
Abstract

Knowledge of basic data variability is essential for the interpretation of any proxy-based paleotemperature record. To evaluate this 
18for δ O stable isotope paleothermometry based on early Paleogene fish otoliths from marginal marine environments, an intra- and 

interspecific stable O and C isotope study was performed at a single locality in the southern North Sea Basin (Ampe Quarry, Egem, 

Belgium), where shallow marine sands and silts are exposed. The age of the deposits is early late Ypresian (ca. 50.9 Ma) and falls 

within the early Eocene climatic optimum (EECO) interval. In each of four fossiliferous levels sampled, the same three otolith spe-

cies were analyzed (Platycephalus janeti, Paraconger papointi and “genus Neobythitinorum” subregularis). Intrataxon stable isotope 

spread amounts on average 2.50-3.00‰ for all taxa and is present in all levels. This implies that each sample level comprises sub-

stantial variability, which can be attributed to a combination of temporal and taphonomic effects. More importantly, intertaxon offsets 
13 18of 4.60‰ in δ C and 2.20‰ in δ O between the mean values of the three otolith species are found, with “N.” subregularis repre-

senting more positive values relative to the other species. We hypothesize that freshwater influence of coastal waters is the most 

likely cause for these discrepancies. Similar analyses on two coastal bivalve species (Venericardia sulcata and Callista laevigata) 
18corroborate this hypothesis. Accordingly, δ O values measured on “N.” subregularis otoliths probably represent a more open oce-

18anic signal, and therefore seem well-suited for δ O stable isotope paleothermometry. This study highlights the importance of investi-

gating data variability of a biogenic carbonate paleotemperature proxy at the species level, before applying paleotemperature equa-

tions and interpreting the outcome._____________________________________________________________________________
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1. Introduction: a single locality test case

Since the advent of accurate microdrilling techniques about 

fifteen years ago, fish otolith stable isotope geochemistry has 

become a promising new proxy within the field of paleoclima-

tology. Fish otoliths or ‘ear stones’ are biogenic accretionary 

concretions originally composed of aragonite, that precipitate 

from the endolymph fluid in the inner ear of bony fishes. De-

velopment of their use as a paleotemperature proxy gained 

significantly from work on recent fish taxa. Several empirical 

paleotemperature equations were established, describing the 
18relationship between the δ O composition of otoliths and am-

bient temperature, providing the stable isotope composition of 
18ambient water (δ O ) is known (e.g. Patterson et al., 1993; 

Thorrold et al., 1997; Storm-Suke et al., 2007). Therefore, gi-

ven their often abundant occurrence in Cenozoic shelf sedi-

ments worldwide, paleotemperature records potentially cove-

ring short- and long-term climatic shifts and cycles in both 

greenhouse and icehouse settings can be derived from them 

(Nolf, 1995; Ivany et al., 2000, 2003; De Man et al., 2004). 

Moreover, their incremental growth ring pattern allows the 

combined inference of mean annual and intra-annual (seaso-

nal) temperature variations, presenting an obvious advantage 

over other biogenic carbonates frequently used for stable iso-

tope paleothermometry such as foraminifera and ostracods 

(Ivany et al., 2000; Vanhove et al., 2011). Previous work dea-

ling with stable O and C geochemistry of fossil otoliths has 

been limited so far. Secular paleotemperature trends derived

sw

from bulk and seasonal δ O variability were discussed by 

Ivany et al. (2003) for the Paleogene U.S. Gulf Coast and by 

De Man (2004) for the late Paleogene of the southern North 

Sea Basin. Based on incrementally sampled otoliths, Ivany et 

al. (2000) suggested cooler winter temperatures as a cause 

for the large mollusk turnover across the Eocene/Oligocene 

interval. Attempts were made to infer paleotemperatures as 

far back in time as the Jurassic, but unfortunately the species 

used in these studies lack clear affinities with recent species 

(Patterson, 1999; Price et al. 2009).

