


 

 

 

 

 

 

 

 

 

 

 

 

"But man is a part of nature, and his war against 

nature is inevitably a war against himself" 

 

 

In 1962, marine biologist Rachel Carson published “Silent Spring”, describing the 

unintentional effects of the pesticide dichlorodiphenyltrichloroethane (DDT) on wildlife, in 

particular birds. It was the first popular publication questioning the release of large amounts 

of chemicals in the environment without fully understanding their environmental and health 

effects. Its publication is often considered as the birth of modern environmentalism, and it 

indirectly led to the many legislative actions regulating the production, use and disposal of 

harmful substances. Nevertheless, thanks to human ingenuity and for the sake of progress, 

many more hazardous chemicals have been marketed since then. 
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hem na zijn verdediging bezig met zijn twee prachtige zoontjes op de steile trappen van het 

auditorium. Op één of andere manier heb ik me altijd gespiegeld aan Paul. Een bizar 
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ondergrondse Afrikaanse molratten, bij god hoe kom je erbij, dat móet een bioloog zijn. Maar 

nu heeft hij besloten dit hoofdstuk af te sluiten. Het romantische beeld dat ik altijd van 

wetenschappelijk onderzoek heb gehad en voor mij een belangrijke drijfveer was, is met Paul 

nu helemaal verdwenen. De wetenschap is gemoderniseerd, een beschaafde vechtpartij om 

geld en prestige. Kan je het eigenlijk nog wel wetenschap noemen, als op korte termijn 

resultaatgericht gepresteerd moet worden? Telkens weer op enkele maanden tijd een ‘sexy’ 

project schrijven, fondsen vergaren, uitvoeren en publiceren, tot het einde der dagen. Tantalus 

en Sisyphus zijn mietjes. In moderne tijden hadden Einstein en Darwin wegens 

onproductiviteit al na enkele maanden de bons gekregen. Gedaan met 25 jaar broeden op de 

relativiteits- of evolutietheorie. Ze hadden dan maar romanschrijver moeten worden. Nee, 

voor mij hoeft het even niet meer. Afhandelen die boel! Op naar de finish en op naar een 

ander avontuur. 

Ik wil mijn promotoren, Prof. dr. Ir. Guy Smagghe en Dr. Kris Cooreman bedanken voor deze 
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de clinch. Maar op het einde van de rit moeten we tot de conclusie komen dat het gewerkt 

heeft, en zowel jij als ik fier mogen zijn op wat gepresteerd is. Bedankt, en ik wens je nog 

veel succes in je verdere carrière. 

Alhoewel hij niet als co-promotor vermeld staat, wil ik specifiek Dr. Koen Parmentier 
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ook van je oprechte vriendschap mogen genieten. Bedankt. 
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verbasterd Antwerps accent aanlandde, werd ik door het noeste zeevolk met enige achterdocht 

aanschouwd. Maar vanuit alle windrichtingen heb ik de laatste jaren appreciatie en affectie 

mogen ervaren. Alhoewel ik er vaak weinig tijd voor had, was dit van vitaal belang voor mijn 

goed functioneren. 

 Ook zonder de oud-collega’s van het labo vertebrate morfologie van Prof. Dr. Dominique 

Adriaens, waar ik het enthousiasme voor wetenschappelijk onderzoek heb opgedaan met een 

maandwerk en vervolgens thesis, en van het labo zoofysiologie, waar ik als assistent door 
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doctoraat er nooit geweest. 

Aan mijn broer, ouders, neef, tante, nonkel, oma’s, vrienden, vriendin en ex-vriendin vraag ik 
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Goals and outline of this study 

  



 

 

  



 

 

 

1 Goals and outlines of this study 

Background 

Common shrimp (Crangon crangon L.) has a wide geographical distribution, ranging from 

the Icelandic coast and the White Sea (North-West of Russia) to the Moroccan coast and the 

Black Sea. In the southern North Sea (from Northern France up to Denmark) it dominates the 

coastal and estuarine areas. In the culinary atmosphere, Crangon is a delicacy, sometimes 

called ‘North Sea caviar’, as it has a strong and unique taste. With an annual catch of 35,000 

to 50,000 tons and a commercial value of the whole North Sea landings of roughly €100 

million, common shrimp is one of the top 5 most valuable European fisheries and aquaculture 

commodities.  

 

Problem definition 

Since the early 1970s until the early 2000s, the Belgian landings per unit effort (LPUE), a 

proxy for local (i.e. the Southern Bight) annual shrimp abundance based on fisheries statistics, 

shows a gradual, but severe decrease. Since 2007, the local shrimp stock has suddenly 

recovered, resulting in record landings in 2010. Prior to 2007, several potential causes have 

been proposed for the long term decline (Redant & Polet 2002): 

 

 Overfishing. common shrimp are one of the few commercial species which are believed 

not to be overfishable, as fishing mortality is much lower than natural mortality, i.e. 5-

10% of the total mortality caused by gadoid (cod and whiting) predation (Welleman & 

Daan 2001).  

 Increased predator pressure. Cod and whiting are the most important shrimp predators. 

Increased fishing pressure on these and other species has only led to a decreased predator 

pressure. The cod stock even collapsed in 1992 and is only slowly recovering. 

 Decreased nursing grounds. Marshes and creeks are important nursing grounds for 

juvenile shrimp and many other species. Sand extraction, harbour expansion, impoldering 

and damming have indeed reduced the surface area of brackish marshes and creeks within 

the Southern Bight. 

 Increased pollution load. The production and use of hazardous chemicals exploded after 

the Second World War. While the release and environmental concentrations of many of 

such chemicals have strongly decreased due to increasing legislatory restrictions, other 

‘emerging’ chemicals pose a constant threat. Shrimp and other crustaceans are believed to 

be sensitive towards endocrine disruptive pollutants (Rodríguez et al. 2007). 
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A similar, yet unexplained situation (i.e. a long-term decline since the 1970s and recent record 

landings) also occurred in the other commercially exploited North Sea common shrimp 

stocks. However, international landing data indicated that several other shrimp stocks (e.g. the 

Wadden Sea), already started recovering in 1991 (ICES 2011). Furthermore, Siegel et al. 

(2008) observed an associated long term decline in the percentage of gravid shrimp in the 

Wadden Sea since the 1970s until 1989. Correlation analyses with common parameters, such 

as water temperature, river runoff, North Atlantic Oscillation (NAO) climate index, fish 

predator density or fishing pressure, showed no obvious plausible proximate cause. During 

the same period, the prevalence of ‘black spot disease’ in shrimp had been growing 

throughout the whole North Sea (Watermann & Dethlefsen 1983; Knust 1990; Dyrynda 

1998). ‘Black spots’ are bacterial infected nodules accompanied by tumour-like cells from 

apparently gonadal origin. Watermann & Dethlefsen (1983) postulated that pollution-induced 

“dissolutions” of the shell and subsequent bacterial and fungal infection could facilitate the 

occurrence of black spot disease.  

 

Hypothesis 

We pose the hypothesis that environmental concentrations of the potent broad spectrum 

biocide tributyltin (TBT) affects NR functioning in common shrimp, leading to downstream 

alterations in the expression of genes involved in moulting and reproductive processes. Since 

the late 1950s, TBT had been used on a massive scale as antifouling agent to decrease drag or 

surface damage on ship hulls, fish nets and cages due to biofouling. At the end of the 1970s, 

excessive use of TBT on local recreational vessels led to severe reproductive failures in 

commercially exploited oyster populations (Alzieu et al. 1982). Consequently, the use of TBT 

on vessels smaller than 25 m was banned throughout the EU by 1989. Due to its efficacy and 

lack of performing alternatives, a global ban on vessels longer than 25 m was only achieved, 

starting in 2003 and totally banned from 2008 onwards. Meanwhile, several marine gastropod 

populations had nearly completely collapsed due to TBT-related reproductive disorders (i.e. 

