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ABSTRACT

A numerical tool for the optimisation of the scantlings of a ship is extended by considering production cost,

weight and moment of inertia in the objective function. A multi-criteria optimisation of a passenger ship is

conducted to illustrate the analysis process. Pareto frontiers are obtained and results are verified with Bureau

Veritas rules.
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1 Introduction

1.1 Outline

In the early stages of ship design, all technical and ecological requirements have to be

considered in terms of their long-term impact on the entire ship life-cycle. However, life-cycle cost

(LCC) optimisation is rarely applied in traditional ship design. Methods and tools are needed, which

connect technical design parameters to life-cycle performance, allowing ship designers to quickly

assess the impact of design options and parameters on the overall ship performance. Such an

integrated view requires dedicated methods for the comparison of production and operational costs,

safety and environmental aspects, as well as tools for life cycle optimisation in the different design

and production phases of a ship.

Interaction between design, life-cycle performance and production techniques have been

highlighted in many papers as reviewed in Borzecki et al. (2003), Bruce et al. (2006) and Caprace et al.

(2009). Construction cost and manufacturing conditions are to a large extent defined in early design

phases. It is therefore important that the designer is provided with suitable methods and allowed

to consider many design alternatives, cost aspects, new fabrication technologies and materials. On

the other hand, manufacturing quality, imperfections and accuracy have a significant impact on the

structural performance, repair and maintenance and life cycle cost.

This paper deals with the development of scantling optimisation software integrating different

life aspects of ships.
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1.2 Scantling optimisation

Ships and floating structures are complex structures, generally composed of strongly stiffened

deck and bottom plates and sometimes intermediate decks, frames, bulkheads etc. The optimisation

of such complex structures is the purpose of this paper. Scantling optimisation should be performed

at the preliminary design stage, because it is the most relevant period to assess the construction

cost, compare fabrication sequences and find the best frame and stiffener spacing and most suitable

scantlings, minimising life-cycle cost. However at this stage of the project, few parameters are

definitively fixed and standard finite element analysis (FEA) is often impossible, particularly for design

offices and medium-sized shipyards.

An optimisation tool at this design stage can help significantly, Rigo and Fleury (2001). The

purpose of the tool is the dimensioning and scantling optimisation of lock gates, ships and offshore

structures. The goal is to create a multi-purpose optimisation model compatible with structural

analysis modules based on codes and regulations. Such a model must contain various analysis

methods for strength assessment that can be easily complemented by users. For example, the user

should be able to modify constraints according to the structure type, the regulation code in force and

design experience, which requires a user-oriented optimisation system in permanent evolution, i.e.

evolving with the user and particular task requirements.

The structural analysis is performed for a model based on an extrusion of a ship cross section.

Solution method is based on Fourier series expansions applied to the stiffened plate differential

equations with, Rigo (2005).

In the scantling design of a ship, minimum production cost, minimum weight and maximum

moment of inertia (stiffness) are conflicting objectives. The optimisation tool was extended in order

to consider production cost, weight and moment of inertia in the objective function. Simultaneous

optimisation of several sections of the ship is possible.

2 Overview of optimisation problem

2.1 Introduction

Ship design covers a complex non-linear space with multiple regions of local minima of

LCC; some of these regions are blocked by constraints. Within a holistic ship design optimisation,

multi-objective and multi-constrained optimisation problems should be solved. Basic elements of an

optimisation problem are

– Objective function associated with an optimisation problem, which determines how efficient a

solution is, e.g. the life-cycle cost of a ship.

– Design variables which may include main dimensions and hull form parameters, arrangement

of spaces, structural elements and networking elements such as piping, electrical etc.

– Design constraints are limits resulting from regulations related to safety (stability requirements,

yield stress of steel etc.), costs (e.g. steel, fuel, labour) etc.

