [SPM] measurement is investigated 

by filtering volumes of seawater ranging between one fifth and twice the optimal volume. It is shown that 

[SPM] measurements are most precise (with increases by up to 20%) and cost effective when the optimal 

volume is filtered. The 90% prediction bounds of the T vs. [SPM] regression allow to quality control 

[SPM].  

2.1 Introduction 

Suspended particulate matter (SPM) is operationally defined via filtration of seawater as the material 

retained on a certain type of filter with certain pore size, while the matter that passes through a small pore 

size filter is defined as dissolved matter (DM). For DM, typically a polycarbonate membrane filter with a 

0.2 m nominal pore size is used, while for SPM GF/F glass fiber filters with a nominal pore size of 0.7 

m are commonly used (ISO 1997; van der Linde 1998; Tilstone et al. 2003), although 0.4 m pore size 
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polycarbonate filters may also be used (Strickland and Parsons 1968; Mueller et al. 2003). SPM may also 

be referred to as total suspended solids (TSS), total suspended matter (TSM), or total particulate matter 

(TPM) and includes both organic (autotrophic organisms, heterotrophic bacteria, and detritus) and mineral 

particles. The term ‘total’ may be misleading, however, since very small particles pass through the filter 

and their dry weight is not included. We therefore adopted the symbol SPM. The dry weight 

concentration of SPM, [SPM] in units of mg L
-1

 or g m
-3

, is determined gravimetrically by passing a 

known volume of seawater through a pre-weighed filter. The filter is then reweighed after drying and 

[SPM] is calculated from the ratio of the difference in filter weight by the volume of the filtrate. Protocols 

for [SPM] measurement vary widely in procedures for filter preparation and treatment, including 

washing, drying, and ashing, and washing of sea salt after filtration. Also, while the measurement of 

[SPM] is apparently a simple procedure, accuracy and precision of the measurements vary widely 

depending on the measurement protocol (materials used, filter preparation and treatment, laboratory 

conditions etc.) and the experience and skills of the person filtering.   

Because [SPM] is defined by operation, many measurement protocol specifications have been 

evaluated previously. The retention of salts by glass fiber filters leading to overestimation of [SPM] has 

gained considerable attention, and washing of filters and filter edges with deionized water (or milliQ 

water) after filtration have been proposed to remove sea salt (Strickland and Parsons 1968; van der Linde 

1998). Different wash volumes have been recommended, varying between 30 mL (Pearlman et al. 1995) 

and 250 mL (Sheldon 1972). Despite a milliQ wash of 300 mL, Stavn et al. 2009 found salt retention by 

GF/F filters to vary between 0.6 mg and 1.1 mg with increasing salinity from 15 to 34 PSU (Practical 

Salinity Units, see their Figure 1) and irrespective of filtration volume. The loss of organic cellular 

material through cell-wall rupture by osmotic gradient after rinsing with milliQ is considered to be less 

important (van der Linde 1998), especially when SPM is mainly inorganic, although some protocols state 

that the rinsing should be done with 10-20 mL of isotonic ammonium formate solution instead (ICES 

2004; PML and ICES 2004). The vacuum pressure under which filtration takes place was not found to 

affect the mass retention by the filters (Sheldon 1972), even though delicate particles might break when 

the pressure is too high. A pressure of 300-400 mm Hg is recommended (Stavn et al. 2009). The effective 

pore diameter of glass fiber or polycarbonate filters is known to decrease from the nominal value with 

increasing filtration volume until the filter is clogged (Sheldon 1972; Sheldon and Sutcliffe 1969). For 

example, GF/F glass fiber filters with a nominal pore size of 0.7 m can effectively retain particles as 

small as 0.4 m in diameter.  

The filtration volume should be such that the mass retained by the filter is sufficient to be 

precisely measured, but not so much that the filter clogs. Despite its importance, the estimation of 

filtration volume is somewhat arbitrary and depends on the experience of the person carrying out the 
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filtration. In this study we investigate how low cost, simple, and fast measurements of turbidity, which is 

a good proxy for [SPM] (Boss et al. 2009c; Neukermans et al. 2012), can be used to estimate filtration 

volume. We further investigate [SPM] measurement uncertainties associated with filter preparation and 

treatment, salt retention, and filtration volume.  

2.2 Materials and methods 

2.2.1 Measurement of [SPM] 

2.2.1.1 MEASUREMENT PROTOCOL 

[SPM] is determined gravimetrically following the protocol of Tilstone et al. 2003, based on van der 

Linde 1998, by filtration of a known volume of sea water onto 47 mm Whatman GFF glass fiber filters 

with a nominal pore size of 0.7 m. The filters were pre-ashed at 450 °C for 1 h (see step 1 in the 

flowchart in Figure 2.1), gently washed in 0.5 L of MilliQ water (2) to remove friable fractions that can 

be dislodged during filtration, dried at 75 °C for 1 h (3), pre-weighed on a Sartorius LE 2445 analytical 

balance with an accuracy of 0.1 mg (4), stored in a desiccator for use within two weeks (5), and 

transferred to clean 50 mm diameter petri plates for transport.  

 

 

Figure 2.1.   Procedural flow for the measurement of [SPM] of seawater. 
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Seawater samples were filtered immediately after collection on triplicate ashed and pre-weighed filters 

using a 250 mL Millipore apparatus with an applied vacuum of 300-400 mm Hg. Filter supports were 

washed before filtration with milliQ to remove any particles that had adhered to the glass. After 

placement on the fritted glass filter supports (6), filters were wetted with milliQ (7) and a known volume 

of seawater, V, was passed through the filter (8). The measuring cylinder was rinsed with 3 x 30 mL 

aliquots of milliQ water to flush any remaining particles (9). To remove salt, filters were washed with 250 

mL of milliQ water after filtration (10). The filter funnel was also rinsed with 3 x 30 mL aliquots of 

milliQ water (11). After removal of the funnel, the filter edge was carefully washed with milliQ to flush 

possible diffused salt (13, Strickland and Parsons 1968). The total milliQ wash volume per filter is 400-

450 mL, much larger than recommended by Sheldon 1972, 300 mL,  Trees 1978, 50 mL, and Pearlman et 

al. 1995, 30 mL. The samples were stored at -20°C until further analysis in MUMM’s Marine Chemistry 

Laboratory (14), usually within a few months after sampling. Filters were dried for 24 h at 75 °C (15) and 

re-weighed on the same balance (16) to obtain [SPM] (=(     ): V).  

2.2.1.2 FILTER BLANKS 

At the start and the end of each sampling campaign, a series of filter blanks or procedural control filters 

were included, to assess uncertainties associated with filter operations in the laboratory and during 

filtrations. For blank measurements, either synthetic seawater (SSW), prepared by dissolving 34 g of 

NaCl in 10 L of milliQ water, or milliQ water were used. An overview of various types of filter blanks 

and their operations is given in Table 2.1. The milliQ and SSW filter blanks were treated exactly as the 

sample filters (steps 1-16 in Figure 2.1) except that 250 mL of milliQ or 500 mL of SSW was passed 

through the filter instead of a volume V of sampled seawater (step 8). No liquid was passed through the 

dry filter blanks, which were subjected only to freezing (step 14) before further analysis in the lab. A one-

way analysis of variance (ANOVA) was carried out to test for differences between blanks (see section 

2.2.5 for details).  

 

Table 2.1. Overview of types of [SPM] procedural control filters and treatments. 

filter filter operations (numbers as in Figure 2.1) 
volume 

filtered 
n sampled 

dry blank 1-5, 14, 15-16 NA
*
 87 2008-2010 

milliQ blank 1-16, replacing samples with milliQ water in step 8 250 mL 96 2008-2010 

SSW blank 1-16, replacing samples with SSW water in step 8 500 mL 126 2007-2010 

sample 1-16 variable 366 2007-2010 

*
: not applicable 
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2.2.1.3 SALT RETENTION TESTS 

A laboratory experiment was carried out to test whether salts diffused onto the rim of the filter were 

properly flushed by the rim rinsing procedure (step 13 in Figure 2.1).  First, all steps of the procedure in 

Figure 2.1 were carried out filtering a volume of 250 mL SSW onto 10 replicate filters. Next, all steps 

except the rim rinsing (step 13) were carried out filtering a volume of 250 mL SSW onto another set of 10 

filters. Differences between groups were then tested statistically as described in section 2.2.5.  

 To test whether a wash volume of 400-450 mL was sufficient to flush salts irrespective of sample 

volume, different volumes of SSW ranging between 150 and 2000 mL were filtered according to the 

procedure in Figure 2.1. Differences in       between SSW volume groups were tested statistically as 

described in section 2.2.5. 

2.2.2 Turbidity measurements  

Turbidity, T, defined by ISO 1999 as ‘the reduction of transparency of a liquid caused by the presence of 

undissolved matter’, can be quantified in various ways (e.g., Secchi disk, light attenuation, side scatter). 

The Hach 2100P portable turbidity instrument measures the ratio of LED light scattered at an angle of 

90°±2.5° at a wavelength of 860 nm ±60 nm to forward transmitted light, as compared to the same ratio 

for a standard suspension of Formazine. This optical measurement technique of T from the side scattering 

coefficient is in accordance with ISO 1999. T is expressed in Formazine Nephelometric Units (FNU) and 

instruments are calibrated using a set of Formazin Turbidity Standards. At the start of each sea campaign, 

instrument stability is ensured by recording turbidity of Hach STABLCAL Formanzin standards of 0.1, 

20, 100, and 800 FNU and instrument recalibration is done if necessary. Side scattering signals are 

averaged over 10 measurements at 1.2 second intervals. Glass sample cells of 10 mL are used to record 

seawater T. The glass cell is rinsed with sampled seawater before filling. The exterior of the sample cell is 

rinsed with milliQ water, dried with paper tissue, swiped with a soft microfiber lint-free cloth treated with 

silicon oil, and swiped again with a dry cloth. Prior to turbidity measurement, the sample cell is visually 

inspected for dust particles or air bubbles. T was recorded in triplicate, gently tumbling the sample cell 

between each measurement.  

T is recorded before and after [SPM] filtrations to check adequate mixing of the water sample 

during subsampling for filtration. Each T measurement typically takes about four minutes to complete and 

portable turbidity meters can be purchased for less than 1000 US dollars. 
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2.2.3 Optimal filtration volume 

2.2.3.1 T AS PROXY FOR [SPM] 

T and [SPM] measurements were carried out in surface waters in coastal and offshore waters around 

Europe and French Guyana between 2007 and 2010. Sampling sites are described in Neukermans et al. 

2012. A ‘least squares cubic’ type II regression (York 1966) is applied to the log transformed T and 

[SPM] data. The least squares cubic regression, which takes into account measurement uncertainties, is 

applied after removal of outliers identified by the MATLAB robustfit.m routine. Correlation coefficients 

are given with their 95% confidence intervals, obtained from bootstrapping. Details of these statistical 

procedures are described in section 3.5.1.3 on page 82.  

Based on the [SPM]-T regression, an estimate of [SPM] can be derived from measurements of T 

prior to filtration. From this estimate of [SPM], the volume of seawater to be filtered so that an optimal 

mass is retained by the filter can then be estimated as described in section 2.2.3. 

2.2.3.2 DETERMINING OPTIMAL FILTRATION VOLUME 

The filtration volume, V, should be high enough so that the dry mass of the particles retained by the filter, 

     , is sufficient to be precisely measured, but not so much that the filter clogs. Its estimation 

requires a quantification of minimum measurement uncertainty on      , assessed from procedural 

control filters, and a maximum value for the relative uncertainty on [SPM]. The approach is described 

below.  

For measurements of weight, the detection limit (DL) of the balance gives the minimum 

measurement uncertainty. The minimum uncertainty on the difference between filter weights before and 

after filtration,      , is then given by (ISO 1995): 

 DL2
bal

w  (2.1) 

In this study, DL=0.1 mg so that       0.14 mg. Let     denote the combined uncertainties on the dry 

mass of retained particles resulting from filter preparation and handling (including weighing) in the 

laboratory and at sea, then          . This estimate of combined uncertainties,    , is protocol 

dependent and can be assessed from procedural control filters. It follows that the uncertainty on [SPM] 

from replicate measurements,       , is at best equal to            (in mg L
-1

). Further uncertainties 

on [SPM] include uncertainties due to sample mixing and uncertainties in measurement of sample 

volume. For the relative uncertainty on [SPM],             , we can write:  
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Let us be the maximum allowable relative uncertainty on [SPM] from replicate measurements. Then 
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The optimal filtration volume, Vopt, is the smallest volume that satisfies Eq. (2.3) with a certain level of 

confidence, where [SPM] is estimated from T prior to filtration: 
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2.2.4 Effect of filtration volume on precision of [SPM] measurements  

To investigate the effect of filtration volume on the precision of [SPM] measurements, six experiments 

were carried out in the southern North Sea in September 2009 and 2011 for clear (T < 5 FNU), 

moderately turbid (5 FNU<T<20 FNU), and turbid waters (T>20 FNU). For each water sample listed in 

Table 2.2, [SPM] measurements were performed with filtration volumes of 0.2, 0.5, 1, and 2 times Vopt 

and every filtration was done on five replicate filters. T was continuously monitored during the course of 

each filtration experiment, to ensure good mixing of the sampled seawater. Table 2.2 lists the sampling 

time and location, salinity, temperature, depth, [Chl a], and the mean and standard deviation of T for each 

sample. 

 

Table 2.2.  Overview of water samples collected in the southern North Sea for filtration experiments with salinity, 

temperature, chlorophyll a concentration, and turbidity, T , with standard deviation T. 

 

*: Not available yet 

2.2.5 Between group statistical analysis 

Between group differences are investigated by one-way analysis of variance (ANOVA), comparing the 

means of several groups to test the hypothesis that they are all the same, against the alternative that they 

are not all the same. To test which pairs of means are significantly different, paired-sample t-tests were 

sample date

time     

(h UTC) latitude longitude

salinity 

(PSU)

temp 

(°C)

depth 

(m)

chl a    

(mg m
-3

)

T 

(FNU)

T 

(FNU)

Cl 14-Sep-11 12:12 51° 29.259' N 2° 50.490' E 34.67 17.15 28.81 * 2.98 0.32

WGAB 17-Sep-09 19:48 51° 57.630' N 2° 05.510' E 34.89 17.63 ? 0.9 6.83 0.14

O924A 16-Sep-09 13:59 51° 26.012' N 3° 28.474'E 32.70 17.39 16.12 4.5 10.93 0.18

Mod 15-Sep-11 11:25 51° 20.781' N 2° 57.254' E 34.63 16.86 12.64 * 12.18 0.42

T 14-Sep-11 7:05 51° 22.663' N 3° 02.194' E 34.69 16.95 10.77 * 25.53 0.31

MH5 17-Sep-09 14:16 51° 50.954' N 1° 38.965' E 34.73 17.30 22.65 <0.06 53.30 1.59
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done at the 5% significance level. Analyses were carried out using the statistics toolbox of MATLAB, 

version R2011b.  

Graphical illustrations of the distribution of observations are done with boxplots. The edges of the 

box indicate the 25
th
 and 75

th
 percentiles, while the red line represents the sample median. The length of 

the box is called the interquartile range (IQR). Observations further than 1.5 IQR from the 25
th
 and 75

th
 

percentiles are marked as outliers and indicated by red crosses. This range corresponds to ±2.7 standard 

deviations and 99.3% data coverage if normally distributed. The whiskers extend to minimum and 

maximum observations that are not marked as outliers.  

2.3 Results and discussion 

2.3.1 Uncertainties in [SPM] measurement 

2.3.1.1 SALT RETENTION TESTS 

Results from lab experiments with SSW show significantly higher residual weight (p=0.003, F=11.76, 

d.f.=17, ANOVA) when the rim is not rinsed (see Figure 2.2), compared to when the filter rim is rinsed. 

This is in accordance with previous works that stressed the importance of rinsing of the filter rim to flush 

out diffused salts (Strickland and Parsons 1968; van der Linde 1998).  

The volume of SSW filtered was not found to affect SSW blank residual weights (p=0.72, 

F=0.57, ANOVA, see Figure 2.3), which were not significantly different from zero. This suggests that 

salts are washed out using a wash volume of 400-450 mL of milliQ, independent of the volume of SSW 

filtered. This is partially in accordance with Stavn et al. 2009 who found salt retention of 1.1 mg, 

independent of volume of seawater filtered for a salinity of 34 PSU and a wash volume of 300 mL (see 

their Table 1). 
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Figure 2.2.  Difference in filter weight before and after filtration of 250 mL of SSW of 34 PSU, with and without 

rinsing of the filter rim (step 13 in protocol in Figure 2.1). Grey dashed lines represent uncertainty on       due 

to the detection limit of the balance,       0.14 mg.  

 

 

Figure 2.3.  Difference in filter weight before and after filtration vs. filtered volume of SSW of 34 PSU. Number of 

observations for each volume are 2, 6, 15, 95, 5, and 3, respectively.  

2.3.1.2 FILTER BLANKS 

Figure 2.4 shows the differences in filter weight before and after filtration,         , for dry, 

milliQ, and SSW blanks. About 46% of the blank weight differences were found within the uncertainty 
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on    due to the detection limit of the balance,       0.14 mg (see Figure 2.4). The median absolute 

value of   s for all blanks is 0.2 mg, with 90% of the values below 0.6 mg.   s were not significantly 

different between blank types (p=0.21, F=1.55, d.f.=2, ANOVA), suggesting that salt is properly washed 

out.  

  s for dry blanks are significantly positive (t-test, p<0.001), while the mean   s for milliQ 

and SSW blanks are not significantly different from zero (t-test, p=0.8 and p=0.5, respectively) with 

  <0 in 50% of the cases. This suggests that friable fractions of glass fiber filters may have dislodged 

during filtration, while these should have been washed out before filtration (step 2 in Figure 2.1).This 

process may be mitigated by repeating the pre-ashing, washing, and drying of the filters in the preparation 

phase (steps 1-4 in Figure 2.1) several times until a constant weight is achieved.  Stavn et al. (2009) 

recommend 3-4 repeat cycles to better control loss of filter mass, but does not eliminate it (Feely et al. 

1991).  

No significant differences in   s of SSW blanks were found between campaigns in 2007-2010 

(p=0.11, F=1.41, d.f.=27, ANOVA), indicating stability of humidity and temperature conditions in the 

laboratory and of sample treatment.  

SSW blank     are thought to best reflect procedural uncertainties associated with filtration of 

saline waters. Therefore, estimates of     at the 50% and 90% confidence level are obtained from the 

50
th
 and 90

th
 percentiles of absolute     for SSW, equal to 0.2 mg and 0.9 mg, respectively. These are 

further used in the calculation of the optimal filtration volume from Eq. (2.4) in section 2.3.2.1.  

2.3.1.3 SAMPLE MIXING 

Figure 2.5(a) shows the comparison between T recorded before and after filtration. The mean bias (=(Ta-

Tb):Tb) is close to zero (-2%) and symmetrically distributed with 90% of the values between -28% and 

23%. Prediction error, PE=|Ta-Tb|:Tb, is generally between 1% and 39% with a median of 6%. In clear 

waters (Tb<5 FNU) both bias and prediction error, denoted with ‘c’ subscript, show higher variability, due 

to higher measurement uncertainties. Also shown in Figure 2.5(a) are observations recorded before June 

2008 when seawater samples were stirred up with a measuring cylinder and then subsampled using a 1L 

container (see Figure 2.6(a)). Comparison of Ta and Tb for this dataset is especially poor in clear water (Tb 

< 5 FNU) where the distribution of the bias is strongly positive (90% of the observations between -12% 

and 144% with a median of 9%). This suggests contamination of the water sample during the mixing 

procedure, possibly by contact with the glove worn by the person filtering. From June 2008 onwards, 

seawater samples were mixed by gently tumbling a closed 10 L container around several times before 

subsampling (see Figure 2.6(b)). This illustrates the use of T measurements to detect problems with 

sample mixing.  
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Figure 2.4.  Difference in filter weight before and after filtration, WD=     , for different blanks collected at 

the start and the end of each campaign between 2007 and 2010. Grey dashed lines represent uncertainties on WD 

due to the detection limit of the balance (      0.14 mg). 

2.3.2 Uncertainties in [SPM] measurement from filtration volume 

2.3.2.1 DETERMINING OPTIMAL FILTRATION VOLUME 

A total of 366 simultaneous measurements of T (=mean of T measurements before and after filtration) and 

[SPM] were done. Observations where only one [SPM] replicate remained were rejected (n=9).  Least 

squares cubic regression gives: 

   )01.0(01.0log)01.0(97.0SPMlog
1010

 T  (2.5) 

The regression statistics and its 90% prediction bounds are shown in Figure 2.5(b). The offset of the 

regression line is not significantly different from zero for the tumble mixing dataset, whereas a 

significantly positive offset (0.14±0.02) was found for the hand mixing dataset, suggesting sample 

contamination by hand mixing. The model for [SPM] in Eq. (2.5) performs well with a median prediction 

error (MPE) of 11% and with prediction errors below 40% in 95% of the cases. The 90% prediction 

bounds of the regression line, shown in Figure 2.5, can be used to quality control [SPM] by flagging data 

outside these boundaries as suspect.  
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Figure 2.5.  (a) Comparison of T before and after filtration, with statistics given using hand mixing and tumble 

mixing for all observations and in clear waters (Tb<5 FNU) and (b) relationship between T and [SPM] with type II 

regression and statistics using hand mixing and tumble mixing. The 90% prediction bounds of the regression are 

also shown. Errorbars in (a) and (b) represent the standard deviation from replicate measurements of T and [SPM].   

 

 

Figure 2.6.  Mixing methods for subsampling of seawater for filtration: (a) seawater is stirred up with a measuring 

cylinder and then subsampled using a 1L container, (b) seawater is mixed by gently tumbling a closed 10 L 

container mounted on a rotating frame attached to the wall in the wet lab of the ship.  
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For our purposes, a maximum uncertainty of us=15% on [SPM] is desired. The filtration volume 

is optimally set by measuring T before filtration and using the regression model in Eq. (2.5) to predict 

[SPM]. From Eq. (2.4) it follows that [SPM] is expected to be below 15% in 50% (90%) of the cases for 

a filtration volume V50 (V90) of: 

 
   SPM15.0

    and   
SPM15.0

90,

90

50,

50

pp
w

V
w

V





  (2.6) 

where        and        are the 50
th
 and 90

th
 percentiles of weight differences for SSW blanks, i.e. 0.2 

mg and 0.9 mg, respectively. Table 2.3 lists V50  and V90 for T between 0.5 FNU and 140 FNU. For 

practical use, volumes are rounded to give R(V50) and R(V90), respectively.   
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Table 2.3.  Lookup table for recommended filtration volume as function of turbidity so that relative uncertainty on 

[SPM] replicates is within 15%  in 50% of the cases (R(V50 )) and in 90% of the cases (R(V90)).  

 

 

T 

(FNU)

[SPM]50 

(mg/L)

V50 

(mL)

V90 

(mL)

V90,u 

(mL)

R(V50) 

(mL)

R(V90) 

(mL)

R(V90,u) 

(mL)

0.5 0.50 2673 12027 18032 3000 12000 18000

1 0.98 1364 6140 8990 1000 6000 9000

2 1.91 697 3134 4482 500 3000 4500

3 2.84 470 2115 2984 500 2000 3000

4 3.75 356 1600 2235 350 1500 2250

5 4.66 286 1289 1787 250 1250 1750

6 5.56 240 1080 1488 250 1000 1500

7 6.45 207 930 1275 200 1000 1200

8 7.35 182 817 1115 200 800 1200

9 8.23 162 729 991 150 750 1050

10 9.12 146 658 891 150 600 900

11 10.00 133 600 810 150 600 750

13 11.76 113 510 685 100 500 700

14 12.64 105 475 636 100 500 600

15 13.51 99 444 593 100 400 600

16 14.39 93 417 556 100 400 600

18 16.13 83 372 494 100 400 500

19 17.00 78 353 468 75 375 450

21 18.73 71 320 423 75 300 450

22 19.60 68 306 404 75 300 375

26 23.04 58 260 342 50 250 350

27 23.90 56 251 329 50 250 350

32 28.18 47 213 277 50 200 300

33 29.04 46 207 269 50 200 250

37 32.45 41 185 240 50 200 250

38 33.30 40 180 234 50 200 250

40 34.99 38 171 222 50 175 225

45 39.23 34 153 197 25 150 200

50 43.45 31 138 177 25 150 175

55 47.66 28 126 161 25 125 150

65 56.04 24 107 136 20 110 140

70 60.22 22 100 127 20 100 130

75 64.39 21 93 118 20 90 120

80 68.55 19 88 111 20 90 110

85 72.70 18 83 104 20 80 100

95 80.98 16 74 93 20 70 90

100 85.11 16 70 89 20 70 90

110 93.36 14 64 80 10 60 80

115 97.47 14 62 77 10 60 80

140 117.96 11 51 63 10 50 60
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2.3.2.2 EFFECT OF FILTRATION VOLUME ON PRECISION OF [SPM] MEASUREMENT 

The filtration volume was optimally set based on T measurements before each filtration experiment using 

R(V90) in Table 2.3. An overview is given in Table 2.4, which also shows the time required to pass a 

given volume of sample through five replicate filters. No significant changes in T were found before and 

after each filtration experiment (p>0.05, ANOVA), indicating good sample mixing throughout the 

experiments.  

 

Table 2.4.  Overview of turbidity, T , with standard deviation T, optimal filtration volume obtained from R(V90) in 

Table 2.3, and time required to pass seawater through five replicate filters.  

 

 

The coefficient of variation, c.v. (=standard deviation: mean from five [SPM] replicates), is 

plotted as function of filtration volume normalized by Vopt  in Figure 2.7. Results suggest that filtering 

more or less than the optimal volume gives a lower precision in the [SPM] measurement, except for the 

most turbid water sample, MH5, where c.v. is lowest at twice Vopt. It can be seen from filtration times in 

Table 2.4 that passing twice Vopt was not problematic for the most turbid samples, MH5 and T, while for 

other samples filtration time at least tripled, to exceeding 1 h. It is thought that filter clogging may be 

more likely in the presence of biological particles, but this remains uncertain at this time.  

Differences between c.v.’s for different filtration volumes were tested for significance by 

computing c.v.’s for a random selection of three out of five replicates without replacement and repeating 

this procedure 100 times. The median, 10
th
 , and 90

th 
percentiles of each c.v. dataset are also shown in 

Figure 2.7. ANOVA tests show that the c.v. is significantly higher, and often higher than the desired 

precision of 15%, when one fifth of the optimal volume is filtered than when larger volumes are filtered. 

C.v. decreases significantly when filtration volume is increased to half Vopt, except for sample CL. Further 

decrease of c.v. when filtration volume is increased to Vopt is significant at stations CL, WGAB, 0924A, 

and T. A significant increase in c.v. is observed when filtering more than Vopt for samples WGAB, 0924A, 

MOD, and T. These slight increases in inter-replicate variability may be caused by the higher likelihood 

sample

T 

(FNU)

T 

(FNU)

Vopt 

(mL)
0.2 Vopt 0.5 Vopt Vopt 2 Vopt

Cl 2.98 0.32 1500 17 20 29 94

WGAB 6.83 0.14 1000 13 10 24 64

O924A 10.93 0.18 500 19 12 15 78

Mod 12.18 0.42 500 10 11 16 48

T 25.53 0.31 250 20 12 30 25

MH5 53.30 1.59 150 6 8 21 18

Filtration time (minutes)
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of spraying off particles during rim rinsing (step 13 in Figure 2.1) when filters are saturated with particles, 

as shown for MOD at filtration volumes of Vopt  in Figure 2.8(a,b) and 2 Vopt in Figure 2.8(c,d).  

[SPM] means were independent of filtration volume, as shown in Figure 2.9, with the exception 

of significantly lower [SPM] for the smallest filtration volume for samples 0924A and MH5. This could 

be an effect of the reduction of the effective pore size with increasing volume. This phenomenon is 

known to be somewhat unpredictable and to depend on the particle size distribution and the shape of the 

particles in suspension (Sheldon and Sutcliffe 1969; Sheldon 1972). 

 

 

Figure 2.7.  Coefficient of variation, c.v. (in %) of [SPM], obtained from five replicates vs. filtration volume, 

normalized to the optimal filtration volume, Vopt. Shown in grey are the median, 10th, and 90th percentiles of c.v. 

obtained from 100 resamplings without replacement of 3 [SPM] replicates out of 5. 
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Figure 2.8.  Scanning Electron Microscopy images of two selected zones on the GF/F filter rim of sample MOD 

with filtration volume Vopt (a,b) or 2xVopt (c, d), showing particles that got displaced onto the filter rim during the 

rinsing of the rim.  
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Figure 2.9.  Boxplot of [SPM] obtained through filtration of different volumes of sampled seawater at six different 

stations.  

 

Least-squares regressions of WD vs. filtered volume of seawater are shown in Figure 2.10. The 

offsets of the regression lines for all samples are not significantly different from zero,  again indicating 

that salts are properly washed from the filters. It has been noted by Trees 1978 that the relationship 

between filtration volume and retained mass is linear only when salts are properly washed out.  
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Figure 2.10.  Scatterplots of particulate dry mass (     ,) vs. filtrate volume. The errorbars denote the standard 

error on particulate dry mass obtained from 5 replicates. The mean and standard error of [SPM] are also shown 

for each filtration volume. Shown in red are the regression line and its equation with 95% confidence intervals of 

the coefficient estimates. 

2.4 Conclusion 

This study shows that simple, fast, and low cost measurements of turbidity, T , can be used to optimize 

[SPM] measurements. More specifically, turbidity measurements can be used to optimally set the 

filtration volume , to detect problems with the mixing of the sample during subsampling for filtration, and 

for the quality control of [SPM]. The relationship between T and optimal filtration volume is set-up using 

estimates of [SPM] measurement procedural uncertainties from blank measurements and a value for 

maximum allowable uncertainty on [SPM]. Procedural uncertainties were assessed from filter blanks 

where synthetic seawater of a typical salinity is passed through, representing uncertainties due to filter 

preparation, handling, and rinsing of sea salt. The use of various types of filter blanks subjected to 

different steps in the measurement procedure may help reveal sources of uncertainty. In this study, for 

example, differences in weights of dry and wet filter blanks suggest that friable fractions of glass fiber 

filters may have dislodged during filtration. This fiber loss may be mitigated in the future by repeating the 
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pre-ashing, washing, and drying steps of filters in the preparation phase until constant weight is achieved. 

Blank filters and regressions of residual weight vs. filtration volume suggest that salts are properly 

flushed using a wash volume of 400-450 mL of milliQ for water samples with salinities of 33-35 PSU, 

while a wash volume of 300 mL has been shown to be insufficient (Stavn et al. 2009). 

We further investigated the role of filtration volume on the precision of [SPM] measurement by 

filtering volumes of seawater ranging between one fifth and twice the optimal filtration volume. It is 

shown that if the optimal volume is filtered, [SPM] measurements are most precise and cost effective. In 

most cases filtering twice the optimal volume caused clogging and tripled filtration times to over 1 hour, 

which is impractical and problematic in limited ship time.  

It is recommended that each research group establishes their own relationship between turbidity 

and optimal filtration volume, which is specific to the type of turbidity instrument, the uncertainties of the 

[SPM] measurement procedure which can be assessed from procedural control filters, and the desired 

maximum relative variability between replicates. 
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Chapter 3 IN SITU VARIABILITY OF MASS-SPECIFIC BEAM 

ATTENUATION AND BACKSCATTERING OF MARINE 

PARTICLES WITH RESPECT TO PARTICLE SIZE, DENSITY, 

AND COMPOSITION 

This chapter was published as Neukermans et al. 2012 in open access available from 

http://aslo.org/lo/toc/vol_57/issue_1/0124.pdf .  
 

 

Abstract 

This study analyzes relationships between concentration of suspended particles represented by dry mass, 

[SPM], or area, [AC], and optical properties including particulate beam attenuation (cp), side scattering 

(bs), and backscattering (bbp), obtained from an intensive sampling program in coastal and offshore waters 

around Europe and French Guyana. To first order optical properties are driven by particle concentration 

with best predictions of [SPM] by bbp and bs, and of [AC] by cp. Second order variability is investigated 

with respect to particle size, apparent density (dry weight to wet volume ratio), and composition. Overall, 

the mass-specific particulate backscattering coefficient, 
m
bpb  (=bbp:[SPM]), is relatively well constrained, 

with variability of a factor 3-4.  This coefficient is well correlated with particle composition with 

inorganic particles having values about 3 times greater (
m
bpb =0.012 m² g

-1
) than organic particles (

m
bpb

=0.005 m² g
-1

). The mass-specific particulate attenuation coefficient, 
m
pc (=cp:[SPM]), on the other hand, 

varies over one order of magnitude and is strongly driven (77% of the variability explained) by particle 

apparent density. In this dataset particle size does not affect 
m
pc  and affects 

m
bpb  only weakly in clear 

(case 1) waters, despite size variations over one order of magnitude. A significant fraction (40-60%) of 

the variability in 
m
bpb  remains unexplained. Possible causes are the limitation of the measured size 

distributions to the 2-302 m range and effects of particle shape and internal structure which affect bbp 

more than cp and were not accounted for.  

3.1 Introduction 

The inherent optical properties (IOPs) of particles suspended in seawater (e.g., phytoplankton, detritus, 

heterotrophic bacteria, viruses, and mineral particles) are driven to first order by their concentration. 
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Second order effects are caused by variations in particle size, material composition (i.e., refractive index), 

shape, and internal structure. Strong relationships are generally found between IOPs and suspended 

particulate matter concentration, [SPM] (Babin et al. 2003; Boss et al. 2009c), or chlorophyll a 

concentration, [Chl a], widely used as an index of phytoplankton biomass (Bricaud et al. 1998; Loisel and 

Morel 1998). Such relationships were derived from in situ measurements, whereas our present 

understanding of the effect of particle characteristics on IOPs is mainly based on laboratory 

measurements and theoretical calculations. For instance, studies investigating optical variability of 

phytoplankton cells with cell size and refractive index (Morel and Bricaud 1986;Ahn et al. 

1992;Vaillancourt et al. 2004) or induced by environmental factors (Stramski and Morel 1990; Stramski 

et al. 2002) were performed in laboratories. Other laboratory studies focused on optical variability of 

mineral particles (Volten et al. 1998; Stramski et al. 2007). Studies of optical variability with respect to 

particle size and refractive index (Morel and Bricaud 1981; Morel and Ahn 1991;) as well as shape and 

structure (Kitchen and Zaneveld 1992; Gordon and Du 2001; Clavano et al. 2007) were based on 

theoretical calculations. Assessment of IOP variability in optically complex waters with respect to particle 

concentration and bulk particle characteristics (e.g., size and composition) has started only recently with 

the availability of appropriate in situ instrumentation (Babin et al. 2003; Peng and Effler 2007; Woźniak 

et al. 2010). In this paper, we focus on in situ variability of particulate scattering properties.  

It is generally observed that particulate attenuation (cp), scattering (bp), and backscattering (bbp) 

coefficients (units: m
-1

) increase with concentration of suspended particles. The mass-specific attenuation 

(
m
pc ), scattering (

m
pb ), and backscattering (

m
bpb ) coefficients are expected to vary with the nature of the 

particles (size, refractive index, structure, shape, and composition). These mass-specific optical 

coefficients represent an optical cross section per unit mass in units of m² g
-1

. Understanding their 

variability is of fundamental importance for radiative transfer studies in marine waters, studies coupling 

optics with ecosystem and biogeochemical models, in situ monitoring of suspended particle dynamics, as 

well as for ocean color remote sensing. For instance, bbp normalized by [SPM] or [Chl a] strongly 

influences the remote sensing retrieval accuracy of [SPM] or [Chl a], respectively (Brown et al. 2008; 

Nechad et al. 2010; Loisel et al. 2010). Suspended particles affect the propagation of light in the ocean 

and light availability to marine organisms. Direct laboratory measurements of biogeochemical 

components are not practically feasible at the spatial and temporal scales required to validate ecosystem 

and biogeochemical models. Optical measurements can be used to accommodate this need.   

Since the early 1970s, when the first commercial transmissometers became available, 

relationships between [SPM] (in g m
-3

) and cp or bp have been examined in open ocean and coastal waters 

(Gibbs 1974; Carder et al. 1975; Pak and Zaneveld 1977). Values of 
m
pc  or 

m
pb  reported in the literature 
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vary over one order of magnitude, from 0.05 m² g
-1 

to 1.5 m² g
-1

 (Baker and Lavelle 1984;Wells and Kim 

1991; Gardner et al. 2001, but see Hill et al. 2011 for a comprehensive overview). Theoretical and 

experimental work focused on the effect of particle size on 
m
pc  and 

m
pb  (Pak et al. 1970; Spinrad et al. 