‘imposex’ and ‘intersex’). It has recently been shown that TBT blocks the mammalian 

Retinoid-X-Receptor (RXR), a nuclear receptor (NR) which is strongly conserved throughout 

the animal kingdom (Nishikawa et al. 2005). RXR plays a vital role in endocrinology, as it 

directly modulates the activity of many other NRs. NRs are the major targets of lipophilic 

hormones (e.g. steroids), and directly induce tissue specific expression of genes involved in 
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development, reproduction, immune response, etc. The ligand-dependent nature makes NRs 

susceptible for exogenous ligands such as pharmaceuticals, pesticides and many other 

chemicals. 

 

Objectives 

Within this PhD-thesis, two main research questions will be addressed. (1) Does TBT affect 

the functionality of the shrimp RXR receptor?, and, if so, (2) do the TBT concentrations 

observed in the North Sea disrupt shrimp endocrine functioning? 

 

Research Question 1: Does TBT affect the functionality of the shrimp RXR receptor? 

Invertebrate RXR is believed to act as a ‘silent’ but ‘obligate’ partner for many other NRs, i.e. 

invertebrate RXR does not bind a hormone (such as 9-cis retinoic acid (9-cis-RA)) but its 

presence is necessary to attain a high activity of the partner NR. Thus, investigation of TBT 

interference in invertebrate RXR activity must be performed indirectly, by measuring the 

activity of a partner NR. In chapter 2, the open reading frame (ORF) sequences from C. 

crangon RXR (CrcRXR) and its well-known partner protein, ecdysteroid receptor (CrcEcR), 

will be fully retrieved through a combination of several molecular techniques. Intra- and 

extraspecies variant regions will be identified within the cloned CrcRXR and CrcEcR 

isoforms. A phylogenetic analysis based on the obtained receptor sequences will be a first 

genetic phylogenetic analysis for this species. In silico 3D protein structures can then be 

reconstructed using existing (insect) EcR and (human) RXR templates. In chapter 3, (1) the in 

silico reconstructed receptors will be used to predict the interaction of TBT within the ligand 

binding pocket (LBP) of CrcRXR and CrcEcR; (2) the effect of TBT on signalling activity of 

the shrimp CrcEcR-RXR complex will be studied in vitro through a mutant Drosophila cell 

line; (3) the gene expression levels of both receptors will be studied in vivo after acute 

exposure of shrimp to TBT. 

 

Research Question 2: Do the TBT concentrations observed in the North Sea disrupt 

shrimp endocrine functioning? 

In chapter 4, common shrimp samples collected during a short time frame in Belgian, Dutch, 

German and Danish waters will be analysed to give a spatial overview of the organotin (OT) 

content in shrimp at the major fishing grounds. A focus on the highly polluted Westerschelde 

estuary will demonstrate the behaviour of OT concentrations in shrimp along a salinity 



 

 

 

4 Goals and outlines of this study 

gradient. Historical TBT concentrations in shrimp will be estimated by applying a Biota-to-

Sediment-Accumulation-Factor (BSAF) on available sediment concentrations. Endocrine 

disruptive effects of the observed concentrations are hard to prove, however. Classically, 

long-term multi-generation exposures (> 1 month in case of shrimp) are needed to observe 

subtoxic end-point effects, but such tests are practically unfeasible due to long exposure times 

and poor survival of shrimp under laboratory conditions. Instead, the subtoxic effects on 

endocrine sensitive gene expression, which physiologically precede the classic micro- or 

macroscopically observable responses, are readily quantifiable through modern molecular 

techniques. In chapter 5, sex specific shrimp genes will be isolated through suppression 

subtractive hybridization PCR (SSH-PCR), sequenced, and spotted on microarray slides. With 

the home-made shrimp microarrays, the expression levels of these genes after subchronic (i.e. 

7 days) exposure to subtoxic TBT levels will be quantified and will be linked to the affected 

physiological end-points (e.g. moulting, sexual maturation, fat storage). 
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5 Chapter 1 – General introduction 

1.1 Common shrimp (Crangon crangon) 

1.1.1 Taxonomy and phylogeny 

Protostomia, unranked G. protos, first + G. stomos, mouth Grobben 1908 

Superphylum Ecdysozoa G. ecdysis, moult + G. zoa, animal Aguinaldo et al. 1997 

Phylum Arthropoda G. arthron, joint + podos, foot von Siebold & Stannius 1845 

Subphylum Crustacea L. crusta, shell Pennant 1777 

Class Malacostraca G. malakós, soft + G. óstrakon, shell Latreille 1802 

Subclass Eumalacostraca Martin & Davies, 2001 

Superorder Eucarida G. eu, true + L. caris, shrimp Calman 1904 

Order Decapoda G. deca, ten + G. podos, foot Latreille 1803 

Suborder Pleocyemata G. pleon, abdomen + G. kýmata, foetal Burkenroad, 1963 

Infraorder Caridea G. caris, shrimp Dana, 1852 

Superfamily Crangonoidea Haworth 1825 

Family Crangonidae Haworth 1825 

Genus Crangon Fabricius 1795 

Species Crangon crangon Fabricius 1795 

 

1.1.2 Morphology 

The morphology of shrimp is reviewed in detail by Bauer (2004), of which I will give a brief 

overview. Common shrimp exhibits the typical Malacostracan body plan called the cardioid 

facies (L., carid, shrimp + L. facies, appearance; fig 1.1), in which the somites are grouped 

into tagmata, specialized body regions (i.e. head, thorax or pereon, abdomen or pleon, and 

telson). The exoskeleton of each somite consists of four sclerotized chitinous plates called 

sclerites (a dorsal tergite, two lateral pleurites and a ventral sternite). In general, each somite 

bears a pair of biramous appendages, of which the standard architecture is represented in fig. 

1.2. The head (cephalon) consists of five fused cephalic segments, which bear five pairs of 

specialized appendages. The presence of two pairs of antennae (i.e. antenullae and antennae) 

is a distinguishing feature of the Crustacea. The exopods of the second pair of antennae are 

enlarged and flattened to scaphocerites, which mainly serve as an anterior stabilizing fin. The 

other cephalic appendages form the feeding apparatus (i.e. mandibles, maxillules and 

maxillae). The rostrum is short and fused to the head. The thorax consists of eight segments, 

of which the first three are fused with the head, and this is referred to as a cephalothorax. 
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Fig. 1.1. Schematic drawing of common shrimp C. crangon (reproduced from Campos & Van 

der Veer 2008). 

 

Fig. 1.2. Schematic drawing of a generalized crustacean appendage (adapted from Holthuis 

1993). 

 

The first three pairs of appendages of these fused thoracic segments are included in the 

mouthparts as maxillipeds, and assist in food processing. The other five thoracic appendages 

slender walking legs, called pereiopods. The first pair of pereiopods, the chelipeds, is enlarged 

and subchelate (the dactyl folds back against the propodus, which lacks an extension).and 
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serves both a predatory and defensive function. The second pair of pereiopods is long and 

slender and possesses a true, ‘scissor’-like chela for cutting food items. The tergite of the 

cephalothorax is enlarged to a dorso-ventrally compressed, cylindrical carapax, which is fused 

with all thoracic segments and encloses paired, lateral gill chambers. The abdomen consists of 

six segments (pleonites), with a typical bend in the third pleonite. Typically for the genus 

Crangon, the pleurites of the second pleonite overlap their neighbours. The sixth pleonite is 

smooth dorsally, without groove(s) or carina(e), in contrast to C. allmani. Each pleonite 

carries a pair of pleopods (swimming legs), except the last segment which carries a pair of 

uropods. In females, the endopodites of the pleopods keep the fertilized eggs until the 

nauplius stage (see later), a distinguishing character for members of the Pleocyemata. In 

common shrimp, the morphology of the first two pairs of pleopods is a key feature for 

distinguishing sex. In males, the first pair of endopodites is much smaller and twisted around 

the base of the exopodit, while the second pair of endopodites exhibit a small appendage 

called the appendix masculine (Tiews 1970). Together with the final body segment, the 

telson, the uropods form a ‘tail fan’, which is involved in the typical tail-flip type of escape 

mechanism.  