Primordial to the interpretation of any paleoenvironmental 

proxy based on biogenic accretionary carbonates is to have 

constraints on basic data variability, i.e. intrataxon data spread 

and any possible intertaxon offsets. Both may obscure the 

reliability of a given record when not carefully accounted for. 

Our objective is to assess these potential pitfalls for stable O 

and C isotope geochemistry on fossil otoliths of early Paleo-

gene marginal marine settings. To achieve this, we carried out 

a single locality, multi-species test case. Four similar fossilife-

rous levels were sampled in a sand and silt quarry in Belgium. 

From each level, the same three otolith species and two bi-

valve species were sampled to exclude taxonomical bias be-

tween different levels. The age of these levels is early late 

Ypresian (ca. 50.9 Ma) and falls within the early Eocene cli-

matic optimum (EECO) interval (Zachos et al., 2008; Vanhove 

et al., 2011). The otoliths belonged to demersal, non-migratory 

18
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fishes, which are presumably characterized by reduced com-
13plexity of their stable isotope signals. Bulk δ C and δ O val-

ues were measured and data variability assessed within and

18

between taxa. Results are discussed 
18mainly in terms of δ O values, as 

these can be more easily interpre-

ted in terms of paleotemperatures. 

Although apparent temperature de-
13pendent δ C fractionation was repor-

ted in otoliths, the dissolved inorga-

nic carbon (DIC) of a marginal ma-

rine environment is even more diffi-
18cult to constrain than the δ O , and sw

in addition, substantial metabolic frac-
13tionation seems to affect otolith δ C 

values (Thorrold et al., 1997; Patter-

son et al., 1993).

The Ampe quarry (Fig. 1) is located 

near the village of Egem, west of the 

N50 national road between Brugge 

and Kortrijk, Belgium (51°00'45" N 

003°13'56" E). It is the type locality 

of the Egem Sand Member (Steur-

baut and Nolf, 1986). This 20 m thick 

unit represents the incised valley fill 

of third order sequence Y-G, and be-

longs to calcareous nannofossil sub-

zone NP12 (VII), except for its top-

most 2 m, which belongs to subzone 

NP12 (VIII) (Steurbaut, 1998; Van-

denberghe et al., 2004). Both subzo-

nes are calibrated to magnetochron 

C23N (Ali et al., 1993). It consists of 

subhorizontally orientated greenish 

glauconitic sands often rich in mol-

lusks and nummulitids, with clayey 

intercalations. The Egem Sand Mem-

ber was divided by Steurbaut (1998) 

into 21 layers. Sedimentological fea-

tures include thin shell lenses and 

hummocky stratification, indicative of 

storm-generated sediment reworking 

and deposition. Several coarsening 

upward cycles related to small rela-

tive sea-level changes, represent de-

position in the shoreface to offshore-

transition zone (Steurbaut, 2006). 

Based on a correlation with the Da-

nish Albækhoved section, a total 

time span of 150 kyr was calculated 

for the deposition of the member,

_______________

____________

2. Stratigraphy and pa-

leogeography of the 

Ampe quarry

with high average sedimentation rates of 41 cm/kyr (Steurbaut, 

1998).

Paleogeographically, the Ampe quarry is located within the
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Figure 1: Simplified lithostratigraphic sketch of the Ampe Quarry (after Steurbaut, 2006, Figure 

8) and paleogeography of the Ampe Quarry locality (after Vanhove et al., 2011). A,B,C are based on 

grain size analyses (Steurbaut, 2006).___________________________________________________
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Belgian Basin, i.e. the eastern shallow embayment of the sou-

thern North Sea Basin (NSB). At the time of deposition of the 

Egem Sand Member, this area represented the near-shore 

rim of the basin (Fig. 1). The presence of nummulitids argues 

for a connection with southern realms, probably via a south-

western connection with the Atlantic Ocean  (King, 2006).