1983; Baker and Lavelle 1984). However, despite large variability in particle size, in situ measurements 

of 
m
pc  vary much less (Bunt et al. 1999; Mikkelsen and Pejrup 2000). The recent modeling work of Boss 

et al. 2009a) suggests that the process of particulate aggregation, the formation of flocs composed of 

mineral and organic particles with water trapped in between, constrains the sensitivity of 
m
pc  to particle 

size. This hypothesis is supported by in situ measurements of Hill et al. 2011). Inverse relationships 

between 
m
pb  and particle diameter may however be found when particles are less aggregated (Woźniak et 

al. 2010).  

An explanation of the observation that 
m
pb  is significantly lower in coastal waters (≈0.5 m² g

-1
) 

than in open ocean waters (≈1 m² g
-1

) was given by Babin et al. 2003) on the basis of Mie scattering 

calculations, modeling marine particles as homogeneous, solid spheres. In coastal waters, where mineral 

material is more common than organic material, the larger apparent density, ap  (particle dry weight: wet 

volume), of the former counterbalances the effect of its higher refractive index. This explanation has, 

however, been challenged by several studies (Martinez-Vicente et al. 2010; Woźniak et al. 2010). 

Seasonal changes of 
m
pb  in a low turbidity station in the western English Channel have been related to the 

composition of particulate organic matter, POM (Martinez-Vicente et al. 2010). Bowers et al. 2009) show 

that the variability of 
m
pb  in a shallow shelf sea dominated by mineral aggregates is mainly explained by 

changes in the aggregate apparent density, ag  (dry weight: wet volume ratio of material in the 

aggregate), while particle size has only little effect on 
m
pb . Note that there is a difference between ap and 

ag. Whereas wet volume in ap refers to the particle internal fluid volume, it refers to the aggregate 

interstitial fluid volume in ag. Hill et al. 2011 suggest that the large range of 
m
pc  and 

m
pb  values are 

caused by variability in particle composition, size, and the finite acceptance angle of the optical 

instruments. Also, [SPM] has been measured using various protocols with varying filter pore sizes, filter 

types, and corrections for residual salts. The choice of statistical approach (e.g., simple descriptive 

statistics vs. regression analysis) may also influence the apparent range of variability of normalized IOPs 

(see McKee et al. 2009 for similar effects on the particulate backscattering to scattering ratio, bpb
~

). 
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Much less is known about the relationship between bbp and [SPM], the variability of 
m
bpb , and 

even about the sources of bbp itself. This is due to a lack of an appropriate theoretical framework for 

modeling bbp and of commercial in situ sensors for determination of bbp which became available only 

since the mid 1990s. Our understanding of the major contributors to bbp in natural waters is uncertain and 

it is unknown which particles backscatter light most efficiently (Stramski et al. 2004). Mie scattering 

theory suggests substantial contributions to bbp from submicron particles (Stramski and Kiefer 1991), but 

there is strong evidence that application of this model is inappropriate for computations of bbp for natural 

particle assemblages (Bohren and Singham 1991;Kitchen and Zaneveld 1992; Clavano et al. 2007). In situ 

measurements of bulk and size fractionated measurements of bbp in the open ocean showed strong 

contributions to bbp from particles larger than 3 m and negligible contributions from particles below 0.2 

m (Dall'Olmo et al. 2009).  

Studies of the relationship between bbp and [SPM] are not always consistent. Some studies show 

good correlations between bbp and [SPM] (Boss et al. 2009c), while others find better correlations with 

particulate inorganic matter concentration, [PIM], than with [SPM] (Deyong et al. 2009; Martinez-

Vicente et al. 2010). McKee and Cunningham 2006 observed good correlations between bbp and both 

[SPM] and [PIM] in mineral-dominated turbid waters in the Irish Sea, while much weaker correlations 

were found in clear, more organic-dominated waters. Snyder et al. 2008 show evidence of spatial 

variability of 
m
bpb  along the U.S. coast and found significant differences between the mass-specific 

coefficients bbp: [PIM] and bbp:[POM], where [POM] is the particulate organic matter concentration, and 

[SPM]=[PIM]+[POM]. Several studies in U.S. coastal waters showed that [SPM] correlates better with 

bbp than with cp or bp (Snyder et al. 2008; Boss et al. 2009c). The projected surface area concentration of 

suspended particles, [AC], is also known to correlate well with bbp. Based on a laboratory experiment, 

Hatcher et al. 2001 found bbp to increase with [AC] of phytoplankton-mud aggregates larger than 10 m, 

despite a drop in [SPM]. Flory et al. 2004 found bbp to linearly increase in situ with [AC] of aggregates 

larger than 100 m.  

Various types of instruments are available to obtain the particle size distribution (PSD), such as 

electrical impedance particle sizers (Coulter Counter), laser diffractometers (Laser In Situ Scattering and 

Transmissometry device, Sequoia Scientific, LISST-100X), and particle imaging systems (FlowCAM), 

but none of these instruments operate over the full optically significant size range from submicron 

particles to large millimeter-sized flocs. Electron microscopy could cover a broader range (including 

submicron particles), but is hampered by complex sample preparation, treatment, and analysis (Wells and 

Goldberg 1994; Peng and Effler 2007; 2010). The LISST-100X instrument series offer several advantages 

including rapid in situ measurements over relatively large volumes of water and coverage of a broad size 
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range (1.25-250 m for type B and 2.5-500 m for type C). Also, unlike the Coulter Counter and the 

FlowCAM, there is no need for discrete water sampling or sample handling, which may disrupt fragile 

aggregates. LISST instruments have been shown to provide PSDs that are comparable to other sizing 

instruments over a wide range of environmental particle types (Agrawal et al. 2008; Andrews et al. 2010; 

Reynolds et al. 2010). However, in order to obtain particle size information, an optical model needs to be 

assumed for inversion of the angular pattern of near-forward scattered light recorded by the LISST. 

Assumptions on the refractive index of the particles significantly affect the retrieved PSD (Andrews et al. 

2010), especially for particles below 20 m. Other disadvantages of the LISST are its lower size 

resolution and hence, its inability to detect narrow features in the PSD (Reynolds et al. 2010).  

Despite recent availability of the required optical instrumentation, studies combining 

measurements of optical properties of marine particles with investigations of the fundamental causes 

driving their variability (particle size, apparent density, refractive index, and composition) are rare. 

Particularly, investigations of optical variability with respect to particle size are limited by the lack of 

measurements of the PSD over the full optically significant size range. Coverage of submicron particles is 

of special concern, given that under typical conditions in the open ocean and at 550 nm Mie theory 

predicts dominant contributions (70-90%) to bbp and significant contributions (up to 50%) to cp (Stramski 

and Kiefer 1991). Fractionation experiments in open ocean and coastal waters, however, suggest 

contributions from submicron particles to bbp of only 10-30% and a much greater importance of particles 

larger than 3 m of 53±7% (at 470 nm, Dall'Olmo et al. 2009) and about 70% (at 440 nm, Roesler and 

Boss 2008), respectively.  

In the present study, we present and analyze combined measurements of in situ optical properties, 

particle concentration, apparent density, composition, and size distribution (obtained with a LISST, 

covering the size range 2.4-302 m). An intensive sampling program (366 stations) in optically complex 

coastal and more offshore waters around Europe and French Guyana was carried out. Optical properties 

(cp, bs, and bbp), [SPM], and the PSD were determined by the same people using the same instruments and 

protocols. The objectives are to re-investigate the relationships between optical properties (cp, bs, and bbp) 

and proxies of particle concentration, such as [SPM] and [AC]. We also investigate the feasibility of 

assessing variability of 
m
bpb  and 

m
pc  with respect to bulk particle composition, apparent density, and size.  

3.2 Methods 

3.2.1 Description of the study areas 

Fourteen sampling campaigns in coastal and offshore waters were conducted between April 2008 and July 

2010, covering a wide variety of suspended particles in terms of concentration, composition, and size. A 
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total of 366 stations were visited: 213 in the southern North Sea and the English Channel (April, June, 

July 2008, 2009, and 2010; September 2008 and 2009; January 2010), 59 in the northeast Atlantic Ocean 

(June 2008, 2009 and 2010), 60 in the Ligurian Sea (March 2009) and 34 in French Guyana waters 

(October 2009). A map of the sampling locations is shown in Figure 3.1. 

 

Figure 3.1.  Location of stations sampled during 14 campaigns between April 2008 and July 2010. Bathymetry is also 

shown (source: General Bathymetric Chart of the Oceans, GEBCO_08 30’ Grid, version 20100927, 

http://www.gebco.net)  

 

 The southern North Sea and the English Channel are shallow sea regions, rarely deeper than 50 

m, subject to strong semi-diurnal tidal currents with a typical amplitude of 1 m s
-1

. Particles in suspension 

originate from various sources, including coastal and sea bottom erosion, river discharges, inflow from 

the Atlantic Ocean, atmospheric dust, and dredging operations. A decrease of [SPM] with distance from 

the coast is generally observed, from above 100 g m
-3 

in the near shore waters to below 0.5 g m
-3 

in the 

deepest offshore waters. The cruise periods in the southern North Sea cover the bloom onset, 

development, and collapse of the prymnesiophyte Phaeocystis globosa and the dinoflagellate Noctiluca 

scintillans, as well as periods of lower biological activity. Particle composition shows high seasonal 

variability (Loisel et al. 2007; Astoreca et al. 2009; Martinez-Vicente et al. 2010).   
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 The northeastern Atlantic waters between the Bay of Biscay and the Galicia Bank are typically 

case 1 waters with IOPs driven by phytoplankton and associated materials. Water samples were taken on 

and off the continental shelf with water depths varying between 20 and 300 m and [SPM] usually below 2 

g m
-3

. In June 2010, a bloom of an as yet unidentified heliozoan spp. occurred (F. Gomez pers. comm.). 

The Ligurian Sea between Corsica and northwest Italy is typically case 1, though a number of case 2 

stations were sampled close to the Italian coast near the Arno river outflow. Samples were taken on and 

off the continental shelf with water depths varying between 30 and 500 m.   

The French Guyana coastal waters are turbid and their IOPs are mainly driven by mineral 

particles of terrestrial origin (Loisel et al. 2009). These waters are strongly influenced by the Amazon 

river and affected by local features such as mud banks (Froidefond et al. 2002; Froidefond et al. 2004; 

Vantrepotte et al. in press).  

3.2.2 Optical measurements 

At each station, an optical profiling package (see Figure 3.2) was deployed in surface waters for several 

minutes, followed by a vertical profile from the surface to 2-3 m above the bottom. The package included 

a conductivity-temperature-depth (CTD) profiler (Sea Bird), a Western Environmental Technology 

Laboratory (WET Labs) ECO BB-9 backscattering instrument, a WET Labs ECO-Fl chlorophyll 

fluorometer, a WET Labs C-Star transmissometer for beam attenuation, a WET Labs ac-s for 

hyperspectral attenuation and absorption measurements, and a Laser In Situ Scattering and 

Transmissometry device (LISST-100X, Sequoia Scientific) for PSD and beam attenuation measurements. 

The ac-s was equipped with a SeaBird 3K pump with a coarse mesh steel screen for water flow into the 

10 cm path-length tubes. Data from the WET Labs instruments were collected and recorded with a WET 

Labs Data Handler (DH-4) as a function of time for each of the instruments, enabling simultaneous 

collection, time stamping, storage, and merging of data from different instruments. The sampling 

frequency of all instruments was 1 Hz. At each station and for each instrument, about 100-200 surface 

waters scans were collected and median averaged. The difference between the 75
th
 and 25

th
 percentile 

value, known as the interquartile range (IQR), was taken as a measure of dispersion. These statistics are 

more robust to outliers than the mean and the standard deviation.  
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Figure 3.2.  Instruments used in the wet lab of the ship (turbidity meter and filtration set) and instruments used for 

in-water measurements of optical properties (optical profiling package). 

 

Beam attenuation (c) is calculated from light transmission (T), which is the light intensity 

reaching a detector through a sample relative to a blank. Let l be the path length of the instrument, then 

            . The C-Star measures c at 660 nm (±20 nm) over a 10 cm path length and has an in-water 

acceptance angle of 1.2°. The C-Star instrument was calibrated by WET Labs on a yearly basis and 

additional calibrations with MilliQ water were carried out three times per campaign. After calibration, the 

C-Star measurement directly gives cp (units: m
-1

), assuming that colored dissolved organic matter 

(CDOM) does not absorb at 660 nm. In addition to near-forward scattering (which is inverted to provide 

particle size information as described in the next section), the LISST records c at 670 nm (±0.1 nm) over 

a 5 cm path length with an in-water acceptance angle of 0.0135°. The LISST gives cp after calibration 

with MilliQ water performed before and after each campaign assuming that CDOM does not absorb at 

670 nm.  
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The ac-s records the absorption and attenuation spectrum at 4 nm resolution between 400 and 730 

nm with 15 nm bandwidth, has a 10 cm path length and an in-water acceptance angle of 0.93°. A MilliQ 

water calibration was performed before and after each campaign. Temperature and salinity corrections 

were performed on the raw data (Pegau et al. 1997), and absorption measurements were corrected for 

residual scattering following Sullivan et al. 2006. 

During two selected campaigns, a WET Labs ac-9 instrument was deployed vertically on a bench 

in the wet lab of the ship. Surface water sampled simultaneously with the optical package was passed 

through the measuring tubes manually. The instrument measures absorption and attenuation in 9 bands: 

412, 440, 488, 510, 555, 630, 650, 676, and 715 nm, has a 25 cm path length and an in-water acceptance 

angle of 0.93°. A water calibration using MilliQ water was performed on a daily basis. Data were 

recorded for 2 minutes, and then median-averaged over 0.5 minutes of noise-free data. Temperature and 

salinity were recorded together with the data using a Hanna digital thermometer and a Seabird 

Thermosalinometer SBE-21, respectively. Temperature and salinity corrections, as well as a residual 

scattering correction were performed similarly to the ac-s measurements.  

Backscattering coefficients bb() at nominal wavelengths of 488, 510, 532, 595, 650, 676, 765, 

and 865 nm were collected with the ECO BB-9. The instrument records the volume scattering function, 

 at a centroid angle of 124° (revised from 117° as reported in Sullivan et al. submitted. Data 

conversion from raw  to calibrated  was performed using the WAP software provided by WET Labs. 

Data were corrected for temperature and absorption effects and the contribution by pure water (Zhang et 

al. 2009) to  was subtracted to obtain particulate volume scattering function, p. Particulate 

backscattering coefficients, bbp, were obtained from p by multiplying by 2, with  =1.1 (Sullivan and 

Twardowski 2009). The BB-9 instrument was calibrated by WET Labs on a yearly basis. An additional 

correction of bbp by a factor 0.82 (=0.9:1.1) was applied following Sullivan et al. 2005.  

Turbidity, defined by  ISO 1999 as ‘the reduction of transparency of a liquid caused by the 

presence of undissolved matter’, can be quantified in various ways (e.g., Secchi disk, light attenuation, 

side scatter). The Hach 2100P portable turbidity instrument measures the ratio of light scattered at an 

angle of 90°±2.5° at a wavelength of 860±60 nm to forward transmitted light, as compared to the same 

ratio for a standard suspension of Formazine. This optical measurement technique of turbidity from the 

side scattering coefficient, bs, is in accordance with ISO 1999. In this chapter, turbidity will be denoted bs, 

referring to the measurement method of side scattering. bs, expressed in Formazine Nephelometric Units 

(FNU), was recorded on 10 mL subsamples in triplicates before and after filtration. These replicates were 

median-averaged and the IQR was computed.  

The spectral dependency of cp or bbp is beyond the scope of this paper and has been investigated 

by other authors (Snyder et al. 2008). Instead, we focus on cp and bbp at a wavelength of 650 nm, where 
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the attenuation by particles (cp= ap+ bp) is essentially determined by their scattering properties because 

ap, the absorption by living and non-living particles, only makes a very small contribution (Loisel and 

Morel 1998). For example, in this dataset (272 observations) the median contribution of ap to cp is 1.5%, 

with a maximum of 6%.  

3.2.3 Water sampling 

At each station, water samples were collected just below the sea surface with 10 L Niskin bottles 

simultaneously with in situ optical measurements. [SPM] was determined gravimetrically (van der Linde 

1998) by filtration of a known volume of sea water onto 47 mm Whatman GFF glass fiber filters with a 

nominal pore size of 0.7 m, which effectively retain particles larger than about 0.4 m in size. The filters 

were pre-ashed at 450°C for 1 h, gently washed in 0.5 L of MilliQ water, dried at 75°C for 1 h, pre-

weighed on a Sartorius LE 2445 analytical balance with an accuracy of 0.1 mg, and stored in a desiccator 

for use within two weeks. Seawater samples were filtered immediately after collection on triplicate filters. 

To remove salt, filters were washed with 250 mL of MilliQ water after filtration. The samples were stored 

at -20°C until further analysis in MUMM’s Marine Chemistry Laboratory, usually within a few months 

after sampling. Filters were dried for 24 h at 50°C and re-weighed to obtain [SPM]. All SPM filtrations 

were carried out by the lead author in triplicate using the same protocol. From these, the median and IQR 

were computed for each sample. Observations where the IQR exceeded 45% of the median [SPM] value 

were rejected. Concentration of Chl a and other pigments was determined by high-performance liquid 

chromatography (HPLC) analysis. Water samples were filtered in duplicate through 0.7 m Whatman 47 

mm GFF glass fiber filters, which were stored in liquid nitrogen until analysis in the laboratory. Pigment 

data were then averaged. 

During some selected campaigns (92 stations) the SPM sample filters were burned for 5 h at 450 

°C and then re-weighed to obtain [PIM] and [POM] by difference. From April 2010 onwards, seawater 

samples were analyzed for concentration of particulate organic ([POC]) and inorganic ([PIC]) carbon 

concentration determined with a Thermo scientific Carbon/Hydrogen/Nitrogen (CHN) elemental 

analyzer. Note that [SPM] includes all organic and mineral material above approximately 0.5-0.7 m and 

[POC] and [POM] include autotrophic organisms, heterotrophic bacteria, and detritus. Observations were 

classified into clear (case 1) and turbid (case 2) waters using the relationship between bbp (532 nm) and 

[Chl a ] established by Loisel et al. 2010: bpb =0.00299×[Chl a]
0.704

. Based on their in situ dataset, the 

threshold between case 1 and case 2 water was set at bpb =3×0.00299×[Chl a]
0.704

. 
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3.2.4 Particle size and mean apparent density 

The scattering pattern at a wavelength of 670 nm in 32 logarithmically spaced scattering angles in the 

near-forward direction is recorded with a Sequoia Scientific LISST-100X type C described by Agrawal 

and Pottsmith 2000. The volume concentration for each of its 32 particle size classes is obtained through 

inversion of the angular forward scattering pattern based on the principles of light diffraction. This 

inversion has traditionally been done using Sequoia Scientific’s inversion matrix based on a combination 

of Mie theory calculations (applicable strictly to homogeneous spherical particles) for several refractive 

indices.  

Recently, empirically based inversion techniques for random shaped particles became available 

(Agrawal et al. 2008). The term ‘random shaped’ refers to the particles not having a preferred axis, 

excluding platy or elongated particles, and can be thought of as ‘spherical surfaces with random bumps, 

scratches, and digs superimposed’ (Agrawal et al. 2008). This inversion mitigates the problem of an 

artificial rising tail at the fine particle end of the number concentration PSD. This artifact was first 

attributed to particle shape effects by Agrawal et al. 2008, but Andrews et al. 2010 attributed it to a 

mismatch between the refractive index of small particles and the refractive index of the inversion matrix.  

While all aforementioned LISST inversions assume that particles are solid, the LISST has been 

found to size aggregates as well, if sufficiently opaque (Hill et al. 2011; Slade et al. 2011). This is 

consistent with Latimer 1985) modeling of an aggregate as a combination of a particle with lower index 

of refraction and a coated particle.  

The random shape inversion matrix (Agrawal et al. 2008) was used in this study, giving volume 

concentration, [VC]i (in L L
-1

), in each size class i with geometric mean diameter Di in the range 2-350 

m. Note that Mie inversion shifts the size range to 2.5-500 m for a type C LISST 100X operating at a 

wavelength of 670 nm. Basic MATLAB scripts for data processing, provided by Sequoia Scientific were 

adapted by the authors for adequate data quality control, custom data processing, and visualization 

purposes. LISST data have been reported to show considerable instability in the smallest and largest size 

range (Traykovski et al. 1999; Jouon et al. 2008), likely due to the presence of particles smaller and 

coarser than the measured size range. Hence, data from the outer and inner ring were excluded from 

further analysis. Instability in the smallest size ranges has also been related to effects of stray light 

(Reynolds et al. 2010; Andrews et al. 2011a).  

Assuming spherical particles, the cross sectional area concentration of particles in size bin i, 

[AC]i  (in m
-1

), can be obtained from [VC]i: 

 [AC] i =
iD2

3
[VC]i (3.1) 
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where 312  i  and 2.4 m  iD 302.1 m. The total cross sectional area and volume concentrations, 

[AC] and [VC], are obtained by summation over size classes 2 to 31. Andrews et al. 2010) compared 

[AC] and [VC] derived from a LISST 100X (type B) using various inversion matrices against microscopy 

data for phytoplankton and mixed field samples. They report ratios of LISST-derived [AC] and [VC] 

obtained with the random shape matrix inversion to microscopy-derived [AC] and [VC] within the ranges 

of 0.56-0.98 and 0.34-1.08, respectively.  

The mean apparent density of the suspended particle population, a (in kg L
-1

), is the dry weight 

to wet volume ratio: 

 
 
 VC

SPM
a  (3.2) 

The wet volume concentration, [VC], can refer to both the particle internal fluid volume, as well as the 

aggregate interstitial volume. Note that particles with diameter above approximately 0.4 m are retained 

on a GFF glass fiber filter (effective pore size of 0.7m), while [VC] only accounts for particles in the 

2.4-302 m range.  

Marine particles are comprised of water and solid material. Let Vs and Vw be the volumes of solid 

and watery material of which a particle is comprised and s be the density of the solid material. Then, a 

can be written as: 

 s

ws

s
a

VV

V



  (3.3) 

When the particle contains any water, a will be less than s and can be less than the density of seawater. 

For phytoplankton s varies between 1.24 and 1.53 kg L
-1

 and Vw  between 40% and 80% (Aas 1996), 

giving a between 0.25 and 0.92 kg L
-1

. For aggregated particles consisting of organic and/or inorganic 

compounds, Vw is mostly interstitial and size dependent (Boss et al. 2009a) and can approach 100% for 

the largest aggregates. This results in a as low as 0.01 kg L
-1

.  

A Junge power law distribution was fitted to the LISST data:   

 


 ii KDDN )(  (3.4) 

with 312  i , where N(Di) is the number of particles in size class i per unit sampling volume and per 

unit width of diameter interval (units: L
-1 m

-1
) and is called the Junge parameter. The size distribution 

of marine particles is influenced by various physical and biological processes, so it is unlikely that its full 

complexity can be completely described by a relatively simple mathematical model, such as the Junge 

model. This model, however, remains the most frequently used in optical studies. Its goodness of fit is 

evaluated by the R² statistic, the relative deviation of the model from the observations, and the 95% 
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confidence interval on the least-square estimation of  Typical values of range between 3 and 5 

(Jonasz 1983; Buonassissi and Dierssen 2010; Reynolds et al. 2010). The PSD and its shape are 

investigated in more detail in the appendix in section 3.5.2.2.  

For a given particle population we define the mean diameter weighted by area, DA (in m), as 

follows:  

 
 

 AC

DAC

D i
ii

A




31

2  
(3.5) 

In sedimentology, this is termed the Sauter diameter.  

3.2.5 Mass-specific attenuation and backscattering coefficients 

For a population of spherical particles of identical a, the mass-specific beam attenuation coefficient, 
m
pc  

(or analogously, the mass-specific particulate backscattering coefficient,
m
bpb ) can be written as:  
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 (3.6) 

where N(D)dD is the number of particles per unit volume in the size range from D to D+dD and Qc 

(dimensionless) is the attenuation efficiency factor, which varies with size (D), wavelength (), and 

refractive index (n) of the particles (Van De Hulst 1957). This efficiency factor is dimensionless and 

represents the ratio of the attenuation (backscattering) cross section to the geometric cross section.  

The refractive index, n, can be estimated from the particulate backscattering ratio bpb
~

 using the 

Mie theory-based model of Twardowski et al. 2001): 

 
582.0~

671.11 bpbn   (3.7) 

This model performs reasonably well for <4 with differences of only a few percent between Eq. (3.7) 

and the more complex model for n based on bpb
~

 and  (Twardowski et al. 2001). Eq. (3.7) is preferred 

here for the sake of simplicity and presentation purposes and because  exceeds 4 in only 5% of the cases 

in our dataset. The particulate backscattering ratio, bpb
~

, represents the fraction of light scattered in the 

backward direction and has been related to the biogeochemical composition ([POC]: [Chl a]) of the 

particles (Loisel et al. 2007) and to the PSD (Ulloa et al. 1994; Loisel et al. 2006).  

Consider a particle population composed of spheres of a single diameter D, then Eq. (3.6) 

simplifies to:  
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For particle populations consisting of spheres of identical composition and density it follows that 
m
pc  is 

inversely proportional to particle diameter. For particles large compared to the wavelength of light, 

smaller particles attenuate more light per unit mass than large particles because their surface to volume 

ratio is larger (e.g., Hill et al. 2011)We can rewrite Eq. (3.6)  in the form of Eq. (3.8) by defining the 

effective attenuation efficiency, Qce, the mean attenuation efficiency of all particles weighted by area (Eq. 

3.2 in Morel 1973; Bowers et al. 2009):  
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and
dDDDN

dDDDN
DA 2

3

)(

)(




 , the mean particle diameter weighted by area, which is equivalent to Eq. (3.5). 

Eq. (3.6) then becomes:  
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3
  (3.10) 

The coefficient 
m
pc  (in m

2
 g

-1
) is also the attenuation cross section per unit mass of particles in 

suspension. Eq. (3.6) and Eqs. (3.8)-(3.10) can be written for backscattering in the same way. Qce can be 

assessed either directly from its definition, i.e., Qce=cp:[AC] (see Eq. (3.6)), or indirectly, from linear 

regression between 
m
pc  and the inverse of the product of a and DA (see Eq. (3.10)). Computations of Qbbe 

can be done by analogy.  

The experimental value of Qce (=cp:[AC]) can be used to check whether the bulk of the particles 

contributing to cp are sized by the LISST, through a comparison with its theoretical value (Behrenfeld and 

Boss 2006). According to optical theory, the value of Qc for a single spherical particle large compared to 

the wavelength of the light should be around 2 and not exceed 3.2 (Van De Hulst 1957). Underestimation 

of [AC] will lead to higher Qce values. The first cause of underestimation of [AC] is the limited size range 

of the PSD (2.4 – 302 m in this study). Oubelkheir et al. 2005 reported cp:[AC] ratios up to 14 due to 

particles outside their PSD range (1.6-50m). The second cause is the underestimation of [AC] of 

particles that are sized by the LISST. Andrews et al. 2010 report underestimates of LISST-derived [AC] 

values obtained from an inversion for random shape particles compared to microscopy-derived [AC] 

values by a factor of 1.02 to 1.79. Therefore, a maximum value for cp:[AC] of 5.7 (=3.2×1.79) is expected 



Chapter 3 IN SITU VARIABILITY OF MASS-SPECIFIC SCATTERING PROPERTIES 59 

 

 

if the bulk of the particles are sized by the LISST. Observations exceeding this maximum value are 

rejected.  

From Eq. (3.10) it follows that particle size, density, and composition affect 
m
pc  (

m
bpb ) directly 

through DA and a, and indirectly through Qce (Qbbe). The effect of size, density, and composition on mass 

and area-specific cp and bbp is investigated in this paper. Correlation analysis and ‘least squares cubic’ 

regressions (York 1966), which take into account measurement uncertainties in the data, are used 

throughout the paper. The derivation of uncertainties on optical and biogeochemical variables is given in 

the Appendix, section 3.5.1.2.  The least squares cubic regression is applied after removal of outliers 

identified by the MATLAB robustfit.m routine (see Appendix, section 3.5.1.3). Correlation coefficients 

obtained from bootstrapping are given with their 95% confidence intervals, which is also described in the 

Appendix, section 3.5.1.4.  

3.3 Results 

3.3.1 Instrument intercomparison for particulate beam attenuation 

cp, measured by the LISST, C-Star, ac-9, and ac-s instruments are compared. The first three instruments 

measure cp at slightly different wavelengths (670, 660, and 650 nm, respectively). Based on 158 spectra of 

cp recorded by the ac-s, a median cp(650):cp(670) ratio of 1.01 was found, with 90% of the ratios in the 

interval [0.99 , 1.03], indicating that the spectral variation of cp between 650 and 670 nm is negligible. 

Good linearity in log-log space (r=0.87±0.04) was found for 188 simultaneous observations of cp(LISST) 

and cp(C-Star). Results are shown in Figure 3.3A. As expected, cp(LISST) values are larger than cp(C-

Star) values in most cases due to the smaller acceptance angle of the LISST. Occasionally, however, the 

C-Star reported higher cp values than the LISST, possibly due to slight differences in sampling time 

between the two instruments, high temporal variability of IOPs, and other measurement uncertainties. The 

median measurement uncertainty on cp(LISST) was used as a tolerance distance from the 1:1 line 

(represented by the dotted line in Figure 3.3A), below which observations were removed from further 

analysis (no=16, with no denoting the number of observations). The correlation coefficient for the 

remaining 172 observations is 0.91±0.03. The median cp(LISST):cp (C-Star) ratio is 1.6 with 90% of the 

ratios in the interval [0.9,3.3], and increases with increasing particle size as shown in Figure 3.3B 

(r=0.88±0.08, no=158 after removal of observations with Qce>5.7, see next subsection for explanation). 

Similar results were found by Boss et al. 2009b who reported a mean LISST-B (acceptance angle of 

0.0269°) to C-Star cp ratio of 1.4 (90% in the interval [1.1, 1.8]) at a coastal station in the Northeast of the 

USA.   
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Figure 3.3.  (A) Scatter plot of particulate beam attenuation (cp) measured simultaneously with LISST and C-Star 

instruments, coded according to particle size (DA). The 1:1 line (solid) and the rejection threshold line 

(log10(cp(LISST))=log10(cp (C-Star)-0.1124, dotted) are shown. (B) Scatter plot of cp(LISST): cp(C-Star) vs. DA. The 

type-II regression line (see section 3.5.1.3 for details) is shown, with its equation and statistics. Error bars 

corresponding to uncertainties above 100% are not shown for clarity. (C) Scatter plot of cp measured 

simultaneously by the C-Star and the ac-s or ac-9. The 1:1 line is also shown. On each panel, error bars denote 

uncertainty estimates as derived in the section 3.5.1.2.  

 

Both cp(ac-s) and cp(ac-9) are in good agreement with cp(C-Star), with correlation coefficients of 

0.97±0.01 (no=149) and 0.98±0.02 (no=57), respectively (see Figure 3.3C). Because of the smaller 

acceptance angles of the ac-9 and ac-s instruments, data generally lie above the 1:1 line. Some 
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observations, however, are found below the 1:1 line. Recall that the ac-9 measurements were carried out 

in the wet lab of the ship on seawater sampled simultaneously with the optical profiling package. Small 

differences in sampling time or depth between the sample bottle and the profiling package may result in 

ac-9 observations below the 1:1 line. All ac-s observations below the 1:1 line were recorded in April 2010 

during a bloom of Phaeocystis globosa colonies. It is hypothesized that these did not entirely pass through 

the ac-s steel mesh screen on the intakes to the sample chambers of the ac-s, or the pump got clogged by 

mucilage present in high concentrations during blooms. This analysis suggests that pumping seawater 

through the chambers of the ac-s can reduce cp if particles larger than the steel mesh screen size are 

present or the pump is clogged by mucilage. Boss et al. 2009b showed that in a coastal environment 

dominated by aggregates, pumped cp(LISST-B) was about 30% higher than undisturbed cp(LISST-B), 

possibly caused by disruption of aggregates. 

3.3.2 Relationships between scattering properties and particle concentration by area or dry weight 

Relationships and correlations between various IOPs and area ([AC]) and mass ([SPM]) concentration are 

investigated.  Observations are retained where all optical properties (cp, bs, and bbp), [SPM] and [AC] 

were recorded (no=119) and where the bulk of the particles were sized by the LISST (Qce < 5.7). A total 

of 107 data points remain, of which 35 are classified as case 1 and 72 as case 2 waters. The ac-s cp 

measurements are not included due to uncertainties on the effect of the steel mesh screen as described 

above.  

Scatter plots of cp, bs, and bbp as a function of [SPM] and [AC] in log-log space are shown in 

Figure 3.4. Each parameter covers about 2 orders of magnitude. All scattering properties correlate well 

with both area and mass concentration, with correlation coefficients above 0.93 (see Table 3.1). For cp, no 

significant differences between correlations with [AC] (rLISST =0.98±0.01, rC-Star = 0.95±0.04) or with 

[SPM] (rLISST=0.94±0.04, rC-Star=0.95±0.02) were found. The coefficients bs and bbp are significantly better 

correlated with [SPM] (rbs=0.988±0.007, rbbp=0.986±0.007) than with [AC] (rbs=0.93±0.05, rbbp 

=0.92±0.05). In the case of bs, this could be attributed to the fact that the exact same volume of seawater 

on which bs was recorded, was passed through the filter for determination of [SPM]. Recall that while 

[AC] includes particles between 2.4 and 302 m, [SPM] is the mass concentration of particles larger than 

approximately 0.4 m. The lower correlation of bbp with [AC] than with [SPM] might be attributed to 

differences in particle size ranges covered by each parameter. These include particles smaller than 2.4 

m, which are thought to be important contributors to bbp assuming particles are homogeneous spheres 

(Stramski et al. 2004), and particles larger than 302 m, which may contribute substantially to bbp 

(Hatcher et al. 2001; Flory et al. 2004).  
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Table 3.1.  Correlation coefficients (r with 95% confidence interval, see section 3.5.1.4 for computation) between 

an optical property and either area concentration, [AC], or mass concentration, [SPM] (in log log space) for 107 

observations (35 case 1 and 72 case 2). The median, 5th, and 95th percentile values of mass- and area-specific optical 

properties are shown. Correlations and mass-specific coefficients for all simultaneous observations of an optical 

property and [SPM] are also shown between brackets (database size, nt, is indicated in italic).  