– Optimal solution is a feasible solution that minimises the objective function. For multi-criteria

optimisation problems, optimal design solutions are indicated by Pareto front and may be

selected on the basis of trade-offs by the decision maker.

2.2 Optimisation of marine structure

Ship design has been based traditionally on a sequential and iterative approach. With the

availability of non-linear optimisation tools, several researchers have attempted to solve the ship

design problem using different optimisation techniques. Probably the first marine structure optimi-

sation studies were made practically by hand in Harlander (1960). Afterwards, computer-assisted

design and optimisation algorithms were developed, Evans and Khoushy (1963) and Nowacki et al.

(1970). Important progress in ship structural optimisation was presented in Hughes et al. (1980) and
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Hughes (1988). Forty years ago, optimisation tools focused on a single, limited aspect (shape, scant-

lings, propeller, ultimate strength etc.) and a single objective (e.g. weight, resistance or cavitation).

Nowadays, optimisation tools tend to adopt a more generic approach and are more reliable. Design

and optimisation techniques reported in Cho et al. (2006), Seo et al. (2003), Rigo (2005), Khajehpour

and Grierson (2003), Parsons and Scott (2004), Klanac and Kujala (2004), Zanic et al. (2005) and

Xuebin (2009) use integrated multi-criteria optimisation models including structural weight and

production costs. They differ in design variables and constraints as well as in the analysis methods

of the structural response, e.g. two- and three-dimensional FEA, analytical linear and non-linear etc.

However, all authors agree that a single objective is not sufficient to model accurately the relevant

aspects of marine structures.

Preliminary design is the most relevant and the least expensive period for the modification

of design scantling and comparison of alternatives. The earlier information is available, the better

decisions can be taken in the design process. It is however often too early for efficient use of many

analysis methods mentioned. The methodology presented in this paper can be applied as soon as the

first scantlings of the cross section of the structure are available, because it is based on the solution

of the stiffened plate differential equations and not on traditional FEA techniques. The solution time

is short; generally no more than one week of modelling and computing is required to find the Pareto

front.

2.3 Single Criterion Problem

The single criterion optimisation problem is usually formulated as, Parsons and Scott (2004):

min
x

F(~x) = F1 (~x), ~x = [x1 , x2 , ..., xN ]
T (1)

subject to the equality and inequality constraints

hi (~x) = 0 , i = 1 , ..., I

gi (~x) ≥ 0 , j = 1 , ..., J
(2)

The single optimisation criterion or objective function F1 (~x) depends on N unknown indepen-

dent design variables in the vector ~x . The problem is subject to I equality constraints hi (~x) and J

inequality constraints gj (~x).

2.4 Multi-criteria Optimisation

The multi-criteria optimisation problem involves K > 1 criteria and can be formulated as,

Parsons and Scott (2004)

min
x

~F(~x) = [F1 (~x), F2 (~x), ..., FK (~x)] with ~x = [x1 , x2 , ..., xN ]
T (3)

subject to equality and inequality constraints

hi (~x) = 0 , i = 1 , ..., I

gi (~x) ≥ 0 , j = 1 , ..., J
(4)

There are K multiple optimisation criteria F1 (~x) to FK (~x) in the overall objective function ~F , each

depending on N unknown design variables in the vector ~x . In general, this problem does not have a

single solution due to conflicts among the criteria.

2.5 Pareto Optimum Front

If multiple criteria conflict, the most common definition of an optimum is the Pareto (or

Edgeworth-Pareto) optimality: A solution is Pareto optimal if it satisfies the constraints and is such that

no criteria can be further improved without worsening at least one of the other criteria. The Pareto

optimality emphasises conflicting or competitive interaction amongst the criteria and typically results
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in a set of optimal solutions rather than in a single unique solution. However, a design team typically

seeks a single result, which should be an effective compromise or trade-off amongst the conflicting

criteria. This can often be reached by considering additional factors not included in the optimisation

model, Zanic and Frank (2003), Zanic et al. (2005) and Zanic et al. (2006).