About 20 kg of sediment was sampled from each of the four 

fossiliferous levels along the east side of the Ampe quarry. 

These correspond from base to top to levels Nr. 6, Falun I (Nr. 

13), Nr. 17 and Falun II (Nr. 21) of Steurbaut (2006: Fig. 8). 

The sediments were wet-sieved at mesh widths 1.000, 0.710 

and 0.495 mm. A total of 351 otoliths was picked, 30 of which 

were used for isotope analysis. Another set of 16 otoliths (in-

dicated by an * in Table 1) was retrieved from the collections 

of the Royal Belgian Institute of Natural Sciences, Brussels 

(RBINS), currently curated by Dirk Nolf. The following three 

otolith and two bivalve taxa were selected: Platycephalus ja-

neti (Priem, 1911) (Platycephalidae, flathead fishes),  Para-

conger papointi (Priem, 1906) (Congridae, conger eels), “ge-

nus Neobythitinorum” subregularis (Schubert, 1916) (Ophidi-

idae, cusk-eels), Venericardia sulcata (Solander, 1766) and 

Callista laevigata (Lamarck, 1806) (Fig. 2). Quotation marks 

and the prefix genus in otolith taxonomy refer to the affinity of 

the species with a recent taxon (Nolf, 1985).

In general, otoliths powders were prepared as described in 

Vanhove et al. (2011). Small otoliths, particularly most P. janeti 

specimens, and bivalves were crushed to fine powders in an 

agate mortar and homogenized. Stable O and C isotopes 

were measured at the Stable Isotope Lab of the Free Univer-

sity of Brussels with a ThermoFinnigan Kiel (III) automated 

carbonate extraction device, coupled to a ThermoFinnigan 
plusDelta XL dual inlet isotope ratio mass spectrometer. For 

each 4 to 5 samples a NBS-19 standard was measured to 

calculate analysis precision, which is on average +/- 0.03‰ 
13 18for δ C and +/- 0.07‰ for δ O. Results are reported in δ-no-

tation, relative to VPDB. Statistical analyses were performed 

with Statistica 8.0 (StatSoft). Levene’s test was used to test 

equality of variances between two groups. The unpaired t-test 

was applied to test whether or not the mean values of the 

groups differ significantly. In case of unequal variances, the 

Welch’s t-test was used (α ≤ 0.05 in all tests).

The basic, intrataxon variability of the otolith and bivalve da-
13 18ta is approximately 2.50 to 3.00‰ for both δ C and δ O, and 

is more or less similar for each species and each stratigraphic 

level (see Table 1 and Fig. 3). Otolith data plot in the lower

___

______________

_____________

3. Methods

4. Results

Table 1: Data of otolith and bivalve stable O and C analyses used 

in this study, with means and standard deviations (SD) calculated per 

level. Column OID represents identification codes of the samples. Data 

marked with an * are sampled from the collections of the RBINS, cura-

ted by Dirk Nolf.____________________________________________
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13 18left quadrant of the δ C vs. δ O cross-plot, while the bivalve 
13data plot in the lower right. For δ C, all species means differ 

statistically from each other (t-test p=0.000 in all cases). Hence, 

the data plot as distinct groups on the cross-plot, with an over-

all range of ~8.50‰ and an offset of 4.60‰ between the mean 

values of the three otolith groups. The 4.50‰ overall range in 
18δ O, with an offset of 2.20‰ between mean otolith values, is 

13 13 18smaller than in δ C values. Offsets in δ C and δ O were ob-

served in each of the four stratigraphic levels sampled (see 

Table 1). For example, for the otolith specimens from Layer 6, 
13 18the total offset is 4.50‰ for δ C and 2.45‰ for δ O.

18The mean δ O values of P. janeti and P. papointi otoliths 

cannot be distinguished statistically (t-test p=0.053), and the 

same holds for the means of the two bivalves V. sulcata and 
18C. laevigata (t-test p=0.789). Moreover, the δ O data of P. ja-

18neti and P. papointi combined correspond to the bivalve δ O 
18data (t-test p=0.888). “N.” subregularis δ O data can be dis-

tinguished from every other group (t-test p=0.000 in all cases).