    Population percentile values 

parameter 
case 

(nt) 
r 

 
5 50 95 

m
pc (LISST) 1 

(44) 

2 

(96) 

1+2 

(180) 

0.85±0.10 

(0.75±0.16) 

0.78±0.08 

(0.68±0.12) 

0.94±0.04 

(0.88±0.04) 

 0.57 

(0.46) 

0.36 

(0.28) 

0.38 

(0.31) 

1.40 

(1.29) 

0.71 

(0.72) 

0.79 

(0.80) 

3.46 

(3.73) 

1.14 

(2.99) 

2.22 

(3.19) 

Qce(LISST) 1 

2 

1+2 

0.98±0.02 

0.92±0.05 

0.98±0.01 

 1.86 

2.24 

2.03 

2.50 

3.35 

3.08 

4.20 

4.54 

4.47 
m
pc (C-Star) 1 

(65) 

2 

(105) 

1+2 

(206) 

0.89±0.09 

(0.86±0.08) 

0.78±0.08 

(0.92±0.03) 

0.95±0.02 

(0.94±0.02) 

 0.33 

(0.44) 

0.25 

(0.25) 

0.26 

(0.25) 

0.97 

(0.81) 

0.45 

(0.45) 

0.54 

(0.53) 

2.01 

(1.79) 

0.71 

(0.78) 

1.39 

(1.36) 

Qce (C-Star) 1 

2 

1+2 

0.85±0.18 

0.83±0.06 

0.95±0.04 

 0.84 

1.31 

1.18 

1.84 

2.14 

2.00 

3.04 

3.32 

3.30 

m
sb  

1 

(80) 

2 

(145) 

1+2 

(333) 

0.95±0.05 

(0.89±0.06) 

0.95±0.04 

(0.990±0.004) 

0.988±0.007 

(0.987±0.003) 

 0.50 

(0.57) 

0.75 

(0.79) 

0.63 

(0.66) 

0.84 

(0.96) 

1.04 

(1.08) 

0.99 

(1.08) 

1.34 

(1.82) 

1.30 

(1.50) 

1.32 

(1.82) 

Qbse 1 

2 

1+2 

0.86±0.11 

0.83±0.07 

0.93±0.05 

 0.77 

2.52 

0.98 

1.55 

5.30 

4.47 

4.62 

7.81 

7.54 
m
bpb  1 

(80) 

2 

(137) 

1+2 

(229) 

0.96±0.03 

(0.86±0.06) 

0.92±0.04 

(0.97±0.01) 

0.986±0.007 

(0.97±0.01) 

 0.0038 

(0.0038) 

0.0067 

(0.0065) 

0.0043 

(0.0043) 

0.0054 

(0.0069) 

0.0100 

(0.0104) 

0.0091 

(0.0094) 

0.0097 

(0.0127) 

0.0141 

(0.0152) 

0.0133 

(0.0149) 

Qbbe 1 

2 

1+2 

0.83±0.16 

0.81±0.12 

0.92±0.05 

 0.0041 

0.0256 

0.0067 

0.0103 

0.0489 

0.0424 

0.0340 

0.0828 

0.0797 
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Figure 3.4.  Log-log scatter plots of cp(LISST), cp(C-Star), bs, and bbp vs. area concentration, [AC] (left column) and 

mass concentration, [SPM] (right column) for 35 case 1 and 72 case 2 waters. Error bars denote uncertainty 

estimates as derived in section 3.5.1, shown only for 20 random observations for the sake of clarity. 
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Flory et al. 2004 studied the relationship between bbp and [AC] for flocs larger than 100 m 

during the onset, development, and collapse of a spring phytoplankton bloom in Nova Scotia. Their bbp 

and [AC] data ranges were comparable to this study. They report bbp(589nm):[AC] values as the slope of 

a bbp vs. [AC] regression with a value of 0.012±0.001 before the bloom when particles were mainly 

inorganic, and 0.0029±0.0001 during and after the bloom when the suspended particulate matter was 

dominated by larger organic particles and aggregates. In this study we find higher values of 0.041±0.003 

for case 2 waters (with median n of 1.15, 90% in the interval [1.10, 1.20], no=72) and 0.012±0.002 for 

case 1 waters (with median n of 1.07, 90% in the interval [1.04, 1.13], no=35).  

The 5, 50, and 95
th
 percentile values of the ratios of optical properties to area and mass 

concentration are shown in Table 3.1. Rejecting the 10% most extreme values, Qce(LISST), that is 

cp(LISST):[AC], varies by about a factor 2 between 1.86 and 4.54, while 
m
pc (LISST) covers almost one 

order of magnitude ranging between 0.36 and 3.46. Comparable results are observed for cp(C-Star). For 

bbp and bs, however, Qbbe (Qbse) spans more than one order of magnitude, while 
m
bpb  and 

m
sb  vary by 

factors of 3 to 4.   

Carder et al. 1975 argued that in the case of solid spherical particles 
m
pb  would vary less than 

bp:[AC]
 
because of the more or less concomitant variations in n and a. While 

m
bpb  varies less than  

bbp:[AC], the opposite is observed for 
m
pc  (which is comparable to 

m
pb  at 650 nm) and cp:[AC]. In what 

follows, the sensitivity of mass-specific (back) scattering to each of the components in Eq. (3.10) (i.e., 

particle size, density, efficiency, and composition) is examined. Next, a similar sensitivity analysis is 

done for efficiency factors of attenuation (Qce) and backscattering (Qbbe).  

3.3.3 Investigation of the variability of mass-specific scattering properties 

Correlation coefficients, regression equations, and goodness of fit statistics for 
m
pc (LISST) and 

m
bpb  vs. 

DA, a, efficiency factors, and composition are shown in Table 3.2. A selection of corresponding scatter 

plots and best fit lines are shown in Figure 3.6A-G. A large portion of the variability in 
m
pc (LISST) is 

explained by (aDA)
-1

 (r=0.95±0.03, Figure 3.6A). Attenuation efficiency factors, Qce, were obtained from 

a linear regression of 
m
pc  and (aDA)

-1
 by multiplication of the slope of the regression line in Table 3.2 by 

2:3 (see Eq. (3.10)). Median Qce(LISST) values of 2.13±0.07 (r=0.96±0.04) and 3.07±0.02 (r=0.84±0.06) 

are obtained for case 1 and case 2 waters, respectively. Bowers et al. (2009) find Qce=1.27±0.05 for 
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mainly mineral particles along the South and West coast of Britain where 
m
pb (670 nm) varied between 

0.06 and 1.01 m
2
 g

-1
. Differences in Qce could be due to acceptance angle effects.  

When the effects of 
1

a  and 1
AD  are considered separately, we find that changes in a almost 

entirely control changes in 
m
pc (LISST) (r=0.88±0.06), with denser particles having lower 

m
pc , while 

changes in particle size have little influence (see Table 3.2 and Figure 3.6B). Bowers et al. (2009) also 

find that most of the variability in 
m
pb  is explained by a (59%) with little contribution from DA (15%). In 

case 2 waters, 
m
pc (C-Star) increased with decreasing DA (r=0.54±0.15 with 1

AD , no=72, p<0.001, see 

Figure 3.5). This size effect could be caused by the large acceptance angle of the C-Star instrument: the 

fraction of cp that is actually detected decreases rapidly with DA (Boss et al. 2009b, see Figure 1.7), 

whereas a large fraction of the particle mass might be contained in larger particles that the C-Star is 

relatively insensitive to.  

 

 

Figure 3.5.  
m
pc (C-Star) versus 

1
AD  in case 1 and case 2 waters. 
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Table 3.2.  Correlations and regression analysis of mass-specific attenuation (
m
pc ) and backscattering (

m
bpb ) vs. mean particle diameter (DA), mean apparent density (a), 

mean optical efficiency factors (Qce, Qbbe), and particle composition. ns: not significant (i.e., p>0.05), *: p<0.001, no is the number of observations, nx is the number of outliers 

removed as described in section 3.5.1.3. 

    )LISST(m
pc  

 m
bpb  

x case no  nx r equation, RMSE, MPE(%)  nx r equation, RMSE, MPE(%) 

(a DA)
-1

 1 

2 

1+2 

35 

72 

107 

 3 

1 

4 

0.96±0.04* 

0.84±0.06* 

0.95±0.03* 

3.2(±0.1) x+0.17(±0.04),0.23,12 

4.6(±0.3) x +0.04(±0.05),0.13,15 

3.5(±0.1) x +0.18(±0.03),0.16,13 

 0 

1 

2 

ns 

0.28±0.23 

-0.43±0.14* 

- 

- 

-0.014(±0.001) x +0.0117(±0.0004),0.0030,18 

a 
-1 1 

2 

1+2

35 

72 

107

 5 

1 

5 

0.92±0.07* 

0.53±0.19* 

0.88±0.06* 

0.113(±0.007) x +0.29(±0.05),0.30,12 

0.12(±0.01) x +0.21(±0.06),0.22,22 

0.123(±0.006) x +0.21(±0.04),0.25,19 

 0 

2 

2 

ns 

0.36±0.23 

-0.46±0.12* 

- 

- 

-0.0005(±0.0001) x +0.0118 (±0.0004),0.0029,19 

DA
-1

 1 

2 

1+2 

35 

72 

107 

 1 

0 

11 

ns 

ns 

ns 

- 

- 

- 

 1 

2 

1 

0.37±0.21* 

ns 

ns 

0.09(±0.03) x +0.002(±0.001),0.0017,20 

- 

- 

Qce or Qbbe 1 

2 

1+2 

35 

72 

107 

 2 

3 

11 

ns 

0.37±0.22 

ns 

- 

- 

- 

 0 

4 

2 

0.35±0.28  

0.43±0.21* 

0.76±0.10* 

- 

0.11(±0.01) x +0.004(±0.001),0.0019,11 

0.12(±0.01) x +0.0040(±0.0004),0.0020,12 

     

           
 

1 

2 

1+2 

17 

30 

47 

 1 

1 

1 

ns 

ns 

0.51±0.26* 

- 

- 

0.95(±0.25) x +0.35(±0.15),0.35,31 

 0 

0 

0 

ns 

-0.56±0.21* 

-0.64±0.14* 

- 

-0.008(±0.002) x +0.014(±0.001),0.0018,11 

-0.009(±0.002) x +0.014(±0.001),0.0023,19 
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Figure 3.6.  Scatter plots of mass-specific beam attenuation, )LISST(m
pc  vs. (A) the scattering cross section 

(inverse of the product of apparent density and diameter, (a DA)
-1), (B) the inverse of particle diameter 

weighted by area, DA
-1, and (C) hyperbolic slope of the PSD. Modeling results of Boss et al. 2009a are shown 

for solid spherical particles (black lines) and for aggregates (grey lines) with refractive indices of 1.05+0.0001i 

(solid) and 1.15+0.0001i (dashed). Scatter plots of mass-specific backscatter, 
m
bpb  vs. (D) (a DA)

-1, (E) DA
-1, (F) 

[POC]:([POC]+[PIC]), and (G) backscattering efficiency, Qbbe (=bbp:[AC]). Scatter plots of Qbbe  vs.a  (H) and DA 

(I). Error bars on all panels denote uncertainties as derived in section 3.5.1.2. Equations and statistics of the 

fitted lines can be found in Table 3.2 and Table 3.3.  

 

The relative size independency of 
m
pc  has been explained by the process of particle aggregation 

(Boss et al. 2009a; Hill et al. 2011). When particles aggregate and grow in size, they incorporate water in 

their structure and their density decreases. When a is inversely proportional to diameter (
1 Aa D ), it 
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follows from Eq. (3.10) that 
m
pc  is independent of size, as pointed out previously by several authors (Hill 

et al. 1994; Ganju et al. 2006; Curran et al. 2007). The relationship between a and DA is shown in Figure 

3.7. Overall, a and DA are inversely related (r=-0.78±0.12,
)05.0(24.1 

 Aa D , no=140). The relationship 

is tighter in case 2 waters (r=-0.83±0.12, 
)05.0(31.1 

 Aa D , no=81) than in case 1 waters (r=0.49±0.29, 

)32.0(30.1 
 Aa D , no=35).  

 

 

Figure 3.7.  Mean particle apparent density (a) vs. mean particle diameter weighted by area (DA). The 

relationship is shown for all data (black circles), for case 1 (grey dots) and case 2 waters (black dots). Statistics 

and equations of the type-II regression lines (see section 3.5.1.3 for details) fitted to each dataset are also 

shown. Error bars denote uncertainty estimates as derived in section 3.5.1.2. 

 

Significant deviations from the Junge PSD model given in Eq. (3.4) were observed (see 

Appendix, section 3.5.2). The Junge PSD model generally overestimated number concentrations by 

up to a factor 3 at the fine (< 4 m) and large (> 60m) particle end of the PSD and underestimated 

in between. Even though the Junge model provided a relatively poor fit to the measured PSDs, the 

Junge parameter,  can be used as a rough indicator of the relative proportion between the number of 

small and large particles. No significant correlations are found between 
m
pc  or 

m
bpb  and  (see Figure 

3.6C). According to Mie theory, 
m
pc  should increase over one order of magnitude with increasing , 
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and the increase is steeper with increasing real part of the refractive index see grey lines in Figure 

3.6C from Boss et al. 2009a for a wavelength of 660 nm). If, however, particles are modeled as 

aggregates rather than solid spheres, 
m
pc  is rather insensitive to  (see black lines in Figure 3.6C from 

Boss et al. 2009a). Also shown in Figure 3.6C are the 10% highest density observations (no=16, a > 

0.45 kg L
-1

), which are thought to be least aggregated. These observations show a sharp increase in 

m
pc  with  increasing from 3 to 4 and then a plateau between 4 and 4.5. This is in accordance with 

Mie theory, although there is an offset in absolute values of 
m
pc  possibly due to differences in 

densities between the model and the in situ measurements. A mean of 3.4±0.3 and 3.5±0.4 is 

observed in case 1 and case 2 waters, respectively, which is in close agreement with the mean value of 

3.5 found by Reynolds et al. 2010 from many PSDs measured in coastal waters. 

Whereas 90% of the variability in 
m
pc  could be attributed to (aDA)

-1
, variability in 

m
bpb  was 

more difficult to discern and correlation coefficients for the parameters tested are lower (see Table 

3.2). In contrast to 
m
pc , variability in 

m
bpb  is not explained well by (aDA)

-1
, though there is a clear 

separation between case 1 and case 2 waters as shown in Figure 3.6D. Higher correlations are found 

between 
m
bpb  and particle composition, as quantified by the ratio of [POC] to the sum of [POC] and 

[PIC] (r=-0.64±0.14, Table 3.2). The robust regression line fitted to the pooled dataset (case 1 and 

case 2 waters) is shown in Figure 3.6F with equation (see also Table 3.2): 

 
 

   
)001.0(014.0

PICPOC

POC
)002.0(009.0 


m

bpb  (3.11) 

Waters dominated by inorganic particles backscatter up to 2.4 times more per unit dry mass (
m
bpb

=0.0121±0.0023 m² g
-1

) than waters dominated by organic particles (
m
bpb =0.0051±0.0023 m² g

-1
). The 

[POC] dataset comprises 47 observations in southern North Sea and northeastern Atlantic waters, with 

DA ranging between 14 and 49 m and a ranging between 0.07 and 0.86 kg L
-1

. A similar, but 

weaker, relationship (r=-0.43±0.30) is found for 22 [POM]:[SPM] observations in the southern North 

Sea, giving the following robust fit: 

 
 
 

)001.0(010.0
SPM

POM
)003.0(009.0 m

bpb  (3.12) 

Here, DA varied between 23 and 135 m, a between 0.04 and 0.39 kg L
-1

, and [POM] :[SPM] 

between 20% and 90%. [POM] and [PIM]-specific bbp varies between 0.001 and 0.05 m² g
-1

, which is 

in good agreement with the 0.001-0.025 m² g
-1 

range reported by Snyder et al. 2008 where 

[POM]:[SPM] varied between 34% and 70%. Martinez-Vicente et al. 2010 report a bbp(532nm):[PIM] 

of 0.0055±0.0012 m² g
-1

 (no=16), at the lower limit of our observations.  
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In case 1 waters, none of the variables correlated significantly with 
m
bpb  at the p<0.001 level, 

except particle size (see Table 3.2). Smaller particles with DA  around 15 m have 
m
bpb  values of 

0.0080±0.0017 m² g
-1

 and backscatter about twice as much per unit mass than larger particles with DA  

around 50 m. However, this relationship is weak (see Figure 3.6E), explaining only 14% of the 

variability. In case 2 waters no correlation with size is found, which is in accordance with the clay 

particle aggregation experiment by Slade et al. 2011. Possible causes for lower correlations in case 1 

waters are higher contributions to bbp from submicron particles which are not included in the PSD 

and/or higher measurement uncertainties compared to case 2 waters. 

Whereas no sensitivity of 
m
pc  to Qce is found (see Table 3.2), significant positive correlations 

are found between 
m
bpb  and Qbbe for case 2 waters and pooled case 1+case 2 waters with correlation 

coefficients of 0.43±0.21 and 0.76±0.10 respectively. The relationship between 
m
bpb  and Qbbe is shown 

in Figure 3.6G. In what follows we investigate the effect of DA, a, and composition on the optical 

efficiency factors, Qce and Qbbe.  

3.3.4 Investigation of the variability of attenuation and backscattering efficiency  

Correlation coefficients, regression equations, and goodness of fit statistics between the optical 

efficiency factors (Qce and Qbbe ) and potential drivers of optical variability (DA, a, and composition) 

are shown in Table 3.3. Both Qce and Qbbe are mostly driven by particle composition, with correlation 

coefficients of -0.65±0.14 and -0.69±0.12, respectively. Inorganic-dominated waters with 80% [PIC] 

have mean Qce values of 3.6±0.42 which is about twice as high as the mean Qce value of 2.29±0.42 for 

organic-dominated waters with 5% [PIC]. Variability of Qbbe covers about one order of magnitude, 

from 0.007 for organic-dominated waters to 0.067±0.018 for inorganic-dominated waters. No further 

drivers of Qce were identified. This efficiency factor did not correlate with particle size and only 15% 

of its variability could be attributed to a.  

Besides particle composition, other drivers of Qbbe were identified depending on the water 

type. In case 1 waters, 90% of the Qbbe values range between 0.004 and 0.034 with a median value of 

0.010 (see Table 3.1). Vaillancourt et al. 2004) report Qbbe factors at =620 nm between 0.001 and 

0.068, with a mean of 0.011, for 28 phytoplankton cultures with diameters from 1.4 to 35 m. This is 

in good agreement with our case 1 observations. About 85% of the variability is attributed to a (see 

Table 3.3and Figure 3.6H). The densest particle suspensions (a=0.37 kg L
-1

) have mean Qbbe values 

of 0.036, and backscatter light 20 times more efficiently than porous particle suspensions (a=0.02 kg 

L
-1

). In case 2 waters we find higher Qbbe factors, with 90% of the values ranging between 0.026 and 

0.083 and a median value of 0.049. These values correspond well with the Qbbe range of 0.046 to 

0.062 and mean value of 0.051 at =650 nm as reported by Peng and Effler 2010 for mineral particle 
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populations. A small fraction (21%) of the variability in Qbbe is attributed to particle size (see Table 

3.3). Since only particles between 2.4 and 302 m were sized and included in [AC], these results 

should be interpreted cautiously.  
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Table 3.3.  Correlations and regression analysis of optical efficiency factors (Qce, Qbbe) vs. mean particle diameter (DA), mean apparent density (a), and particle composition. 

ns: not significant (i.e., p>0.05), *: p<0.001, no is the number of observations, nx is the number of outliers removed as described in section 3.5.1.3.  

    Qce  Qbbe 

x case no  nx r equation, RMSE, MPE(%)  nx r equation, RMSE, MPE(%) 

a  1 

2 

1+2 

35 

72 

107 

 1 

0 

1 

0.44±0.35 

ns 

0.39±0.13* 

- 

- 

4.4(±0.5) x +2.0(±0.1),0.82,16 

 2 

1 

1 

0.92±0.11* 

0.32±0.19 

0.63±0.11* 

0.10(±0.01) x -0.0007(±0.0007),0.0037,19 

- 

0.14 (±0.01) x +0.004(±0.004),0.0203,42 

DA 1 

2 

1+2 

35 

72 

107 

 1 

0 

0 

ns 

ns 

ns 

- 

- 

- 

 6 

2 

0 

ns 

0.46±0.18* 

ns 

- 

0.0001 (±0.0002) x +0.04(±0.01),0.0182,21 

- 

     

           
 

1 

2 

1+2 

17 

30 

47 

 0 

1 

2 

-0.63±0.23* 

ns 

-0.65±0.14* 

-2.5(±0.8) x +4.5(±0.6),0.59,18 

- 

-1.7(±0.3) x +3.9(±0.2),0.42,10 

 4 

0 

0 

ns 

-0.59±0.19* 

-0.69±0.12* 

- 

-0.08(±0.02) x +0.09(±0.01),0.016,21 

-0.08(±0.01) x +0.083(±0.007),0.018,29 
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3.3.5 Scattering measurements as proxies for [SPM] 

When all observations are considered (no=366), regardless of whether information on size or composition 

is available, optical and [SPM] data each span over 3 orders of magnitude. The data range is slightly 

lower for bbp due to saturation of the instrument at high levels of [SPM]. Correlation coefficients and 5, 

50, and 95
th
 percentile values of mass-specific scattering properties are shown in Table 3.1. Correlations 

are similar to the values found for the more limited dataset presented in Table 3.1: bs correlates best with 

[SPM], followed by bbp and cp.  

The median 
m
pc (C-Star) values are close to the mean 

m
pb (555 nm) values of 1 and 0.5 m

2
 g

-1
 

reported by Babin et al. 2003) for case 1 and case 2 waters, respectively, whereas the 
m
pc (LISST) values 

are about 60% higher due to acceptance angle effects. McKee and Cunningham 2006) best-fit value of 

m
pc (650 nm, ac-9)=0.34±0.01 m

2
g

-1
 for mineral-rich case 2 waters in the Irish Sea is at the lower end of 

our C-Star observations. Values of 
m
bpb  by Martinez-Vicente et al. 2010 and Loisel et al. 2009 at =532 

nm are 0.0034±0.0008 m²g
-1

 (no=19) and 0.0065±0.0025 m²g
-1

 (no=13) respectively, and are at the lower 

end of our observations. 

Scatter plots of cp(LISST), cp(C-Star), bbp, and bs as a function of [SPM] for all available data are 

shown in Figure 3.8. On each plot, the least squares regression line, its 90% prediction bounds, equation, 

and statistics are also shown. For comparison, the 90% prediction bounds of the cp(676 nm, ac-9) vs. 

[SPM] data from Babin et al. 2003 are also indicated in Figure 3.8A,B, as well as the cp(650 nm, ac-9) vs. 

[SPM] data from McKee and Cunningham 2006.  The effect of the smaller acceptance angle of the ac-9 

instrument used by Babin et al. 2003 is clearly visible in Figure 3.8A.  
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Figure 3.8.  Scatter plots of (A) cp(LISST), (B) cp(C-Star), (C) bbp, and (D) bs  vs. [SPM]. Robust regression lines are 

shown in black, together with their 90% prediction bounds, equations and statistics. (A, B) For comparison, the 

90% prediction bounds of the cp(676 nm)-[SPM] data of Babin et al. 2003 and the cp(650 nm)-[SPM] data of McKee 

and Cunningham 2006. 

 

To compare the performance of cp, bs, and bbp as proxies for [SPM], data points where all optical 

properties and [SPM] were recorded were retained (no=126). Linear regression prediction models for 

[SPM] were established. All scattering properties are relatively good predictors of [SPM], with 

correlation coefficients above 0.90. Model performances were evaluated through comparison of the ratio 

of the absolute difference between [SPM] from regression and its observed value to its observed value, 
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the prediction percentile error (PPE).  Results are shown in Table 3.4. In 50% and 95% of the cases, a bbp 

-based [SPM] model agrees with the observed [SPM] within 18% and 47%, respectively. The bs-based 

[SPM] model performs best, predicting [SPM] within 41% of its true value in 95% of the cases. Boss et 

al. 2009c found bbp to be the best proxy for [SPM], followed by bs and cp. Their comparison was based on 

85 samples from the eastern and western coasts of North America with [SPM] ranging between 1.2 and 

82.4 g m
-3

. For comparison with Boss et al. 2009c, prediction percentile errors obtained from our 

observations covering the same [SPM] range are shown between brackets in Table 3.4 (no=98), as well as 

the PPE’s and correlation coefficients found by those authors. In the present study, bs was recorded on a 

subsample of the Niskin seawater sample, which might explain the better performance of the bs-based 

model compared to models based on optical properties recorded in-water.  

 

Table 3.4.  Optical properties as proxies for [SPM]. Prediction percentile error, PPE, i.e., the ratio of the absolute 

value of the difference between a type-II regression model derived [SPM] and its observed value to its observed 

value. Values between brackets for an optical model with 1.2<[SPM]<82.4 g m-3 for our dataset and for the 

dataset of Boss et al. 2009c in italic. r is the correlation coefficient with its 95% confidence interval (see section 

3.5.1.4 for details). 

  Population percentiles (%) 

PPE r 5 50 95 

cp (LISST) 0.90±0.05 4 37 283 

cp (C-Star) 
0.95±0.01 

(0.89±0.04, 0.970±0.005) 

4 

(3, 2) 

32 

(29, 16) 

107 

(59, 54) 

bs  
0.990±0.006 

(0.97±0.02, 0.962±0.008) 

1 

(1, 2) 

11 

(10, 21) 

41 

(37, 51) 

bbp 
0.987±0.006 

(0.96±0.02, 0.982±0.005) 

1 

(1, 1) 

18 

(17, 9) 

47 

(44, 36) 

 

 

3.4 Discussion and conclusion 

In this study, we show that first order variability of cp, bbp, and bs is driven by particle concentration with 

best predictions of dry mass concentration, [SPM], by bbp and bs and of surface area concentration, [AC], 

by cp. Second order variability of cp and bbp was investigated with respect to the nature of the particles in 

suspension through analysis of variability in mass-specific (
m
pc  and 

m
bpb ) and area-specific coefficients in 

response to changes in particle composition, size, and density. PSDs were derived from a LISST particle 

sizer, covering the size range 2.4-302 m. We have shown that the variability of 
m
pc  (LISST) covers 
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more than 1 order of magnitude from 0.28 to 3.45 m² g
-1

. About 90% of its variability is due to the direct 

combined effect of particle apparent density and size, (a×DA)
-1

, with the strongest contribution coming 

from a which explains 77% of the variability. The coefficient 
m
bpb  shows less variability with 90% of the 

observations varying by a factor 3-4 between 0.004 and 0.014 m² g
-1

. Factors driving variability in 
m
bpb  

are more difficult to discern although particle composition, which acts indirectly on 
m
bpb  via Qbbe, explains 

about 40% of the variability. Inorganic particles are, on average, about 2-3 times more efficient per unit 

mass (
m
bpb =0.012 m² g

-1
) than organic particles (

m
bpb =0.005 m² g

-1
).  

Carder et al. 1975 reasoned that for solid spherical particles 
m
pb  would vary less than bp:[AC]

 

because of the more or less concomitant variations in n and a. Figure 3.9 shows the variability of bpb
~

 

(related to n via Eq. (3.7)) with  a and particle composition. Significant correlations are found between 

bpb
~

 (and n) and particle composition, as quantified by (i) [POC]:([POC]+[PIC]), with r=-0.62±0.15 and 

no=48 (see Figure 3.9A), (ii) [POM]:[SPM], with r=-0.65±0.19 and no=23 (see Figure 3.9B), and (iii) 

[POC]:[SPM], with r=-0.75±0.09 in log-log scale and no=48 (see Figure 3.9D). These relationships agree 

with expectations of low n (1.02-1.10) for particles dominated by organic material (Aas 1996) and higher 

n (1.15-1.22) for inorganic particles (Woźniak and Stramski 2004). Both bpb
~

 and n are positively 

correlated with a with correlation coefficients (in log log scale) of 0.75±0.09 for 111 observations (see 

Figure 3.9C).  
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Figure 3.9. Scatter plots of the backscattering ratio,      (=bbp:cp(LISST)) vs. (A) [POC]:([POC]+[PIC]), (B) 

[POM]:[SPM], (C) mean apparent density (a), and (D) [POC]:[SPM]. Regression lines, with equations and statistics 

are shown on each panel (see section3.5.1 for details). Case 1 waters are shown in grey and case 2 waters in black. 

Error bars denote uncertainty estimates as derived in section 3.5.1.2. 

 

Since n increases with a, optical efficiency factors (Qbbe ,Qce) and a will compensate each other 

in Eq. (3.10) if they are sufficiently sensitive to n (particle composition) and if the mass-normalized 

optical property shows sufficient sensitivity to optical efficiency. The coefficient 
m
pc  shows no sensitivity 

to Qce , hence variability in 
m
pc  is almost entirely controlled by a×DA. This explains the order of 
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magnitude variability in 
m
pc  observed in this study.  In the case of 

m
bpb , Qbbe, and a  compensate each 

other (see Figure 3.6H, Table 3.2, and Table 3.3), which explains why 
m
bpb  shows less variability.  

Potential drivers of mass-specific optical properties were identified via Eq. (3.10). These are 

particle composition (via optical efficiency), a, and DA. While 90% of the variability in 
m
pc  is explained 

by variations in the denominator, a×DA, this approach was not so successful in explaining variability in 

m
bpb . Only 40-60% of the variability in 

m
bpb  could be explained, and even less in case 1 waters. Possible 

causes are uncertainties in the assessment of Qbbe × (a× DA)
-1 

due to the limited size range covered by the 

LISST PSD, and the potential inappropriateness of Eq. (3.10) for 
m
bpb  due to sensitivity to particle shape 

and internal structure.  

We recall that a and DA are derived from a PSD between 2.4 and 302 m (Eqs. 2 and 5). Mie 

theory predicts that the contribution of submicron particles, which are not included in the PSD, to bbp is 

significant and higher than for cp (Stramski and Kiefer 1991). Experimental results, on the other hand, 

show that their significance for bbp may be overstated (Roesler and Boss 2008;Dall'Olmo et al. 2009) and 

that the homogeneous spherical model is inappropriate for modeling bbp (Kitchen and Zaneveld 1992; 

Clavano et al. 2007).   

We further note that Eq. (3.10) is based on sphericity of the particles, material homogeneity 

across the PSD, and the assumption that IOPs can be related to bulk particle properties. It is known that 

nonsphericity and a heterogeneous interior of particles affect light scattered in the backward direction 

more than when integrated over all directions (Kitchen and Zaneveld 1992;Clavano et al. 2007). Hence, 

Eq. (3.10) may be inappropriate in the case of bbp.  

PSDs obtained with a LISST are affected by the assumed optical model, particularly by the 

assumed index of refraction of the particles. A priori knowledge of particle composition, however, does 

not necessarily improve the accuracy of LISST’ derived PSDs (Andrews et al. 2010). Overall, Mie-based 

models with low indices of refraction, such as Sequoia’s Mie composite model, lead to artificially high 

concentrations of small particles, whereas models assuming a high index of refraction, such as Sequoia’s 

random shape inversion model used here, do not have this artifact (Agrawal et al. 2008; Andrews et al. 

2010). A Mie model with inorganic refractive index was found to produce the most accurate results for 

PSD shape, [AC], and [VC] (Andrews et al. 2010). Theoretical models allowing for more realistic particle 

shapes and structures than homogeneous spheres are expected to help improve the accuracy of LISST 

PSDs, but concerns remain about small out-of-range particles (Andrews et al. 2010) and effects of stray 

light, particularly for surface water deployments (Reynolds et al. 2010; Andrews et al. 2011a).  
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Efforts to explain the in situ variability of 
m
bpb , or optical variability in general, may be more 

successful with acquisition of PSDs over the full range of optically significant particles, from sub-micron 

sized particles to large aggregates several mm in diameter, and inclusion of particle shape and internal 

structure information. Underwater digital holographic particle imaging sensors, such as Sequoia’s LISST-

HOLO operating over the 25-2500 m size range, have become available recently and research is 

ongoing for extension of these systems into the sub-micron range (A. Nimmo-Smith and M. Twardowski 

pers. comm.). These sensors may offer new capabilities for obtaining PSDs, including information on 

complex particle shapes and structures that will facilitate development of new models relating IOPs to 

PSDs. 

3.5 Appendices 

3.5.1 Dealing with measurement uncertainties: propagation of uncertainties and linear regression 

methods  

(published as Web Appendix to Neukermans et al. 2012, available in open access from 

http://www.aslo.org/lo/toc/vol_57/issue_1/0124a.pdf) 

All measurements are subject to measurement uncertainties, which propagate into quantities derived from 

measurements with uncertainties and which require proper treatment in regression analysis. Type-II linear 

regression methods, such as ‘least square cubic’ regression (York 1966), are designed to take into account 

these measurement uncertainties. Uncertainty estimates from repeat measurements of optical properties 

and particle concentration are given first. Next, uncertainties of derived quantities, such as mass and area-

specific IOPs, are computed via standard error propagation. These uncertainties are shown as error bars 

on scatter plots in the main text and used as input to the type-II least-squares cubic regression. The 

treatment of outliers and calculation of the correlation coefficient and its uncertainty are also described.  

3.5.1.1 REPEAT MEASUREMENTS OF IOPS AND PARTICLE CONCENTRATION 

IOPs were recorded in surface waters during several minutes resulting in about 100-200 scans for each 

IOP. Spikes in optical data are common and have been associated with rare large particles and aggregates 

(Townsend et al. 1992; Costello et al. 1995a; Slade et al. 2011). Central tendency was quantified by the 

median of all scans, which is more robust to outliers than the mean. The difference between the 75
th
 and 

25
th
 percentile value, known as the interquartile range, IQR, was taken as a measure of dispersion. The 

25
th
 and 75

th
 percentiles from n observations are obtained through interpolation of the sorted observations 

which are taken to be the 
n

1005.0 
,

n

1005.1 
,..., 

n

n 100)5.0( 
percentiles. If there are outliers in the 
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data, the IQR is more representative than the more commonly used standard deviation () as an estimate 

of the spread of the data. Optical data are presented as median values±IQR. For normally distributed data 

this interval corresponds to mean±1.35× and encompasses about 80% of the data.  

Note that other sources of uncertainty, such as those associated with instrument calibration and 

design (Boss et al. 2004 for backscattering (bbp); Leymarie et al. 2010 for attenuation (cp) and absorption) 

are not included.  

Uncertainties on area concentration, [AC], and volume concentration, [VC], were derived from 

the dispersion of raw scattering recorded by an in situ Laser Scattering and Transmissometry device 

(LISST) during a surface deployment (see Table 1). Uncertainties on dry mass concentration (i.e., 

suspended particulate matter concentration, [SPM]) and side scattering (bs) are derived from replicate 

measurements. These measurements were also median-averaged. An overview of uncertainty estimates of 

optical and concentration measurements is given in Table 3.5. 

3.5.1.2 PROPAGATION OF UNCERTAINTY 

To estimate the standard uncertainty on a function f of several variables (x1,x2,…xn) with standard 

uncertainties (x1),(x2), …(xn), the formula for first order error propagation is used (ISO 1995):  

  
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where ),cov( ji xx denotes the covariance between xi and xj and )(),cov( 2
iii xxx  , the variance of xi. 

Note that ),cov( ii xx is zero when xi and xj are independent variables and that 

)()(),(),cov( jijiji xxxxrxx  , where ),( ji xxr  denotes the correlation between xi and xj.  

Many of the derived quantities in the main text are of the form:
2
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When x1 and x2 are positively correlated, an upper bound on Eq.(3.14)  is given by:  
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An upper bound on uncertainty of apparent density, a ([SPM]:[VC]), mass-specific IOPs (
m
pc ,  

m
sb , and

m
bpb ), and area-specific IOPs (Qce, Qbse, and Qbbe) is then given by Eq. (3.15) because [VC] is positively 

correlated with [SPM] and IOPs are positively correlated with [SPM] and [AC]. The standard 

uncertainties () of [SPM], [VC], [AC], and IOPs are given by their uncertainty estimate, , shown in 

Table 3.5.  

Application of Eq. (3.13) to 
 
 SPM

VC
)( 1

A

Aa
D

Df   , where DA is the mean diameter 

weighted by area, gives the following upper bound on the uncertainty: 
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because   0),SPMcov( AD ,     0)VC,SPMcov(  , and   0)VC,cov( AD .  

 

Table 3.5.  Uncertainty estimates on optical and particle concentration measurements, and their derived quantities. 

Parameter Uncertainty 

[AC]    
 
 VC

VC
ACAC


  

bbp bbp=IQR obtained from a surface water deployment (100-200 scans) 

bpb
~
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, where inv denotes the LISST scattering inversion of  Agrawal et al. 2008 and scati is the 

raw scattering on the i
th
 ring detector of the LISST obtained during surface water 

deployment 

 

3.5.1.3 LEAST SQUARES REGRESSION FOR MEASUREMENTS WITH UNCERTAINTIES 

As in situ data is subject to measurement uncertainty, type-II linear regressions are applied. The ‘least 

squares cubic’ regression developed by York 1966, as implemented in the MATLAB routine lsqcubic.m 

by E.T. Peltzer (see the excellent web page http://www.mbari.org/staff/etp3/regress/index.htm for details) 

is used. x and y data are weighted by the inverse-square of their measurement uncertainties, (x)
-2

 and 

(y)
-2

, respectively. The line is then fit by minimizing the weighted residuals in both x and y 

simultaneously.  
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The least squares cubic regression, like the ordinary least squares method, is strongly influenced 

by outliers. To identify outliers, the MATLAB robustfit.m routine was used, which implements an 

iterative reweighted least squares procedure. In the first iteration, each point is assigned equal weight and 

regression coefficients are estimated using ordinary least squares. At subsequent iterations, weights are 

recomputed so that points farther from model predictions, ŷ , in the previous iteration are given lower 

weight. Model coefficients are then recomputed using weighted least squares. The process continues until 

the values of the coefficient estimates converge within a specified tolerance. The Talwar weighting 

function was used, assigning zero weight in the i
th
 iteration to observations satisfying: 

 t
hs

yy






1

ˆ
 (3.17) 

and a weight of 1 elsewhere. The default tuning constant t=2.795 was used. The nominator in Eq. (3.17)  

is the residual in the i-1
th
 iteration and h are the leverage values from that least-squares fit. The robust 

variance, s, is given by the median absolute deviation of the residuals from their median, normalized by 

0.6745 to make the estimate unbiased for the normal distribution. Each leverage value, hk, determines the 

influence of the observed response yk on the predicted response kŷ . For leverage values near 1 (

1
1

 kh
n

), the predicted response approximates the observed response. Observations satisfying Eq. 