 

1.1.3 Anatomy 

The following overview of the major organ systems is based on the extensive review made by 

Felgenhauer (1992) on the internal anatomy of Decapoda.  

 

Digestive system 

The digestive system consists of an oesophagus, foregut, the midgut, and the hindgut (fig. 

1.3). The foregut consists of two chambers, which possess multiple chitinous plates (ossicles) 

and extensive musculature, i.e. the cardiac and pyloric chamber, and is surrounded by a large 

digestive gland, the hepatopancreas. The midgut gives rise to blindly ending anterior (at the 

foregut juncture) and posterior (at the hindgut juncture) caeca. Osmoregulation, nutrient 

absorption, and the production of the peritrophic membrane that wraps the faecal material 

have been attributed to this gut region. The hindgut is characterized by chitinous scales or 

spines, which direct the faecal mass towards the anus, which is situated at the base of the 

telson. The hepatopancreas is a large trilobed organ, which releases digestive enzymes in the 

midgut where it takes up the released nutrients. It is also the main organ of reserve and 

detoxification of xenobiotics, and is highly sensitive to physiological and environmental 

conditions (Johnston et al. 1998). 
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Circulatory system 

The circulatory system of decapods is centred around a bulbous, dorsal heart, which receives 

blood through three pairs of ostia. It is surrounded by a pericardial sac that is penetrated by 

passageways where oxygen-rich, venous blood returns to the pericardial chamber. The 

hemolymph is pumped into the hemocoel through several major arteries, which possess 

valves to prevent backflow. 

 

Respiratory system 

C. crangon possesses phyllobranchiate gills at the base of the pereiopods, i.e. pleurobranch, 

arthrobranch, podobranch and exopod gills (see fig. 1.1). The gills are the primary sites for 

respiration, but especially the posterior gills also play a role in ion-regulation, and acid-

balance. The exopodites of the second maxillae form a flattened “bailer” termed 

scaphognathites that draws water over the gills through the gill chambers and out at the 

anterior end.  

 

Excretory system 

The antennal, urinary or green glands are paired excretory organs located at the base of the 

second pair of antennae and extract nitrogenous waste from the hemolymph and maintains 

ionic and water balance. The large bladder of the green gland exits on the coxa of the second 

pair of antennae.  

 

Reproductive system 

In male C. crangon, the testes are simple tubes connected to each other anteriorly, which lie 

dorsally on the hepatopancreas and extend diverticula into the first abdominal somites. The 

round, aflagellate and nonmotile spermatocytes mature as they transit the vas deferens to the 

gonophore at the base of the fifth walking legs. In addition, the vas deferens packages the 

spermatozoa into simple cordlike spermatophores. Males do not have ovulatory organs but 

deposit spermatophores near the female genital opening (Lloyd & Yonge, 1947). 

 In female C. crangon, the paired ovaries are located in the same relative position as the testis 

in males, extending into the posterior abdominal somites. The size highly depends on the age 

and reproductive condition of the female. The eggs pass from each ovary through the oviducts 

and exit via the gonophores on the third pair of pereiopods. The eggs are fertilized as they are 
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attached to the carrying setae on the endopodites of the female pleopods with secretions from 

a cement gland (Abbott & Perkins 1977; Lloyd & Yonge 1947). 

 

Exoskeleton 

In contrast with insects, the crustacean exoskeleton lacks a waxy, watertight cuticle, but 

instead it is reinforced with calcium carbonate (Passano 1960). The integument consists of an 

outer epicuticle, an exocuticle, an endocuticle and an inner membranous layer supported by 

the hypodermis. In the epicuticle, spherulitic calcite islands are surrounded by a lipid-protein 

matrix. In the exo- and endocuticles, the calcite crystals aggregates are interspersed with 

chitin-protein fibres organized in lamellae. The inner membranous layer is not calcified and 

consists of proteins and chitin. 

 

Nervous system 

The central nervous system is composed of a pair of supraoesophageal ganglia, which are 

connected with the eyes and the antennae, and the suboesophageal ganglion, which is 

connected with the mouth, oesophagus, antennal glands, and the ‘ladder like’ ventral nerve 

cord, which is connected to the appendages, muscles, etc. The main sense organs include a 

pair of compound eyes, tactile hairs (on the second pair of antennae and distributed on the 

whole body), chemoreceptors (on the antennules and distributed on the whole body) and 

statocysts (at the base of the antennules).  

 

Endocrine system 

The crustacean endocrine axis comprises two major neuroendocrine glands situated in the 

eyestalks: the X-organ-sinus gland complex, and the Y-organ (Laufer et al. 1993; Chang & 

Mykles 2011; fig. 1.4). The sinus gland is the storage and release site for several peptide 

hormones, i.e. moult-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH), 

mandibular organ inhibiting hormone (MOIH) and several other hormones regulating the 

blood glucose levels (crustacean hyperglycaemic hormone), chromatophore activity 

(chromatophorotropic hormones), eye adaptation (light-adapting and dark-adapting 

hormones) and neurodepression. GIH interacts with GSH (gonad-stimulating hormone), 

which is released by the brain and the thoracic ganglia, to orchestrate the reproductive cycle. 

In females, these hormones regulate the synthesis and release of vitellogenin by the ovaries 

and hepatopancreas.  
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Fig. 1.4. The major endocrine glands of higher crustaceans (Malacostraca) and their target 

tissues involved in reproduction (reproduced from Laufer et al. 1993). Stimulatory effects are 

indicated with solid lines, inhibitory effects with dashed lines. AcG, accessory gland; AG, 

androgenic gland; AGH, androgenic gland hormone; ECD, ecdysteroids; FA, farnesylacetone; 

GIH, gonad-inhibiting hormone; GSH, gonad-stimulating hormone; HP, hepatopancreas; MF, 

methylfarnesoate; MIH, moult-inhibiting hormone; MO, mandibular organ; ThG, thoracic 

ganglion; VG, vitellogenin. 

 

Vitellogenin is then transported to the developing oocytes, where it is modified to the yolk 

protein vitellin, which will be the major nutrient source for the developing embryo. In males, 

GIH-GSH act on the androgenic glands, which are attached to the vas deferens. The hormone 

released from the androgenic gland (androgenic gland hormone) is responsible for male 

differentiation and secondary sex characteristics. MOIH inhibits the release of 

methylfarnesoate (MF, fig. 1.5) by the paired mandibular organs, which are situated close to 

the Y-organs. The precise role of the terpenoid methylfarnesoate, the crustacean analogue of 

juvenile hormone (JH), is yet unclear.  
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Fig. 1.5. Structure of the major ecdysteroids and the terpenoid methylfarnesoate. 