2.6 Global Optimum Criteria

Engineering design requires a specific result to be implemented, not a set of solutions such

as provided by the Pareto optimal set. The most intuitive ways to achieve an effective compromise

amongst competing criteria are the weighted sum, the min-max and the nearest to the utopian

solutions. These solutions can be derived through the global criterion

P [Fk (~x)] =

{

K
∑

k=1

[

wk

∣

∣

∣

∣

Fk (~x)− F 0
k

F 0
k

∣

∣

∣

∣

]ρ
}1/ρ

,

K
∑

k=1

wk = 1 (5)

F 0
k is the value of the criterion Fk obtained when it is the single criterion used in the optimisation,

i.e. the best value that can be achieved with that criterion considered alone. The scalar preference

function P [Fk (~x)] replaces F(~x) in eq. (2) for the numerical solution.

The weighted-sum, the nearest to the utopian and the min-max solutions result from eq. (5)

with ρ = 1 , 2 and ∞, respectively. For example, for the min-max solution eq. (5) reduces to

P [Fk (~x)] = max
k

[

wk

∣

∣

∣

∣

Fk (~x)− F 0
k

F 0
k

∣

∣

∣

∣

]

(6)

Solutions can be obtained for a number of values of ρ and then the design team could decide which

solution best represents the design intent.

For the application case presented in this paper, eq. (5) can be adapted to two criteria in the

objective function. This leads to eq. (7) where P is the objective function and F1 and F2 are the

two criteria used, steel weight and production cost. F 0
1 and F 0

2 represent the optimum values of the

criteria F1 (steel weight) and F2 (production cost), respectively obtained when the optimisation is

performed only with one criterion as a single objective.

P =

[(

w1

∣

∣

∣

∣

F1 − F 0
1

F 0
1

∣

∣

∣

∣

)ρ

+

(

w2

∣

∣

∣

∣

F2 − F 0
2

F 0
2

∣

∣

∣

∣

)ρ]1/ρ

(7)

2.7 Mapping the Entire Pareto Front

When dealing with multi-criteria problems, it is recommended to study the entire Pareto front.

This allows the design team to consider all options that meet the Pareto optimality definition. The final

design decision can be based on the criteria considered in the optimisation formulation as well as

additional considerations not included in the model. This is feasible when there are two criteria but

rapidly becomes impractical due to computational time and visualisation reasons when the number of

criteria reaches three and more. In order to map the entire Pareto front, the following three methods

can be used:

– Repeated weighted sum solutions: If the feasible object function space is convex, weighted sum

solutions can be obtained for systematically varied weighting factors.

– Repeated weighted min-max solutions: If the feasible object function space does not have a

slope exceeding w1/w2 , weighted min-max solutions can be obtained for systematically varied

weighting factors.

– Multi-criteria optimisation methods: Multi-criteria implementations of Generic Algorithms

(MOGA), Evolutionary Algorithms, Particle Swarm Optimisation etc. can produce the entire

Pareto front in a single optimisation run.

In this paper, the repeated weighted sum solution was used to map the entire Pareto front.

7

S
h

ip
Te

c
h

n
o

lo
g

y
R

e
s
e

a
rc

h
S

c
h
if

fs
te

c
h
n
ik

V
O

L
.–

/
N

O
.-

–
2

0
–



3 Applications

The approach is applied to the structural optimisation of a cruise ship with the length between

perpendiculars 280 m and the overall length 315 m, Fig. 1.

3.1 Model

Three sections of the ship of the height 42 m and breadth 40 m, characterised by 14 decks,

were simultaneously optimised, Fig. 1. Only half of the symmetrical structure was modelled.

81 panels 78 panels 93 panels

24 pillars 25 pillars 28 pillars

aft section midship section fore section

Fig. 1: Three sections of a cruise ship.