(3.17) are outliers and were removed prior to least-squares cubic regression. The lsqcubic.m routine 

provides the slope and y-intercept of the regression line, with their standard deviation and the correlation 

coefficient weighted by (x)
-2

 and (y)
-2

. 

Uncertainties on particulate organic and inorganic carbon concentration, [POC] and [PIC], and on 

particulate organic and inorganic matter concentration, [POM] and [PIM], could not be assessed due to a 

lack of replicate measurements. These are thought to be small though (see for example Stramski et al. 

2008 for uncertainties on [POC]). For regressions involving these quantities, the MATLAB robustfit.m 

routine with Talwar weighting function, described previously, was applied. Note that this corresponds to 

an ordinary least squares regression applied to an outlier-free dataset.  

To assess goodness-of-fit of the regression line to the data, the well known root-mean-square-

error, RMSE, and the median relative prediction error, MPE, were computed:  
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where n is the number of observations.  

3.5.1.4 CORRELATION COEFFICIENT UNCERTAINTY ESTIMATION 

Since there is no simple statistical formula to calculate the uncertainties in the correlation coefficient, r, 

between two variables having disparate uncertainties or experimental precision, a bootstrap procedure is 

used to obtain the statistics of r (Boss et al. 2009c). This procedure involves choosing random samples 

with replacement from the dataset and their uncertainties and calculating the weighted correlation 

coefficient r using the lsqcubic.m routine. The number of elements in each bootstrap sample equals the 

number of elements in the original data set. A hundred bootstrap samples of r were taken in this way. The 

distribution of r appeared normal, so the mean and the standard deviation of r (r) are reported. The 95% 

(99.9%) confidence interval of r is r±1.96×r (r±3.29×r), from which the statistical significance (p-

value) was derived.  

When data uncertainties are unknown (e.g., for [POC] or [POM]), the Pearson’s product-moment 

correlation coefficient, r, obtained by dividing the covariance of two variables of size n by the product of 

their standard deviations, is reported. The uncertainty on r represents a 95% confidence interval, based on 

the Fisher r-to-z transformation (z=0.5×[loge(1+r)×(1-r)
-1

]) with approximate variance (n-3)
-1

. 

3.5.2 IOPs and particle size distributions 

Supplemental data and analysis from the study presented in this chapter are provided here. Attention is 

given to particle size distributions obtained with a LISST-C instrument and how deviations from the 

commonly assumed Junge power law distribution in Eq. (3.4) may affect theoretical relationships 

between IOPs and PSDs. First we attempt to investigate which particle size classes contribute most to 

variability in IOPs.  

3.5.2.1 SCATTERING PROPERTIES VS. AREA CONCENTRATION BY SIZE CLASS 

Correlations between IOPs (cp, bs, and bbp) and [AC] in each individual LISST size bin are investigated. 

As explained previously, the inner and outer ring data corresponding to the largest and smallest particles, 

respectively, were excluded. Observations are retained where all IOPs and [SPM] were recorded (no=119) 

and where the bulk of the particles were sized by the LISST (Qce < 5.7). A total of 107 data points remain, 

of which 35 are classified as case 1 and 72 as case 2 waters. Note that cp from the ac-s instrument is not 

included due to uncertainties on the effect of the steel mesh screen. Correlation coefficients between IOPs 

and [AC]i , r([AC]i), for case 1 and case 2 waters are shown in Figure 3.10A,C, while correlations with 

cumulative [AC]i ,        
    , are shown in Figure 3.10B,D.   
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For case 1 waters, all correlations are significant (p<0.05), except in the last 3 size bins 

(Di=216m to 302m) and all IOPs show similar correlation size patterns. The highest correlations are 

found at two size intervals, extending from 4-10m and from 50-130m.  A similar bimodal correlation 

size pattern for cp(LISST) has been observed previously in a New Caledonian coral reef lagoon with 

correlation peaks of 0.6 for cp(LISST) at 3-5m and at 40-100m and was explained by particle 

aggregation processes (Jouon et al. 2008). The observed bimodality in our study may partly be explained 

by covariation of [AC]i for particles in the size range 7 to 10m and particles between 50 and 70m, 

possibly caused by biological and/or aggregation processes. An example of such a covariation is shown in 

Figure 3.10A for particles of size 7.8m (size bin 9, grey lines). Covariation of [AC]i between all size 

bins is shown in Figure 3.11 for case 1 and case 2 waters. The bimodality of [AC]i  and the dependency of 

[AC]i  for 4-5 adjacent size bins are clearly visible.  

The cumulative [AC] of all particles smaller than 6.6m explains about 56% of the variability in 

the cp(C-Star), bs, and bbp and about 80% of the variability in cp(LISST), as shown in Figure 3.10B. 

Accounting for particles larger than 10 m only slightly increases the correlation between the cumulative 

[AC]i and IOPs, which is in accordance with Mie theory. 
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Figure 3.10.  Correlation coefficients of various scattering properties vs. area concentration, [AC]i, per LISST size 

class in log log space for case 1 (A) and case 2 waters (C). Correlation coefficients of various scattering properties 

vs. the cumulative [AC]i ,        
    ,  in log log space for case 1(B) and case 2 waters (D). Correlation coefficients 

between [AC]9 (Di = 7.8m) and all other [AC]i in log log space with 95% confidence intervals are shown in grey. 
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Figure 3.11.  Correlation coefficients between area concentration recorded in each LISST size bin in case 1 (left) 

and case 2 (right) waters.  

 

In case 2 waters all correlations are significant (p<0.05). Contrary to case 1 waters, the correlation 

pattern for cp is different from the bs and bbp correlation patterns. A bimodal correlation pattern is 

observed for cp(C-Star) covarying with the covariation pattern of [AC]9 for particles of size 7.8m (see 

Figure 3.10C). The highest correlation is observed with particles of size 4-10 m and a second correlation 

peak is observed for the largest particles (200-300 m). A similar behaviour is found for cp(LISST), but 

with a secondary correlation maximum at 100-200 m. The correlation patterns for bs and bbp are 

unimodal with peaks at 15 m and 50 m, respectively.  

The cumulative [AC] of all particles smaller than 6.6m explains about 72% and 55% of the 

variability in cp recorded by the C-Star and LISST instruments, respectively. An additional 30% of the 

variability in cp(LISST) is explained by accounting for the larger particles, while including larger particles 

decreases the correlation between the cumulative [AC]i and cp(C-Star) as shown in Figure 3.10D. 

Particles smaller than 6.6m explain less than 30% of the variability in bs and bbp. Accounting for 

particles up to 100 m further increases the correlation coefficients for bs and bbp up to 0.83. 

In both case 1 and case 2 waters cp(C-Star) correlates best with concentration of particles between 

4 and 10 m with a correlation size spectrum parallel to the covariation size spectrum of [AC]9 with 

D9=7.8m (see grey lines in Figure 3.10A,C), while cp(LISST) correlates better with larger particles than 

cp(C-Star). This is consistent with the study of Boss et al. 2009b) on the effect of the acceptance angle on 

cp (see his Figure 2). They show that for particles of 150 m a LISST-C instrument captures bp (similar to 
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cp at 670 nm) almost entirely, while a C-Star instrument can only detect between 2 and 45% of bp, 

depending mostly on particle absorption. For particles smaller than 10 m, the effect of the C-Star 

acceptance angle on cp(670 nm) is small, with over 80% of the true cp being measured by the instrument.  

In general, the weakest correlations are found at the extreme scattering angels. Care should be 

taken in the interpretation of these patterns because LISST measurements are affected by straylight 

(Reynolds et al. 2010; Andrews et al. 2011a) causing errors in the largest angles (smallest particles), and 

by turbulent refractive index discontinuities (Andrews et al. 2011b) causing instabilities in the smallest 

angles (largest particles). We observe the weakest correlations in the first 6 size bins in case 1waters, and 

in the first 4 size bins in the more turbid case 2 waters. Straylight contamination is indeed expected to be 

stronger in clearer waters. Reynolds et al. 2010) reported a straylight effect in the first 7 size bins of their 

LISST instrument operating at 532 nm. At this wavelength, pure water absorption is a factor 10 smaller 

than at 670 nm, so straylight is expected to be less of an issue with the LISST instrument used here. 

Further uncertainties are caused by a mismatch in the refractive index assumed for inversion and the 

refractive index of the particles in suspension, which is especially important for particles smaller than 20 

m (Andrews et al. 2010).  

Rare, large particles or aggregates cause spikes in the optical signal (Costello et al. 1995b; Briggs 

et al. 2011; Slade et al. 2011), which may be removed through median-filtering. The IQR can be used as 

an indicator for spikiness of IOP measurements. Significant (p<0.01) positive log-log correlations 

between the relative uncertainty on IOPs (=IQR(IOP):median(IOP)) and DA are observed, with correlation 

coefficients of 0.45±0.16 and 0.35±0.18 for bbp and cp(LISST), respectively (see Figure 3.12). This agrees 

with the study of Briggs et al. 2011) who found spike height in bbp signals to be affected mainly by 

particle cross sectional area. No such correlations (p>0.05) were found for cp(C-Star) or cp(ac-s), possibly 

because of their large acceptance angle and hence low sensitivity to large particles. Spikiness of IOP 

signals is also affected by sampling volume, which varies widely between instruments as shown in Table 

3.6. A WET Labs BB-9 instrument samples a volume of water 2 times smaller than that sampled by the 

LISST, so its signal is expected to fluctuate more strongly in the presence of large, rare particles.   
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Figure 3.12.  Coefficient of variation of cp(LISST) and bbp as function of mean particle size, DA.  

 

Table 3.6.  Volume of seawater sampled per scan of the beam transmissometers and the backscattering instrument 

used in this study. Path length and beam width of beam transmissometers are also given. 

Instrument Path length 

(cm) 

Beam width 

(cm) 

Volume sampled 

per scan (ml) 

LISST-C 5 1 3.9 

WET Labs ac-s 10 0.8 5.0 

WET Labs ac-9 25 0.8 12.6 

WET Labs C-Star 10 1.5 17.7 

WET Labs BB-9   ~2 

 

3.5.2.2 PARTICLE SIZE DISTRIBUTIONS 

The particle size distribution (PSD) gives the relationship between particle size and particle concentration. 

Particle concentration may be represented by particle number, cross sectional area, or volume. The 

particle number size distribution, N(D), expressed as number of particles per unit particle size per unit 

sampling volume, is defined as follows (Jonasz and Fournier 2007): 

 dDDNdN )(  (3.20) 
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where dN is the mean number concentration of particles in a given size interval [D, D+dD). Particle area 

and volume size distributions, AC(D) and VC(D), are defined analogously.  

The Junge PSD model, Nj(D), in Eq. (3.4) is the most frequently used theoretical model for the 

particle number size distribution. For such distributions and assuming spherical geometry, the PSDs by 

volume and area concentration satisfy 

 3)(VC  DD  and 2)(AC  DD  (3.21) 

Figure 3.13A, B, C shows in situ PSDs recorded with a LISST instrument by particle number, area, and 

volume concentration. Clearly, the shape of the PSDs by area and volume concentration is not well 

described by the Junge model. This has been reported before (e.g., Reynolds et al. 2010) and is not 

surprising given the diverse physical and biological interactions influencing PSDs and the diversity in 

particle shapes.  

Figure 3.13D shows the median, 5
th
, and 95

th
 percentile values of the normalized bias, NB, of 

N(D) from the Junge particle number PSD calculated as: 

 
)N(D

))-N(D(DN
DNB

i

iij

i )(   (3.22) 

for case 1 (n0=105) and case 2 (n0=149) waters. In case 2 waters, the Junge model performed reasonably 

well with NB generally below 40%, except at the fine (<4-7 m) and large (>100 m) particle ends of the 

PSD where particle number concentrations are overestimated up to a factor 5. In case 1 waters, the overall 

Junge model performance was poor, especially at the fine particle end of the PSD and in the range 50-150 

m.  Overestimation at the fine particle end could be caused by aggregation of smaller particles into 

larger flocs, but may also be LISST measurement artefacts caused by straylight or sensitivity of the 

inversion of forward scattered light to particle composition outlined above.  We note that measurements 

of the PSD using Coulter counters have also suggested a decrease in the hyperbolic PSD slope around 

particles of size 3-8 m (Kitchen et al. 1982; Jonasz 1983), but there is no consensus on whether this 

change in slope is real or due to instrumental artifacts. 

Even if the Junge model provides a relatively poor fit to the measured PSDs, the Junge parameter 

in Eq. (3.4) can be used as a rough indicator of the relative proportion between the number of small and 

large particles. For an extensive literature review of Junge PSD slopes, the reader is referred to Jonasz and 

Fournier 2007.  
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Figure 3.13.  Particle size distributions derived from a LISST-C instrument for 105 case 1 waters and 149 case 2 

waters by particle number concentration (A), particle area concentration (B), and particle volume concentration 

(C). For clarity the median, 5th, and 95th percentile values are shown by the solid and dashed lines, respectively. (D) 

Median, 5th, and 95th percentile values of the normalized bias from the Junge power law model       (see Eq. (3.4)) 

calculated as                  .   

 

3.5.2.3 RELATIONSHIP BETWEEN JUNGE PSD SLOPE AND CP SPECTRAL SLOPE FROM IN SITU 

MEASUREMENTS 

Theoretical analysis for spherical, homogeneous, non-absorbing particles with constant index of 

refraction and with an infinite size distribution modeled by a Junge power law as in Eq. (3.4) demonstrate 
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that the spectral variations of the particulate attenuation coefficient, cp, are described well by (Morel 

1973): 

 
  Acp )(   (3.23) 

where  is the hyperbolic cp spectral slope. This power law model has been shown to be quite robust to 

perturbations of its assumptions (Boss et al. 2001). Furthermore,  is linked to the Junge PSD slope  by 

(Morel 1973): 

 3    (3.24) 

A correction to this model is proposed to account for the finite size of the largest particles in the ocean 

(Boss et al. 2001):  

  65.03  e   (3.25) 

and provides a significant correction to Eq. (3.24) when large particles are abundant. This inversion 

model is adequate also for non-spherical or absorbing particles (Boss et al. 2001).  

 Here, we investigate the relationship between in situ measured  and  , and more specifically the 

effect of departures of the particle number PSD from the assumed Junge power law. Departures from the 

Junge power law were quantified by the normalized bias in Eq. (3.22). To exclude uncertainties due to 

straylight or turbulent refractive index discontinuities on LISST PSDs described above, only size classes 

5 to 29 with 4 m<Di<217 m were considered. PSDs with         
  

   
 below its 10

th
 percentile value 

were classified as Junge distributions, while PSDs with         
  

   
 higher than its 90

th
 percentile 

value were classified as “non-Junge distributions”. Spectral slopes were calculated using wavelengths 

with weak particulate absorption, i.e. between 490 and 650 nm, using a robust linear regression in log-log 

space (MATLAB robustfit.m routine with default parameters). Results are shown in Figure 3.14A. The 

model in Eq. (3.25) predicted well the PSD slope for the Jungian PSDs plotted in Figure 3.14B with 

relative uncertainties below 15% and an average of 6%. Conversely, the model overestimated  by 0.8 on 

average for non-Jungian PSDs.  

In six cases  <0 was found, plotted in Figure 3.14C. Negative cp spectral slopes have been 

observed previously (Sullivan et al. 2005; Snyder et al. 2008; Astoreca et al. 2012) and were associated 

with dominance of algal cells and breakdown of the Junge PSD. Based on Mie theory simulations for 

organic particles, negative cp spectral slopes in offshore southern North Sea waters were attributed to 

blooms of P. globosa cells of size 7 m causing a bump in the particle number PSDs (Astoreca et al. 

2012). Here we find for stations sampled in April 2010 close to the Scheldt mouth (250 and W04) 

and stations in French coastal waters near Brest (ZBLR stations) with particle number PSD shape shown 
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in Figure 3.15A and with bumps in the PSDs for various particle diameters (Figure 3.15B). An additional 

9 stations with  <0, but without PSD measurements, were identified with [Chl a] as low as 0.8 g L
-1

 

and organic particle content ranging from 55% to 94% in Belgian coastal and offshore waters and in 

French Guyana.  

 

Figure 3.14.  (A) Junge PSD slope vs. spectral slope of cp according to particulate absorption at 650 nm. Jungian and 

non-Jungian PSDs are indicated by the black and red circles. Error bars denote standard errors on the retrieved 

slopes. The PSD slope models of Boss et al. 2001 and Morel 1973 are also shown, with model boundary 

represented by the dotted line. (B) Particle number PSDs normalized at 11 m and (C) spectra of cp normalized at 

600 nm.  
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Figure 3.15.  (A) Particle number PSDs normalized at 11 m for observations with cp spectral slope <0 and (B) 

normalized bias from the Junge PSD model. 
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Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 

A substantial part of this chapter was previously published in Neukermans et al. 

2009, available in open-access from 

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-17-16-14029&seq=0.  

Atmospheric correction of high spatial resolution has been accepted for publication 

in Remote Sensing of the Environment (Neukermans et al. accepted). 
 

Abstract 

Back in 2008, a couple of years before the first geostationary ocean colour sensor was launched into space 

by the Korean Space Agency (GOCI in June 2010), we investigated the feasibility for the mapping of 

[SPM] in the southern North Sea from the geostationary SEVIRI meteorological sensor (Neukermans et 

al. 2009). Despite SEVIRI having only two broad bands in the red and NIR and a low radiometric 

resolution, [SPM] mapping was achieved with sufficient accuracy in turbid waters. Based on a one month 

dataset of SEVIRI images, which are available every 15 minutes, it was shown that SEVIRI’s [SPM] 

maps were highly correlated with [SPM] maps from the polar-orbiting MODIS Aqua ocean colour sensor 

and that high frequency dynamics of [SPM] could be detected on cloud-free days. Follow-up work 

(Neukermans et al. accepted) extended the work to a two year archive of SEVIRI North Sea imagery to 

investigate diurnal variability of suspended particles. The atmospheric correction, uncertainty estimation, 

and the spatial resolution of SEVIRI products were further improved.  

This chapter combines the atmospheric correction work of both papers, while the diurnal 

variability of suspended particles is the subject of Chapter 5. More specifically, the objectives of this 

chapter are to (1) describe the SEVIRI radiometer and its characteristics, (2) introduce the necessary 

definitions and notation used in atmospheric correction, (3) estimate the uncertainty of marine reflectance 

products, including uncertainties due to atmospheric correction and sensor digitization, and (4) cross-

validate SEVIRI’s high and low resolution marine reflectance maps with MODIS Aqua. The limitations 

of the atmospheric correction are discussed in detail and the potential for extension to SEVIRI full disk 

imagery, which covers about one third of the globe, is considered.   
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4.1 Introduction 

Polar-orbiting multispectral ocean colour sensors such as the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Medium Resolution 

Imaging Spectrometer (MERIS) provide two-day coverage of the global ocean and coastal zones since 

their respective launches in 1997 and 2002. These sensors have become well-established sources 

(McClain 2009) of concentration of chlorophyll a, Chl a, and suspended particulate matter, SPM, and 

there has been considerable progress towards many new products including particulate and dissolved 

organic and inorganic carbon (Stramski et al. 1999; Vantrepotte et al. 2011), particle size distribution 

(Loisel et al. 2006), phytoplankton species composition (Alvain et al. 2008), vertical light attenuation 

(Stumpf et al. 1999), turbidity (Stumpf et al. 1999; Woodruff et al. 1999; Nechad et al. 2009) etc. During 

the last decades the spectral and spatial resolution of space-borne ocean colour sensors has improved, 

from multispectral to hyperspectral (e.g., Hyperspectral Imager for the Coastal Ocean, launched in 

September 2009), and from 1 km nadir pixel resolution down to less than 100 m in coastal areas. The 

quality and quantity of atmospheric corrections (IOCCG 2010) and bio-optical algorithms (McClain 

2009) has also significantly progressed.  

Even though further progress can still be expected for polar-orbiting sensors in terms of sensor 

design and processing algorithms, their sampling frequency, typically once per day, is insufficient, 

especially in coastal waters, where physical and biogeochemical processes show variability at time scales 

shorter than the daily sampling frequency of polar-orbiting sensors. For example, in situ measurements 

have shown that [SPM] can vary by a factor two or more during the day due to horizontal advection 

and/or vertical resuspension forced by tides or wind events (Eisma and Irion 1988; Thompson et al. 

2011). Hence, long term data series from polar-orbiting sensors are affected by aliasing that can only be 

treated indirectly (e.g., Stumpf et al. 1993). Furthermore, cloudiness and/or sun glint reduce data 

availability from typically once per day (e.g. mid-latitude MODIS imagery) to significantly less. Remote 

sensing applications, such as harmful algae bloom detection (Stumpf et al. 2003b; Tomlinson et al. 2004) 

have critical vulnerability to such data gaps.  

Ocean colour remote sensing from geostationary sensors has the potential to overcome or 

mitigate these limitations: the availability of ocean colour data would significantly increase during 

periods of scattered clouds (Mazeran and Meskini 2008) and the much higher sampling frequency, 

typically 1 per hour or higher, allows to observe the diurnal or tidal cycles of optical and biogeochemical 

processes of the open ocean and coastal waters. Geostationary ocean colour data offer possibilities to 

study the coupling between physics and biogeochemistry, to quantify fluxes and study transport of carbon 

and sediment. Assimilation of geostationary ocean colour data into ecosystem models may improve 

modelling results and eutrophication studies. For example, the availability of light to marine organisms 
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may vary rapidly in coastal environments due to rapid changes in water turbidity. In light-limited 

ecosystems such as the Channel and Southern Bight of the North Sea, this unrepresented high frequency 

variability of underwater light may be a cause of discrepancy between the modelled and observed timing 

of the phytoplankton spring bloom (Lacroix et al. 2007). 

The Geostationary Ocean Colour Imager (GOCI, Faure et al. 2008), launched by the Korean 

Space Agency (KORDI) in June 2010, is the first ocean colour sensor in geostationary orbit. It provides 

hourly multispectral imagery of waters surrounding the Korean peninsula at a spatial resolution of 500 m. 

More are likely to follow, as other national and international space agencies also have plans to launch 

geostationary ocean colour sensors. The European Space Agency (ESA), for example, has commissioned 

studies on user requirements and some concept design in the framework of Geo-Oculus. A proposal to 

host a GOCI-like sensor on a geostationary telecommunication satellite has been submitted to ESA 

(Antoine et al. 2011). The proposed Hosted Ocean Colour Imager, HOCI, would provide hourly multi-

spectral imagery of the European seas and adjacent open ocean from late 2014. The American Space 

Agency, NASA, is preparing the Geostationary Coastal Ocean and Air Pollution Events (GEO-CAPE) 

mission, planned to be operational by 2020 (NRC 2007).  

The first geostationary satellite, Syncom 2, was launched in 1963 for the purpose of 

telecommunication. Currently, over 300 geostationary satellites are orbiting the globe at an approximate 

altitude of 36000 km. These satellites have revolutionized global communications, television 

broadcasting, and weather forecasting. For optical oceanography, a similar revolution can be expected 

from geostationary ocean colour satellites. While we eagerly await the coming of geostationary ocean 

colour satellites covering the rest of the world’s seas, the potential of geostationary meteorological 

sensors for marine applications can be tested.  

The  Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the METEOSAT 

Second Generation (MSG) weather satellite platform, for example, has a few broad spectral bands in the 

VIS and NIR, which may be all that is needed to detect the concentration of suspended particles in turbid 

waters, as shown by Stumpf and Pennock 1989 for the Advanced Very High Resolution Radiometer 

(AVHRR). [SPM] in the coastal waters of the southern North Sea is high and known to change rapidly 

due to tidal and wind-driven resuspension of sediment particles, and thus offers a good test area for 

mapping of [SPM] (and covarying parameters such as turbidity or light attenuation, see Chapter 5) with 

SEVIRI. The main concerns are the viewing geometry specific to geostationary imagery at high latitudes, 

which could increase uncertainties in atmospheric correction, and the sensor’s low radiometric resolution. 

After all, the sea is a much darker target than the bright clouds it was designed to monitor.  
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This study allows to investigate some of the concerns (much higher viewing angles at latitudes or 

longitudes far from the sub-satellite point) and advantages (high temporal resolution, stable viewing 

geometry) specific to satellites in geostationary orbit.  

4.2 Materials and methods 

4.2.1 The SEVIRI radiometer 

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) radiometer (Aminou et al. 1997) was 

primarily designed to support operational meteorology applications. It has 4 bands in the wavelength 

range 0.3-1.8 m, termed “solar channels”, and 8 thermal infrared bands. The spatial resolution at nadir of 

all bands is 3 km, except for the High Resolution Visual broadband channel (HRV) where the spatial 

resolution at nadir is 1 km. At 52°N the spatial resolution  in the solar channels is 3 km (E-W direction) x 

6.5 km (N-S direction) and 1 km (E-W direction) x 2km (N-S direction) for the HRV band. The nominal 

coverage is shown in Figure 4.1. Full-disk imagery is available in near real time every 15 minutes and 

operationally processed to level 1.5 (Muller 2010), i.e. corrected for radiometric and geometric non-

linearity.  

 

 

Figure 4.1. Spatial extent of SEVIRI full disk imagery and viewing angle in degrees of SEVIRI on the MSG2-

Meteosat9 platform located at 0°W (image kindly provided by Nicholas Clerbaux). 
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The normalized spectral response functions, (), for the SEVIRI solar channels which are of 

interest here are shown in Figure 4.2. Two spectral bands were considered for aerosol correction of the 

VIS06 band (with central wavelength: m 635.00  , range: 0.56-0.71m): VIS08 ( m 810.00  , 

range: 0.74-0.88m)  and NIR16 ( m 640.10  , range: 1.50-1.78m).  

 

 

Figure 4.2.  Normalized spectral response, (), of the SEVIRI solar channels (source: Govaerts and Clerici 2004) 

and one-way atmospheric transmittances for water vapor, ozone and molecular scattering for a vertical 

atmospheric path and the US standard atmosphere model simulated with LOWTRAN. 

 

SEVIRI has been operational since 2004, giving full disk imagery images every 15 minutes from the 

Meteosat-8 platform at 3.5 °W. In May-June 2007, Meteosat-8 was replaced with Meteosat-9 and 

Meteosat-8 was re-orbited to 9.5° E to deliver reduced spatial coverage SEVIRI imagery over Europe at 

an even higher temporal resolution of 5 minutes, the so called “rapid-scan service” (RSS). An overview is 

given in Table 4.1. Examples of full disk imagery and RSS imagery is shown in Figure 4.3.    

 

Table 4.1.  Operational service of SEVIRI on Meteosat-8 and Meteosat-9 satellite platforms. 
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Figure 4.3.  (A) SEVIRI Meteosat-9 full disk VIS06 image, (B) SEVIRI Meteosat-8 Rapid Scan Service (RSS) image.  

 

4.2.2 Study area: SEVIRI subscene and viewing angles  

The northern boundary of the study area corresponds to a maximum SEVIRI satellite viewing zenith 

angle of 64° and is shown in Figure 4.4. Two-way air mass, defined as: 

 
1

0
1 )cos()cos(   vm  (4.1) 

where v  is the viewing zenith angle and 0  is the sun zenith angle, ranges between 3.4 and 5.5 during 

the day on June 15
th
 2008 for a location at the top of this subscene (see Figure 4.5A). In winter, minimum 

air mass at that location is 7.7 and 5.9 for a location in the middle of the scene (see Figure 4.5B), with 



Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 101 

 

 

Rayleigh reflectances in the VIS06 band much larger than the marine signal, which is of the order 0.01-

0.1. 

The area of the southern North Sea and Western Channel chosen for this study is a relatively 

shallow sea region, mostly less than 50 m deep, and is subject to strong semi-diurnal tidal currents with 

typical amplitude of 1 m s
-1

. Suspended particulate matter, SPM, originates from a variety of sources 

(Eisma 1987) including river discharges, inflow from the Atlantic Ocean (Fettweis et al. 2007), coastal 

and sea bottom erosion, atmospheric dust, primary production and dredging and mining operations. In the 

shallower near shore regions, tide and wind resuspension of bottom sediments is particularly important 

giving high (>100 mg L
-1

) and highly fluctuating SPM concentrations. The dynamic coastal waters of the 

southern North Sea are thus an ideal test case for a ‘crude’ sensor such as SEVIRI in geostationary orbit. 

The deeper offshore waters have generally much lower concentrations (< 1 mg  L
-1

). Most of the region is 

vertically well-mixed except for some haline stratification along the Dutch coast and some thermal 

stratification in summer at the Northern limit of the domain (Otto et al. 1990). Optical remote sensing of 

SPM in this region has previously been achieved from a range of sensors including AVHRR (Van 

Raaphorst et al. 1998), CZCS (Doerffer and Fischer 1994), SeaWiFS (Eleveld et al. 2004), MODIS and 

MERIS (Nechad et al. 2010).  

 

 

Figure 4.4.  Viewing angle of SEVIRI (on MSG2-Meteosat9 platform located at 0°W) over Western-Europe. The 

white box delimits the study area, for which the northern limit corresponds to a 64° satellite viewing angle. The 
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white dots are the locations for which daily variability of airmass and Rayleigh scattering are presented in Figure 

4.5.  

 

The atmospheric correction approach was first tested on a one-month dataset of MSG1/Meteosat8 

SEVIRI imagery obtained in June-July of 2006 (Neukermans et al. 2009). Following the successful 

outcome of that study, a two year MSG2/Meteosat9 SEVIRI archive obtained in 2008-2009 was 

processed. 

 

 

Figure 4.5.  Variability of Rayleigh reflectance in the VIS06 band (grey lines) and total airmass (black lines) on (A) 

15th June 2008 and (B) 15th December 2008 for the middle (dashed lines) and at the top (solid lines) of the SEVIRI 

subscene in Figure 4.4. 

 

4.2.3 Definitions and general approach 

At a wavelength , the total radiance at the top-of-atmosphere (TOA) sensed by a satellite sensor, 

)(TOA
totL , can be decomposed into radiances due to different processes occurring in the atmosphere, in 

the water, or at the air-water interface: 

 )()()()()()()(  TOA
w

TOA
g

TOA
wc

TOA
ra

TOA
a

TOA
r

TOA
tot LLLLLLL    (4.2) 
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where )(TOA
rL  and )(TOA

aL  are the wavelength dependent radiances at TOA (units: Wm
-2

 sr
-1

 m
-1

) due 

to scattering by air molecules (Rayleigh scattering) and aerosols, respectively, )(TOA
raL  denotes 

Rayleigh-aerosol interactions, )(TOA
wcL  for foam and white cap radiance, and )(TOA

gL  denotes the 

sunglint radiance due to specular reflection of sunlight. We note that the )(TOA
rL , )(TOA

aL , and 

)(TOA
raL  terms also include reflected sky radiance. The marine radiance at TOA, denoted )(TOA

wL , is 

related to the upwelling radiance just above the sea surface, )(0 
wL , via the sea-sensor atmospheric 

transmittance )(vT  (v for ‘viewing’):  

 
)(

)(
)(

0 







w

TOA
w

v
L

L
T  (4.3) 

It is assumed that the effects of atmospheric gases, aerosols, and air molecules on )(vT  can be treated 

separately such that:  

 )()()()(  g
v

a
v

r
vv tttT   (4.4) 

where )(r
vt ,

 
)(a

vt , and )(g
vt  

denote the transmittance due to air molecules, aerosols, and 

atmospheric gasses, respectively.  

Normalization of detected by illuminating light yields reflectance, .  In this context radiances at 

TOA are normalized by the downwelling irradiance at TOA, )(TOA
dE  (units: Wm

-2
 m

-1
) to give 

reflectance at TOA (dimensionless): 

  wgwcraartotx
E

L
TOA
d

TOA
xTOA

x ,,,,,,    with 
)(

)(
)( 




  (4.5) 

The marine reflectance,
 

)(0  
w , also termed ‘water-leaving reflectance’ (e.g., by Doerffer and Schiller 

2007), carries useful information on seawater constituents and is defined as: 

 
)(

)(
)(

0

0
0









 

d

w
w

E

L
 (4.6) 

where )(0 
dE  is the above-water downwelling irradiance (units: Wm

-2
 m

-1
), which is related to

)(TOA
dE via the total atmospheric transmittance from sun to sea:  
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

  (4.7) 

Like )(0 T  in Eq. (4.4), )(vT is decomposed into its Rayleigh, aerosol, and gas contributions, )(0 rt ,
 

)(0 at , and )(0 g
t , respectively. 

The radiance sensed by a sensor’s spectral band B with spectral response function )(  is the 

spectral integral of )(TOA
totL over the band width:  

   dLTOA
tot )()(  (4.8) 

Application of spectral band-integration to all radiance terms in Eq.  (4.2) and normalization of each term 

by the band-integrated )(TOA
dE ,  dETOA

d )()( , gives the decomposition of total reflectance at 

TOA for band B: 
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where  
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The band-integrated above-water marine reflectance is: 
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which gives, after substitution of Eq. (4.6) and (4.7):  

 





dET

dET

TOA
d

TOA
dwB

w
)()()(

)()()()(

0

0
0)(0






   (4.12) 

Now
)(BTOA

w  can be re-written, using Eqs. (4.3), (4.6), and (4.7): 

 

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d
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


  (4.13) 

 

For relatively narrow spectral bands away from strongly varying atmospheric absorption Eq. (4.13) 

simplifies to
)(0)()()( B

w
B

o
B

v
BTOA

w TT    so that Eq. (4.9) can be written:  
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BTOA

tot TT    (4.14) 

This simplification is valid for sufficiently narrow and appropriately chosen spectral bands such as those 

of ocean colour sensors (MERIS, MODIS, SeaWIFS etc.) and the SEVIRI VIS06 and VIS08 bands. 

However, for a very broad spectral band such as SEVIRI’s HRV band, this simplification may no longer 

be valid since each component of the convolution in the spectral integral in Eq. (4.13)  may show strong 

spectral variability as shown in Figure 4.6. The SEVIRI HRV band is therefore treated separately in 

section 4.2.6.  

 

Figure 4.6.  Normalized spectral response, () of SEVIRI’s VIS06, VIS08, and HRV bands, and one-way total ( 0T ) 

and Rayleigh transmittance, 
rt0 ,  for a vertical atmospheric path and the US standard atmosphere model obtained 

from LOWTRAN simulations. Spectrum of solar irradiance at TOA from Thuillier et al. 2003. Thin lines represent 

above-water marine reflectance spectra, )(0  
w  , recorded with above-water TriOS Ramses radiometers in the 

southern North Sea between 2001 and 2010. The reader is referred to Ruddick et al. 2006 for details on the 

seaborne measurement protocol.  
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4.2.4 SEVIRI solar channels calibration 

Total reflectance at TOA for SEVIRI bands is obtained through calibration of the SEVIRI level 1.5 data. 

Count data ( K ) are transformed into total radiance at TOA, 
TOA
totL  (units: W m

-2 
sr

-1 m
-1

), by applying the 

appropriate calibration coefficients (
fc ) and offset values ( 0r ) (Govaerts and Clerici 2004):  
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  (4.15) 

where 
)(

0
B  is band B’s central wavelength. 

)(BTOA
totL is then converted to total reflectance at TOA 

(Govaerts and Clerici 2004): 
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totBTOA

tot
EA

Ld
  (4.16) 

where d is the Sun-Earth distance in astronomical units (AU), 0 is the sun zenith angle calculated from 

position, date and time, 
)(

0
BTOA

E is the extraterrestrial solar irradiance at TOA (units: Wm
-2
m

-1
) for band 

B at 1AU. Calibration correction factors,
)(

0
B

A , for the Meteosat9 SEVIRI VIS06 and VIS08 channels of 

0.92 and 0.94 are given by  Ham and Sohn 2010 and Sohn (unpublished results), respectively. Correction 

factors for Meteosat8 VIS06, VIS08, and NIR16 bands can be found in Nicolas et al. 2006, as reported in 

Neukermans et al. 2009. An overview of these coefficients and signal-to-noise ratios (SNR) for SEVIRI’s 

solar channels are given in Table 4.2. For comparison, ocean colour sensors such as MODIS and MERIS 

have SNRs of 1000-1500 in the 0.6-0.7 m range, and of 500-1000 in the 0.7-0.9 m range.  