 

Laufer et al. (1987) suggested that MF acts in a similar manner as JH, i.e. maintaining 

juvenile morphology and enhancing adult. MIH controls the time of onset of moulting activity 

by preventing the output of ecdysone by the Y-organs. The paired Y-organs are located in the 

anterior branchial chamber and releases the moulting prohormone ecdysone (fig 1.5), which is 

converted by a 20-hydroxylase activity in certain peripheral tissues (e.g. ovaries, testes, 

epidermis) to 20-hydroxyecydysone (20E). 20E is the main biologically active ecdysteroid, 

which mediates several aspects of crustacean growth and reproduction. The Y organ also 

secretes two other ecdysteroids, i.e. 3-dehydroecdysone and 25-deoxyecdysone (25dE). 25dE 

is the precursor of the active ponasterone A (PonA), the primary circulating ecdysteroid in the 

premoult stage. The ecdysteroids are the main regulators of moulting and morphogenesis (see 

later). In several crustaceans, ecdysteroids also stimulates vitellogenesis in the ovaries (Gohar 

& Souty-Grosset 1984; Gunamalai et al. 2004; Okumura et al. 1992; Steel & Vafopoulou 

1998). 

 

1.1.4 Moulting 

C. crangon moults every 13-30 days at 12°C (Lloyd & Yonge, 1947) and every 8-9 days at 

16-18°C (Price & Uglow, 1979). With each moult, the body size increases by 1-3 mm (Lloyd 

& Yonge, 1947). The moult cycle is generally divided in 4 basic phases (Drach 1939), which 

are initiated by alterations in circulating ecdysteroid levels (fig. 1.6): intermoult (C0-4), 

premoult (D0-4), ecdysis (E), and postmoult (A0-B2) (Skinner 1962). During intermoult 
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(metecdysis), food reserves (i.e. lipids, glycogen, and proteins) are stored in the 

hepatopancreas and reproduction occurs, ecdysteroid levels remain low. During premoult 

(proecdysis), as the old exoskeleton is being prepared for moulting, ecdysteroid levels 

increase, peak, and then drastically decrease. The drastic decrease triggers ecdysis.  

 

 
Fig. 1.6. Radioimmunoassay active ecdysteroid hemolymph levels during the moult cycle in 

fiddler crab Celuca pugilator. The major ecdysteroid titre peaks are represented by 1-7 

(redrawn from Hopkins 1983). 

 

Shortly before ecdysis, the animal stops feeding, while the epidermal cells separate from the 

old cuticle (apolysis) and secrete a new epicuticle and exocuticle. Enzymes are released above 

the new epicuticle to dissolve the old endocuticle and soluble products (mainly calcium) are 

reabsorbed and stored in the body (mainly in the hepatopancreas). As the animal swallows 

water its blood volume increases and internal pressure splits the cuticle between the 

cephalothorax and abdomen and the animal pulls itself out of its old exoskeleton. During 

postmoult (postecdysis), ecdysteroid levels in the hemolymph are low, as the animal 

continues to take up water and new soft cuticle is stretched. During the latter half of postmoult 

the exoskeleton is completed, feeding recommences and the absorbed water is gradually 

replaced by tissue. 
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1.1.5 Life cycle 

C. crangon can reach 3.3 years of age, with the largest majority (70-90%) of the population in 

the 1
st 

year class, 10-20% in the 2
nd

 year class and the rest in their 3
rd

 year (Oh et al. 1999). 

About 50% of the smallest adult stages are males, but this ratio decreases in the 30-45 mm 

classes, and at 60 mm the population is almost 100% female (Siegel et al. 2008). Previously, 

Boddeke (1962) suggested that C. crangon is an obligate protandric hermaphrodite, where all 

young individuals are male and change sex after reaching a certain size. However, C. crangon 

is a facultative rather than an obligate protandric hermaphrodite, as a maximum of 9.2% 

oocyte developing males is observed during September (Martens & Redant 1986). The 

observed changes in sex ratio in relation to size are mainly caused by a slower growth and 

higher mortality in male shrimp. C. crangon exhibits two reproductive peaks, i.e. summer and 

winter breeding, which are absent at lower and higher latitudes, respectively (Kuipers & 

Dapper 1984). Although a significant breeding activity occurs during summer, winter is 

regarded as the main breeding season in the Southern North Sea. During winter, females carry 

up to 2,800 eggs of 430 µm in size (Boddeke 1982, 1989). Hatching takes place offshore, 

together with the moulting of the female, roughly 1.5 months after spawning (Redant 1978). 

Larvae that hatch from winter eggs are bigger (Boddeke 1982) and show a higher starvation 

resistance (Paschke et al. 2004) than summer eggs (see later). The pelagic larvae slowly (due 

to lower temperatures and food availability) develop through the instar stages (zoea 1-6) into 

benthic postlarvae. During this period, the pelagic larvae passively migrate to coastal waters 

(van Donk & De Wilde 1981), where they metamorphose and settle down as post-larvae. 

Through selective tidal migration, they invade shallow tidal flats, estuaries and creeks and 

marshes as juveniles (7-15mm) (Beukema 1992; Cattrijsse et al. 1997). These areas serve an 

important ‘nursery’ function, as water temperatures and food availability are high and 

predator pressure low. Settlement peaks are observed in May-July, where the settled juveniles 

can exploit the annual calanoid copepod bloom (Boddeke et al. 1986). After about one month, 

the juveniles have grown rapidly up to 20-25 mm (Beukema 1992) and gradually migrate 

from the nursery areas into deeper sublittoral areas. Fast growing females hatched from winter 

eggs can reach a marketable size (55 mm) in October and maturity in December to produce a 

new cohort of winter larvae. In contrast to winter eggs, summer eggs are smaller (370 µm) but 

more numerous because of larger brood size (up to 4,500 eggs) and shorter spawning 

intervals. During summer, hatching takes place about 18 days after spawning (Redant 1978). 

While these larvae grow fast due to higher temperatures and prey availability, they face a 
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higher mortality. The summer larvae settle down in August-October but are likely to reach 

maturity after winter. From December onwards, shrimp migrate to deeper waters, up to 90 km 

offshore (Boddeke 1976). Until March, lower temperatures and food availability lead to a 

higher mortality and halted growth. In spring, the surviving shrimp return to the more shallow 

areas where they will grow quickly due to higher temperatures and higher prey abundance. 

Surviving adult females can reach maximum total lengths (LT, from the tip of the 

scaphocerites to the tip of the telson) of nearly 80 mm and can spawn up to 10 times more 

eggs than smaller females (Redant 1978) as soon as May.  

 

1.1.6 Behaviour and niche  

C. crangon is a hyperbenthic species, burrowing itself in sand to avoid predators and to 

ambush prey. It prefers sediment of 125-710 µm grain size (Pinn & Ansell 1993). Burrowing 

takes 9-10 seconds and is achieved by rapid beating of the abdominal limbs (pleopods) 

followed by violent shuffling and completed by the antennae sweeping sand over the back to 

leave only the eyes and antennae above the sediment surface (Pinn & Ansell 1993). 