The structural analysis used here is applicable only to cylindrical structures, obtained from a

2D model extruded in the longitudinal direction. Fore and aft sections could not be analysed and

optimised together with the midship section, but independent optimisation is possible. The main

inconvenience of an independent optimisation is that several design variables (e.g. the stiffeners

spacing) that should be the same for the considered parts, may have different values at the local

optimum.

A multi-structures module was developed in order to optimise several structures simultaneously.

The approach links design variables between these structures, e.g. the midship, fore and aft sections of

a cruise ship. The multi-structures module optimises simultaneously the three sections and preserves

compatible design variables. However, only some common design variables can be taken into account

such as stiffener spacing or plate thickness. The link between the three sections is done by adding

new equality constraints between variables. There is no link concerning strain or stress.

3.2 Load cases

The following load cases were considered for each section:
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– sagging and hogging vertical bending moments with an exceedance probability of 10−8 ,

including still water pressures and static deck loads

– sagging and hogging vertical bending moments with an exceedance probability of 10−5 ,

including still water and wave pressures and static deck loads

– still water and wave pressures and static and inertial deck loads

Bending efficiency coefficients were considered in order to take into account the participation

degree of each deck to the longitudinal bending. The hull girder shear force and bending moment

depend on the distribution of gravity and buoyancy forces along the entire ship for a specific load

case. If only a part of the ship is modelled, the shear force and moment in the studied section will not

be the same as when the entire ship is considered. Therefore, the applied bending moment and the

length of the model were artificially adjusted to obtain the adequate moment and shear force in the

studied section for each of the five considered load cases at the fore and aft sections.

For the considered 2D model extruded in the third direction, hydrodynamic pressures and

deadweight do not change along this direction. Applying bending moment M1 to the extremities of

the model, the equations for the bending moment M and shear force T become

M = M1 +
px2

2
−

pxL

2
(8)

T = p

(

L

2
− x

)

(9)

x is the distance from the extremity and L the length of the model. For the whole ship the behaviour

is more complex (pressure is not constant over the length) and must be studied to know the real

distribution of the bending moment and the shear.

A position x should be selected where the structural constraints are applied: the equations

above show that for each position x values of M and T differ. For the studied section, eq. (8) is solved

to find bending moment M1 that should be applied at the extremity and length L leading to the

required M and T . Consequently the length of the model will be artificial and varying with load case.

4 Optimisation

4.1 Design variables

The three ship structures are modelled respectively with 81, 78 and 93 stiffened plate elements,

Fig. 2. The structural response of the model is found by solving the non-linear differential equations of

each stiffened plate element, Rigo (2001a) and Rigo (2001b). For each element, nine design variables

are used:

– plate thickness

– for longitudinal members (stiffeners, crossbars, girders etc.): web height and thickness, flange

width and spacing between two longitudinal members

– for transverse members (frames, transverse stiffeners etc.): web height and thickness, flange

width and spacing between two transverse members (frames)

1694 design variables were used for the whole ship model (3 ship sections), which represents

on the average of 6 to 7 design variables per stiffened panel. Only plate thicknesses and longitudinal

members were optimised.

An optimisation algorithm which can solve non-linear constrained problems was used, based

on a convex linearisation of the non-linear functions and a dual approach, Fleury and Braibant (1986).

This algorithm is especially effective because only few (typically less than 10 ) iterations are required.
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Fig. 2: Stiffened plate element.

4.2 Objective function

Production cost and minimum weight constitute the objectives considered. Production costs

were subdivided into three categories, including material, labour and overhead costs, eq. (11).

The evaluation of material costs consists of quantifying volumes required for construction and

obtaining prices from suppliers and subcontractors.