 

Table 4.2.  Central wavelengths, 
)(

0
B , extraterrestrial solar irradiance, 

)(
0

BTOA
E , Signal-to-Noise ratio (SNR), 

calibration coefficients (Govaerts and Clerici 2004) and correction factors, 
)(

0
B

A
 
(Ham and Sohn 2010; Sohn 

unpublished results) for the SEVIRI Meteosat9 solar channels in 2008-2009. 
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B
A  SNR 

VIS06 0.635 0.020135 

0.020419* 

-1.026910 

 -1.041374*  

1618.0 0.92 610 

VIS08 0.810 0.025922 -1.32202  1113.0 0.94 70 
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0.026168*  -1.334553* 

NIR16 1.640 0.022258 

0.022322* 

-1.135183 

-1.138432* 

231.9 n.a. 11 

HRV 0.750 0.029499 

0.029934* 

-1.504429 

-1.526639* 

1403.0 n.a. 2.5 

* from December 9 2008, 12:00 UTC onwards, n.a.: not available 

 

4.2.5 Atmospheric correction of SEVIRI VIS06 

In the case of SEVIRI, Eq. (4.14) can further be simplified. Sun glint reaches the sensor only for viewing 

zenith angles ( v ) close to the sun zenith and for relative azimuth angles,
 
 , between sun  0 ) and 

sensor ( v ) close to 180°. For the SEVIRI North Sea scene   ranges between 3° and 100° during the 

day, clearly outside the directions contaminated by sun glint. Therefore, 
TOA
g  can be dropped.

TOA
wc  is 

small for wind speeds lower than 10 m s
-1

 and largely corrected for in the aerosol correction for maritime 

aerosols (Gordon and Wang 1994). The difference between the spectral variation of white caps (Frouin et 

al. 1996) and aerosols gives an uncertainty on the marine reflectance of maximum 0.0009 for wind speeds 

of 10 m s
-1

. The Rayleigh-aerosol interaction term,
TOA
ra  can be included in

TOA
a  so that Eq. (4.14) 

becomes: 

 
)(0)(
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B
v

BTOA
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r

BTOA
tot T    (4.17) 

where 
)()()(

,0
B

v
B

o
B
v TTT   is the two-way sun-sea-sensor transmittance in spectral band B. The two-way 

transmittances for atmospheric gases, air molecules and aerosols are defined analogously.   

 

4.2.5.1 RAYLEIGH AND GAS CORRECTIONS 

The total reflectance received by the sensor is first corrected for two-way gas and Rayleigh 

transmittances, assuming that marine aerosols are generally low in the atmosphere. This gives, after Eq. 

(4.17): 
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where 
r

v
g

vtt ,0,0


  . For notational simplicity, the prime symbols, B, and TOA notation are dropped 

hereafter. The gaseous absorption correction is performed using the Msixs software package based on 6S 
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code (Vermote et al. 1997). This allows the computation of the transmittances of ozone (O3) and water 

vapour (H2O) in the VIS06 and VIS08 bands and for carbon dioxide (CO2) and methane (CH4) gases in 

the NIR16 band.  

 The correction for absorption by H2O, which is strong in the VIS08 band (see Figure 4.6) and 

varies over the day, is done using the precipitable water content (PWC) obtained at 6:00, 12:00, and 18:00 

UTC from the National Weather Service's National Centers for Environmental Prediction (NCEP) 

meteorological data. Data are linearly interpolated to give PWC (units: kg m
-2

) every 15 minutes. Ozone 

column content is obtained from AIRS (1.0° x 1.0° daily Level-3 product) through NASA’s Giovanni 

application, and daily averaged over the study area. CO2 and CH4 concentrations are obtained from 

climatological values for these gas vertical profiles (mid-latitude summer atmospheric model, 

McClatchey et al. 1972). Then, the 6S software is used to simulate the transmittances of these two gases 

for different airmasses. Finally a second order polynomial interpolation of the transmittances as a function 

of airmass is applied to derive the CO2 and CH4 transmittances for SEVIRI. 

The Rayleigh scattering component, r , and two-way Rayleigh transmittances, 
r

vt ,0 are calculated 

from viewing and illumination geometry ( v , 0 , v , 0 ), atmospheric pressure, and wind speed using 

lookup tables (LUTs) constructed the Msixs software package based on 6S code (Vermote et al. 1997). 

Atmospheric pressure and wind speed are spatially averaged over the study area from 6-hourly NCEP 

atmospheric pressure data. A daily mean pressure is computed, while a temporal nearest neighbour is 

taken for wind speeds. The Rayleigh and gas corrected reflectance is defined as: 

 
 0

,0 w
a

vartotc t   (4.19) 

4.2.5.2 AEROSOL CORRECTION 

To obtain 
0

w  in the VIS06 band, denoted
)6.0(0

w , from Eq. (4.19), the aerosol reflectance and two-way 

aerosol transmittance,
)6.0(

a  and 
)6.0(

,0
a

vt , remain to be computed. In the clearest waters, the water 

reflectance is negligible, and a can be computed. For more turbid waters, further knowledge or 

assumptions are required regarding the spectral behaviour of a , which varies with aerosol size and 

refractive index. Two approaches are considered using either the VIS08 or NIR16 band to correct for 

aerosol scattering. It is shown (see Appendix, section 4.5.1) that the VIS08 band gives the lowest 

atmospheric correction uncertainties on the desired
)6.0(0

w . Therefore, the atmospheric correction of 

VIS06 using VIS08 for aerosol correction is described hereafter. 

The relations and unknown quantities for the VIS06 and VIS08 bands are, after Eq. (4.19) 
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)6.0()6.0()6.0()6.0(  w

a
vartotc t   (4.20) 

 
)8.0(0)8.0(

,0
)8.0()8.0()8.0()8.0(  w

a
vartotc t 

 
(4.21) 

where 
)6.0(

c and 
)8.0(

c  are known for each image pixel and the other six parameters (
)6.0(

a ,
)8.0(

a ,

)6.0(
w ,

)8.0(
w ,

)6.0(
,0

a
vt , and 

)8.0(
,0

a
vt ) are unknown.  

 LUTs for maritime aerosols were created using 6S software (Vermote et al. 1997): (1) LUT(a) 

giving
 a as a function of viewing and illumination geometry, spectral band, and aerosol optical 

thickness, a. (2) LUT(ta) giving aerosol transmittances as a function of zenith angle, spectral band, and 

a. The two-way aerosol transmittances, 
)6.0(

,0
a

vt  and 
)8.0(

,0
a

vt , can thus be obtained from viewing and 

illumination geometry and a via LUT(ta), where a in turn can be obtained from “inversion” of LUT(a) 
 

as follows: 

(1) compute a corresponding to a of 0.01, 0.5, and 1 from LUT(a) 

(2) linearly interpolate the observed a over the aerosol reflectance range obtained in the previous 

step to obtain the corresponding a. Values outside this range are considered clouds and masked. 

 

4.2.5.3 ATMOSPHERIC CORRECTION ASSUMPTIONS 

There are 6 unknowns with 4 equations: Eqs. (4.20) and (4.21),  )6.0(1)6.0(
,0 )LUT()(LUT aaa

a
v tt    , 

and  )8.0(1)8.0(
,0 )LUT()(LUT aaa

a
v tt    . To solve these, further assumptions regarding the spectral 

shape of aerosols and marine reflectances are needed, in analogy to the assumptions made previously for 

the SeaWiFS 765nm and 865nm bands (Ruddick et al. 2000):  

(1) The VIS06:VIS08 band ratio of marine reflectances is constant in space and time: 

 
)8.0(0

)6.0(0






w

w




  (4.22) 

(2) The VIS06:VIS08 band ratio of aerosol reflectances at TOA is spatially homogeneous over the 

SEVIRI scene: 

 
)8.0(

)6.0(

a

a




   (4.23) 

 

The marine reflectance ratio,  , is calibrated from an extensive archive of hyperspectral in situ above-

water radiance and irradiance measurements collected between 2001 and 2010 with a set of TriOS 
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Ramses radiometers. From a total of 840 measurements, 67 measurements were selected with clear skies, 

low wind speeds, and small deviation from the time-averaged mean reflectance at 780 nm (for details see 

Ruddick et al. 2006). The 67 remaining measurements of )(0 
wL and )(0 

dE were band-integrated 

according to Eq. (4.11) to give
)8.0(0

w and
)6.0(0

w , shown in Figure 4.7.  The parameter  is calibrated 

via least-squares regression through the origin of 47 reflectance measurements for which 
)8.0(0

w <0.011.  

The least squares estimator of the slope of a line of the form y=ax through a cloud of points (xi,yi) 

is: 

 





2
ˆ

i

ii

x

yx
a  (4.24) 

with standard deviation: 

 
 
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xn
S  (4.25) 

Application of Eqs. (4.24) and (4.25) to the (
)8.0(0

w ,
)6.0(0

w ) reflectance measurements gives: 

 16.009.6   (4.26) 

The relationship between 
)8.0(0

w and 
)6.0(0

w becomes non-linear for higher reflectances, as 

shown in Figure 4.7. The very turbid water points represented by the grey dots in Figure 4.7 generally 

correspond to near-shore waters less than 3 km from the Belgian coast, which are not mapped by SEVIRI 

due to its coarse spatial resolution. The limitations of the model for 
)8.0(0

w  exceeding 0.011 are 

discussed in section 4.4.1.  
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Figure 4.7.  Marine reflectances in the VIS06 and VIS08 bands obtained from optimal in situ above-water marine 

reflectance measurements collected between 2001 and 2010 in the southern North Sea waters. The parameter 

is calibrated through linear regression (black line) of 47 reflectance measurements for which
)8.0(0

w <0.011. 

 

An estimate of  is obtained on an image-by-image basis from the VIS06:VIS08 band ratio of  

Rayleigh and gas corrected reflectances,
)(B

c , over clear waters pixels where 0)(0  B
w . The two year 

SEVIRI archive was first processed using the clear water pixel areas described in Neukermans et al. 2009 

and shown as black rectangles in Figure 4.8. Afterwards, clear water pixels were redefined as those pixels 

having SPM below 3 mg L
-1

 for 95% of the observations in 2008-2009 and are outlined by the red 

polygons in Figure 4.8. The newly defined clear water areas exclude the turbid water plume that can be 

seen in Figure 4.8 and are more evenly distributed throughout the study area.  

 Neukermans et al. 2009 estimate  and its uncertainty,  , from the mean and standard 

deviation of 
)6.0(

c : 
)8.0(

c  for these pixels, assuming that these ratios are normally distributed. An 

example histogram of 
)6.0(

c : 
)8.0(

c  
values is shown in Figure 4.9(a). Besides the need for the

)6.0(
c : 

)8.0(
c  

to be approximately normally distributed, this assessment of   is sensitive to data outliers and 

noise. Especially the noise of the ratios may be large for SEVIRI due to digitization effects (quantified in 

section 4.2.7.2). Alternatively, as implemented in Neukermans et al. accepted,  can be assessed from the 
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slope of the
)6.0(

c  vs. 
)8.0(

c regression line as shown in Figure 4.9(b). An iteratively reweighted least 

squares technique using the MATLAB robustfit.m routine is applied, where  is estimated from the 

standard error of the slope estimate. This approach minimizes effects of outliers and data noise and is 

independent of the normality of the reflectance ratio distribution. Moreover, the offset of the regression 

line reflects small uncertainties in the calibration of the SEVIRI sensor and the Rayleigh and gas 

corrections, and allows to correct for these uncertainties through subtraction of the offset from 
)6.0(

c . 

Values of this offset typically lie between -0.0051 and 0.0126 (5
 
and 95

th
 percentiles) with a median of 

0.0028 for 15384 observations. This procedure is effectively a vicarious calibration of the VIS06 band 

performed on an image-by-image basis without the need to assume a temporally constant aerosol type. 

The effectiveness of this procedure to correct for uncertainties in the calibration of VIS06 and VIS08 

bands is investigated in the Appendix, section 4.5.2.  

 

 

Figure 4.8.  Identification of clear water pixels from which the VIS06:VIS08 band ratio of aerosol reflectance,, is 

obtained. The black rectangles delineate the clear water pixels identified by Neukermans et al. 2009, while the red 

polygons delineate the revised clear water pixels. Background: SPM (in mg L-1) map from SEVIRI on February 11, 

2008 at 10:45 UTC. The location of the Cefas SmartBuoys at Warp Anchorage (TH1), West Gabbard (WG), and 

Dowsing (D), used in Chapter 5 is also indicated. 
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Figure 4.9.  Example of the estimation of the VIS06:VIS08 band ratio of aerosol reflectances, , on April 9, 2008 at 

09:45 UTC from the Rayleigh and gas corrected reflectances, c , in the VIS06 and VIS08 bands of clear water 

pixels via (a) the mean and standard error of 
 

)6.0(
c : 

)8.0(
c values, shown as the normal fit to the histogram, or 

(b) via linear regression of
)6.0(

c  vs.
)8.0(

c , with uncertainties on regression coefficients given by their standard 

error. N is the number of pixels. 

 

4.2.5.4 SOLVING FOR MARINE AND AEROSOL REFLECTANCES 

Using Eq. (4.22), we rewrite: 
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(4.27) 

defining  as the VIS06:VIS08 ratio of two-way aerosol transmittances: 

 
)8.0(
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)6.0(
,0

a
v

a
v

t

t
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(4.28) 

Substitution of Eqs. (4.27), (4.28), and (4.23) into Eqs.(4.20)-(4.21) gives: 

 
)6.0()8.0(0)8.0(

,0
)8.0(

cw
a

va t   
 (4.29) 

 
)8.0()8.0(0)8.0(

,0
)8.0(

cw
a

va t   

 
(4.30) 

which can be solved by substitution to give: 
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(4.34) 

The parameter remains unknown until after computation of the aerosol reflectances from Eqs. (4.31) and 

(4.33). Therefore, a two-pass algorithm was used: first setting 1  and solving Eqs. (4.31) and (4.33), 

yielding a second approximation of   which is then used to solve Eqs. (4.31)-(4.34).  

 

4.2.5.5 ATMOSPHERIC CORRECTION PROCESSING STEPS 

The atmospheric correction is schematically depicted in Figure 4.10 and can be summarized as follows: 

1. Calibrate SEVIRI level 1.5 VIS06 and VIS08 data to obtain 
TOA
tot  in VIS06 and VIS08 SEVIRI 

channels from Eq. (4.16) 

2. Correct for gaseous absorption, Rayleigh transmittance, and Rayleigh scattering using Eqs. 

(4.18)-(4.19). 

3. Compute the calibration parameter   (Eq. (4.23)) from the regression slope of Rayleigh and gas 

corrected reflectances in the VIS06 and VIS08 bands over clear waters pixels in every scene, and 

estimate  as the standard error of the slope estimate. 

4. Compute
)8.0(

a  and
)6.0(

a  from Eqs. (4.31) and (4.33), first setting 1   

5. Get 
)8.0(

a and 
)6.0(

a from 
)6.0(

a  and 
)8.0(

a , respectively, through linear interpolation of a  on 

[0.001, 0.05, 0.5] as described in section 4.2.5.2.  

6. Get 
)8.0(

,0
a

vt and 
)6.0(

,0
a

vt  from LUT(ta) 

7. Repeat steps (5)-(7) with 
)8.0(

,0

)6.0(
,0

a
v

a
v

t

t
   

8. Compute 
)8.0(0

w  and 
)6.0(0

w  from Eqs. (4.32) and (4.34) 
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Figure 4.10.  Schematical depiction of the processing steps in the atmospheric correction of the SEVIRI VIS06 and 

VIS08 channels. The second pass in the two-pass algorithm is represented by the blue lines (in the first pass, shown 

by the orange lines, 1 ). 

4.2.6 Atmospheric correction using the HRV band 

To minimize uncertainties of atmospheric correction of the HRV band, the spatial variability of HRV 

marine reflectance within each VIS06 pixel is used as a small perturbation to the VIS06 derived marine 

reflectance. To use the higher spatial resolution information of the HRV band, first a relationship is 

established between the marine reflectances in the HRV and VIS06 bands taking account of the different 

sensor response functions and the different effective atmospheric transmittances. Then this relationship is 

used to estimate the spatial variability of 
)6.0(0

w  on the fine HRV grid using the spatial anomaly of TOA 

HRV reflectance.  

4.2.6.1 RELATING MARINE REFLECTANCES IN THE HRV AND VIS06 BANDS 

Re-examining Figure 4.6, it can be seen that in the case of the HRV band the dominant contributions of 

0T and vT to the spectral integral in Eq. (4.13) are limited: in the spectral range 0.75-0.90m, the strong 

atmospheric absorption, dominated by water vapour, is compensated by a low )(0  
w and important 

Rayleigh effects on transmittance in the range 0.35-0.45m are compensated by a low )( . Hence, 

atmospheric transmittances in the range 0.45-0.75m contribute most strongly to the spectral integral in 

Eq. (4.13). In this range the atmospheric transmittances are reasonably smooth and high.  A good linear 

correlation between 
)6.0(0

w  and 
)(0 HRV

w
 is observed as shown in Figure 4.11(a). Combination of these 

observations suggests that 
)(HRVTOA

w can be approximated by 



116 Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 
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)6.0(0)( m
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w TBA   

 (4.35) 

where
)6.0(

,0 vT  is the two-way (sun-sea and sea-sensor) atmospheric transmittance for a given two-way 

airmass m in the VIS06 band: 
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  (4.36) 

The values of A and   have been obtained by spectral convolution of 67 measured hyperspectral 

seaborne spectra with: (a) 
)6.0(0

w  and 
)(0 HRV

w


 
computed according to Eq. (4.11) and (b) with 

)(HRVTOA
w and 

)6.0(
,0 vT  according to Eqs. (4.13) and (4.36), respectively. The atmospheric transmittances, 

)(,0 vT , are obtained from LOWTRAN simulations for m=2 and the US standard atmosphere model, 

shown in Figure 4.6. These include Rayleigh transmittances, aerosol transmittances, and gas 

transmittances for ozone, carbon dioxide, and water vapor. The results of these calculations are shown in 

Figure 4.11 and give (a) A=0.71(±0.01) and (b) A=0.68(±0.01) and hence =0.96(±0.02).  

 

Figure 4.11.  (a) Linear regression of above-water marine reflectance in the HRV and the VIS06 bands and (b) linear 

regression of marine reflectance of the HRV band at TOA, normalized by two-way atmospheric transmittance in 

the VIS06 band vs. above-water marine reflectance in the VIS06 band.  
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4.2.6.2 ESTIMATING SPATIAL VARIABILITY OF 
)6.0(0

w  ON THE HRV GRID FROM HRV SPATIAL 

ANOMALY
 
 

Each pixel in the VIS06 grid corresponds to 3x3 pixels in the HRV grid. The spatial variability of 

)(HRVTOA
w within each VIS06 pixel is used to represent a small perturbation to the marine reflectance 

retrieved from the VIS06 band. Let the bar superscript denote the mean value of 9 HRV pixels 

corresponding to one pixel in the VIS06 grid. The spatial anomaly of the HRV signal within the VIS06 

grid is: 

 
)()()(ˆ HRVTOA

tot
HRVTOA

tot
HRVTOA

tot    (4.37) 

The spatial average of Eq. (4.17) is given by:  

 
)()()()( HRVTOA

w
HRVTOA

a
HRVTOA

r
HRVTOA

tot    (4.38) 

Subtraction of Eq. (4.38) from Eq. (4.17) gives the spatial anomaly of
)(HRVTOA

tot within the VIS06 grid 

pixels as: 

 
)()()()( ˆˆˆˆ HRVTOA

w
HRVTOA

r
HRVTOA

a
HRVTOA

tot    (4.39) 

It is assumed that the Rayleigh and aerosol reflectances are spatially constant within each 3 km x 6 km 

VIS06 pixel:  

 0ˆ  and  0ˆ )()(  HRVTOA
r

HRVTOA
a   (4.40) 

Eq. (4.39) then simplifies to: 

 
)()( ˆˆ HRVTOA

w
HRVTOA

tot    (4.41) 

Now, let 
)6.0(0

,

w and 

)6.0(
,, voT  denote the above-water marine reflectance and the two-way total 

transmittance in the VIS06 band on the HRV grid, respectively and m  denote the airmass on the HRV 

grid. From Eq. (4.35) and subject to the underlying approximation we have: 
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and  
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where 
)6.0(0)6.0(0

,


  ww  , 
)6.0(

,

)6.0(

,, vovo TT  , and mm  . Within each VIS06 grid pixel it is reasonable 

to assume that 
)6.0(

,
)6.0(

,, vovo TT  and mm  . Substitution of Eqs. (4.42) and (4.43) in (4.41) then gives: 
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and so 
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The first term in Eq. (4.45) is known for each VIS06 grid pixel. The second term represents the spatial 

variation of
)6.0(0

w  on the HRV grid within each VIS06 grid pixel. It is computed from the spatial 

anomaly of the HRV total reflectance at TOA (= spatial anomaly of HRV marine reflectance at TOA) 

after modification to account for differences in atmospheric transmittances and spectral convolution with 

marine reflectances between the VIS06 and HRV bands. An uncertainty estimate on 
)6.0(0

,

w  is derived in 

section 4.2.7.4. 

4.2.7 Estimate of uncertainty on marine reflectance 

Uncertainties on marine reflectances arise from different sources. Here, we estimate uncertainties 

associated with the atmospheric correction assumptions given by Eqs. (4.22) and (4.23). Digitization 

effects are investigated next. Other uncertainties, such as aerosol model, whitecap correction etc. are not 

included here.  

4.2.7.1 UNCERTAINTIES ASSOCIATED WITH THE ATMOSPHERIC CORRECTION ASSUMPTIONS 

Uncertainties on the assumptions of the atmospheric correction in Eqs. (4.22) and (4.23) introduce an 

uncertainty on the marine reflectance
)6.0(0

w , which can be estimated from first order error propagation 

(ISO 1995):  

 

2/1
2

)6.0(0
2

)8,6(

)6.0(0
)6.0(0
























































 









 ww

w  (4.46) 

where   and   are the uncertainties in the estimation of the calibration parameters   and   

respectively. Partial derivation of 
)6.0(0

w in expression (4.34) to   and    gives: 
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The first component (
)6.0(0 wa  ), is related to the aerosol turbidity, while the second component (

)6.0(0 ww ) is related to the water turbidity. The contribution of each component can be understood by 

simplifying with 1)8.0(
,

a
vot  and taking a typical value of 01.002.1  . Then 

)8.0()6.0(0 012.0 awa   
 and 

)8.0(0)6.0(0 032.0   www  .   

4.2.7.2 DIGITIZATION UNCERTAINTIES 

The uncertainty on the TOA reflectances due to digitization can be derived from Eqs. (4.15) and (4.16), 

giving:  
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Digitization uncertainty increases with increasing sun zenith angle,  800 0 , between 0.001 and 

0.006 for the VIS06 band and between 0.001 and 0.007 for the VIS08 band, as shown in Table 4.3. The 

uncertainty on 
)6.0(0

w  due to digitization in VIS06 and VIS08 at TOA,
)6.0(0 wd  , is also obtained from 

first order error propagation (ISO 1995):  
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Partial derivation of Eq. (4.34) to
)6.0(TOA

tot  and to
)8.0(TOA

tot  using Eq. (4.19) gives: 
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This digitization uncertainty is evaluated in Table 4.3 for a typical  60v (corresponding to the middle 

of the SEVIRI North Sea scene in Figure 4.4), 01.002.1  , 1 , typical gas concentrations (320 

Dobson units for ozone and 29.3 kg m
-2

 for PWC) and for clear (CA) and turbid (TA) atmospheres with 

aerosol optical thicknesses, )nm550(a , of 0.01 and 0.5, respectively. In the clearest waters where 

)6.0(0
w is about 0.002-0.006 and for moderate air masses, the magnitude of the digitization uncertainty is 

comparable to
)6.0(0

w . Digitization uncertainty increases rapidly for air masses above 4, reaching 0.03 

for turbid atmospheres and an air mass of 7.8.  
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4.2.7.3 COMBINED ATMOSPHERIC-DIGITIZATION UNCERTAINTY 

The uncertainty due to digitization is added to the uncertainty associated with the atmospheric correction 

to give: 

      
2/1

2)6.0(02)6.0(02)6.0(0)6.0(0





  

wwwawdw   (4.51) 

The contribution of each component in Eq. (4.51) to
)6.0(0 w  is further evaluated in Table 4.3 for a 

relative azimuth angle of 40° and for clear (CW) and turbid water (TW) with 
)6.0(0

w  of 0.004 and 0.07, 

respectively. Even for turbid water and a turbid atmosphere the digitization uncertainty is the dominant 

contributor to the total uncertainty on marine reflectance.  
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Table 4.3.  Contribution of each component in Eq. (4.51) to
)6.0(0 w  for varying sun zenith angles ( 0 ), clear (CA,  01.0)nm550( a ) and turbid (TA, 

5.0 )nm550( a ) atmospheres, and clear (CW, 400.0)6.0(0 
w ) and turbid (TW, 07.0)6.0(0 

w ) waters. Viewing geometry values typical for the SEVIRI North 

Sea area were taken:  60v and  40 , typical gas concentrations and 01.002.1  , 1 , and 16.009.6  . Airmass and digitization uncertainty for 

total TOA reflectance in the VIS06 (
)6.0(TOA

tot ) and VIS08 bands (
)8.0(TOA

tot ) computed using Eq. (4.48) are also shown. 

          
)6.0(0 wd     

)6.0(0 wa    
)6.0(0 ww    

)6.0(0 w  

0  m 
)6.0(TOA

tot  
)8.0(TOA

tot    CA TA   CA TA   CW TW   CA, CW TA, TW 

0 3.00 0.0011 0.0012 

 

0.002300 0.002841 

 

0.000006 0.000562 

 

0.000021 0.000370 

 

0.002300 0.002920 

10 3.02 0.0011 0.0012 

 

0.002337 0.002889 

 

0.000007 0.000558 

 

0.000021 0.000370 

 

0.002337 0.002965 

20 3.06 0.0011 0.0013 

 

0.002455 0.003055 

 

0.000008 0.000645 

 

0.000021 0.000370 

 

0.002455 0.003144 

30 3.15 0.0012 0.0014 

 

0.002674 0.003352 

 

0.000010 0.000775 

 

0.000021 0.000370 

 

0.002674 0.003460 

40 3.31 0.0014 0.0015 

 

0.003043 0.003858 

 

0.000013 0.000973 

 

0.000021 0.000370 

 

0.003043 0.003996 

50 3.56 0.0016 0.0018 

 

0.003667 0.004734 

 

0.000017 0.001245 

 

0.000021 0.000370 

 

0.003667 0.004909 

60 4.00 0.0021 0.0024 

 

0.004804 0.006393 

 

0.000022 0.001600 

 

0.000021 0.000370 

 

0.004804 0.006601 

70 4.92 0.0031 0.0035 

 

0.007311 0.010986 

 

0.000033 0.002672 

 

0.000021 0.000370 

 

0.007311 0.011312 

80 7.76 0.0061 0.0068   0.016202 0.031027   0.000053 0.004607   0.000021 0.000370   0.016202 0.031369 
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4.2.7.4 UNCERTAINTY ESTIMATE OF MARINE REFLECTANCE IN THE VIS06 BAND ON THE HRV GRID 

Using the formula for first order error propagation (ISO 1995), the uncertainty on 
)6.0(0

,

w  introduced 

by uncertainties in
)6.0(0

w , A, and  can be estimated from an expression analogous to Eq. (4.49). 

Partial derivation of the expression in Eq. (4.45) to each parameter then gives:  
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(4.52) 

with A=0.71, A=0.01,=0.96, =0.02, and 
)6.0(0 w  from Eq. (4.51). 

4.2.8 Cross-validation with MODIS reflectance data 

SEVIRI VIS06 marine reflectance products were cross-validated with simultaneously acquired 

reflectances of the spectrally similar MODIS Aqua 645 nm band,
)645M(0

w  (see Figure 4.12 for 

MODIS spectral response curves). MODIS imagery is atmospherically corrected by the Stumpf et al. 

2003a algorithm, updated by Bailey et al. 2010. Scenes with at least 300 SEVIRI cloud free pixels and 

covering a representative range of water turbidity were selected. MODIS images were resampled to 

the larger SEVIRI VIS06 or HRV grids using a nearest neighbour approach. Pixels with negative 

reflectance values were omitted, as well as pixels where 
)6.0(0

w  
was below the SEVIRI digitization 

uncertainty of 0.004, typical for North Sea illumination geometry (see Table 4.3, corresponding to

 400 ).  

To clarify the effect of different wavelengths and bandwidths, the relationship between 

SEVIRI and MODIS reflectances is first investigated using in situ reflectance measurements. Least-

squares regression through the origin of 
)6.0(0

w and 
)645M(0

w  is shown in Figure 4.13 and gives: 

 
)645M(0)6.0(0 )02.0(02.1   ww   (4.53) 

Ordinary least squares regression analysis of satellite-derived 
)6.0(0

w  vs. 1.02
)645M(0

w  was carried 

out. To quantify the agreement between marine reflectances derived from SEVIRI and MODIS Aqua, 

after accounting for slight differences in their spectral response given by Eq. (4.53), the 5
th
, 50

th
, and 

95
th
 percentiles of the normalized absolute error, NAE:  
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 (4.54) 

and the normalized bias: 
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are computed.  

 

 

Figure 4.12. Normalized spectral response of the SEVIRI meteorological satellite (black) and the MODIS-Aqua 

ocean colour satellite (grey).  

 

Figure 4.13.  Marine reflectances in the SEVIRI VIS06 band and the MODIS Aqua 645 nm band obtained from 

optimal in situ above-water marine reflectance measurements collected between 2001 and 2010 in the 

southern North Sea waters. The least-squares linear regression through the origin is shown with equation and 

95% confidence interval on the slope estimate.  

 

MODIS 645nm band 



124 Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 

 

 

4.3 Results 

4.3.1 Mapping marine reflectance and its uncertainties 

A map of marine reflectance in the VIS06 band on 16 February 2008 at 13:00 h UTC is shown in 

Figure 4.14A, with 
)6.0(0

w  
varying between 0 and 0.08. The spatial distribution of reflectances 

matches the spatial distribution of SPM as reported in many previous remote sensing studies from 

CZCS (Holligan et al. 1989), AVHRR (Van Raaphorst et al. 1998), SeaWiFS (Eleveld et al. 2004), 

MODIS or MERIS (Nechad et al. 2010). Moderate and high reflectances (>0.05) are found in some 

areas close to the coast and near river estuaries and especially East of the Thames Estuary, e.g. 

(51.5°N, 1.5°E). Reflectances are lower (<0.02) further offshore, in the Central North Sea and in the 

English Channel. Figure 4.14B shows the relative uncertainty on the derived reflectance associated 

with uncertainties in the atmospheric correction and digitization as obtained from Eq. (4.51). 

Uncertainties far exceeding 100% are seen in the clearest waters, while uncertainties between 10% 

and 20% are observed in the more turbid waters.  

A decomposition of this uncertainty (shown in Figure 4.15A), into its digitisation, aerosol, 

and water components is shown in Figure 4.15B, C, and D, respectively. The digitization uncertainty 

is the dominant component, exceeding water and aerosol contributions by an order of magnitude. The 

solar angle dependence of digitization uncertainty is also clearly visible in Figure 4.15B. High aerosol 

uncertainties are found near clouds and near the coast due to strong aerosol turbidity, as shown in 

Figure 4.15C. The spatial distribution of marine reflectance is reflected in the uncertainty associated 

with water turbidity, shown in Figure 4.15D.   

 

 

Figure 4.14. (A) Marine reflectance from SEVIRI VIS06 on 16-02-08 at 13:00 h UTC and (B) associated relative 

uncertainty in %, obtained from Eq. (4.51).  

A B 
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Figure 4.15.  Uncertainty components of SEVIRI VIS06 marine reflectance on 16-02-2008 at 13:00 h UTC. (A) 

total uncertainty as in Eq. (4.51), (B) digitization uncertainty as in Eq. (4.50), (C) uncertainty due to aerosol 

turbidity as in the first term of Eq. (4.47), and (D) uncertainty due to water turbidity as in the second term of 

Eq. (4.47).  

 

4.3.2 Marine reflectance on the HRV grid 

An example of the improvement in spatial resolution achieved by the use of the HRV band is shown 

in Figure 4.16. In the clearest waters, atmospheric correction of the VIS06 band may give negative 

marine reflectances, which were set equal to zero. On the HRV grid, negative reflectances may be 

found where 
)6.0(0

w is zero because only the spatial anomaly term in Eq. (4.45) remains.  

A B 

C D 
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Figure 4.16.  Marine reflectance on 16-02-2008 at 13:00 h UTC for a subset of the SEVIRI southern North Sea 

scene on (A) the SEVIRI VIS06 grid with a spatial resolution of 3 km x 6.5 km and (B) on the HRV grid with a 

spatial resolution of 1 km x 2 km. Circles represent five selected stations for which diurnal variability of marine 

reflectances is shown in Figure 4.20.  

 

4.3.3 SEVIRI – MODIS cross validation 

4.3.3.1 VIS06 REFLECTANCE 

Figure 4.17 shows a spatial comparison for 4 out of 42 SEVIRI-MODIS match-ups in 2008-2009. 

Both sensors show comparable spatial patterns and marine reflectance ranges, but SEVIRI is clearly 

strongly affected by noise. The finer spatial structures seen in the MODIS images are not picked up 

by SEVIRI due to the coarse spatial resolution of the VIS06 band. Corresponding scatter plots and 

regressions of 
)6.0(0

w vs. 1.02
)645M(0

w  are shown in Figure 4.18, while Table 4.4 lists the results of 

regression analysis for all match-ups. SEVIRI VIS06 and MODIS reflectances are overall well 

correlated with correlation coefficients ranging between 0.68 and 0.97, with a median of 0.91. The 

regression slopes of 
)6.0(0

w vs. 1.02
)645M(0

w  range between 0.61 and 1.14 with a median value of 

0.85. The largest relative differences between MODIS and SEVIRI are found in the clearest scenes, as 

seen from the increase in the 95
th
 percentile value of NAE with decreasing median 

)6.0(0
w  shown in 

Figure 4.19A. Underestimation of reflectance by SEVIRI are most pronounced in the most turbid 

waters, as can been seen in the scatter plots in Figure 4.18A, D and for the most turbid scenes (see 

Figure 4.19B).  

A B 

P1-P3 P4 

P5 



Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 127 

 

 

 

 

 

 

Figure 4.17.  Maps of marine reflectances from the SEVIRI VIS06 band (left) and MODIS Aqua 645nm band 

(right), acquired on (from top to bottom): 11 Feb. 2008 at 12:45 h UTC, 6 May 2008 at 13:00 h UTC, 23 July 

2008 at 13:15 h UTC, and on 8 March 2009 at 13:00 h UTC. Corresponding scatter plots are shown in Figure 

4.18.  
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Figure 4.18.  Scatter plots of SEVIRI VIS06 marine reflectance vs. MODIS Aqua 645nm reflectances, acquired 

on (A) 11 Feb. 2008 at 12:45 h UTC, (B) 6 May 2008 at 13:00 h UTC, (C) 23 July 2008 at 13:15 h UTC, and on 

(D) 8 March 2009 at 13:00 h UTC, corresponding to the scenes shown in Figure 4.17. The least-squares 

regression and statistics are shown, as well as the 1:1 line (dashed).  

 

The observed underestimation of SEVIRI marine reflectance compared to MODIS Aqua 

marine reflectance may be due to differences in design of the atmospheric corrections. A recent inter-

comparison study (Jamet et al. 2011) of the atmospheric correction algorithms of Stumpf et al. 2003a 

(MODIS) and Ruddick et al. 2000 (SEVIRI) applied to SeaWiFS imagery showed a systematic 

underestimation of water-leaving radiances by the Ruddick et al. 2000 algorithm of a factor 0.68 at 

670 nm (see Table 3 in Jamet et al. 2011).  
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Table 4.4.  Regression equation and statistics of reflectances obtained from SEVIRI VIS06 and MODIS 645 nm 

for 42 match-ups in 2008-2009. Uncertainties on regression parameters and correlation coefficients represent 

a 95% confidence interval.  