Swimming activity (by peristaltic trusting of the pleopods) is mostly confined to the 

nepheloid layer (i.e. the water layer just above the sediment, which contains a high amount of 

suspended material). C. crangon’s main escape mechanism is to rapidly flipping the tail, 

using the uropods-telson as a ‘tail fan’. Onset of foraging activity of C. crangon is light-

controlled, and mainly occurs at nights with peaks at dawn and dusk (Addison et al. 2003). C. 

crangon can be considered as opportunistic omnivores (Wilcox & Jeffries 1974), as the distal 

composition greatly varies with the available food items. Juveniles mainly prey on meiofaunal 

species such as ostracods and harpactoids, while adult shrimps prefer macrofaunal species 

such as sand clam (Mya arenaria), cockle (Cardium edule), mud worm (Nereis spp.), mud 

shrimp (Corophium volutator), newly recruited plaice (Pleuronectes platessa) (Phil and 

Rosenberg 1984). Depending on locality and season, the major food items may include newly 

recruited shore crab (Carcinus maenas) (Reise 1977), mysids (Mysis sp.) and amphipods 

(Gammarus sp.) (Oh et al. 2001), algae (Ulva lactuca and U. intestinalis) (Oh et al. 2001) and 

detritus (Plagmann 1939). Large C. crangon also exhibit substantial cannibalistic behaviour 

on newly recruited C. crangon, especially when the abundance of other food items is low. In 

turn, C. crangon is an important prey for many juvenile and adult fish species, especially for 

Gadiformae, Pleuronectidae, Triglidae (gurnards), Pomatoschistus sp.(gobies), Agonus 

cataphracus (armed bullhead), Liparis liparis (sea snail) and juvenile Dicentrarchus labrax 
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(sea bass) (Cattrijsse et al. 1997; ICES 1996). C. crangon occupies a key trophic position by 

transferring energy from the lower trophic (benthic) levels to the (semipelagic) top predators 

(Pihl and Rosenberg 1982, 1984; Evans 1984). C. crangon is also an important dietal 

component for seabirds, especially gulls (Larus sp.), terns (Sterna sp.) (Walter & Becker 

1997) and redshanks Tringa sp. (Holthuijzen 1979; Goss-Custard et al. 1977). 

 

1.1.7 Geographical distribution and habitat 

C. crangon has a wide geographical distribution, ranging from the White Sea (North-West of 

Russia), Iceland (Gunnarson et al. 2007) and from the British coasts (Henderson & Holmes 

1987) into the Baltic (Dornheim 1969), to the Moroccan coast and through the Mediterranean 

(Labat 1977) into the Black Sea (Luttikhuizen et al. 2008) (fig. 1.7). 

 

 
Fig 1.7. Geographical distribution of common shrimp (according to FAO 2012a). 

 

Gene flow between the different populations is only restricted by oceanographic barriers, as 

drift of the offshore spawned larvae can cover a large area. C. crangon can tolerate salinities 

as low as 5 g l
-1

 (Cieluch et al. 2005; Gelin et al. 2001; Hageman 1970) and temperatures as 

high as 25-30°C (Caudri 1937; Weber & Spaargaren 1970; van Donk & de Wilde 1981; 
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Berghahn 1983) Apart from the low salinities and high temperatures, hydrographical 

restrictions only exist due to low oxygen contents (Haefner Jr. 1971; Hagerman & Vismann 

1995). Although C. crangon can be found up to 40 m of depth, they typically dwell the 

shallow (<15 m, eulittoral and sublittoral) muddy or sandy tidal flats, creeks, marshes and 

estuaries, whereas C. allmanni inhabits the more offshore sandy areas of the North Sea. C. 

crangon is considered to be the dominant mobile epibenthic species in northern Europe (e.g. 

Pihl & Rosenberg 1982; Beyst et al. 2001; Amara & Paul 2003). During summer peaks, 

C.crangon can reach densities of 60 m
-2

 (Beukema 1992) or 80% of the estuarine biomass 

(Cattrijsse et al. 1997).  

 

1.1.8 Fisheries 

With an annual catch of 35,000 tons or more (fig. 1.8), a retail price of peeled shrimp of more 

than €30 kg
-1

 and a commercial value of the whole North Sea landings of roughly €100 

million, common shrimp is one of the most valuable European fisheries and aquaculture 

commodities. 

 C. crangon is considered one of the few commercial species that cannot be overfished, as 

fishing mortality is much lower than natural mortality, i.e. 5-10% of the total mortality caused 

by gadoid (cod and whiting) predation (Welleman & Daan 2001).  

 

 
Fig 1.8. Total annual C. crangon EU landings (according to FAO 2012b). 

 

Commercial fishery on C. crangon is carried out on a large scale along the entire North Sea 

coasts of Denmark, Germany, the Netherlands, Belgium and Northern France. Shrimp 

fisheries in other regions are limited to or nearby estuaries; England, France, Portugal, and 

Italy. It is also locally fished and sold in small quantities in several North African countries. 
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EU marketed shrimp are caught mostly in the Wadden Sea by the Dutch, German and Danish 

shrimp fisheries (45%, 40% and 10% of the total annual catch, respectively). Historically, 

fodder shrimp fishery (i.e. <50 mm shrimps used for feed production) was a major fishery and 

exceeded the food consumption fishery. However, Boddeke’s (1962) hypothesis on sex 

reversal implied that exploitation of smaller shrimp may severely affect the population’s 

fitness. The campaign which followed Boddekes statement resulted in the wide scale 

introduction of rotating shrimp sorting machines and in the termination of the fodder shrimp 

fishery in 1971. From the late 1960s, a strong, unexplained decrease in stock size and in the 

fraction of ovigerous females was observed in the Wadden Sea (Siegel et al. 2008). After an 

extremely bad year in 1990, the trend reversed and stock size and the fraction of ovigerous 

females have been rising, resulting in recent record landings. Due to oversupply, fishermen 

are currently considering to reduce their catch effort in order to counteract a further auction 

price drop. In contrast to the Wadden Sea, shrimp abundance in the Southern Bight did not 

recover until recently (based on Belgian fisheries data, Fig. 1.9). Currently, the local Belgian 

shrimp fleet exists of about 30 small vessels (engine power 104–221 kW), mainly built in the 

early 60s or mid-80s, which perform daily trips to provide fresh un-peeled cooked shrimp 

each morning. The Belgian shrimp fishery accounts for merely 1.2% of the annual EU catch. 

In contrast to the Wadden Sea, the shrimp abundance in the Southern Bight during winter is 

too low to support an intensive winter fishery. As a result, most Belgian shrimp fishermen 

focus on flatfish during winter, and investment in ship and gear modernization is rare due to 

lower profit compared to the Wadden Sea fishery. Furthermore, because auction price is based 

on total EU landings, the auction price dropped since 1991 due to increased landings in the 

Wadden Sea fishery, further decreasing the profit made by Belgian shrimp fishermen. 
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1.2 Nuclear receptors (NRs) 

1.2.1 Types and functions 

Many hormones act by binding to specific membrane-associated receptors, activating 

intracellular signalling cascades and triggering rapid nongenomic changes in cell functioning. 

Some lipophilic hormones however, passively diffuse through the plasma membrane (e.g. 

steroids such as testosterone) or are translocated by transmembrane carriers (e.g. thyroid 

hormone and calcitriol, the hormonally active form of vitamin D) into the cytoplasm and bind 

to NRs to trigger specific changes in gene expression. These NRs are ligand-activated 

transcription factors with a strongly conserved domain structure, and can directly induce 

target gene expression through interaction with specific hormone response elements (HREs) 

present within the target gene promoters. It is this ligand-dependent nature that makes EcR 

and other NRs susceptible for exogenous ligands such as, pharmaceuticals, pesticides and 

many other chemicals. NRs are classified into four functional types (Mangelsdorf et al. 1995; 

Novac & Heinzel 2004). Inactivated type I NRs are located in the cytosol, while type II NRs 

are located in the nucleus. Ligand binding induces conformational changes in the NR (see 

later), triggering a number of downstream events which are specific for each NR type. Ligand 

activation of type I NR leads to dissociation of heat shock proteins, homodimerization and 

translocation into the cell nucleus, where both NRs bind to the HRE, consisting of an inverted 

repeat. The NR – DNA complex in turn recruits additional proteins that are responsible for the 

transcription of the downstream gene(s) into RNA and eventually into protein(s). Type II NRs 

typically form a heterodimeric receptor, usually with RXR (see later) which is bound to a 

direct repeat HRE. Depending on the NR, the unliganded NR-DNA complex may exhibit a 

basal transactivation activity, or a corepressor protein complex may be associated with the 

NR, completely blocking its activity. When the ligand is present, a coactivator complex is 

recruited (replacing the corepressor complex), and downstream gene transcription is 

stimulated. Type III NRs are similar to type I NRs, but bind to direct repeat HREs. Type IV 

NRs can form monomers or dimers, but only a single NR binds to a half site HRE. 