During sampling, attention was paid to select only well-pre-

served specimens. Vanhove et al. (2011) evaluated the preser-

vation of equally well-preserved otoliths as used in this study, 

including specimens of the Ampe quarry. This work included 

x-ray diffraction, scanning electron microscopy and cold ca-

thodoluminescence of saggital sections. No compositional or 

structural differences were detected between species, exclu-

ding preferential diagenesis of one or more taxa. Moreover, 

all samples studied by Vanhove et al. (2011) showed chemical 

and ultrastructural properties similar to those of the pristine 

aragonite of recent otoliths. These findings agree with the ob-

servation that recrystallization of otolith aragonite into calcite 

is exceptional (Nolf, 1995), and with earlier reports of well-pre-

served Oligocene to Pliocene otoliths (Dufour et al., 2000; 

Woydack and Morales-Nin, 2001). Considering that the ara-

gonite of the otoliths used in this study is indeed pristine, we 

assume that the original stable isotope composition is preser-

ved (Marshall, 1992).

13 18A scatter of 3.00‰ per species for both δ C and δ O is in 

general agreement with earlier observations on Jurassic fish 

otoliths (Patterson, 1999; Price et al., 2009). Our study, focu-

sing on a more recent time interval, has the advantage that 

the taxa have clear affinities with modern relatives (Nolf, 1985). 

For example, the genera Platycephalus and Paraconger are 

still extant. The three selected taxa belong to non-migratory 

demersal fishes. Consequently, the data spread is unlikely to 

result from vertical and horizontal migrations in the water co-

lumn. According to the taphonomic principle of Nolf (1995), 

most of the otoliths that arrive in the sedimentary record are 

derived from the excretion products of marine (migrating) pre-

dators. Etching of otoliths is regarded as main indication for

_______

________________________________

5. Discussion

5.1 Sample preservation

5.2 Intrataxon variability

this (Nolf, 1985). The assumption that potentially some com-

ponents of the fauna are allochtonous, probably representing 

waters with varying salinities due to changes in runoff or eva-

poration, could partly explain the observed spread. Another 

likely factor is the fact that each sampled layer represents a 

death assemblage of otoliths spanning an expanded time in-

terval (several kyr based on sedimentation rates; Steurbaut, 

1998). The sedimentological nature of the Egem Sand Mem-

Figure 2: Otolith (A,B,C, after Steurbaut and Nolf, 1991) and bi-

valve (D,E) species used in this study. A) Paraconger papointi, B) “ge-

nus Neobythitinorum” subregularis, C) Platycephalus janeti, D) Callista 

laevigata, E) Venericardia sulcata._____________________________

Figure 3: 13 18 δ C vs. δ O cross-plot of all data used in this study. 

Arbitrary contours of the five taxa used were drawn to emphasize the 

extent of data variability. Thick black dots represent the means of indi-

vidual taxa. Otolith data show three clearly distinguishable groups, due 
13 18to the large spread of 7.00‰ in δ C. Considering δ O, the values of 

Platycephalus janeti and Paraconger papointi correspond to the two 

bivalve data clouds._________________________________________
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ber, indicating local winnowing and reworking due to currents 

and storm events, supports the latter factor (see section 2; 

Steurbaut, 2006). Small-scale early post-depositional rewor-

king is also supported by the data spread in both V. sulcata 

and C. laevigata bivalves, which approximately equals otolith 

scatter. At present, it is impossible to discriminate whether 

temperature, salinity fluctuations or a combination of both, 
18contributed to the scatter in δ O values. The data spread in 

other studies using P. papointi and “N.” subregularis otoliths 

is slightly smaller (e.g. up to 2.50‰ in De Man et al., 2004), 

suggesting that sample levels in these studies suffered less 

from taphonomic processes. In conclusion, according to our 

data, the combination of temporal environmental variability, 

post-mortem transport and local reworking, poses a complica-

ting factor to otolith stable isotope paleothermometry in mar-

ginal marine basins, because a scatter of 3.00‰ would mean 

a ~12 °C temperature uncertainty using any available paleo-

temperature equation established on otoliths (e.g. Thorrold et 

al., 1997).