 
 

Date h UTC N r r slope slope offset offset 5 50 95 5 50 95

12-01-08 12:30 697 0.95 0.01 0.90 0.02 -0.0020 0.0009 2 21 63 -59 -17 26

09-02-08 13:00 1443 0.93 0.01 0.82 0.02 -0.0015 0.0005 3 29 65 -64 -26 23

11-02-08 12:45 3028 0.95 0.00 0.84 0.01 -0.0013 0.0003 3 26 62 -61 -24 20

12-02-08 11:45 1098 0.89 0.01 0.87 0.03 -0.0010 0.0005 3 26 60 -57 -23 29

12-02-08 13:30 2241 0.93 0.01 0.89 0.02 -0.0003 0.0003 2 22 63 -54 -14 50

16-02-08 13:00 2405 0.93 0.01 0.86 0.01 0.0016 0.0003 2 24 136 -46 -2 136

17-02-08 12:15 1523 0.92 0.01 0.86 0.02 0.0013 0.0003 2 21 84 -46 -3 84

17-02-08 13:45 656 0.90 0.01 0.79 0.03 0.0033 0.0005 2 31 260 -41 14 260

08-04-08 12:45 1121 0.92 0.01 0.71 0.02 0.0013 0.0005 4 26 66 -58 -23 50

09-04-08 11:45 652 0.91 0.01 0.81 0.03 -0.0001 0.0005 2 26 56 -52 -22 35

09-04-08 13:30 1107 0.92 0.01 0.86 0.02 -0.0009 0.0005 3 24 56 -54 -21 26

15-04-08 12:45 1016 0.91 0.01 0.79 0.02 0.0017 0.0004 2 20 67 -42 -11 64

06-05-08 13:00 1845 0.87 0.01 0.74 0.02 0.0020 0.0003 2 25 107 -50 -2 107

07-05-08 12:15 1996 0.86 0.01 0.72 0.02 0.0020 0.0002 3 21 83 -47 -5 80

07-05-08 13:45 1041 0.81 0.02 0.82 0.04 0.0024 0.0003 2 26 175 -37 16 175

08-05-08 13:00 1487 0.87 0.01 0.71 0.02 0.0024 0.0003 2 23 157 -48 -3 157

09-06-08 13:00 1047 0.86 0.02 0.66 0.02 0.0034 0.0003 4 42 317 -44 31 317

23-07-08 11:45 1124 0.70 0.03 0.65 0.04 0.0014 0.0004 3 33 76 -55 -25 76

23-07-08 13:15 1296 0.74 0.03 0.71 0.04 0.0015 0.0004 4 28 93 -50 -18 93

24-07-08 12:30 826 0.77 0.03 0.62 0.04 0.0021 0.0004 4 28 86 -50 -20 86

30-08-08 12:45 1043 0.79 0.02 0.79 0.04 0.0029 0.0004 3 34 216 -40 21 216

18-09-08 13:15 1284 0.89 0.01 0.80 0.02 0.0014 0.0004 3 28 150 -52 -11 150

19-09-08 12:15 924 0.88 0.02 0.81 0.03 0.0014 0.0004 2 25 105 -50 -9 105

27-09-08 13:00 724 0.84 0.02 0.69 0.03 0.0042 0.0005 3 36 161 -48 20 161

27-09-08 13:15 400 0.90 0.02 0.95 0.05 0.0023 0.0005 4 37 260 -32 32 260

12-10-08 12:30 300 0.89 0.03 0.85 0.05 0.0038 0.0009 2 34 175 -37 26 175

18-10-08 13:30 580 0.95 0.01 0.92 0.02 0.0001 0.0005 2 20 72 -49 -9 69

26-12-08 12:15 765 0.68 0.04 0.61 0.05 0.0023 0.0010 4 33 71 -68 -29 39

06-01-09 11:45 492 0.88 0.02 0.93 0.04 -0.0010 0.0011 2 22 63 -58 -14 46

02-03-09 12:00 723 0.92 0.01 0.97 0.03 -0.0010 0.0006 1 22 71 -52 -14 70

02-03-09 12:00 783 0.97 0.00 1.14 0.02 -0.0027 0.0004 2 16 51 -49 -8 31

02-03-09 13:30 1864 0.94 0.01 0.99 0.02 -0.0017 0.0003 2 20 53 -51 -15 24

06-03-09 13:15 1039 0.94 0.01 0.90 0.02 0.0013 0.0004 2 15 74 -42 -4 74

08-03-09 13:00 2062 0.93 0.01 0.86 0.01 -0.0002 0.0004 2 24 62 -55 -18 45

18-03-09 13:30 613 0.92 0.01 0.90 0.03 0.0045 0.0005 2 39 351 -21 36 351

01-04-09 12:15 1494 0.94 0.01 0.91 0.02 0.0006 0.0003 2 17 77 -43 -4 77

08-04-09 12:15 1056 0.95 0.01 0.87 0.02 0.0004 0.0004 2 19 76 -49 -11 75

08-04-09 14:00 550 0.89 0.02 0.90 0.04 0.0008 0.0006 2 21 85 -45 0 85

24-04-09 12:15 531 0.84 0.03 0.64 0.04 0.0030 0.0003 4 39 295 -45 27 295

29-04-09 12:30 839 0.95 0.01 0.77 0.02 0.0022 0.0003 3 26 156 -43 2 156

30-04-09 11:45 448 0.95 0.01 0.97 0.03 0.0017 0.0004 1 24 138 -28 16 138

30-04-09 13:15 880 0.94 0.01 0.79 0.02 0.0027 0.0003 3 31 162 -37 20 162

NAE (%) NB (%)
)645M(0)6.0(0 1.02  vs. 

ww 
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Figure 4.19.  Trends in SEVIRI-MODIS reflectance match-ups statistics. Scatter plots of (A) median VIS06 

reflectance vs. the 95th percentile value of the normalized absolute error, NAE and (B) the 5th percentile of 

VIS06 reflectance vs. the median normalized bias, NB.  

 

4.3.3.2 VIS06 REFLECTANCES ON THE HRV GRID 

Results of the regression analysis of 
)6.0(0

,

w vs. 1.02

)645M(0
w  for all match-ups are given in Table 

4.5. Correlation coefficients range between 0.55 and 0.93 with a median of 0.86, giving overall lower 

correlations than for the marine reflectances on the low spatial resolution grid. Regression slopes of 

)6.0(0
,

w vs. 1.02

)645M(0
w  were also lower with a median value of 0.80 (range: 0.57-1.01) and a 

wider scatter along the regression line as seen by the much higher 95
th
 percentile values of NAE 

compared to the same values in Table 4.4. The improvement of the spatial resolution of SEVIRI 

imagery did not result in better correlation with MODIS data.  
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Table 4.5.  Regression equation and statistics of reflectances obtained from SEVIRI HRV and MODIS 645 nm 

for 42 match-ups in 2008-2009. Uncertainties on regression parameters represent a 95% confidence interval. 

 

4.3.4 Diurnal variability of marine reflectances and aerosols 

Time series of marine reflectance and the aerosol calibration parameter,  , defined in Eq. (4.23), were 

extracted on three relatively cloud free days at five different stations (shown in Figure 4.16A) in clear, 

moderately turbid, and turbid waters. Diurnal variability of the extracted parameters is shown in 

Date h UTC N r r slope slope offset offset 5 50 95 5 50 95

12-01-08 12:30 7321 0.86 0.01 0.80 0.01 0.0047 0.0005 2 25 205 -59 -8 205

09-02-08 13:00 14526 0.87 0.00 0.75 0.01 0.0022 0.0002 3 29 110 -64 -16 110

11-02-08 12:45 27107 0.91 0.00 0.78 0.00 0.0015 0.0001 3 26 83 -59 -14 81

12-02-08 11:45 9304 0.82 0.01 0.80 0.01 0.0019 0.0002 3 27 88 -58 -10 88

12-02-08 13:30 20021 0.88 0.00 0.83 0.01 0.0027 0.0001 2 27 166 -52 0 166

16-02-08 13:00 22195 0.90 0.00 0.81 0.01 0.0040 0.0001 3 33 321 -49 11 321

17-02-08 12:15 14685 0.89 0.00 0.80 0.01 0.0036 0.0001 3 32 273 -48 12 273

17-02-08 13:45 6625 0.87 0.01 0.80 0.01 0.0048 0.0002 3 43 560 -40 35 560

08-04-08 12:45 12032 0.86 0.00 0.67 0.01 0.0036 0.0002 3 29 131 -58 -17 131

09-04-08 11:45 6693 0.88 0.01 0.80 0.01 0.0011 0.0002 2 25 73 -53 -15 72

09-04-08 13:30 10527 0.89 0.00 0.80 0.01 0.0010 0.0002 2 24 68 -55 -16 61

15-04-08 12:45 10330 0.90 0.00 0.76 0.01 0.0027 0.0001 2 23 124 -46 -5 124

06-05-08 13:00 19346 0.85 0.00 0.69 0.01 0.0035 0.0001 3 35 343 -46 15 343

07-05-08 12:15 19420 0.84 0.00 0.68 0.01 0.0031 0.0001 3 30 287 -47 6 287

07-05-08 13:45 9857 0.78 0.01 0.80 0.01 0.0036 0.0001 4 42 371 -37 35 371

08-05-08 13:00 14851 0.86 0.00 0.67 0.01 0.0036 0.0001 3 35 322 -46 17 322

09-06-08 13:00 11566 0.81 0.01 0.64 0.01 0.0045 0.0001 5 80 534 -41 80 534

23-07-08 11:45 10698 0.65 0.01 0.70 0.02 0.0024 0.0002 3 31 144 -53 -6 144

23-07-08 13:15 13624 0.72 0.01 0.70 0.01 0.0028 0.0001 3 31 224 -49 1 224

24-07-08 12:30 8137 0.65 0.01 0.58 0.01 0.0036 0.0002 3 31 190 -53 -5 190

30-08-08 12:45 10541 0.75 0.01 0.76 0.01 0.0043 0.0001 4 54 397 -35 51 397

18-09-08 13:15 13349 0.88 0.00 0.80 0.01 0.0032 0.0001 3 34 336 -46 13 336

19-09-08 12:15 8974 0.83 0.01 0.74 0.01 0.0034 0.0002 3 31 366 -48 7 366

27-09-08 13:00 7508 0.82 0.01 0.69 0.01 0.0055 0.0002 4 52 322 -46 44 322

27-09-08 13:15 5780 0.63 0.02 0.79 0.02 0.0060 0.0002 8 129 666 -19 129 666

12-10-08 12:30 2896 0.73 0.02 0.75 0.03 0.0062 0.0005 4 43 359 -46 31 359

18-10-08 13:30 5169 0.82 0.01 0.83 0.02 0.0043 0.0004 3 30 428 -51 7 428

26-12-08 12:15 7179 0.55 0.02 0.57 0.02 0.0067 0.0004 4 38 139 -67 -6 139

06-01-09 11:45 5539 0.80 0.01 0.86 0.02 0.0035 0.0004 3 31 146 -58 2 146

02-03-09 12:00 6936 0.88 0.01 0.91 0.01 0.0014 0.0002 2 24 141 -51 -2 141

02-03-09 12:00 7652 0.89 0.00 1.01 0.01 0.0009 0.0002 2 24 138 -45 6 138

02-03-09 13:30 16945 0.90 0.00 0.89 0.01 0.0015 0.0001 2 24 138 -50 -2 138

06-03-09 13:15 11589 0.86 0.00 0.82 0.01 0.0039 0.0002 2 26 314 -43 8 314

08-03-09 13:00 20499 0.90 0.00 0.80 0.01 0.0025 0.0001 2 26 139 -53 -6 139

18-03-09 13:30 5851 0.89 0.01 0.88 0.01 0.0057 0.0002 3 50 461 -28 48 461

01-04-09 12:15 16015 0.92 0.00 0.88 0.01 0.0022 0.0001 2 26 241 -43 7 241

08-04-09 12:15 11036 0.92 0.00 0.85 0.01 0.0021 0.0002 2 22 188 -47 -2 188

08-04-09 14:00 5205 0.85 0.01 0.85 0.01 0.0030 0.0002 3 28 227 -42 14 227

24-04-09 12:15 8233 0.82 0.01 0.64 0.01 0.0044 0.0001 8 106 585 -29 106 585

29-04-09 12:30 8391 0.90 0.00 0.73 0.01 0.0039 0.0001 3 35 445 -41 16 445

30-04-09 11:45 5262 0.93 0.00 0.90 0.01 0.0031 0.0001 3 40 467 -25 37 467

30-04-09 13:15 8347 0.93 0.00 0.77 0.01 0.0039 0.0001 3 44 450 -35 38 450

NAE (%) NB (%)
)645M(0)6.0(0

, 1.02  vs. 
 ww 



132 Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 

 

 

Figure 4.20. The variability of marine reflectances at P1, P2, and P3 suggests a periodicity related to 

the tidal cycle, such as could be expected from resuspension and/or advection of sediment particles. 

This diurnal variability is further investigated in Chapter 5. In clearer waters (P4), potential diurnal 

variability is masked by the high noise level.   

Figure 4.20 also shows diurnal variability of the ratio =
)6.0(

a :
)8.0(

a , which can be related 

to the spectral variability and size distribution of aerosols described by the aerosol Angstrom 

coefficient () via: 
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 (4.56) 

where =
)8.0(

,grt :
)6.0(

,grt . This transmittance ratio takes a value of =1.05 for an air mass of 2 and of 

1.22 for an air mass of 7 for a standard atmosphere simulated with LOWTRAN.  is known to vary 

seasonally in the southern North Sea (Behnert et al. 2007), and diurnal variations in  have been 

observed previously from AERONET and SEVIRI (De Paepe et al. 2008).  
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Figure 4.20.  Diurnal variability of SEVIRI VIS06 marine reflectance (left) and the VIS06:VIS08 band ratio of 

aerosol reflectance (right) on three cloud free days: 11 February 2008 (top), 8 April 2008 (middle), and 1 April 

2009 (bottom). Time series of marine reflectance are plotted at P1 (blue), P2 (green), P3 (red), P4 (cyan), and 

P5 (purple), with location shown in Figure 4.16. Errorbars denote uncertainties on marine reflectance derived 

from Eq. (4.51) or on  from the standard error of slope estimate.  

 

4.4 Discussion and conclusion 

4.4.1 Optimal reflectance range for atmospheric correction 

Though the geostationary meteorological SEVIRI sensor, with its few and broad spectral bands, high 

radiometric noise level and medium ground resolution, is not designed for ocean colour remote 

sensing, we have shown that SEVIRI reflectances in the red band are highly correlated with similar 

data from MODIS Aqua. However, retrieval of marine reflectance is highly uncertain in clear waters, 
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mainly due to digitization uncertainties, which are of the order 0.004 for typical North Sea 

illumination geometry (see Table 4.3 for  400 ). While the retrieval of SEVIRI marine 

reflectance in clear waters is limited by sensor digitization, the atmospheric correction is expected to 

fail in very turbid waters, due to the limitation of assumption (4.22) to cases where 011.0)8.0(0 
w

and thus where 067.0)6.0(0 
w . For higher reflectances, assumption (4.22) no longer holds, as can 

be seen in Figure 4.7. Above this threshold, atmospheric correction underestimates 
)6.0(0

w  with 

increasing
 
marine reflectance. Figure 4.21 shows the relationship between the normalized bias of the 

marine reflectance retrieved from Eq. (4.34), with simplifications
)8.0(

,1 a
vot , from the in situ 

measured marine reflectance 
)6.0(0

,

mw : 

 
)6.0(0

,

)6.0(0
,

)6.0(0

NB


 


mw

mww




 (4.57) 

For a typical value of =1.02, 
)6.0(0

w  is underestimated by about 10% for 
)6.0(0

w =0.08, and by 

over 25% for larger reflectances. The degree of underestimation increases to 15% and 35%, 

respectively, for =1.30. This may explain why observations with 067.0)6.0(0 
w  

deviate more 

from the 1:1 lines in Figure 4.18A, D than lower reflectance observations.  

Taking account of sensor digitization and the limitations due to assumption (4.22), SEVIRI’s 

atmospheric correction is expected to perform optimally for 080.0004.0 )6.0(0  
w . It might be 

possible to push this upper limit further by refining the algorithm to have a non-constant   via an 

extra iterative loop with   calculated as a function of
)8.0(0

w . This possibility is further discussed in 

section 5.4.1.   
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Figure 4.21.  Effect of the atmospheric correction assumption (4.22) on the retrieval of 
)6.0(0

w : normalized 

bias of 
)6.0(0

w  obtained from Eq. (4.34) from the true marine reflectance for 84.0 (diamonds), 

02.1 (circles),  and 30.1 (crosses), with simplifications
)8.0(

,1 a
vot . The dashed line corresponds 

to the reflectance region where  was calibrated (see Figure 4.7).  

4.4.2 Spatial resolution 

Unfortunately, improvement of the spatial resolution of SEVIRI reflectance products did not result in 

better correlation with MODIS. In fact, the opposite is observed. This could be caused by (1) 

uncertainties in the resampling of MODIS imagery to the SEVIRI HRV grid, (2) geolocation 

uncertainties of the HRV (Seiz et al. 2007), and hence imperfect alignment with the  VIS06 spatial 

grid, (3) spatial heterogeneity of aerosols within the larger grid pixels, (4) digitization effects of the 

HRV band (similar to VIS08 digitization at TOA), or (5) the low signal-to-noise ratio of 2.5.  

The geolocation of the HRV is known to be accurate within 1-2 HRV pixels (Seiz et al. 

2007), which is within the EUMETSAT mission requirements of 3 km absolute geometric accuracy. 

Based on a few selected HRV images and an accurately geolocated coastline shapefile, the 

geolocation accuracy of the HRV was found to be off by 2 HRV pixels. A fine-correction was applied 

to the entire two-year dataset, but geolocation errors might still be present as it is uncertain whether 

this offset is systematic.  

,m 
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Validation of SEVIRI’s low and high spatial resolution products with in-situ data (instead of 

MODIS imagery) excludes uncertainties due to the resampling of MODIS imagery to the SEVIRI 

spatial grids. This is done in Chapter 5.  

4.4.3 Exploiting high temporal resolution imagery 

The striking advantage of SEVIRI is its superior temporal resolution: every 15 minutes compared to 

once/twice per day for MODIS. Up to 40 usable images per day can be recorded by SEVIRI, giving a 

twenty- to thirtyfold increase in the number of available images per day, compared to MODIS. On 

cloudfree days, diurnal variability of reflectance is detected in turbid waters, but remains to be 

validated. This is ideally achieved with continuous radiometry measurements, below or above-water, 

at fixed locations. The AERONET-Ocean Color network (Zibordi et al. 2009), for example, operates 

autonomous radiometers on fixed platforms in coastal waters around the world. Unfortunately, none 

are currently operational in the North Sea. Alternatively, validation can be done using the more 

widely available continuous in-water measurements of optical parameters such as turbidity and light 

attenuation recorded from moored buoys. This is investigated in Chapter 5. 

When cloud patterns change during the day, a cloud-cleared composite image may be created. 

An example for 15 April 2008 is given as an animation on 

ftp://ftp.mumm.ac.be/griet/SEVIRIanimation. The daily composite (derived from the mean day value) 

covered 95% of the southern North Sea area, compared to 50% for the MODIS Aqua image acquired 

on that day. Moreover, for SEVIRI, daily compositing significantly reduced the noise in clear waters 

(see also ftp://ftp.mumm.ac.be/griet/SEVIRIanimation). This example demonstrates that daily 

compositing of imagery from geostationary platforms increases data availability for monitoring 

applications requiring imagery on a daily basis (IOCCG 2012).  

4.4.4 Expanding to SEVIRI full disk imagery  

The atmospheric correction procedure developed here could be expanded to the entire SEVIRI disk 

shown in Figure 4.1 and to the entire operational period (2004-present). Some considerations: 

 The spatial resolution gets down to 1 km for the HRV and 3 km for the other channels when 

moving closer to the SEVIRI nadir point, which is at 0° N, 3.5° E or 0° E, depending on the 

satellite platform. 

 The geostationary geometry limits sunglint problems to equatorial areas (generally between 10° S 

and 10° N), with the sunglint spot moving from East to West along with the sun’s position 

(Mazeran and Meskini 2008). 

 The temporal window of usable imagery increases with decreasing distance to the sub-satellite 

point, except at sunglint impacted areas, giving the largest windows at 20° E-20° W and 10°-20° 

N or S.  
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 SEVIRI full disk imagery is scanned from South to North with a repeat cycle of 15 minutes of 

which 12.5 minutes are used for image acquisition and 2.5 minutes for retrace and stabilization 

(Seiz et al. 2007). Scanning at 52°N, for example, occurs about 700 seconds after the start of 

image acquisition (N. Clerbaux, personal communication).  

 The TOA digitization effect on marine reflectance also decreases with decreasing distance to the 

sub-satellite point, due to higher atmospheric transmittances and lower solar zenith angles.  

 The  parameter in assumption (4.22), is calibrated here with North Sea data, but can possibly be 

applied elsewhere, since no differences were observed between North Sea, Guyana, and 

Mediterranean  parameter calibrations.  

 The marine reflectance in SEVIRI’s red waveband is proportional to the particulate backscattering 

coefficient in the red, bbp. As shown in Chapter 3, bbp is closely related to the concentration of 

particles in suspension and to turbidity. If the marine reflectance is sufficiently large (turbid 

waters), its temporal variability (associated with temporal variability of [SPM]) is likely to be 

picked up by SEVIRI. Diurnal variability of [SPM] can be expected from tidal or storm induced 

sediment resuspension processes in large estuaries like the Amazon and the Congo river deltas. 

Sufficiently turbid water areas where SEVIRI may be used to reliably detect the marine 

reflectance are indicated in Figure 4.22. 

 AERONET-OC radiometry measurements could be used for validation of diurnal variability of 

SEVIRI reflectance if stations are located sufficiently far from the coast (accounting for SEVIRI’s 

low spatial resolution) and in sufficiently turbid waters (accounting for SEVIRI’s low radiometric 

resolution). The Aqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea (Zibordi 

et al. 2009) could be a good candidate.  
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Figure 4.22.  MODIS 2009 climatology of marine reflectance at 645 nm. The yellow polygon delineates the 

SEVIRI full disk coverage and the red polygons indicate waters that are sufficiently turbid to be reliably 

detected by SEVIRI. 
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4.5 Appendices 

4.5.1 Comparison of bands VIS08 and NIR16 for aerosol correction of VIS06 

4.5.1.1 ESTIMATION OF UNCERTAINTY ON 
)6.0(0

w  USING BAND COMBINATION (VIS06, NIR16) 

If the NIR16 band is used as correction band we assume zero marine reflectance in NIR16 and spatial 

homogeneity of aerosol scattering: 

 
)6.1()6.1(

ca    (4.58) 
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   (4.59) 

In analogy with the derivation of 
)6.0(0 w using the (VIS06, VIS08) band pair, we estimate the 

uncertainty on the marine reflectance
)6.0(0

w , resulting from an uncertainty on the estimation of the 

calibration parameter
)16,6( : 
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(4.60) 

The ratio of aerosol reflectance
)16,6(  is obtained on an image-by-image basis from the ratio of 

Rayleigh and gas corrected reflectances for SEVIRI bands VIS06 and NIR16 over clear waters pixels 

in the black boxes in  Figure 4.8. The distribution of these reflectance ratios is approximately normal 

(see example in Figure 4.23). 
)16,6(  is estimated from the mean and the uncertainty on 

)16,6( is 

quantified from two times the standard deviation. Figure 4.23 shows discretisation effects coming 

from digitisation of the top of atmosphere signal and is of the order 0.0013 for the VIS06 channel and 

0.0014 for the NIR16 channel. Typical values for 
)16,6(  are 3.4±2.4. For comparison, the scatterplot 

of Rayleigh corrected reflectances for bands VIS06 vs. VIS08 and the corresponding histogram of 

reflectance ratios obtained on June 29
th
 2006 at 11:30UTC is shown in Figure 4.24.  
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Figure 4.23.  Estimation of VIS06:NIR16 ratio of aerosol reflectances. (a) Rayleigh corrected reflectances for a 

set of clear water pixels in VIS06 and NIR16 bands on June 29th 2006 at 11:30UTC. (b) The corresponding 

histogram of the VIS06:NIR16 Rayleigh corrected reflectance ratios (N is the number of pixels). 

 

 

Figure 4.24.  Estimation of VIS06:VIS08 ratio of aerosol reflectances. (a) Rayleigh corrected reflectances for a 

set of clear water pixels in VIS06 and VIS08 bands on June 29th 2006 at 11:30UTC. (b) The corresponding 

histogram of the VIS06:VIS08 Rayleigh corrected reflectance ratios (N is the number of pixels).  

 



Chapter 4 ATMOSPHERIC CORRECTION OF SEVIRI IMAGERY 141 

 

 

4.5.1.2 BAND PAIR SELECTION BASED ON MINIMIZATION OF 
)6.0(0 w  

The purpose is to find the band pair that minimizes
)6.0(0 w , obtained from Eqs. (4.47) and (4.60) 

for the (VIS06,VIS08) and (VIS06, NIR16) band pairs, respectively. We evaluate 
)6.0(0 w  in Table 

4.6 using values typical of the southern North Sea: 1)6.0(,,
,0 ra
vt , 3.01.1

)8,6(
 , 

1.21.3
)16,6(

 , 3.01.6  , with an aerosol optical thickness 
)8.0(

a  between 0.05 (clear 

atmosphere) and 0.50 (turbid atmosphere) and 
)8.0(0

w  varying from 0.001 (clear water) to 0.010 

(turbid water). The 
)8.0(

a  values corresponding to different values of 
)8.0(

a  are obtained from the 

T90-aerosol look-up table for sun-sea-satellite geometry values typical for SEVIRI: 

 60,60 v and the sun at zenith. 
)6.1(

a is  then obtained from: 
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Table 4.6 shows that the estimated uncertainties on 
)6.0(0

w  when derived from the (VIS06, NIR16) 

band pair are in all cases of atmosphere and water turbidities approximately a factor 2 larger than the 

uncertainties on 
)6.0(0

w  when derived from the (VIS06, VIS08) band pair. We note that, for the 

(VIS06, NIR16) band pair, the estimated uncertainty on 
)6.0(0

w is independent of water turbidity. 

Clearly, the (VIS06, VIS08) band pair is the preferred band combination, resulting in much smaller 

uncertainties on the derived
)6.0(0

w . 
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Table 4.6.  Evaluation of uncertainty on 
)6.0(0

w  , 
)6.0(0 w , associated with the atmospheric correction 

assumptions using the VIS08 or NIR16 band for aerosol correction. For the (VIS06, VIS08) band pair, 

)6.0(0 w  is given by Eq. (4.47), based on assumptions in Eqs. (4.22) and (4.23), and for the (VIS06, NIR16) 

band pair 
)6.0(0 w  is given by Eq. (4.60) with assumptions in Eqs. (4.58) and (4.59). Values typical of the 

southern North Sea were used: 3.01.1)8,6(  , 1.21.3)16,6(  , 3.01.6  , 
)8.0(

a between 

0.05 and 0.5 and 
)8.0(0

w between 0.001 and 0.010. Some simplifications: 1)6.0(,,
,0 ra
vt , 1 . [SPM] is 

obtained from the single band retrieval algorithm of Nechad et al. 2010, calibrated for SEVIRI VIS06.  

   )8.0(0
w  

)6.0(0
w  [SPM] (mg L

-1
) 

 

W
at

er
 

clear 0.001 0.006 1.488 

 mod. turbid 0.005 0.031 8.818 

 turbid 0.010 0.061 22.963 

  

 )8.0(
a  

)8.0(
a  

)6.1(
a  

 

A
tm

o
sp

h
er

e 

very clear 0.05 0.004 0.002 

 clear 0.10 0.008 0.003 

 turbid 0.20 0.017 0.006 

 very turbid 0.50 0.047 0.017 

    

   Water 

   clear mod. turbid turbid 

)6.0(0 w  

(VIS06,VIS08) 

A
tm

o
sp

h
er

e 

very clear 0.0015 0.0015 0.0016 

clear 0.0031 0.0031 0.0031 

turbid 0.0063 0.0063 0.0063 

very turbid 0.0171 0.0171 0.0171 

    

   All water types 

)6.0(0 w  

(VIS06,NIR16) 

A
tm

o
sp

h
er

e 

very clear 0.0031 

clear 0.0063 

turbid 0.0129 

very turbid 0.0348 

    

 

 

4.5.2 Inter-calibration of VIS06 and VIS08 bands using Rayleigh and gas-corrected reflectances  

The
)6.0(

c  vs. 
)8.0(

c  regression for clear water pixels presented in section 4.2.5.3, not only offers an 

estimate of  (from its slope), but also a way to correct for uncertainties in the calibration of the 
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VIS06 and VIS08 bands and the Rayleigh and gas corrections through subtraction of the offset from 

)6.0(
c . Calibration correction factors 

)6.0(
0A for the Meteosat9 VIS06 band range between 0.91 and 

0.94 (Ham and Sohn 2010), depending on the method and data used. Similar values were found for 

the VIS08 band, but uncertainties are even larger due to strong water vapour absorption in this band 

(Sohn, personal communication).  

Here, we simulate the effect of SEVIRI sensor calibration uncertainties on the retrieval of , 

marine and aerosol reflectances, and we test the effectiveness of the offset method to correct for these 

uncertainties. First, assume a perfectly calibrated VIS06 band and an uncertainty 
)8.0(

0A  on the 

calibration factor
)8.0(

0A  of the VIS08 band between -0.05 and 0.05. The offset and slope of the
)6.0(

c  

vs. 
)8.0(

c  regression increase as 
)8.0(

c  decreases with increasing 
)8.0(

0A (see Figure 4.25A, C). 

Aerosol reflectance 
)8.0(

a decreases along with
)8.0(

c  after Eq. (4.31), while 
)6.0(0

w increases after 

Eq. (4.34). Removal of the offset from 
)6.0(

c  limits these effects (dashed vs. solid lines in Figure 

4.25A), so that the retrieved
)6.0(0

w  varies by less than 2% over the 
)8.0(

0A  range.  

Next, assume a perfectly calibrated VIS08 band and an uncertainty 
)6.0(

0A  on the calibration 

factor
)6.0(

0A  of the VIS06 band between -0.05 and 0.05. Now, the offset and slope of the
 
regression 

decrease as 
)6.0(

c  decreases with increasing 
)6.0(

0A as shown in Figure 4.25B, D. Marine reflectance 

decreases along with
)6.0(

c . The impact of VIS06 calibration on 
)8.0(

a is much smaller, compared to 

VIS08 calibration, while the opposite is true for 
)6.0(0

w . Again, removal of the offset from 
)6.0(

c  

limits these effects, with
)6.0(0

w  varying less than 10% over the 
)6.0(

0A  range. 

 We note that the offset of the 
)6.0(

c  vs. 
)8.0(

c  regression  reflects combined uncertainties 

due to sensor calibration, Rayleigh and gas corrections, assuming that  is spatially homogeneous and 

clear water pixels have near-zero marine reflectance. 
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Figure 4.25.  Effectiveness of SEVIRI VIS06-VIS08 inter-calibration method using the offset of the regression of 

their Rayleigh and gas corrected reflectances,
)6.0(

c and 
)8.0(

c . Variation of , 
)8.0(

a , and 
)6.0(0

w with 

uncertainty 
)8.0(

0A on the VIS08 calibration factor (A) or with uncertainty 
)6.0(

0A on the VIS06 calibration 

factor (B). (C) Scatter plot of 
)6.0(

c vs. 
)8.0(

c  for 
)8.0(

0A = -0.05 (black dots) and 
)8.0(

0A = 0.05 (grey 

circles) with fitted regression lines. (D) same as (C) but for 
)6.0(

0A = -0.05 and 
)6.0(

0A = 0.05.  (data for 8 

April 2008 at 12:00UTC were used). 
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Chapter 5 DIURNAL VARIABILITY OF TURBIDITY AND LIGHT 

ATTENUATION IN TURBID SOUTHERN NORTH SEA 

WATERS FROM THE SEVIRI GEOSTATIONARY SENSOR  

This chapter has been accepted for publication in Remote Sensing of the 

Environment (Neukermans et al. accepted). 
 

Abstract 

With the atmospheric correction of SEVIRI imagery now being fully described and validated in the 

previous chapter, we can focus here on some of SEVIRI’s potential for marine applications. Single-

band retrieval algorithms for turbidity (T ) and vertical attenuation of photosynthetically active 

radiation (KPAR) are applied to the two-year archive of marine reflectance in SEVIRI’s red waveband. 

The diurnal variability of T and KPAR is investigated during cloud free periods and validated using 

half-hourly T and KPAR data obtained from a system of moored buoys (SmartBuoys) in the turbid 

waters of the southern North Sea. Based on numerous match-ups, 80% of SEVIRI derived T and KPAR 

are within 53% and 39% of SmartBuoy T and Kd, respectively. Results further show that on cloudfree 

days, the SEVIRI T and KPAR signals are in phase with the SmartBuoy data, with an average difference 

in the timing of the maximum T and KPAR of 11 minutes and 23 minutes, respectively. Diurnal 

variability of T and KPAR in turbid waters can now be mapped by remote sensing offering new 

opportunities for improving ecosystem models and monitoring of turbidity.  

5.1 Introduction 

Remote sensing of [SPM] and T in turbid waters is of interest in various fields of marine science, 

including monitoring of water quality, the underwater light field and visibility. Imagery of [SPM] 

from ocean colour polar-orbiting satellites has been assimilated in modelling studies of sediment 

transport (Van Raaphorst et al. 1998; Fettweis and Van den Eynde 2003; Fettweis et al. 2006; Vos et 

al. 2000), coastal erosion, and ecosystems (Lacroix et al. 2007). The reduction of sunlight available 

for photosynthesis by phytoplankton has been primarily attributed to suspended particles in turbid 

coastal waters (Devlin et al. 2008; Xu et al. 2005) and in lagoons and estuaries (Christian and Sheng 

2003; Lawson et al. 2007; Painting et al. 2007). In shallow temperate seas, such as the southern North 

Sea, light availability is an important factor controlling phytoplankton carbon fixation and growth 

(Peeters et al. 1991, Nedwell et al. 1999) and is thought to affect the timing of the spring bloom 

(Legendre 1990), which, in turn, affects the survival of larvae of fish and crustaceans (Platt et al. 

2003; Fuentes-Yaco et al. 2007).  
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In shallow coastal environments, [SPM] and covarying parameters such as T and the vertical 

light attenuation coefficient (KPAR), may show strong diurnal variability due to tidal resuspension 

and/or horizontal advection of suspended particles.  

In this chapter, we investigate the potential of SEVIRI to detect the diurnal variability of T and 

KPAR. Single-band retrieval algorithms for T and KPAR are applied to the two-year archive of marine 

reflectance in SEVIRI’s red waveband. Single waveband [SPM] (or T) retrieval algorithms have been 

used intensively in coastal waters, and have been established either empirically (Chen et al. 1991; 

Ouillon et al. 1997; Hu et al. 2004) or semi-empirically (Stumpf and Pennock 1989; Van Der Woerd 

and Pasterkamp 2004; Nechad et al. 2009; Nechad et al. 2010). The latter are based on simplified 

optical reflectance models, calibrated with in-situ data and their limitations are relatively well 

documented (Nechad et al. 2010; Neil et al. 2011). Even a broad waveband of low radiometric 

resolution, such as the AVHRR red band (similar to SEVIRI’s VIS06 band), has provided reliable 

data on [SPM] in turbid waters (Stumpf and Pennock 1989). The diurnal variability of T and KPAR is 

investigated during cloud free periods and validated using half-hourly T and KPAR data obtained from a 

system of moored buoys (SmartBuoys) in the southern North Sea. 

5.2 Materials and methods 

5.2.1 Retrieval of turbidity and suspended matter from SEVIRI 

5.2.1.1 RETRIEVAL ALGORITHMS 

The single band turbidity and [SPM] retrieval algorithms of Nechad et al. 2009 and Nechad et al. 

2010, respectively, are: 

 S

w

wS
T

w

wT B
C

A
SB

C

A
T 















)6.0(0

)6.0(0

)6.0(0

)6.0(0

   and    







 (5.1) 

where C is band specific, giving C=0.1639 for the SEVIRI VIS06 band. The coefficients (AT , BT ) of 

the turbidity algorithm and  (AS , BS ) of the [SPM] algorithm are derived from non-linear regression 

of 68 in situ observations of marine reflectance and T or [SPM] obtained in the southern North Sea in 

2007-2010 (see Nechad et al. 2010 for details on curve fitting). Selection criteria for reflectance and T 

or [SPM] measurements are described in more detail in this Chapter’s Appendix, section 5.6.1. 

Regression gives coefficients with standard error AT=35.8±3.8 FNU and BT=-0.1±0.9 FNU for the T 

algorithm and AS= 37.1±5.7 mg L
-1

 and BS= -0.17±1.4 mg L
-1

 for the [SPM] algorithm. Measurements 

and fitted curves are shown in Figure 5.1. The offsets BT and BS are not significantly different from 

zero, and the T and [SPM] algorithms are applied without it.  