 

1.2.2 Structure 

NRs are characterized by a modular structure comprising five distinct structural and 

functional protein domains (Evans 1988; Billas et al. 2009; fig. 1.10 and 1.11). The N-

terminal A/B-domain is highly variable in length and amino acid composition and normally 

has a weak constitutive transactivation activity. As this domain is generally highly variable 
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between receptor isoforms and contains multiple phosphorylation sites, it is believed to be 

responsible for tissue and target gene-specific effects. In the C-domain or DNA-binding 

domain (DBD), two strongly conserved zinc finger motifs are present. Each motif contains 

four cysteine residues chelating a single zinc ion to form a tight loop structure. The first finger 

contains the proximal P-box, an α-helix that binds to HRE. The second finger contains the 

distal D-box, an α-helix perpendicular to the P-box and responsible for receptor dimerization.  

 

 
Fig.1.10. Simplified protein structure of a theoretical nuclear hormone receptor in an active 

holo-conformation (H12 closes the LBP). The variant A/B- and D-domain are represented by 

dotted lines; α-helices and β-sheets by cylinders and arrows, respectively. 

 

 
 

Fig. 1.11. Schematic drawing of nuclear receptor domain structure and of the core DBD and 

C-terminal extension (CTE) of D. melanogaster EcR (based on Devarakonda et al. 2003). α-

Helices are boxed and β-sheets are shaded. 

 

The poorly conserved D-domain has an ill-defined function, but behaves as a flexible hinge 

between the DBD and ligand-binding domain (see later). It contains the carboxy-terminal 

extension (CTE) of the DBD that generally consists of two conserved T- and A-boxes and 
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stabilizes the ternary heterodimer-DNA complex. The first residues of the T-box form a 

strongly conserved short α-helix and are believed to be important for dimerization and DNA-

binding. The A-box is a long α-helix and contributes to DNA-binding. The moderately 

conserved E/F-domain or ligand-binding domain (LBD) has a complex tertiary structure of 

generally 12 α-helices referred to as a three-layered α-helical sandwich fold: helices H4/H5, 

H8 and H9 are flanked on one side by H1 and H3, and on the other side by H7 and H10/H11. 

The ligand-binding pocket (LBP) is situated within this structure and is closed on one side by 

an anti-parallel β-sheet and on the other side by H12. Ligand binding leads to a 

conformational shift from the inactive (apo) to the active (holo) state, where H12 closes the 

LBP, that in turn promotes the release of co-repressors and the binding of co- activators on the 

transactivation function in H12. The size and shape of the LBP and the presence of polar 

residues within the predominantly hydrophobic LBP determine the ligand selectivity and thus 

the receptor susceptibility to exogenous agonists.  

NRs are characterized by having several variant deletion/insertion sites within their protein 

structure, leading to different isoforms of the same NR. These isoforms can be created 

evolutionary by gene duplication, alternative promotor usage or by alternative RNA splicing 

from a single gene. Splicing sites are most frequently observed within the variable A/B and D 

domain and are rarely found within the strongly conserved C and especially E/F domain. NR 

isoforms are often tissue and developmental stage specific and exhibit different dimerization 

and transactivation activity and specificity. Each NR isoform might control a diverse set of 

end-point effects in distinct tissues and life stages. 

 

1.2.3 Nomenclature and phylogeny 

All NR genes are believed to be derived from a single ancestral NR gene in an early 

metazoan. According to a phylogenetic study using nine complete NR sets of different 

animals (Bertrand et al. 2004), the bilaterian ancestor assumedly had about 25 NR genes. 

Gene loss and gene duplication have led to diverse sets of NRs (fig. 1.12). For example, 21 

NR genes have been detected in D. melanogaster (Adams et al. 2000), 48 in humans 

(Robinson-Rechavi et al. 2001) and 270 in the nematode Caenorhabditis elegans (Sluder et 

al. 1999). NRs are categorized into seven (0 to 6) subfamilies, based on sequence homology 

(NR Nomenclature Committee (NRNC) 1999) (Fig. 1.8). Each NR is represented by a code in 

the form of NRxyz, where x is the sub-family, y the group and z the gene. Subfamily NR0 

contains NRs that lack a DBD or LBD. 
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Fig 1.12. Phylogenetic tree of the NR superfamily (adapted from Bertrand et al. 2004). Gene 

groups are identified with the official gene nomenclature (NRNC 1999) on the right. Open 

circles indicate genes that are inferred to have existed in the common ancestor of insects, 

nematodes, and chordates. Hatched circles represent alternative ancestral genes. The broken 

lines leading to EcR, UNC-55, Rev-erbg, NHR67, and to the coral TLL/DSF indicate the lack 

of significant resolution of phylogenetic methods to position these genes. 
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1.2.4 The retinoid-X-receptor (RXR) 

RXR, the fourth member of group B of the NR subfamily 2, is highly conserved throughout 

the animal kingdom. RXR serves as a heterodimerization partner for many other NRs, and as 

such is involved in the control of multiple endocrine pathways. The name RXR refers to 9-

cis-RA, the putative ligand of vertebrate RXRs (Wolf 2006), whereas the natural ligand(s) for 

invertebrate RXRs is still under debate. The putative endogenous ligand for crustacean RXR 

is the terpenoid methylfarnesoate, which has been confirmed in the crab C. pugilator (Wu et 

al. 2004), but not in the water flea Daphnia magna (Wang & LeBlanc 2009). For decapod 

RXR, splicing sites have been observed in the T-box, between H1 and H3 and between H7 

and H8 of the LBD (Kim et al. 2005). 

 

1.2.5 The invertebrate ecdysteroid-receptor (EcR) 

EcR, the first member of group H of the NR subfamily 1, is related to Liver X receptor (LXR) 

and Farnesoid-X-receptor (FXR), two vertebrate steroid hormone receptors. In order to 

achieve a high transactivation activity, EcR is believed to heterodimerize with RXR. While 

EcR structure and functioning in insects (especially Diptera and Lepidoptera) are well 

documented, our understanding of EcR structure and functioning in crustaceans remains 

limited. In decapod EcR, splicing sites in the A/B-domain, in the C-terminus of the D domain 

and between H2 and H4 have been observed (Chung et al. 1998; Asazuma et al. 2007). 
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1.3 Endocrine disruption 

Since the publication of Rachel Carson’s Silent Spring (Carson 1962), there has been 

increasing awareness that chemicals can exert profound and deleterious unintentional effects 

on wildlife and humans. Scientific and public awareness on chemicals which may interfere in 

the endocrine system of wildlife and humans arose after a first review on endocrine disruption 

by Colborn et al. (1993). An endocrine disruptive compound (EDC) is defined by the World 

Health Organization’s (WHO) International Programme on Chemical Safety (IPCS) as:  

 

“An exogenous substance (or mixture) that alters function(s) of the endocrine system and 

consequently causes adverse health effects in an intact organism, or its progeny, or 

(sub)populations“ 

 

The ‘discovery' of endocrine disruption led to a shift from the classical diagnostic 

(eco)toxicological approach, in which the discovery of adverse effects preceded mechanistic 

research, to a precautionary toxicological approach, in which potential EDCs are identified 

based on their chemical structure and biological behaviour. Since 1993, a considerable 

amount of data has been collected on the early molecular events involved in endocrine 

disruption. EDCs can act at multiple sites via multiple mechanisms of action (MOAs). They 

can block the hormone receptors and thereby prevent natural hormone action (antagonism). 