18As measured δ O values are mainly a function of ambient 

temperature and the isotopic composition of the surrounding 

sea water, temperature gradients and salinity fluctuations can

be regarded as primary causes of the observed intertaxon of-

fsets. The spread in mean oxygen isotope values of the three 

otolith groups would translate in a gradient of ca. 10-12 °C: 

such a temperature gradient in the basin is unrealistic, be-

cause we used otoliths of fishes with a benthic mode of life. 

Furthermore, the sedimentology of upper Ypresian deposits of 

the proximal Belgian Basin indicates well-oxygenated condi-

tions and strong currents, with depths not exceeding 10-20 m, 

arguing against stratification of the water column (see section 
182; Steurbaut, 2006). Deviation from average oceanic δ O  sw

values in marginal basin waters on the other hand, presents a

5.3 Intertaxon variability

18common problem to the interpretation of δ O isotope signals 

measured on biogenic carbonates in these areas (e.g. Andre-

asson and Schmitz, 1996; Ivany et al., 2004, Tindall et al., 

2010). Few studies addressed the possibility of freshwater 

mixing with marine North Sea Basin waters during the Ypre-

sian (Schmitz et al., 1996; Zacke et al., 2009). We believe 

that freshwater influence is indeed the most likely explanation 
18for the observed intertaxon offset in δ O values of otoliths. 

Our hypothesis is based on three arguments, and compari-

son with bivalve data (Fig. 4). Firstly, deposition of the Egem 

Sand Member at the Ampe quarry location occurred close to 

the coast. It is very likely that this site was seasonally or con-

tinuously influenced by freshwater mixing, as is the case with 

modern shallow margins of the North Sea Basin (Harwood et 

al., 2008). Secondly, modern nearest relatives of “N.” subre-

gularis thrive in outer neritic to bathyal depths, while for P. 

janeti and P. papointi this is inner neritic (Böhlke et al., 1989; 

Nolf, 1995; Nielsen et al., 1999). Notwithstanding a potential 

shift of “N.” subregularis in habitat preference through time 

towards deeper realms, this suggests that during the Ypresian 

“N.” subregularis may have preferred more open marine con-

ditions compared to the other two species. Thirdly, the tapho-

nomic principle of Nolf (1995) indicates that most of the oto-

liths in an assemblage underwent post-mortem transport be-

fore deposition. In summary, according to our model, the 

sampled layers in the Egem Sand Member each represent a 

thanatocoenosis consisting of locally deposited otoliths (e.g. 

P. janeti and P. papointi) and otoliths transported coastwards 

by migrating predators originating from more distal realms (e. 
18g. “N.” subregularis). This explains the very negative δ O val-

ues for P. janeti and P. papointi, and the more positive val-
18ues for “N.” subregularis. The δ O data of the coastal bivalve 

species V. sulcata and C. laevigata, confirm this hypothesis. 

These were deposited relatively in situ, and hence should 
18have incorporated local δ O  signals. For Venericardia, sup-sw

posed equilibrium deposition was 

demonstrated before (see discus-

sion in Ivany et al., 2004). The mean 
18of all bivalve δ O data in our study 

statistically corresponds to the mean 

of the combined group P. janeti - P. 

papointi, suggesting that the latter 

taxa indeed bear coastal stable iso-

tope signals, while “N.” subregularis 

does not. Accordingly, because “N.” 

subregularis likely thrived in waters 
18with δ O  values closely related to sw

18open oceanic values, δ O measure-

ments on otoliths of this species 

seem well-suited for paleotempera-

ture derivations. Our hypothesis is 

also compatible with the observed 
13pattern in otolith δ C values. As the 

13δ C of otoliths partly represents en-

vironmental DIC, the range in mean

Figure 4: Graphic representation of the freshwater influx hypothesis (see text for explanation). 