Turbidity and [SPM] products on the HRV grid, denoted T  and S ,  are derived simply by 

replacing 
)6.0(0

w  by 
)6.0(0

,

w  in Eqs. (5.1), where 

)6.0(0
,

w  is given in Eq. (4.45). 
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5.2.1.2 UNCERTAINTY ON SEVIRI TURBIDITY AND SUSPENDED MATTER PRODUCTS 

The uncertainty on the retrieval of T or [SPM] using algorithms of the form (5.1) resulting from 

uncertainties on 
)6.0(0

w and their respective calibration parameters, AT or AS , and is estimated from 

first order error propagation (ISO 1995) to give:  
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This expression can be written analogously for the uncertainty on [SPM], denoted S, by replacing AT 

with AS. The relative uncertainty on turbidity can be expressed as follows: 
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where 11.0


T

T

A

A
. Analogously for [SPM] with 15.0



S

S

A

A
. The two components in Eq. (5.3) are 

of very different nature. The first component is related to the uncertainty on marine reflectance due to 

atmospheric correction and digitization, where the latter is the dominant source of uncertainty for 

SEVIRI (see sections 4.2.7.1 to 4.2.7.3). The second component is the uncertainty arising from the 

calibration of the retrieval algorithms for T and [SPM] and is equal to 11% and 15%, respectively, 

everywhere in the scene. Uncertainties in the [SPM] and T algorithm calibration are caused by various 

factors such as in-situ measurement uncertainties for reflectances, T, and [SPM] and uncertainties in 

the optical model underlying Eq. (5.1). As discussed in Nechad et al. 2010,  the main source of 

uncertainty in the T and [SPM] algorithms is the natural variability of the turbidity- and mass-specific 

backscattering ratios, respectively. This is further investigated in this Chapter’s Appendix, section 

5.6.2.  

The uncertainty on T and [SPM] products on the HRV grid, denoted T  and S , are 

expressed by replacing 
)6.0(0

w  by 
)6.0(0

,

w  and 

)6.0(0 w  by 
)6.0(0

,

 w  in Eq. (5.2). 
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Figure 5.1.  Scatterplot of 68 seaborne measurements of marine reflectance in the VIS06 band, and turbidity (T) 

and SPM concentration (S). The black and grey lines represent the SEVIRI VIS06 retrieval algorithms for T 

(Nechad et al. 2009) and S (Nechad et al. 2009; Nechad et al. 2010) with C=0.1639. The RMSE and the [5 50 

95]th percentiles of the relative model prediction errors are also shown.  

5.2.2 Retrieval of PAR attenuation 

5.2.2.1 PAR ATTENUATION ALGORITHM 

Many studies have illustrated that the variability in light attenuation is primarily driven by [SPM] in 

turbid coastal waters (Devlin et al. 2008; Xu et al. 2005) and in lagoons and estuaries (Christian and 

Sheng 2003; Lawson et al. 2007; Painting et al. 2007). From a spatially extensive survey of vertical 

profiles of PAR and [SPM] in coastal and offshore UK waters a strong linear relationship (R²=0.98) 

between the water column mean [SPM], S , and the water column mean attenuation coefficient of 

PAR, PARK , was found (Devlin et al. 2008): 

 SKPAR  )002.0(066.0)06.0(325.0  (5.4) 

where S varied between 0.1 mg L
-1

 and 250 mg L
-1

, with most values below 50 mg L
-1

 and PARK  

varied between 0.3 m
-1 

and 15 m
-1

 with most values below 3 m
-1

. This model has been shown to work 

well in turbid waters dominated by suspended sediments (Devlin et al. 2008).  
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Replacing S  in Eq. (5.4) by the SEVIRI [SPM] retrieval algorithm in Eq. (5.1) gives the 

SEVIRI KPAR on the VIS06 and HRV grids, denoted KPAR and ,PARK , respectively.  

5.2.2.2 UNCERTAINTY ON PAR ATTENUATION RETRIEVAL 

The uncertainty on the SEVIRI KPAR 
product, introduced by uncertainties on S  and the slope and 

offset of the model in Eq. (5.4) is: 

      2/1222
06.0002.0066.0  SSKPAR  (5.5) 

with S given by Eq. (5.2) and S from Eq. (5.1). Replacing S by S  and S by S 
 
gives PARK  

on the HRV grid, denoted  ,PARK . 

5.2.3 Validation of SEVIRI turbidity and PAR attenuation products 

5.2.3.1 SMARTBUOY MEASUREMENTS OF TURBIDITY AND PAR ATTENUATION 

Half-hourly measurements of physical, chemical, optical, and biological variables are made in UK 

shelf seas from moored platforms, SmartBuoys (Mills et al. 2003), operated by the Centre for 

Environment, Fisheries and Aquaculture Sciences (Cefas) on a regular basis since 2001. Several 

SmartBuoys were operational in the southern North sea in 2008-2009: Warp Anchorage (TH1) 

(51.5235°N, 1.0240°E) and West Gabbard (WG) (51.9802°N, 2.0828°E), and since 2009 also 

Dowsing (D) (53.5313°N, 1.0532°E). Their location is shown in Figure 4.8. Cefas SmartBuoys 

measure water turbidity, denoted T
SB

, using a Seapoint turbidity meter, which records light scattered 

by suspended particles between 15° to 150° from a light source emitted at 880 nm. Turbidity is 

measured 1-2 m below the surface and expressed in Formazine Turbidity Units (FTU). PAR is 

recorded using LI-COR (LI-192SB) underwater quantum sensors just above the surface and at 1 m 

and 2 m depths (units: µE m
-2

 s
-1

). SmartBuoy turbidity and PAR measurements are recorded during 

10 minute bursts, every half hour. Every burst gives 600 scans, which were mean-averaged.  

The vertical light attenuation coefficient can be derived from PAR measurements at 1 m and 2 

m depth using the Lambert-Beer equation:  
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where  represents the measurement standard deviation during each burst and the third term accounts 

for the dependence between PAR(1m) and PAR(2m) (r>0.95 for each SmartBuoy. The above water 

PAR measurements, PAR(0m), were used for data quality control based on following criterion: 
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thus rejecting observations where PAR attenuation between 1 m and 2 m depth differs more than 50% 

from the PAR attenuation between the surface and 1 m depth. The 0.5 threshold value corresponds to 

the 75
th
 percentile so that 25% of the PAR data were rejected. Unfortunately no surface PAR 

measurements are available at WG, so the validation of SEVIRI PARK  is limited to TH1 and D.   

5.2.3.2 COMPARISON OF INSTANTANEOUS SEVIRI-SMARTBUOY OBSERVATIONS 

All cloudfree SEVIRI T and KPAR products, P, were regressed against corresponding Smartbuoy data, 

P
SB

. Correlation analysis and ‘least squares cubic’ regressions (York 1966), which take into account 

measurement uncertainties in the data, are used. The least squares cubic regression is applied after 

removal of outliers, identified by the MATLAB robustfit.m routine. Correlation coefficients are given 

with their 95% confidence intervals, obtained from bootstrapping. Details of these statistical 

procedures are described in the Web appendix of Neukermans et al. 2012.  

Several statistics are used to quantify agreement between SEVIRI and SmartBuoys products. 

The Root-Mean-Square-Error (RMSE), computed after removal of outliers: 
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and the 5
th
, 50

th
, and 95

th
 percentiles of the normalized absolute prediction error, PE (computed from 

all observations): 
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and the normalized bias: 

 
SB

SB

P

PP 
bias  (5.11) 

5.2.3.3 VALIDATION OF SEVIRI PRODUCT TIME SERIES  

Continuous and cloudfree SEVIRI T and KPAR time series longer than 4.5 hours were compared 

against corresponding Smartbuoy time series. A moving average filter with a span of 5 observations 

was applied twice to the SEVIRI and Cefas time series and local maxima were identified using the 

findextrema.m MATLAB script of Deng 2009. In the case of multiple local maxima for SEVIRI time 

series, only the global maximum was retained. The timing of the global maximum of the SEVIRI 
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product, )( maxPt , was then compared against the timing of the nearest maximum of the 

corresponding SmartBuoy product,  )( max
SBPt . Smoothed time series where the amplitude of diurnal 

variability of P detected by SEVIRI (Pmax-Pmin) was smaller than the daily mean standard error on P 

were not considered. This removes the noisiest time series. We further rejected time series with small 

in-situ diurnal variability, i.e. time series with SmartBuoy amplitude smaller than a certain fraction of 

the maximum SmartBuoy data for a given day. This fraction was arbitrarily set to 0.4 for T and 0.2 for 

KPAR.  

The agreement in timing of the maximum between SEVIRI and SmartBuoy timeseries of a 

product P is quantified by the mean and standard deviation and the 5
th
, 50

th
, and 95

th
 percentiles of the 

timing bias, )()(bias maxmax
SB

t PtPt  , and the timing prediction error, )()( maxmax
SB

t PtPtPE  .  

5.3 Results 

5.3.1 Comparison of instantaneous SEVIRI-SmartBuoy observations  

5.3.1.1 TURBIDITY OBSERVATIONS 

A total of 3068 SEVIRI-SmartBuoy T  match-ups were observed at TH1, WG, and D. Scatterplots of

T  vs. 
SBT are shown in Figure 5.2 (a). Observations with over 100% uncertainty on 

)6.0(0
w (see 

grey dots in Figure 5.2 (a)) were removed, giving 2598 (=nv) remaining observations.  Least squares 

cubic regression was applied to this dataset after removal of 51 (=nx) outliers. Equation and statistics 

of the regression are shown in Table 5.1. A good correlation is observed between T  and 
SBT  with 

correlation coefficient r=0.933±0.006. On average, T  is underestimated by SEVIRI by 14%, with a 

median prediction error of 29% and an RMSE of 5.8 FNU. In 80% of the cases T  is within 53% of

SBT  and in 95% of the cases within 80% (see Table 5.1). For validation of the high spatial resolution 

T product, T  , observations neighboring cloud or low aerosol transmittance (where 85.0)6.0(
, a
vot ) 

pixels were further removed (shown by grey dots in Figure 5.2 (b)), giving 1412 remaining match-

ups. The correlation coefficient, regression equation, and RMSE found for T  vs. 
SBT  were similar 

to the values found for the low spatial resolution T  vs. 
SBT comparison. However, the scatter in the

T  vs. 
SBT  plots is higher with higher spread in the 5-95

th
 percentiles of PE and bias and higher 

median underestimation by SEVIRI of 20% (see Table 5.1). 

5.3.1.2 PAR ATTENUATION OBSERVATIONS 

A total of 1492 SEVIRI-SmartBuoy KPAR match-ups were observed at TH1 and D. Scatterplots of 

KPAR vs. 
SB
PARK are shown in Figure 5.2 (c). Observations with over 100% uncertainty on 

)6.0(0
w or 
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quality flagged PAR data (after Eq. (5.8)) are shown as grey dots in Figure 5.2 (c). These observations 

were removed from the dataset, giving 988 remaining match-ups.  Equation and statistics of the 

regression are shown in Table 5.1. A good correlation is observed between KPAR and 
SB
PARK  with 

correlation coefficient r=0.926±0.008. Overall, SEVIRI overestimates
 
KPAR by 9% on average, with a 

median prediction error of 18% and an RMSE of 0.34 m
-1

. In 80% of the cases
 
KPAR is within 39% of

SB
PARK  and in 95% of the cases within 81% (see Table 5.1). Analogously to the validation of T  , 

observations neighboring cloud or low aerosol transmittance pixels were further removed (shown by 

grey dots in Figure 5.2 (d)), giving 424 remaining match-ups for ,PARK . The correlation coefficient, 

regression line, and prediction errors of ,PARK  vs. 
SB
PARK are comparable to the values found the low 

spatial resolution product. The overestimation of KPAR by SEVIRI for the high resolution product 

decreased by 4% on average compared to the low resolution product.  
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Figure 5.2. Scatter plots of SEVIRI vs. SmartBuoy turbidity (T) and light attenuation (KPAR) at TH1, WG, and D 

for the period 2008-9 on the low (a, c) and the high (b, d) spatial resolution SEVIRI grids. Regression and 1:1 

lines are shown in red and black, respectively, with equations and statistics in Table 3. Quality flagged 

observations are shown in grey and correspond to pixels where either the SEVIRI marine reflectances have 

over 100% uncertainty (a,b,c,d), or are in the proximity of cloud or low aerosol transmittance pixels (c, d), or 

low quality PAR measurements (c, d). Errorbars are plotted for 1% random observations and denote 

uncertainties on SmartBuoy (Eq. (5.7)) and SEVIRI (Eqs. (5.2) and (5.5)) products. Regression outliers are 

labelled by white crosses.  
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Table 5.1.  Equation and statistics of the least-squares-cubic log-log regressions between SmartBuoy and SEVIRI T and KPAR products obtained on the SEVIRI low and high (

 subscript ) spatial resolution grids. The total number of match-ups is given by

 
totn , of which vn passed the quality control criteria (see sections 5.3.1.1 and 5.3.1.2  for 

details), and from which xn  were removed as regression outliers. The correlation coefficient, r , with 95% confidence interval (r±r), slope (a) and offset (b) of the 

regression line are given with their standard errors. The RMSE (expressed in units of P), and the 5th, 50th, and 95th percentiles of the prediction error (PE) and the bias are 

given. 

                                      

      

)(log)(log 1010 bbPaaP SB   

  

PE (%) 

 

bias (%) 

P totn  vn  xn  r  r  a  a  b  b  

 

RMSE 5 50 95 

 

5 50 95 

                   T  3068 2598 51 0.933 0.006 0.822 0.009 0.148 0.010 

 

5.795 3 29 80 

 

-65 -14 77 

T  

3068 1412 72 0.922 0.009 0.812 0.012 0.126 0.013 

 

5.340 3 32 93 

 

-73 -20 82 

PARK  1492 988 16 0.926 0.008 0.846 0.014 0.047 0.003 

 

0.342 2 18 81 

 

-27 9 81 

,PARK  1492 424 4 0.917 0.015 0.798 0.022 0.018 0.005   0.341 2 19 79   -35 5 79 
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5.3.2 Validation of SEVIRI product time series 

5.3.2.1 TIME SERIES OF TURBIDITY 

A random selection of 12 out of 49 available time series of T derived from SEVIRI and the SmartBuoys 

are shown in Figure 5.3 and Figure 5.4 . The in situ data shows strong variability with a period of about 6 

hours, typical of resuspension dynamics induced by a semi-diurnal tide, but strong wind and wave action 

also affect advection and resuspension of sediments from the bottom. Overall, the diurnal variability of T 

detected by the SmartBuoys is picked up well by SEVIRI, albeit with some exceptions (e.g., Figure 5.3 C, 

Figure 5.4 G). In general, the high spatial resolution time series of SEVIRI are noisier than the low 

resolution time series. In some occasions the high spatial resolution time series picks up small scale 

variability that is not detected on the low resolution grid (Figure 5.3 B, Figure 5.4 L). For comparison, 

data availability from MODIS Aqua is also indicated on Figure 5.3 and Figure 5.4, clearly showing the 

tremendous increase in data availability that can be gained from a sensor in geostationary orbit, even in 

winter and at high latitudes (see Figure 5.3A, E, F).   

Figure 5.5 shows the comparison of the timing of maximum T derived from the smoothed 

SEVIRI VIS06 time series (see big red dots in Figure 5.3 and Figure 5.4)  against the timing of maximum 

T obtained from the SmartBuoys for all available cloudfree periods (n=49).  In 75% of the cases, the 

phase difference is less than one hour. On average, the maximum SEVIRI T is reached 11 minutes before 

the maximum SmartBuoy T, with a standard error of 1.46h.  
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Figure 5.3. Randomly selected original and smoothed time series of T obtained from SEVIRI and SmartBuoys. 

SEVIRI T data from the VIS06 and HRV bands with uncertainty from Eq. (5.2) are shown by the black and grey 

errorbars, respectively. Temporally smoothed data series for VIS06 and HRV T products are shown by grey circles 

and diamonds, respectively, with global (big red dot) and local (small red dots) maxima. SmartBuoy T and its 

uncertainty is shown by the blue errorbars, while the temporally smoothed data series is shown by blue circles 

with local maxima highlighted in cyan. Grey vertical dotted lines represent data availability from MODIS Aqua.  



Chapter 5 DIURNAL VARIABILITY OF TURBIDITY AND LIGHT ATTENUATION IN THE NORTH SEA 157 

 

 

 

Figure 5.4.  Continuation of Figure 5.3.  
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Figure 5.5.  Scatterplot of the timing of maximum turbidity derived from the SmartBuoys (TH1, WG, and D) and 

SEVIRI on 49 cloudfree periods. The 1:1 line (solid) and 1 hour offset lines (dashed) are shown in black. Labels 

refer to the time series shown in Figure 5.3 and Figure 5.4. The mean and standard deviation of the phase 

difference, median and 5th-95th percentile interval for prediction error and bias are also given in black.  

 

5.3.2.2 TIMES SERIES OF PAR ATTENUATION 

From a total of 27 available time series of PAR attenuation from SEVIRI and the SmartBuoys at TH1 and 

D, six randomly selected time series are shown in Figure 5.6. Approximately 6-hourly variability is 

apparent for some time series, although other temporal variability is also apparent. For comparison, data 

availability from MODIS Aqua is also indicated in Figure 5.6. Figure 5.7 shows the comparison of the 

timing of maximum KPAR derived from the smoothed SEVIRI VIS06 time series (see big red dots in 

Figure 5.6) against the timing of maximum KPAR obtained from the SmartBuoys for all available cloudfree 

periods.  In 80% of the cases, the phase difference is less than one hour. On average, the maximum 

SEVIRI KPAR is reached 23 minutes before the maximum SmartBuoy KPAR, with a standard error of 1.27h. 

Also shown in Figure 5.7 are the statistics corresponding to a random timing of 
SB
PARK . Again, the 
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standard error of the phase difference is much larger for a random timing, as are the 5-95
th
 percentile 

intervals of PEt and biast.  

 

 

Figure 5.6.  Six randomly selected original and smoothed time series of Kd obtained from SEVIRI and SmartBuoys. 

SEVIRI KPAR data from the VIS06 and HRV bands with uncertainty expressed by Eq.(5.5) are shown by the dark and 

light grey errorbars, respectively. Temporally smoothed data series for VIS06 and HRV KPAR products are shown by 

grey circles and diamonds, respectively, with global (big red dot) and local (small red dots) maxima. SmartBuoy KPAR 

and uncertainty (after Eq. (5.7)) are shown by the blue errorbars, while the temporally smoothed data series are 

shown by blue circles with local maxima highlighted in cyan. Grey vertical dotted lines represent data availability 

from MODIS Aqua. The yellow crosses indicate quality flagged KPAR SmartBuoy data (from Eq. (5.8)).  
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Figure 5.7.  Scatterplot of the timing of maximum PAR attenuation derived from the SmartBuoys (TH1 and D) and 

SEVIRI during 27 cloudfree periods. The 1:1 line (solid) and 1 hour offset lines (dashed) are shown in black. Labels 

refer to the time series shown in Figure 5.6. The mean and standard deviation of the phase difference, median and 

5th-95th percentile interval for prediction error and bias are also given in black.  

 

5.4 Discussion  

Overall, good correspondence is found between the SEVIRI and SmartBuoy products for both T and KPAR, 

but with considerable scatter along the 1:1 line as shown in Figure 5.2. Possible causes for differences 

between SEVIRI and SmartBuoy data include small spatial scale variability (point vs. pixel comparison), 

SEVIRI atmospheric correction and digitization uncertainties, design of the SEVIRI retrieval algorithms 

for T and KPAR, and incommensurability between in-situ and remotely sensed products. These are 

discussed below. 

5.4.1 SEVIRI atmospheric correction and digitization uncertainties 

The uncertainty on 
)6.0(0

w  due to the atmospheric correction assumptions and digitization, expressed by 

Eq. (4.51), is of the order 0.004 for typical North Sea viewing and illumination geometry (see Table 4.3, 
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0=40°). This value defines the SEVIRI detection limit in clear waters: 1 FNU for T or 1 mg L
-1

 for 

[SPM]. The T detection limit explains the location of the majority of the grey dots in Figure 5.2(a), where 

comparison with T
SB 

is clearly problematic. 

Whereas the SEVIRI atmospheric correction in clear waters is limited by the SEVIRI digitization 

uncertainty, the atmospheric correction is expected to fail in very turbid waters, due to the non-linearity of 

the VIS06:VIS08 marine reflectance ratio (assumption (4.22)) for 062.0)6.0(0 
w , which corresponds 

to T>23 FNU. Above this threshold, SEVIRI underestimates T with increasing T, up to 60% for T=80 

FNU, as shown in Figure 5.8 (cfr. Figure 4.21). This underestimation by SEVIRI for high turbidity is also 

observed in the scatter plot in Figure 5.2(a). With the current atmospheric correction, the optimal range of 

SEVIRI T retrieval is 1-35 FNU. It might be possible to push this upper limit further by refining the 

algorithm to have a non-constant   via an extra iterative loop with  calculated as a function of
)8.0(0

w .  

The issue of non-constant   in the atmospheric correction is mirrored by limitations of the reflectance 

model underlying Eq. (5.1) near its high reflectance asymptote. This “saturation” phenomenon (Bowers et 

al. 1998) is ideally avoided for ocean colour sensors such as MERIS by using longer wavelengths where 

pure water absorption is higher. For SEVIRI, the only option is the VIS08 band, but this band has much 

lower SNR than the VIS06 band (see Table 4.2).  
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Figure 5.8.  Effect of the atmospheric correction assumption of constant , as in Eq. (4.22), on the retrieval of T 

from
)6.0(0

w : normalized bias of T retrieved by SEVIRI (after Eq. (4.34)) from the true T (=T algorithm applied to 

the in situ marine reflectance) for 84.0 (diamonds), 02.1 (circles), and 30.1 (crosses), with 

simplifications
)8.0(

,1 a
vot . The dashed line demarcates the reflectance region where  was calibrated (see 

Figure 4.7).  

 

5.4.2 Limitations of SEVIRI spatial resolution 

5.4.2.1 SUB-PIXEL SCALE VARIABILITY 

MODIS Aqua imagery with a spatial resolution of 1 x 1 km² was used to investigate SEVIRI VIS06 sub-

pixel scale variability at TH1 and WG for the period 2002-2010. SmartBuoy turbidity from the MODIS 

645nm band on a 1 x 1 km² pixel centred at TH1 and WG were compared to their a 5 x 5 km²  spatial 

mean value. The spatially averaged to center pixel T ratios are typically between 0.8 and 1.2, with a mean 

of 1. Differences due to spatial averaging are generally below 30%, with a RMSE of of 0.74 FNU, as 

shown in Figure 5.9A. Cross validations of MODIS T vs. in-situ T for 1 x 1 km² and 5 x 5 km² pixels are 

shown in Figure 5.9B, C, respectively, and illustrate that spatial averaging increases the scatter along the 

1:1 line. We further note that MODIS T corresponds much better to SmartBuoy T than SEVIRI T (even 
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when spatially averaged) with an RMSE of 3.6 FNU compared to 5.8 FNU for SEVIRI, and a median PE 

of 18%, compared to 29% for SEVIRI.  

 

 

Figure 5.9. Investigation of SEVIRI VIS06 sub-pixel scale variability using MODIS Aqua imagery. (A) Scatter plot of 5 

x 5 km² spatial mean turbidity from MODIS 645nm at WG and TH1 for the period 2002-2010 vs. the 1 x 1 km² 

center pixel turbidity, (B) Scatter plot of MODIS 645nm turbidity vs. SmartBuoy turbidity (TSB) at TH1 and WG. 

(C) same as (B) but using the 5 x 5 km² spatial mean value. Regression and 1:1 lines are shown in red and black 

respectively. Regression outliers are marked by white crosses. The turbidity algorithm of Nechad et al. 2009 was 

used. 
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5.4.2.2 USE OF THE HRV BAND  

Improvement of the spatial resolution of SEVIRI products using the HRV band adversely affected 

correspondence with SmartBuoy data: an increased scatter along the 1:1 lines for both T and KPAR was 

observed (Figure 5.2b,d). A similar effect was observed for cross-validation of SEVIRI reflectance with 

MODIS reflectance (see section 4.3.3.2). We therefore conclude that the use of SEVIRI’s HRV band is 

limited due to its poor geolocation and low SNR. It is expected that the methodology developed in section 

4.2.6 can be more successfully applied to a sensor with an HRV band that is better geolocated and has a 

higher SNR (e.g., MODIS, MERIS).   

5.4.3 Limitations of the T and Kd retrieval algorithms 

5.4.3.1 TURBIDITY RETRIEVAL ALGORITHM 

Analogous to the assumption of constant SPM-specific particulate backscattering (=bbp:SPM) in the single 

band SPM retrieval algorithm of Nechad et al. 2010, the T retrieval algorithm (Nechad et al. 2009in Eq. 

(5.1)) is based on the assumption that the T-specific backscattering coefficient (=bbp:T) is constant. Like 

bbp:SPM, bbp:T is relatively well constrained with variability of a factor 3, mainly related to variations in 

particle composition (see Appendix, section 5.6.2), but particle size and density were also found to affect 

bbp:T. This implies that for a water mass of fixed turbidity, changes in particle composition from mainly 

organic to mainly inorganic will lead to a higher remotely sensed T. Particle composition may vary on 

time scales of a few hours for example due to tidal resuspension of inorganic bottom sediments 

(Thompson et al. 2011).  

5.4.3.2 KPAR RETRIEVAL ALGORITHM 

The KPAR retrieval algorithm is based on the optical model of Devlin et al. 2008, identifying suspended 

particles as the main source of light attenuation (KPAR is proportional to SPM, see Eq. (5.4)). This one 

parameter model was found by Devlin et al. 2008 to represent most of the variability in KPAR that was 

measured at a variety of North Sea stations and gives good performance here for the more turbid waters.  

It is ideally suited to the limited spectral resolution of the SEVIRI sensor which is essentially limited to 

the retrieval of SPM concentration (and covarying parameters) only. See also Stumpf et al. 1999 for a 

study with the spectrally similar polar-orbiting AVHRR sensor.  

Expressing KPAR as a linear function of SPM is clearly a gross simplification because KPAR can be 

affected by variability of many factors including: concentration of coloured dissolved organic matter 

(CDOM), phytoplankton (expressed via Chl a concentration), size, shape, and composition of suspended 

particles, the average cosine of downwelling irradiance (or sun zenith angle), the spectral composition of 

incident irradiance, and the invalidity of the Lambert-Beer “law” (Gordon 1989). Any of the first three 
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factors could explain the apparent difference in performance of the SEVIRI KPAR product during clear 

water periods at TH1 (SEVIRI underestimates) and D (SEVIRI overestimates). The single parameter KPAR 

model is expected to perform poorly in clearer waters with varying concentrations of CDOM and Chl a, 

because their contribution is represented by a constant offset (see Eq. (5.4)). Unfortunately, no 

measurements of CDOM are available from the SmartBuoys, but salinity can be used as a proxy, since in 

the North Sea CDOM has a mainly terrestrial origin (Foden et al. 2008) and decreases with salinity. 

Salinity data recorded by the SmartBuoys in 2008-9 give average values of 34.14±0.68 PSU and 

34.54±0.17 PSU at TH1 and D, respectively, which corresponds to observations in Figure 5.2(c,d) of 

higher KPAR at TH1 than at D in clear waters. It is, however, beyond the scope of the SEVIRI sensor to 

resolve the question of CDOM impact on KPAR, although improvement of the SEVIRI KPAR model might 

be achievable by integrating lower frequency information on CDOM and phytoplankton (or euphotic 

depth) from suitably designed polar-orbiting ocean colour sensors such as MODIS or MERIS.  

5.4.4 Incommensurability between in-situ and remotely sensed products 

5.4.4.1 REMOTELY SENSED VS. IN-SITU T  

In the linear regime of the SEVIRI T algorithm of Nechad et al. 2009 (i.e. Cw  )6.0(0 in Eq. (5.1)), T 

is proportional to the particulate backscattering coefficient, bbp , in the red waveband. The SmartBuoy T is 

measured with a Seapoint turbidity meter, which represents a relative measurement of the particulate VSF 

integrated between 15° and 150° scattering angles at a wavelength of 880 nm. While the shape of the VSF 

is known to vary little in the backward direction (Sullivan and Twardowski 2009), the wide solid angle of 

the Seapoint turbidity meter also includes forward scattering angles so that large relative differences 

between Seapoint T and bbp are expected due to changes in particle size, shape, and composition.  

In-situ measurements of the particulate VSF of Sullivan and Twardowski 2009; Twardowski et al. 

2012) recorded with the WET Labs MASCOT instrument (=658 nm) in a wide range of coastal and 

offshore waters are used here to investigate the variability between SEVIRI T (i.e. bbp) and 

SmartBuoy/Seapoint T. Figure 5.10 shows the relationship and regression between 15°-150° angular 

integration
1
 of the VSF and bbp. This variability of about  a factor 2 is caused by changes in particle size, 

shape, and composition, which are known to occur on time scales of a few hours (Verney et al. 2011).  

It is expected that the dispersion between SEVIRI T and SmartBuoy T will decrease when a 

turbidity meter with a narrower solid angle in the back direction, such as for example the D&A Tech 

optical backscatter instruments (OBS-3, FOBS-7), is used for validation (see Downing 2006 for a 

comprehensive overview of instrument characteristics). In fact, skipping all go-betweens, one could 

                                                      
1 No angular response function of the Seapoint turbidity instrument is available, so it was set to 1 for 15-150° and 0 elsewhere. 
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validate SEVIRI backscattering products with in-situ measurements of the backscattering coefficient at 

red wavelengths, with a posteriori conversion to [SPM], turbidity, or light attenuation.  

 

 

Figure 5.10.  Scatter plot and regression analysis of the particulate backscattering coefficient vs. simulated 

SmartBuoy turbidity (scattering between 15° and 150°) obtained from in-situ measurements with the WET Labs 

MASCOT instrument (=658 nm, Sullivan and Twardowski 2009) collected in a wide diversity of coastal and 

offshore waters. 

5.4.4.2 REMOTELY SENSED VS. IN-SITU KPAR 

Differences between remotely sensed KPAR and in situ KPAR can be caused by differences in the thickness 

and depth of the water layer considered for deriving KPAR. The SmartBuoy KPAR is obtained from PAR 

measurements at 1 m and 2 m depth, while the thickness of the remotely sensed layer varies with water 

clarity and with the wavelength of the light considered. For a vertically homogenous water column, 

approximately 90% of the marine reflectance at a given wavelength is derived from a layer between the 

surface and depth KPAR
 -1

  (Gordon and McCluney 1975). From inversion of SmartBuoy KPAR, this results 

in KPAR remote sensing contributions of a layer of water of 3m±1m deep at D and of 1.1m±1.0m at TH1, 

on average. Although KPAR may be depth dependent (Lee 2009), an average PAR attenuation coefficient,

PARK , is usually derived from a water layer extending from the surface down to the euphotic depth, 
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where PAR has dropped to 1% of its surface value (Morel 1988; Kirk 1996; Kirk 2003). Therefore, the 

SEVIRI derived KPAR represents the mean PAR attenuation in the euphotic zone.  

5.4.5 Perspectives for the design of future geostationary sensors and synergy with polar-orbiting 

sensors 

It is shown here that the SEVIRI sensor can be used to estimate T and KPAR in the turbid waters of the 

southern North Sea and their tidal variability for the first time from space. However, this meteorological 

sensor was not designed for ocean remote sensing and hence its ocean application has a number of 

limitations, as shown in this study. Future geostationary ocean colour sensors should have (i) better 

spectral resolution, e.g over 16 bands in the visible and NIR spectral domain instead of two for SEVIRI 

(VIS06 and VIS08), (ii) finer digitization and better SNR for observation of dark targets like the ocean, 

and (iii) higher spatial resolution, possibly by the use of mixed resolution broad/narrow bands (mimicked 

here by the VIS06/HRV combination).  

For Chl a estimation, the atmospheric correction for blue bands will be particularly difficult, 

especially for the high air masses encountered at high latitudes by geostationary remote sensing. The use 

of a geosynchronous orbit (IOCCG 2012) may mitigate this slightly but at the cost of a varying viewing 

geometry. 

While the current paper demonstrates remote sensing of tidal variability associated with SPM, 

many other high frequency processes become potentially amenable to remote sensing by a geostationary 

ocean colour sensor, including diurnal variability of photosynthetic processes, bidirectionality of aerosol 

or hydrosol particulate scattering (via sun variation in day, for stable conditions), diurnal migration of 

certain algal species, etc (IOCCG 2012). These new processes add to the obvious practical advantage of 

better coverage from high temporal frequency data in regions or periods of scattered clouds. Finally, it is 

probable that entirely new ways will be found to process high frequency ocean colour data, where the 

current pixel-by-pixel approach may be supplemented by consideration of temporal coherency of data in 

analogy to approaches already explored in atmospheric remote sensing (Kaufman et al. 1997).  

The synergy between polar-orbiting and geostationary sensors still needs to be investigated with 

the aim of exploiting the advantages of each orbit: the higher spatial resolution and better atmospheric 

correction of polar-orbiters, especially for high latitudes and the higher frequency of geostationary-

orbiters. In the context of the current paper, a potential synergy would be to use background information 

on CDOM and Chl a concentration and higher spatial resolution information on SPM from polar-orbiters, 

modulated by the high frequency variability of SPM observed here by SEVIRI. This could further be 

combined with a geostatistical cloud-filling and outlier detection approach, similar to that of Sirjacobs et 
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al. 2011, to give unprecedented details of spatio-temporal variability of PAR attenuation for the forcing of 

ecosystem models. 

5.5 Conclusion 

This study illustrates the potential of the geostationary SEVIRI weather satellite sensor for mapping of 

turbidity, T, and vertical attenuationof photosynthetically active radiation, KPAR. Based on numerous 

match-ups from a two year archive of SEVIRI imagery and half-hourly T  and KPAR data from a system of 

moored buoys (SmartBuoys), good correspondence was found, with 80% of SEVIRI derived T and KPAR 

being within 53% and 39% of SmartBuoy T  and KPAR, respectively. Uncertainties on marine reflectance 

due to digitization and atmospheric correction were considered. For SEVIRI, the former was identified as 

the main source of uncertainty. A methodology was developed to improve the spatial resolution using the 

finer spatial information from a panchromatic band, but applicability to SEVIRI’s HRV is limited by its 

poor geolocation and low SNR. During cloudfree periods diurnal variability of T and KPAR is detected by 

SEVIRI and comparison with SmartBuoy time series shows that the signals are in phase with an average 

difference in the timing of the maximum T and KPAR of 11 minutes and 23 minutes, respectively. This 

diurnal variability of T and KPAR is now detected from remote sensing for the first time, offering new 

opportunities for improving ecosystem models and monitoring of turbidity.  

The limitations of this study have also been clearly identified and include: the limited spectral and 

spatial resolution of SEVIRI, poor digitization of SEVIRI, limitations in usage of the HRV band, 

limitations of the remote sensing retrieval algorithms for T and KPAR, as well as incommensurability 

between in-situ and remotely sensed T and KPAR. In fact, when considering all these difficulties it is 

perhaps surprising that any useful marine information at all can be retrieved from a meteorological sensor 

designed to look at clouds, a much brighter target. However, the information on tidal variability of T and 

KPAR presented here is clearly a significant improvement on the aliased information that is provided by 

MODIS and MERIS and that is already being used in both monitoring and modeling applications. The 

present study provides a glimpse of what will become possible when dedicated geostationary ocean 

colour sensors become operational and provides some first hints on the methodological challenges and 

opportunities that they will raise. 

 

5.6 Appendices 

5.6.1 Calibration dataset for turbidity and [SPM] retrieval algorithms 

Simultaneous in-situ measurements of [SPM] and marine reflectance have been recorded by MUMM 

since 2001, mainly in the southern North Sea. Since 2007 measurements of T with a portable Hach 
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turbidity meter (described in section 2.2.2) are also recorded. Marine reflectance is derived from 

hyperspectral above-water radiance and irradiance measurements recorded with  a set of TriOS Ramses 

radiometers as described in Ruddick et al. 2006. The entire database contains 846 records and has been 

used for algorithm validation and calibration (Ruddick et al. 2008; Nechad et al. 2009; Nechad et al. 

2010; Dogliotti et al. 2011; Vantrepotte et al. in press). Here we discuss details on the calibration of T and 

[SPM] retrieval algorithms from the SEVIRI VIS06 band given in Eq. (5.1).  