Other EDCs mimic the biological activity of a hormone, activating the hormone receptor and 

finally leading to changes in gene expression characteristic for the hormone (agonism) (fig. 

1.13).  

 

 
Fig. 1.13. Examples of EDCs (the dioxin tetrachlorodibenzodioxin and nonylphenol) 

mimicking hormone (thyroxin and oestradiol) structure and activity. 
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Numerous in vitro systems have been developed to evaluate the interactions of exogenous 

chemicals with hormone receptors, especially vertebrate thyroid, oestrogen and androgen 

receptors (Charles 2004). Receptor-mediated mechanisms have received the most attention, 

but other mechanisms have been shown to be equally important (Damstra et al. 2002). These 

mechanisms include inhibition of hormone synthesis, transport, or metabolism and activation 

of receptors through processes such as receptor phosphorylation or the release of cellular 

complexes necessary for hormone action. Endocrine disruption research is prone to many 

uncertainties and controversy (Damstra et al. 2002). Due to knowledge gaps and the 

complexity of the endocrine system, the relationship between these molecular events and 

adverse health effects is poorly understood. Most importantly, proven in vitro effects do not 

necessarily lead to significant in vivo effects, due to compensation by normal homeostatic 

mechanisms. In vivo effects may also occur unpredictably in other target tissues, due to cross-

talk between different endocrine pathways. The dose–response paradigm is perhaps the most 

controversial issue. There is a large discrepancy between the high exposures in laboratory 

experiments and the low levels in the natural environment. Several authors (Calabrese 2004; 

Conolly & Lutz 2004) suggest the existence of non-traditional (i.e. non-monotonic) dose-

response curves (fig. 1.14). 

In reality, humans and animals are exposed to complex and variable combinations of 

chemicals and their derivatives (e.g. by biotransformation or photo-oxidation). While the 

exposures to each individual compound may be well below harmful levels, mixture effects 

can be additive (e.g. when substances exhibit similar modes of action), less or greater than 

additive, or even counteracting (Kjærstad et al. 2010). Timing of exposure is also critical to 

the understanding of dose–response relationships for EDCs. Identical in vitro exposure levels 

may produce different in vivo effects, depending on the life stage. For example, 

developmental or even maternal exposure may lead to permanent alterations in the endocrine 

functioning of the (offspring) adult (time lag), while adult exposure could be without effect 

(Walker & Gore 2011). Sensitivity to endocrine disruption may also vary considerably on the 

individual level with stress and health status, nutrition, genetic predisposition (e.g. receptor 

variants), past exposures (e.g. adaptation). In complex ecosystems, the range of risk 

modulators may be even greater. 
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Fig. 1.14. Hypothetical model of a biphasic dose-response curve. Phenylisopropyladenosine  

(PIA) can bind two adenosine receptors, A1 and A2, which are present in equal amounts. 

Bound A2 receptor activates cAMP formation at higher PIA concentrations (to max. 157%, 

Fig.B), while bound A1 receptor decreases cAMP formation at lower PIA concentrations (to 

min. 75%, Fig C). The resulting biphasic dose-response curve is represented in Fig.D. 

(modified from Conolly & Lutz 2004) 

 

EDCs encompass a variety of chemicals, including natural and synthetic hormones, plant 

constituents, pesticides, compounds used in the plastics industry and in consumer products, 

and other industrial by-products and pollutants (Damstra et al. 2002). While some EDCs are 

rapidly degraded in the environment, others are persistent and even bio-accumulative, and can 

be transported over long distances across national borders and can affect the health of humans 

and wildlife during several generations, even at remote areas (e.g. PCBs, dioxins, pesticides). 

For the same compound, the threat of endocrine disruption at low doses over vast areas 

outweighs by far direct toxic effects of point pollution. In humans, observed EDC effects 

include developmental, reproductive, as well as metabolic effects (e.g. obesity, liver disease, 

cardiovascular and pulmonary complications), psychological effects (e.g. learning disabilities 

and ADHD) and certain forms of cancer (Damstra et al. 2002). In wildlife, observed effects 

vary from subtle changes in the physiology and sexual behaviour of species to permanently 

altered sexual differentiation. organotins (OTs) provide one of the clearest examples of 
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environmental endocrine disruption (see 1.4). Observed wildlife effects however are nearly 

always confined to the individual level under laboratory conditions (Cheek 2006), while 

ecological risk assessment tends to focus on populations and communities. This may be 

problematic, because there is a limited understanding of how individual responses affect 

population and community. In contrast to human health, long-term epidemiological data in 

wildlife are scarce, hampering the diagnostic discovery of adverse EDC effects (Cheek 2006). 

Currently, routine ecotoxicological assessments only focus on a few wildlife species. Few 

studies have considered invertebrates, despite the knowledge that they are key to ecosystem 

structure and function. Even if potential wildlife EDC effects are observed, it is often 

impossible to demonstrate a causal link with a certain chemical due to insufficient historical 

and geographical exposure data and due to potential time lags between exposure and effect. 

Knowledge of the fate and transport of chemicals is also limited, particularly among the 

different environmental compartments (i.e. water, sediment, and biota). Interpretation of body 

burden data are often hampered by rapid metabolization (Elsby et al. 2001), so quantification 

of metabolites in biological samples is necessary. For these reasons, cause-effect relationships 

are currently available for only few persistent chemicals in highly contaminated areas.   
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1.4 Organotin compounds 

1.4.1 Organotin chemistry and applications 

Organotins (OTs), generally represented by the formula RXSnL4-X, contain a tetravalent tin 

atom (Sn) covalently bound to one to four organic substituents (RX, such as CH3, C4H9, C5H11 

and C8H17) and one to three halogen atoms or oxygen- or sulphur-based organic moieties (L4-

X, such as Cl, F, SR’ and OR’) (fig. 1.15).  

 

 
Fig. 1.15. Chemical structures of triphenyltinacetate (left) and bis(tributyltin)oxide (TBTO) 

(right). 

 

The number and nature of the organic substituents largely determine the electronegativity of 

the tin atom and thus the physical and chemical properties of the OT. For example, while 

monobutyltintrichloride (C4H9-SnCl3) is readily soluble in water, tetrabutyltin ((C4H9)4Sn) is 

only soluble in non-polar solvents. OTs are quite stable because of the non-polar nature of the 

carbon-tin bond. Long chain alkyl groups are cleaved less easily from the Sn ion than shorter 

alkyl groups and aryl, allyl and vinyl groups.  

 

Table. 1.1. Nomenclature and physicochemical properties of TBTO (ECHA 2008). 