Numbers in circles represent the paleohabitats of the three fish species of which modern closest repre-

sentatives are pictured in the lower half of the graph. Light grey: freshwater influence zone; dark grey: 

water of normal salinity; middle grey: sediments. Horizontal range of the field of view is ca. 30 km.__
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13δ C values from -5.50‰ in P. janeti towards -1.00‰ in “N.” 
13subregularis, probably reflects the degree of influence of δ C 

depleted (riverine) water on the three species, from a relatively 

large to smaller influence, respectively.

Physiological effects and variability in biogenic carbonate 

production are two other factors that may further explain ob-

served intertaxon discrepancies. The first is known to cause 

non-equilibrium incorporation of elements and isotopes in bio-

genic minerals with respect to ambient water signatures (Wei-

ner and Dove, 2003). This likely presents an additional expla-
13nation for the large range in δ C values of the otolith data, as 

13in otoliths metabolic overprinting of environmental δ C DIC 

values, probably related to somatic growth and precipitation 

rate, causes substantial departures from equilibrium (Kalish, 

1991; Thorrold et al., 1997). In addition, incorporation of me-
13tabolic carbon may also explain the heavier δ C values of the 

bivalve species compared to those of all three otoliths species. 

Bony fish and bivalve mollusks are taxonomically very distant 

to each other, and both have their own intricacies with respect 
13to the incorporation of δ C signals into their carbonate preci-

pitate (e.g. for bivalves: Gillikin et al., 2007; McConnaughey 
13and Gillikin, 2008). Positive δ C values of ~1-2‰ for Veneri-

cardia sulcata bivalves are in line with Venericardia imbricata 

values of the middle Eocene the Paris Basin (Andreasson 
18and Schmitz, 1996). True equilibrium precipitation of δ O in 

otoliths is disproven by the establishment of several paleo-

temperature equations, based on different taxa (Kalish, 1991; 

Patterson et al., 1993; Thorrold et al., 1997; Høie et al., 2004; 

Storm-Suke et al., 2007; Dorval et al., 2011). Despite errors 

that may result from different methods or experimental set-

ups, and keeping in mind different calibration ranges, the equa-

tions show considerable variation of their intercepts. Except 

for the equations of Kalish (1991) and Dorval et al. (2011), 
18slopes are similar, suggesting that fish precipitate δ O with 

offsets that are taxon-specific but which remain constant with 

changing temperature. All relationships reflect precipitation 
18“close to equilibrium”, and δ O may even be precipitated in 

equilibrium with respect the endolymph fluid (see introduc-

tion). However, in the field of quantitative paleothermometry 

the “small” departures from equilibrium can be regarded as 

disequilibrium precipitation, particularly because the equa-

tions published up to now cover a ~9 °C temperature range 
18for a given δ O value. The reasons for this are still unclear, 

but subtle metabolic differences between species seems the 

most likely explanation (Kalish, 1991; Storm-Suke et al., 2007). 

Measurements on P. papointi and “N.” subregularis otoliths of 

early Lutetian age in the Belgian Basin and of Ypresian age in 

the U.S. Gulf Coastal Plain, do not indicate interspecific dis-
18crepancies in δ O, implying that the offsets observed in our 

study are caused by a temporal phenomenon (De Man et al., 

2004; Ivany et al., 2003). This, however, is not in agreement 

with a different departure from equilibrium precipitation be-

tween these two species, since one would expect such off-

sets to be constant through time.

The second factor, variability in carbonate production, may

__________________

______________________

lead to irregularities of the incremental pattern of otoliths (e.g. 