The best alternative to empirical formulations for labour costs is an analytic evaluation. It

requires knowledge of the working time required for each standard labour task associated with a

workstation as well as the distribution of the entire construction process to stations. The following

equation

LC = QC · UC · KC · AC · WC (10)

provides the Cost Evaluation Relationships (CERs) for the labour cost of a stiffened panel for a simple

manufacturing activity (e.g. welding of two assemblies or the tacking of steel profiles). QC denotes

quantity (welding length, number of brackets etc.), UC unitary cost (cost per unit), KC corrective

coefficient used to calibrate the unitary cost, AC accessibility or complexity coefficient and WC

workshop coefficient.

The relationships QC·UC are typically derived directly from the measurement of a single

physical attribute such as dimensional data (plate thickness, profile length, profile scantling, welding

length, welding throat etc.) or quantitative data (number of profiles, number of brackets, number

of cut-outs, number of holes etc.) for QC and the unitary cost of carrying out the activity for UC,

e.g. the labour for steel block assembly in hour/t or the labour for welding in a vertical position in

hour/m. The unitary costs UC vary according to the type and the size of the structure, manufacturing

technology, experience and facilities of the construction site, country etc. Usually, unitary costs are

defined as a function of one or more design variables, e.g. plate thickness, welding throat, welding

type (butt or fillet), welding position, bevels, profile scantling.

The catalogued cost scales (cost-per-unit) available do not always reflect accurately the expected

costs. Therefore, these cost scales should be modified with an appropriate adjustment factor KC.

This procedure has the double advantage of preserving the cost scales for control purposes and

allowing the impact simulation of a facility or technology investment on the cost. An additional

coefficient AC is introduced into the equation in order to adjust manufacturing cost assessment for

increasing or decreasing relative accessibilities (complexities) of the ship or its sub-assemblies. The

productivity changes from a workshop to another; the adjustment coefficient WC reflects gains or

losses in productivity between workshops.

Production cost was calculated with an advanced cost module taking into account a detailed

shipyard database. Around 60 fabrication operations are considered covering different construction

stages, such as girders and web-frames prefabrication, plate panels assembling, blocks pre-assembling

and assembling, as well as 30 types of welding and their unitary costs, Toderan et al. (2007).
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Overhead cost includes any expenses that cannot be attributed to a specific work station of the

construction process, but are linked to construction.

Combining these contributions, the production cost PC is

PC = MC + LC · HC + OC (11)

MC is the material cost, LC labour content in man-hours, HC hourly cost and OC overhead cost.

In addition to the production cost, a maintenance and repair life cycle cost-earning model is

currently studied. Turan et al. (2009) provided a theoretical and practical foundation but further

research is required to develop maintenance and repair cost modelling systems.

4.3 Design constraints

Constraints are linear or non-linear functions of design variables, either explicit or implicit,

expressing the limitations that the user wants to impose on the design variables. Different types of

constraints were considered:

– Technological constraints due to manufacturing limitations

– Geometrical constraints guaranteeing a functional, feasible and reliable structure, based on

expert knowledge about possible local strength failures (web or flange buckling, stiffener

tripping etc.) or guaranteeing welding quality and easy access to the welds. For instance,

welding of 30 mm with a 5 mm plate is not recommended.

– Structural constraints represent limitations in order to avoid yielding, buckling, cracks etc. and

to limit deflections and stresses. These constraints are based on solid-mechanics phenomena

and modelled with rational equations based on physics, solid mechanics, strength and stability

analysis etc.

– Global constraints impose limitations on the centre of gravity (ship stability), fabrication cost or

global bending strength (classification rules).

– Equality constraints are often added to avoid discontinuity of design variables. Panels of the

same deck normally have the same thickness, stiffeners spacings are often homogeneous etc.

The problem is highly constrained and the adequacy of the used constraints can significantly

influence the solution. In this case study, 3388 technological, 1696 geometrical, 16809 structural

and 6 global constraints were used. All constraints were applied to a ship at the end of its service

life, i.e. for the corroded structure after 30 year of life.

Tab. 1: Design constraints for 3 ship sections.