5.6.1.1 DATA COLLECTION, TREATMENT, AND SELECTION 

A subset of the in-situ measurements database was used for the simultaneous calibration of T and [SPM] 

algorithms. This subset comprised 383 concomitant measurements of marine reflectance, T, and [SPM] 

collected between 2007 and 2010 in the southern North Sea. In June 2008, the sample mixing method for 

[SPM] measurement was changed from mixing by hand to mixing by tumbling (see Chapter 2 for details). 

This resulted in higher quality measurements of [SPM], especially in clear waters as shown in the scatter 

plot of T vs. [SPM] in Figure 2.5(b) and reproduced for this data subset in Figure 5.11. Note the slope 

near 1 and zero offset of the regression line between T and [SPM] for the tumble mix data, compared to 

their values for the hand mix dataset. The use of T to quality control [SPM] is also exploited here: 

measurements outside the 90% prediction bounds of the tumble mix dataset were rejected (see Figure 

5.11), as well as measurements where the difference between turbidity recorded before and after filtration 

was over 50%. From the remaining 325 [SPM]-T quality controlled measurements, marine reflectances 

collected in homogeneous skies (either sunny or completely overcast) and low wind speed (W) conditions, 

and with small deviation from the time-averaged mean reflectances were retained.  More specifically, the 

following marine reflectance criteria were implemented:  
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 (5.12) 

Note that these criteria are less stringent than those for optimal reflectance measurements set-up by 

Ruddick et al. 2006 in order to remain with a sufficiently large dataset: completely overcast sky 

measurements are also included here and deviations from the time-averaged mean reflectances at 780nm 
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up to 25% were allowed instead of 10%. The 68 remaining hyperspectral measurements of )(0 
wL and

)(0 
dE were then band-integrated according to Eq. (4.11) to give

)6.0(0
w .  

 

Figure 5.11.  Relationship between [SPM] and turbidity recorded before filtration (Tb) for the hand mix and tumble 

mix dataset. Black lines denote the 90% prediction bounds of the [SPM] vs. Tb relationship for the tumble mix 

dataset, outside which data were rejected. The regression line equations and statistics are also shown, with n0 

denoting the number of observations and R² the coefficient of determination.  

 

5.6.1.2 IMPACT OF [SPM] MEASUREMENT IMPROVEMENT ON THE [SPM] RETRIEVAL ALGORITHM 

The [SPM] retrieval algorithm of Nechad et al. 2010 of the form (5.1) was fitted to quality controlled  in-

situ measurements collected in 2007-2010 (68 observations selected as described above) to give AS= 

37.1±5.7 mg L
-1

 and BS= -0.17±1.4 mg L
-1

. The algorithm was previously fitted (Neukermans et al. 2009) 

to in-situ measurements collected between 2001 and 2006 giving a similar asymptote, AS01= 38.02±3.1 mg 

L
-1

, but a much larger offset, BS01= 2.32±1.6 mg L
-1

. Both algorithms and in-situ data are shown in Figure 

5.12. In theory, particle-free waters with [SPM]=0 mg L
-1

 would have a non-zero reflectance due to the 

backscattering of pure water and bubbles. Radiative transfer simulation for pure sea water with 
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Hydrolight gives
)6.0(0

w =0.00029, implying a theoretical offset of BS =-0.07 mg L
-1

. This illustrates the 

much better closure between theory and in-situ measurement in the 2007-2010 dataset due to a simple 

change in the [SPM] measurement protocol, which resulted in higher quality [SPM] measurements.   

Because both algorithms are applied without the offset, the actual differences between them are 

very small, with the 2007-2010 algorithm giving [SPM] values that are lower by 4% to 7% over the 

[SPM] range 0 to 100 mg L
-1

.  

 

 

Figure 5.12.  SEVIRI VIS06 single band [SPM] retrieval algorithm calibrated with datasets collected in the southern 

North Sea during the periods 2001-2006 and 2007-2010.  

5.6.2 Variability of turbidity-specific backscattering 

The single band retrieval algorithms for T (Nechad et al. 2009) and [SPM] (Nechad et al. 2010) are based 

on the assumption that T- and [SPM]-specific particulate backscattering coefficients (bbp), respectively, 

are constant. In analogy with the study of natural variability of [SPM]-specific backscattering in Chapter 

3, the variability of T-specific particulate backscattering (=bbp:T) is investigated using the same dataset 

and methodology. Figure 5.13 (a) shows a scatter plot of all available in situ T and bbp data (n=251). T and 

bbp are well correlated with a correlation coefficient of 0.987±0.004 and the fitted log-log regression has a 

median prediction error (MPE) of 16%. Results of the correlation and regression analysis of bbp:T vs. 
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mean particle diameter (DA), mean apparent density (a), and particle composition on the same data 

subset as described in Chapter 3 are shown in Table 5.2. The median bbp to T ratio is 0.0089, with 90% of 

the ratios between 0.0045 and 0.0135 m
-1

 FNU
-1

, giving a factor 3 variability in bbp:T. A similarly small 

range of variability in bbp:[SPM] was found (a factor 3-4). For pooled clear (case 1) and turbid (case 2) 

waters bbp:T is statistically significantly correlated with a, DA , and particle composition (expressed as the 

ratio of particulate organic carbon concentration, POC, to total carbon concentration, POC+PIC). The 

highest amount of variability (32%) is explained by the latter, with inorganic particles having bbp:T 

coefficients that are about 2 times higher than for organic particles (see Figure 5.13 (b)).  

 

 

Figure 5.13.  (a) Relationship between the particulate backscattering coefficient, bbp (=650nm), and turbidity in 

clear (case 1) and turbid (case 2) waters. The regression line with its 90% confidence bounds in log-log scale and 

statistics are shown (MPE= median PE). (b) Variability of T-specific bbp as a function of particle composition. The 

fitted regression and statistics can be found in. See also Chapter 3 for details on in situ measurement and data 

treatment. 
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Table 5.2.  Correlations and regression analysis of turbidity-specific backscattering vs. mean particle diameter (DA), 

mean apparent density (a), and particle composition. ns: not significant (i.e., p>0.05), *: p<0.001, no is the number 

of observations, nx is the number of outliers removed as described in section 3.5.1.3 

x case no  nx r equation (units: m
-1

 FNU
-1

), RMSE, MPE(%) 

a  

(kg L
-1

)

1 

2 

1+2

35 

72 

107

 0 

2 

3 

0.43±0.34  

ns 

0.27±0.17* 

- 

- 

0.013(±0.002) x +0.0052 (±0.0005),0.0029,19 

DA 

(m) 

1 

2 

1+2 

35 

72 

107 

 0 

3 

4 

ns 

0.59±0.17* 

0.32±0.17* 

- 

0.00006(±0.00002) x +0.0075(±0.0004),0.0019,11 

0.00004(±0.00002) x +0.0077(±0.0004),0.0023,15 

[POC]: 

([POC]+[PIC]) 

1 

2 

1+2 

17 

30 

47 

 0 

1 

1 

ns 

-0.52±0.22* 

-0.57±0.17* 

- 

-0.007(±0.002) x +0.013(±0.001),0.0017,12 

-0.006(±0.001) x +0.012(±0.001),0.0019,14 

[POM]: 

SPM 

1 

2 

1+2 

5 

17 

22 

 0 

0 

1 

-0.70±0.28*    

ns 

ns 

-0.0014(±0.0023) x +0.003(±0.001),0.0087,73 

- 

- 

 

 

The factor 3-4 variability in bbp:bs obtained with the WET Labs BB-9 and the Hach turbidity 

instrument observed here may seem surprisingly high at first sight. Indeed, from in-situ VSF 

measurements with the WET Labs MASCOT instrument (Sullivan and Twardowski 2009) collected in a 

wide range of water types, p(120°,658 nm): p (90°,658 nm) is expected to vary by a factor 1.7 at the 

very most (a factor 1.20 being more typical). The much higher variability of bbp:bs obtained with the in-

water BB-9 and the portable Hach turbidity instruments suggests that subsampling uncertainties may be 

high, that sampling volume may be important, that the spectral shape of side scattering varies 

considerably between 658 nm and 880 nm, or that the variability of p(120°,658 nm): p (90°,658 nm) is 

underestimated by the MASCOT instrument.  

 

5.6.3 Uncertainties of the T and [SPM] retrieval algorithms 

5.6.3.1 VARIABILITY OF THE MASS- AND TURBIDITY-SPECIFIC BACKSCATTERING COEFFICIENT 

Nechad et al. 2010 suggested that the main source of error in the retrieval algorithms for [SPM] and T is 

the variability of the mass- and T-specific backscattering coefficients, respectively. For the [SPM] 
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algorithm, a constant mass-specific coefficient, denoted    
 , of 0.01 m

2
g

-1
 was assumed at 488 nm with 

“average” spectral variations as of       in Babin et al. 2003. For 41 out of 68 observations used to 

calibrate the algorithm, bbp data are also available giving    
 (488nm)

2
 between 0.004 and 0.017 m

2
g

-1
 

with a mean value of 0.011 m
2
g

-1
. Figure 5.12 (left) shows the [SPM] algorithm with measurement 

uncertainties of in-situ [SPM] (derived from triplicates) and marine reflectance (derived from variability 

during a 10 minute record), colour coded according to    
 (488nm). The uncertainties on the 

measurements themselves are quite small, due to careful selection of reflectance data and increased 

quality of [SPM] measurements, even in clear waters. Figure 5.12 further shows that much (r=0.72±0.19) 

of the scatter in the [SPM] algorithm can be attributed to variations in    
 , with model overestimates for 

   
  higher than the assumed value and model underestimates for    

  lower than the assumed value. It 

was shown in Chapter 3 that    
  is driven by changes in particle composition, with lower values for 

organic particles. This indicates that [SPM] retrieval algorithms can significantly be improved if the 

composition of the suspended particles is known.  

For very turbid waters such as most of the Guyana coastal waters, the SEVIRI VIS06 [SPM] 

algorithm is pushed to its non-linear regime, where it is less reliable. It is therefore recommended to apply 

an [SPM] or T algorithm calibrated for the VIS08 band, and implement an iterative loop so that also the  

atmospheric correction calibration parameter can be taken out of its linear range.   

                                                      
2 A wavelength of 488nm was chosen here to maximize the number of valid bbp data. At 650 nm for example, the backscatter 

instrument saturated at 4 stations, reducing the number of available data points to 37. 
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Figure 5.14.  Influence of the variability of the mass-specific backscattering coefficient,    
 , on the suspended 

matter retrieval algorithm of Nechad et al. 2010 for the SEVIRI VIS06 band, calibrated with southern North Sea 

(SNS) in-situ data (solid black line). (left) Dashed lines represent the [SPM] algorithm corresponding to a factor 4 

variability in As. Error bars indicate measurement uncertainties. French Guyana (FG) data are also shown. (right) 

relationship between    
  and the normalized bias of the [SPM] algorithm for SNS (grey dots) and FG data (black 

squares). 

5.6.3.2 REGIONAL CALIBRATION 

The natural variability of    
  (and   

 ) is accounted for through calibration of the A  coefficient by non-

linear regression and depends on the in situ dataset. It can be questioned whether this algorithm, 

calibrated with North Sea data, can be applied elsewhere. We therefore tested its applicability in French 

Guyana waters using in-situ measurements collected in October 2009 following the same measurement 

protocols.  For all 16 observations in the linear regime, i.e.,
)6.0(0

w <0.06, where this algorithm is  

optimally applied, the North Sea algorithm overestimates [SPM] by 2% to 50% (median of 32%), due to 

the much higher    
 (488nm) in French Guyana waters. We therefore recommend that the [SPM] 

algorithm of Nechad et al. 2010 be calibrated regionally. Likewise for the T algorithm. 

5.6.4 Coupling between turbidity and hydrodynamics 

An attempt was made to investigate the coupling between hydrodynamic parameters and the temporal 

dynamics of turbidity. At 18 selected stations, time series of hydrodynamic parameters such as bottom 

stress, current velocity, and tidal amplitude were extracted from the COHERENS 3D hydrodynamical 
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model of Lacroix et al. 2007. Modeled hydrodynamic data are available every 15 minutes in 5 km x 5 km 

grid cells.  

 SEVIRI T time series were selected as described in section 5.2.3.3 on page 150. Some example 

time series for bottom stress at P2 (see Figure 4.16 for location) are shown in Figure 5.15. Next, the 

timing of maximum T from SEVIRI was compared to the timing of maximum bottom stress during 

cloudfree periods. Some examples for bottom stress at P1 and P2 are shown in Figure 5.16. The observed 

mean and standard deviation of the phase difference, median and 5
th
-95

th
 percentile interval for bias were 

computed and compared against values obtained for a random timing of maximum bottom stress. Results 

show that the observed phase differences of 3.4 h ±1.5 h at P1 and 3.1 h ±1.8 h at P2 are not different than 

one would expect from random chance. Similar results were obtained for all other stations and other 

hydrodynamic parameters, suggesting that temporal turbidity dynamics may not be governed by currents 

and tides alone. 
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Figure 5.15.  Some selected time series of T from SEVIRI on the VIS06 grid and modelled bottom stress at P2 (see 

Figure 4.16 for location). Global maxima are indicated by the large red dots, small dots indicate local maxima (red) 

and minima (green). Errorbars denote uncertainties on T after Eq. (5.2).  

 

Figure 5.16. Scatterplot of the timing of maximum T from SEVIRI vs. timing of maximum bottom stress during 

cloudfree periods at P1 (A) and P2 (B) with location given in Figure 4.16. The 1:1 line (solid) and 1 hour offset lines 

(dashed) are shown in black. The observed mean and standard deviation of the phase difference, median and 5th-

95th percentile interval for bias are shown in black. The red numbers refer to the same statistics obtained for a 

random timing of maximum bottom stress.  

31-03-2008 10-04-2008 

13-04-2008 06-05-2008 

Time (h UTC) Time (h UTC) 
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Chapter 6  GENERAL CONCLUSIONS AND PERSPECTIVES 

This work contributes to the study of suspended particles in coastal waters by offering unprecedented 

remote sensing of their diurnal variability and by characterizing the in-situ variability of the particulate 

beam attenuation and backscattering coefficient. Below, are the main findings, perspectives, and 

limitations of each study and some reflections on the way forward. 

6.1 In-situ variability of scattering properties and suspended matter concentration 

Summary: We analyzed relationships between concentration of suspended particles represented by dry 

mass, [SPM], or area, [AC], and optical properties including particulate beam attenuation (cp), side 

scattering (bs), and backscattering (bbp). An extensive dataset combining optical properties, measurements 

of particle concentration, size distribution, apparent density, and composition was acquired in coastal and 

offshore waters around Europe and French Guyana. We showed that, first order variability of optical 

properties is driven by particle concentration with best predictions of [SPM] by bbp and bs, and of [AC] by 

cp. Second order variability of bbp to [SPM] is relatively small, with variability of a factor 3-4, influenced 

by particle composition. Second order variability of cp to [SPM], on the other hand, spans over one order 

of magnitude and is strongly driven by particle apparent density. In this dataset no effect of particle size 

on mass-specific optical properties was found, despite size variations over one order of magnitude. We 

further investigated uncertainties in the gravimetric measurement procedure of [SPM] and suggested the 

use of simple, fast, and low-cost measurements of turbidity (bs) to optimize and quality control [SPM]. 

Limitations: A significant fraction of the variability in mass-specific bbp remains unexplained. Possible 

causes are the limitation of the measured size distributions to the 2-302 m range and effects of particle 

shape and internal structure which affect bbp more than cp and were not accounted for.  

Relevance: This study offers new insights into the sources of optical variability in natural waters and 

contributes to the in-situ monitoring of suspended particles and the development of remote sensing 

algorithms for suspended matter concentration and turbidity. 

Perspectives: To advance our understanding of optical variability in the natural environment, new 

experimental as well as theoretical developments are needed. For instance, the acquisition of particle size 

distributions covering the full optically significant size range will increase our understanding of the role 

of particle size. First results on the counting and sizing of colloidal particles smaller than 1 m in the 

natural environment based on Brownian motion are promising (Tatarkiewicz et al. 2012). In-water digital 

holographic particle imaging sensors, such as Sequoia’s LISST-HOLO operating over the 25-2500 m 

size range, have become available recently (Graham and Smith 2010; Davies et al. 2011) and research is 
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ongoing for extension of these systems into the sub-micron range. The majority of theoretical 

investigations on the IOPs of marine particles are based on Mie theory, which assumes that particles are 

homogeneous spheres. There is strong evidence that application of this model is inappropriate for 

computations of backscattering for natural particles (Bohren and Singham 1991;Kitchen and Zaneveld 

1992; Clavano et al. 2007; Hedley 2011), presenting new challenges (need for new models), and 

opportunities (extract information on particle shape from polarimetry).  

6.2 Remote sensing of diurnal variability of suspended particles from the geostationary SEVIRI 

meteorological sensor 

Summary: While we eagerly await the launch of the first European geostationary ocean colour sensor into 

space, we investigated the potential for the mapping of suspended matter concentration and related 

parameters in the southern North Sea with the geostationary SEVIRI meteorological sensor. First, an 

atmospheric correction of SEVIRI’s red waveband was developed and applied to a two-year image 

archive. Cross-validation with MODIS Aqua marine reflectance imagery showed good spatial and 

quantitative correspondence. Next, single-band retrieval algorithms for turbidity (T) and vertical 

attenuation of photosynthetically active radiation (KPAR) were applied. Half-hourly in-situ data of T and 

KPAR recorded by a system of moored buoys were used for validation of corresponding SEVIRI products. 

We showed that SEVIRI T and KPAR products are in good agreement with buoy data, and that on cloudfree 

days, the SEVIRI T and KPAR signals are in phase with in-situ time series. Uncertainties on SEVIRI 

products due to digitization, atmospheric correction, and retrieval algorithms were assessed, which 

effectively confine marine remote sensing by SEVIRI to waters with turbidity ranging between 1 and 35 

FNU (same range for [SPM]). 

Limitations: Because SEVIRI is a meteorological sensor with visible bands designed to monitor clouds 

and ice, much brighter targets than the sea, the limitations of SEVIRI for marine applications are 

numerous: poor digitization, low signal-to-noise ratio and limited spectral and spatial resolution. Attempts 

to improve the spatial resolution from 3 x 6 km² to 1 x 2 km² using the finer spatial information from 

SEVIRI’s panchromatic band failed, mainly due to its poor geolocation and low signal-to-noise ratio. 

Further uncertainties arise from the remote sensing retrieval algorithms for T and KPAR, as well as 

incommensurability between in-situ and remotely sensed T and KPAR.  

Relevance: In cloudfree conditions, the tidal variability of suspended matter concentration and covarying 

parameters (T and KPAR) in the southern North Sea can now be mapped by remote sensing for the first 

time, offering new opportunities for improving ecosystem models and monitoring of turbidity. This is 

clearly a significant improvement on the aliased information that is provided by polar-orbiting ocean 

colour satellites that are already being used in monitoring and modeling applications. Data availability 
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significantly increased during periods of scattered clouds. This work provides a glimpse of what will 

become possible when dedicated geostationary ocean colour sensors become operational over Europe and 

provides some first hints on the methodological challenges and opportunities that they will raise.  

Perspectives: The first geostationary ocean colour sensor, GOCI, was launched by the Korean space 

agency in June 2010. First results seem very promising (Figure 6.1) and it seems to be only a matter of 

time before the American and European space agencies launch geostationary ocean colour satellites 

covering other oceans and seas. Meanwhile, it may be worth testing the application of the methodology 

developed for SEVIRI in the southern North Sea to other sufficiently turbid waters on the SEVIRI full 

disk (identified in Figure 4.22) and to other geostationary meteorological satellites with spectral 

characteristics similar to SEVIRI (see  Table 6.1 for an overview), such as the Multichannel Scanning 

Unit (MSU) on the Russian Electro-L1 satellite platform
3
. Figure 6.2 shows areas where MSU might be 

suitable for marine application following an approach similar to the one developed in this work for 

SEVIRI. Besides mapping [SPM] in turbid waters, these geostationary meteorological satellites may also 

successfully map coccolithophore blooms (Holligan et al. 1983; Balch et al. 1991), such as previously 

demonstrated with AVHRR (Ackleson and Holligan 1989), a polar-orbiter with similar spectral 

resolution. 

 

 

Figure 6.1.  Diurnal variability of remote sensing reflectance (Rrs) in the VIS and NIR as recorded by GOCI on 13 

June 2011 at a station in the Bohai Sea (source: Ruddick et al. submitted). SEVIRI’s red band approximate spectral 

coverage is also shown.  

 

                                                      
3 Most meteorological sensors have only one band in the red or NIR, followed by bands in the SWIR or thermal infra-red, making 

atmospheric correction difficult, but perhaps not impossible. 
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Table 6.1. Overview of spatial, spectral, and temporal resolutions of geostationary meteorological satellites 

currently operational and planned in the near-future with spectral characteristics similar to or better than SEVIRI 

(summarized from http://goes.gsfc.nasa.gov/text/geonews.html#GOMS) 

Sensor SEVIRI (prime 

service) 

FCI MSU AGRI 

Satellite MSG, Meteosat-

8/9 

MTG-I Elektro-L1 Feng-Yun-4 

Agency EUMETSAT 

(Europe) 

EUMETSAT 

(Europe) 

(Russia) (China) 

Operational 

period 

2004-May 2007/  

May 2007-present 

>2017 Feb 2011- 

present 

>2014 

Spatial 

resolution 

1 km/ 3 km 0.5 km/1 km 1 km 0.5 km/ 1km 

Spatial coverage Europe-Africa 

See Figure 6.2 

Europe-Africa 

 

Indian Ocean 

See Figure 6.2 

Indian-Pacific 

Ocean 

Longitude 3.5° W/0° E around 0° 76° E 86.5° E - 

123.5°E 

VIS-NIR-SWIR 

bands (m) 

0.6-0.7, 0.76-0.82, 

1.57-1.72 

0.4, 0.5, 0.6, 

0.8, 0.9, 1.3, 1.6 

0.50-0.65, 

0.65-0.80, 

0.80-0.90, 

0.45-0.49, 0.55-

0.75, 0.75-0.90  

Repeat viewing 

frequency 

15 min 10 min (2.5 min 

for Europe) 

30 min  
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Figure 6.2.  MODIS 2009 climatology of marine reflectance at 645 nm. Spatial coverage of MSG-SEVIRI, Electro-

MSU, and COMS-GOCI are shown by the yellow, orange, and green polygons, respectively. Red polygons indicate 

waters that are expected to be detectable by MSU.  
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 Particle size distribution (LISST) 

 On-board filtrations for suspended matter and phytoplankton pigment concentration 

 Inherent Optical Properties: total, side and backscattering (ac-s, BB-9, ECO-VSF, Turbidimeter) 

 

2003-2007: Collection of remote sensing ground truth data in the mangrove forests of: 

 Gazi Bay (Kenya), July-August 2003 

 Mombasa (Kenya) and Dar-es-Salaam (Tanzania), August-December 2005 

 Maputo (Mozambique), February 2006 

 Gazi Bay (Kenya), February 2007 

  

Teaching assignments 

 

  “Scientific writing” course at M.Sc. ECOMAMA (VUB) (20 h in 2007) 

 Coordinate excursions at sea for M.Sc. ECOMAMA (VUB) and supervise students during field 

excursions (150 h in 2007) 

 

Student mentoring 

 

Undergraduate students 

From 2001 to 2006 I thought mathematics to about fifteen undergraduate students.  

 

Master students 

 Maniatis, D., 2005. Retrospective study of the mangroves of the Tanbi Wetland Complex, The 

Gambia.  MSc. Environmental Science and Technology thesis, Vrije Universiteit Brussel, Brussels, 

Belgium. Thesis adviser. 

 Msafiri, M., 2006. Spatial and temporal change of mangrove of Mtoni-Kijichi in Dar es Salaam, 

Tanzania. MSc Ecological Marine Management thesis. Vrije Universiteit Brussel, Brussels, 

Belgium. Thesis adviser. 

 Vaes, T., 2011. Improving the spatial resolution of total suspended matter maps using the HRV 

band of the SEVIRI geostationary satellite in the North Sea. MSc Ecological Marine Management 

thesis. Vrije Universiteit Brussel, Brussels, Belgium. Thesis co-promoter. 
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Interns 

Vanhellemont, Q., 2008. Professional Internship at MUMM for MSc. Marine and lacustrine 

sciences, Ghent University. Research adviser. 

 

Publications 

 

Peer review  

 

Ruddick, K., Q. Vanhellemont, J. Yan, G. Neukermans, G. Wei, and S. Shang. Variability of suspended 

particulate matter in the Bohai Sea from the Geostationary Ocean Color Imager (GOCI). Submitted to the 

(Korean) Ocean Science Journal, Special Issue on Proceedings of the 2nd GOCI PI workshop on April 3, 

2012. 

 

Neukermans, G. and N. Koedam (in press). Mapping mangrove mosaics using high-resolution satellite 

imagery at Inhaca Island. In: S. Bandeira & J. Paula (eds), The Maputo Bay Ecosystem, WIOMSA. 

 

Neukermans, G., K. Ruddick and N. Greenwood. Diurnal variability of turbidity and light attenuation in 

the southern North Sea from the SEVIRI geostationary sensor. (accepted for publication in Remote sensing 

of the Environment).  

 

Neukermans G., Loisel H., Mériaux X., Astoreca R. & McKee D., 2012. In situ variability of mass-specific 

beam attenuation and backscattering of marine particles with respect to particle size, density, and 

composition. Limnology and Oceanography (57): 124–144. doi: doi:10.4319/lo.2011.57.1.0124. 

 

Vantrepotte, V., H. Loisel , X. Mériaux, G. Neukermans, D. Dessailly, C. Jamet, E. Gensac, and A. Gardel, 

2011. Seasonal and inter-annual (2002-2010) variability of the suspended particulate matter as retrieved 

from satellite ocean color sensor over the French Guiana coastal waters. Journal of Coastal Research SI 64, 

ISSN 0749-0208, 1750-1754.  

 

Nechad, B., Ruddick, K.G. and G. Neukermans, 2009. Calibration and validation of a generic multisensor 

algorithm for mapping of turbidity in coastal waters. Proceedings of SPIE "Remote Sensing of the Ocean, 

Sea Ice, and Large Water Regions" Conference held in Berlin (Germany), 31 August 2009. Proc. SPIE Vol. 

7473, 74730H. 

 

Neukermans, G., K. Ruddick, E. Bernard, D. Ramon, B. Nechad & P.Y. Deschamps, 2009. Mapping Total 

Suspended Matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North 

Sea. Optics Express, 17(16):14029-14052. 

 

Obade, P., N. Koedam, K. Soetaert, G. Neukermans, J. Bogaert, E. Nyssen, F. Van Nedervelde, U. Berger 

& F. Dahdouh-Guebas, 2009.  Impact of anthropogenic disturbance on a mangrove forest assessed by a 

1D-cellular automaton model using Lotka-Volterra type competition. International Journal of Design & 

Nature and Ecodynamics 3(4). 

 

Neukermans, G., F. Dahdouh-Guebas, J.G. Kairo & N. Koedam, 2008. Mangrove species and stand 

mapping in Gazi Bay (Kenya) using Quickbird satellite imagery.  Journal of Spatial Science 53(1): 75-86. 
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Mohamed, M.O.S., G. Neukermans, J.G. Kairo, F. Dahdouh-Guebas & N. Koedam, 2008.  Mangrove 

forests in a peri-urban setting: the case of Mombasa (Kenya). Wetlands Ecology and Management, 17(3): 243-

255, doi:10.1007/s11273-008-9104-8. 

 

Publications and abstracts for oral and poster presentations on international conferences and 

workshops 

 

Neukermans, G., K. Ruddick, Q. Vanhellemont and Greenwood, N. 2012. Diurnal variability of turbidity 

and light attenuation from the SEVIRI geostationary sensor. Oceans Sciences meeting, 20-34 February 

2012, Salt Lake City, USA. Oral presentation. 

 

Neukermans, G., Loisel, H., Mériaux, X., McKee, D. , and R. Astoreca, 2011. Variability of mass specific 

beam attenuation and backscattering of marine particles: the role of particle size, density, and 

composition. Optical Processes Symposium workshop, NATO Undersea Research Center (NURC), 29-31 

March 2011, La Spezia, Italy. Invited talk. 

 

Neukermans, G., Loisel, H., Mériaux, X., McKee, D. , Astoreca, R. and D. Doxaran, 2010. Variability of 

mass specific (back)scattering of marine particles. Particles in Europe (PiE) workshop, 15-17 November 

2010, Villefranche-sur-Mer, France. Oral presentation. 

 

Neukermans, G., Loisel, H., Mériaux, X., McKee, D. , Astoreca, R. and D. Doxaran, 2010. Variability of 

total, back and side scattering to mass concentration ratio of marine particles. Ocean Optics XX 

Conference, 26 September – 1 October 2010,  Anchorage, USA. Poster presentation.  

 

Neukermans, G., Forster, R., Greenwood, N. and K. Ruddick, 2010. Diurnal variability of suspended 

matter from the SEVIRI geostationary sensor. Oceans From Space conference, 26-30 April 2010, Venice, 

Italy. Poster presentation. 

 

Neukermans, G., K. Ruddick, E. Bernard, D. Ramon, B. Nechad & P.Y. Deschamps, 2009. Mapping Total 

Suspended Matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North 

Sea. SPIE Ocean Remote Sensing conference, 2-6 August 2009, San Diego, USA. Oral presentation.  

 

Neukermans, G., Loisel, H., and X. Mériaux, 2009. Vertical variability of IOPs and their influence on Rrs 

in coastal waters. Ocean Colour Research Team (OCRT) meeting, 4-6 May 2009, New-York, USA. Poster 

presentation. 

 

Neukermans, G., Loisel, H., Mériaux, X. and Ruddick, K., 2009. Vertical Variability of suspended matter 

and its influence on remote sensing reflectance. Young Researcher’s Day of Flanders Marine Institute 

(VLIZ), March 6th, Bruges, Belgium. Poster presentation.  

 

Neukermans, G., Nechad, B. and K. Ruddick, 2008. Optical remote sensing of coastal waters from 

geostationary platforms: a feasibility study – Mapping suspended matter with SEVIRI. Ocean Optics XIX 

Extended abstract, 6-10 October 2008, Barga, Italy. Poster presentation. 

 

Neukermans, G., Nechad, B. and K. Ruddick, 2008. High temporal resolution mapping of total suspended 

matter in Belgian coastal waters with SEVIRI data: a feasibility study, in: Mees, J.; Seys, J. (Ed.) (2008). 

VLIZ Young Scientists’ Day, Brugge, Belgium, 29 February 2008: book of abstracts. VLIZ Special Publication, 40: 

pp. 59. Poster presentation. 
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Neukermans, G., Dahdouh-Guebas, F., Kairo, J.G. and N. Koedam, 2007. Mangrove species and stand 

mapping in Gazi Bay (Kenya) using QuickBird satellite imagery, in: Mees, J.; Seys, J. (Ed.) (2007). VLIZ 

Young Scientists’ Day, Brugge, Belgium 2 March 2007: book of abstracts. VLIZ Special Publication, 39: pp. 45. 

Poster presentation. 

Neukermans, G., Dadouh-Guebas, F., Kairo, J.G. and N. Koedam, 2006. Mangrove species and stand 

mapping in Gazi Bay (Kenya) using QuickBird satellite imagery. The 13th Australasian Remote Sensing 

and Photogrammetry Conference, 20-24 November 2006, Canberra, Australia. Poster presentation.  

 

Neukermans, G., Dahoudh-Guebas, F., Kairo, J.G. and N. Koedam, 2006. Automated mangrove stand 

recognition and species mapping with QuickBird satellite imagery. In: J.A. Sobrino (Ed.), Proceedings of the 

2nd International Symposium on Recent Advances in Quantitative Remote Sensing: RAQRS'II, 25-29 September 

2006, Torrent (Valencia), Spain., pp. 174-181. Poster presentation. 

Neukermans, G., Koedam, N., Kairo, J.G. and F. Dahdouh-Guebas, 2006. Mapping Kenyan mangroves 

with very high resolution QuickBird satellite imagery. Workshop on 3D Remote Sensing in Forestry, 14-

15 February 2006, Vienna, Austria. Poster presentation. 

Di Nitto, D., Neukermans, G., Defever, H., Decleir, H., Koedam, N., Kairo, J.G. and F. Dahdouh-Guebas, 

2006. Effects of sea level rise on mangroves using GIS and Remote Sensing: A case study in Gazi Bay 

(Kenya). International Symposium on Aquatic Vascular Plants: 25 years later, 11-13 January, Brussels, 

Belgium. Oral presentation (co-presented with D. Di Nitto). 

Neukermans, G., Koedam, N., Kairo, J.G. and F. Dahdouh-Guebas. Mapping Kenyan mangroves with 

very high resolution QuickBird satellite imagery. VLIZ Young Scientist’s Day, 25 February 2005, Brugge, 

Belgium. Poster presentation. 

 

Neukermans, G., 2005. Remote sensing of mangroves in Gazi Bay (Kenya) with very high resolution 

QuickBird Satellite imagery: automated methods for species and assemblage identification, in: Mees, J.; 

Seys, J. (Ed.) (2005). VLIZ Young Scientists' Day, Brugge, Belgium 25 February 2005: book of abstracts. VLIZ 

Special Publication, 20: pp. 2-3. Oral presentation. 

 

Theses 

 

Neukermans G., 2012. Optical in situ and geostationary satellite-borne observations of suspended particles in 

coastal waters. Ph.D. dissertation, Université du Littoral – Côte d’Opale, Wimereux, France. Academic and 

Scientific Publishers, Ravensteingalerij 28, 1000 Brussels, Belgium. ISBN 978 90 7028 949 2. 
 

Neukermans G., 2004. Remote sensing of mangroves in Gazi Bay (Kenya) with very high resolution QuickBird 

satellite imagery: automated methods for species and assemblage identification. MSc. Ecological Marine 

Management, Vrije Universiteit Brussel, Brussels, Belgium,  pp. 193, with greatest distinction. 

 

Neukermans G., 2002. Delta Scuti variability of GSC223-1761 (GP Cnc). MSc. Mathematics thesis, Vrije 

Universiteit Brussel, Brussels, Belgium, pp. 121. 
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Scientific awards 

 

European Commission distinguished poster award for the poster entitled “Diurnal variability of suspended 

matter from the SEVIRI geostationary sensor”, (Neukermans, G., Forster, R., Greenwood, N. and 

Ruddick, K.), presented at Oceans From Space 2010, 26-30 April 2010, Venice, Italy.  

 

VLIZ (Flanders Marine Institute) Professional Jury’s award for the best poster entitled “Vertical Variability of 

suspended matter and its influence on remote sensing reflectance” (Neukermans, G., Loisel, H., Mériaux, 

X. and Ruddick, K.), Young Researcher’s Day of Flanders Marine Institute (VLIZ), 6 March 2009, Bruges, 

Belgium.  

 

The Oceanography Society Honorable Mention Student Paper (1st runner up) for the extended abstract entitled 

“Optical remote sensing of coastal waters from geostationary platforms: a feasibility study” 

(Neukermans, G., Ruddick K. And Nechad, B.), submitted for the Ocean Optics XIX Conference, 6-10 

October 2008, Barga, Italy.   

 

VLIZ (Flanders Marine Institute) Young Researcher’s Thesis Award 2004 for the thesis “Remote sensing of 

mangroves in Gazi Bay (Kenya) with very high resolution QuickBird satellite imagery: automated 

methods for species and assemblage identification”, VLIZ Young Scientist’s Day, 25 February 2005, 

Bruges, Belgium. 

 

Languages 

 

Language Speaking Writing  Reading 

Dutch Mother tongue Mother tongue Mother tongue 

English Very good  Very good Very good 

French Good  Good Good 

Kiswahili Elementary Elementary Elementary 

 

Computer literacy 

 

Programming skills MATLAB, IDL 

Operating systems 

Radiative transfer  

MS Windows, Linux 

Hydrolight/Ecolight  

Text editors MS Word, LateX 

Image analysis software Erdas Imagine 9.0, Definiens 5.0, ENVI, IDRISI  

GIS software ArcGIS ArcInfo 9.0  

Presentation software MS Powerpoint, Adobe Illustrator 
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Extracurricular activities 

 

Hobbies Sports (trekking, scuba diving, cycling, hiking, running) 

Travel 

Photography  

Voluntary work Action Group for Sustainable Development, Vrije Universiteit Brussel, 

Brussels, Belgium (February 2005-August 2007) 

Working group on sustainable development, Royal Belgian Institute for 

Natural Sciences, Brussels, Belgium (since April 2008) 
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