Pannella, 1980). For example, because of varying metabolic 

rates, during one season more carbonate may be produced, 

resulting in thicker growth rings relative to another, even in 

tropical fishes (Henderson, 2006). To assess whether such ef-
18fect could have caused intertaxon offsets in δ O values, pat-

terns arising from a set of incremental stable O and C isotope 

data of P. papointi and “N.” subregularis otoliths were evalua-

ted (Vanhove et al., 2011). These patterns represent a clear 

seasonal signal, corresponding to visual growth bands. Wave-

lengths of both seasons are approximately equal within a spe-

cies. There is also no evidence of a distinct effect related to 

the larval, planktonic stage of the fishes. Based on these data, 

there are no indications of substantial intertaxon differences in 

the way otoliths precipitate their carbonate, influencing our data.

The similarity in seasonal amplitudes between P. papointi and 

“N.” subregularis in Vanhove et al. (2011), both on average +/- 

1‰, may seem contradictory to our freshwater influence hypo-
18thesis, since one could expect larger amplitudes in otolith δ O 

values of specimens with a more proximal habitat. However, 
18this depends on the nature of the presumed δ O  depleted sw

water masses, which could have been either seasonal or con-

tinuous. For example, continuous influence would imply that 

pronounced seasonal temperature contrasts of ~9.5 °C prevai-

led in the region, and that this was recorded by both P. papo-

inti and “N.” subregularis (Vanhove et al., 2011). Ivany et al. 

(2003) reported smaller seasonal ranges of temperature varia-

tion in middle Eocene “Lepophidiinarum” (Ophidiid; same fami-

ly as “N.” subregularis) otoliths the U.S. Gulf Coast, compared 

to Paraconger otoliths. This could be indicative of a more distal 

habitat preference of Ophidiids relative to Congrids, but such a 

small ranges were not observed by Vanhove et al. (2011). Un-

fortunately, both the observations of Ivany et al. (2003) and 

Vanhove et al. (2011) are based on a very limited number of 

incremental patterns. Further discussion on this, involving a 

profound evaluation of inferences from other proxies and pa-

leotemperature interpretations, is beyond the scope of this 

paper and an objective for additional investigation.

13 18A total offset of 4.60‰ in δ C and 2.20‰ in δ O between 

the mean values of the three otolith species used is observed. 

This discrepancy is characteristic of each of the four levels 

sampled in the Ampe quarry, presenting a strong case for in-

tertaxon variability at the species level within otolith stable O 

and C isotope data. Freshwater influence on coastal waters 

seems the most plausible explanation, and is supported by 

analyses on coastal bivalve species and information on recent 

relatives of the fish taxa used. The observed 2.50-3.00‰ intra-

taxon variability is in agreement with earlier otolith data, and a 

combination of temporal and taphonomic effects is interpreted 

here as a likely cause. The results stress the importance of 

assessing data variability at the species level, preferably by 

means of a single-locality, multilevel test case. They imply

that within a single taphonomic setting of a marginal marine ba-

_________

6. Conclusions and implications
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sin, some otolith taxa, in our case “N.” subregularis, seem well-
18suited for δ O stable isotope paleothermometry, while others 

may be strongly biased by continental run-off. Some of the few 

earlier studies on otolith paleothermometry briefly mentioned 

the potential pitfalls of taphonomy in this type of research, ne-

vertheless interpretation of the secular data series in these 

studies would benefit from a more robust approach towards 

intra- and interspecific data variability (e.g. Ivany et al., 2003; 

De Man et al., 2004). In order to increase the resolution and 

precision of paleotemperature calculations from otolith stable 

O and C isotope data, based on our data such an approach is 

a necessary step to take before paleotemperature equations 

are applied. Future research directions include similar analy-

ses on other otolith taxa, the incorporation of data from other 

localities and time frames, and alternative testing of the fresh-

water hypothesis by means of clumped isotope geochemistry.
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