Aft Midship Fore Total

Number of strake elements 81 78 93 252

Design variables 550 460 684 1694

Technological constraints 1100 920 1368 3388

Geometrical constraints 558 446 692 1696

Structural constraints 5734 4035 7040 16809

Global constraints 2 2 2 6

Equality constraints 0 0 0 0

Total constraints 7394 5403 9792 21899

Equality constraints between sections 1173

Total 23762
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5 Optimisation results

5.1 Pareto front

The Pareto front, Fig. 3, was mapped using the repeated weighted sum solutions. The process

altered the weights in the weighted sum solution and solved the optimisation problem for each of the

weights. 50 points were calculated. The Pareto front was generated over 28 hours with a Pentium

Dual Core 2 .52 GHz and 3 GB of RAM. The utopian point, the min-max solution and the initial solution

are also shown. The min-max solution was obtained for a weighting factor 0.59 for the production

cost and 0.41 for the weight. This analysis highlighted that the initial design is relatively far from

the Pareto front. Using Fig. 3, the design team is now able to choose a compromise solution from the

Pareto front taking into account factors and constraints that were not included in the optimisation

problem.

Fig. 3: Pareto front (◦), initial design (N), utopian point (� ), not converged points (×) and the min-max solution (•).

5.2 Results

Table 2 provides the cost and steel weight savings between the initial and the minimum cost

and minimum weight optimal designs, as well as min-max solution. Cost optimisation generates a

significant increase of steel weight, thus the cost optimal solution is far from the optimum regarding

weight. The min-max solution appears much more efficient for this ship than the other optimal

solutions. This case study shows the advantage of considering multiple objectives.

Tab. 2: Savings in % of cost and steel weight.

Weight Cost Min-max

optimisation optimisation solution

Steel weight -12.72 +5.1 -11.3

Production cost -0.88 -4.52 -1.58

Material cost -8.5 +0.89 -8.38

Labour cost +4.22 -8.8 +2.96
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Fig. 4 gives breakdowns of the gains for the main parts of the ship, i.e. bottom, side shells,

inner decks and accommodations. Plate thickness was reduced everywhere. The highest gains in

production cost and weight are obtained for the side shells.

(a) Definitions

(b) Breakdown table of savings in %

Production Steel

cost weight

Bottom -0.1 -7.71

Side -18.42 -31.56

Inner decks +4.33 -8.77

Accommodations -1.92 -10.43

Fig. 4: Breakdown of improvements in min-max solution.

5.3 Validation of the results

The final scantlings of the min-max solution were verified with Bureau Veritas rules; all

plates and stiffeners had thickness greater or equal to those required by the rules. Note that the

optimisation did not take fatigue into account. Information of structural details required for reliable

fatigue assessment is available only in the next design stages. This is a significant obstacle for an

early design stage, because the decisions taken at this stage have a strong influence on the fatigue

life of the hull girder. Structural modifications after the early design stage are expensive. In order

to overcome this problem, a study is currently conducted to implement a rational model for fatigue

assessment already in early design, Remes et al. (2009).

6 Conclusions

A structural multi-objective optimisation of a cruise ship has been undertaken. The developed

method allows performing multi-criteria optimisation considering both production cost and weight

in the objective functions. The entire Pareto front can be mapped using a process which alters the

weights in the weighted sum solution and solves the optimisation problem for each of the resulting

problems. Useful specific compromised solutions from the Pareto front, e.g. the nearest to the utopian

and min-max solutions can be easily calculated.

With the new multi-structures module, it is now possible to simultaneously optimise different

sections of a ship ensuring the compatibility of the design variables between the different sections.

These developments improve significantly the capability of the method to provide optimal

scantling solution at the early stage of the design process. The method proposed here is suitable

for basic design studies dealing with general multi-objective optimisation problems. However some

additional developments such as early assessment of fatigue and a holistic life cycle cost module are

still required.
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