CAS      Bis(tributyltin)oxide IUPAC     Hexa-n-butyldistannoxane 

Formula     C24H54OSn2 Dissociation constant  6.25 

Appearance   Colourless liquid Vapour pressure 1 x 10
-5

 Pa at 20°C 

Molecular weight 596.07 g Melting point     <-45°C 

Density     1.17 g cm
-1

 at 20°C Boiling point     173°C 

Water solubility  4 mg l
-1

 at 20°C, pH 7 Flash point      190°C 

Log Kow      3.2-4.1 Decomposition    >230°C 

 

While the first OTs were experimentally synthesized in the 1850s by Carl Löwig and Edward 

Frankland, they only became economically relevant after World War II, especially as heat and 

light stabilizers in PVC materials, which still is the major use today (15,000 tons in 2002 in 

the EU; RPA 2007). Mono- and diOTs (i.e. OTs having one and two organic substituents, 
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respectively), especially dioctyltin, dibutyltin and dimethyltin, reduce PVC degradation by 

scavenging hydrochloric acid. Some formulations have been approved for food contact 

applications. Mono- and diOTs are used as catalysts to speed up polymerization reactions 

during the curing of coatings and the synthesis of plasticizers, silicones, electrodeposition 

coatings and polyurethanes (~1,500 tons per year in EU). MonoOTs and to a lesser extent 

diOTs are also used as a precursor for ZnO2 glass coatings (~780 tons in 2002 in EU; RPA 

2007). In the 1950s, the powerful biocidal properties of trialkyltin and triaryltin derivatives 

were discovered by the research team of Prof. Dr. van der Kerk (Van der Kerk & Luijten 

1954). Owing to their relatively poor mammalian toxicity (see 1.4.7), TBT (C4H9)3Sn-L) and 

triphenyltin (TPhT, (C5H11)3Sn-L) were widely used as pesticides and active antifouling 

ingredients since the late 1950s (1,330 tons in 2002 in the EU; RPA 2007). Other applications 

include preservation of wood, textile, paper and leather (until 2003) and of water-based paints 

and adhesives, polyurethane foams and other polymers (until 2006); surface and instrument 

disinfectants (until 1995 and 1990, respectively; RPA 2007). 

 

1.4.2 TriOTs in crop protection 

In the early 1960s, triphenyltin hydroxide and triphenyltin acetate (“fentins” TPTH and 

TPTA) became popular as broad-spectrum fungicides (e.g. Brestan) to tackle a range of 

agricultural fungal diseases, particularly potato blight (Phytophthora infestans); leaf spot 

(Cercospora beticola, Ramularia beticola), and powdery mildew (Erysiphe betae) on celery, 

peanuts, and sugar beet; Pseudoperonospora humuli on hop; grey moulds on onions; rice 

blast; brown rust on beans; and coffee leaf rust (Duft et al. 2002). Other triOT pesticides such 

as tricyclohexyltin-hydroxide and -triazole (TCTH and TCTT) and trineophenyltin oxide 

(TNTO) were used as acaricides on citrus, top fruit, vines, vegetables, and hops (RPA 2005). 

In the early 1960s (Murbach & Corbaz 1963), fentins were used as effective anti-feedants, 

sterilising crop feeding insects such as the Colorado potato beetle. The use of TPhT as a 

pesticide has been prohibited by amendments 2002/478/EC and 2002/479/EC to the 

91/414/EEC Plant Protection Products Directive (PPPD). Estimates of historical annual TPhT 

use in agriculture are unavailable. The use of the acaricides TCTH, TCTT and TNTO are 

permitted under the PPPD. In 2003, it has been estimated (by industry) that a total of 100 tons 

per year of tri-substituted OTs (excluding TPhT) were used in pesticides (RPA 2003). 
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1.4.3 TriOTs in antifouling applications 

Biofouling is the settlement and growth of marine organisms on submerged man-made 

structures such as ship hulls, buoys and fish cages. The bio-fouling process basically consists 

of three steps (Cao et al. 2011). First, dissolved organic material (proteins, polysaccharides, 

proteoglycans) are attracted to the surface by physico-chemical interactions (Brownian 

motion, electrostatic interaction, Van der Waals forces,…), forming a conditioning film. 

Secondly, microorganisms (bacteria and diatoms) passively adsorb or actively adhere through 

excretion of extracellular polymeric substances (EPS) to the sticky surface, forming a biofilm. 

This ‘microfouling’ on ship hulls can already increase fuel consumption with 18% (Lewin 

1984). Finally, larvae and spores of ‘macrofoulers’ (e.g. barnacles, mussels, tubeworms, 

sponges, seaweeds) settle down on the biofilm and evolve to a complex biological community 

2-3 weeks later. Biofouling can increase fuel consumption with 40% after six months (Champ 

2000). Other impacts include increased hull corrosion and more frequent and time consuming 

hull maintenance (dry-docking). More than 2,000 years ago, wooden ship hulls were already 

covered with copper and lead plating to prevent biofouling (Omae 2003). Until the 1960s, 

copper and arsenic compounds in wax, tar and resin formulations were used. Since the 1960s, 

TPhT and especially TBT compounds were used as antifouling agent. At first, free association 

coatings were applied. These coatings consisted of an insoluble (e.g. vinyl or epoxy) or 

soluble (resin) matrix which will slowly leach the OT. In 1974, the first self-polishing 

copolymer coating (SPC) revolutionized the entire shipping industry (Cao et al. 2011). In SPC 

coatings, TBT is slowly hydrolysed from an acrylic polymer, which is washed away by 

passing seawater to reveal a fresh coating surface. In SPC coatings, the polishing rate was 

easily controllable by manipulating the polymer chemistry, while TBT leached at a rate 

independent of sailing speed. TBT use peaked in 1996, when 85% of the ships were equipped 

with a TBT-based coating (OSPAR 2011). Around 4,000 tons of TBT were used that year in 

antifouling agents, 3,000 and 1,330 tons of TBT were produced and sold in the EU, 

respectively (Klingmüller & Waterman 2003). Estimates of global annual fuel savings ranged 

from $500 million to one billion (Champ 2000). 

 

1.4.4 Environmental fate 

In aqueous solution, TBTO dissociates to two hydrated TBT cations. At pH 6.25, half of the 

TBT occurs as cation (Arnold et al. 1997). As the pH increases more of these free ions will 

form complexes with chloride, hydroxide and carbonate. The main inputs of OT compounds 

into the marine environment are direct releases from antifouling on ships, discharges to water 
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from industry, waste water treatment plants and waste treatment through riverine inputs (Hoch 

2001; fig. 1.16). Besides, there is continuous re-location and re-suspension through dredged 

spoil disposal. Environmental levels of TBT range from undetectable in the open ocean to 17 

ng l
-1

 in estuaries and 100 ng l
-1

 in harbours (Fent 1996).  

 

 
Fig. 1.16. Distribution and fate of OTs and their general routes into the aquatic environment 

(reproduced from Hoch 2001). 

 

The Henry’s Law coefficient for TBTs is estimated around 2 x 10
-5

 kPa mol
-1

, indicating that 

the volatility from aqueous surfaces is too low for long-range air transport. The high 

octanol/water partition coefficient (Kow, around 5x10
4
) for TBTs in 25‰ seawater (Laughlin 

et al. 1986) indicates that TBT will preferentially associate with sediment, biota, dissolved 

organic matter, and suspended particulate matter. OT compounds interact with metal oxides in 

the sediment and proteins in biota by forming five- or six coordination complexes with 

electronegative oxygen and nitrogen atoms (Omae 1989). The association of TBT with 

particulate material results in sedimentary sinks with concentrations reaching several orders of 

magnitude higher than those in the overlying water column. Reported levels of TBT in 

sediments reached up to 2,000 μg kg
-1

 dry weight (DW). TBT sorption is characterized by a 

rapid, reversible stage, where 80% of the final sediment concentration is sorbed within 10 

minutes (Langston & Pope 1995), and a slow, non-reversible stage, where TBT diffuses into 
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the porous microstructure of the organic material (Pignatello & Xing 1996; Ma et al. 2000). 

Several studies have shown that the toxicity of polluted sediment may be more closely related 

to the pollutant concentration in pore water than in the bulk sediment (Kemp & Swartz 1988; 

Landrum 1989). Monitoring data, however, are often limited to concentrations in surface 

water and sediment. 

 

1.4.5 Bioaccumulation, bioconcentration, and depuration 

Bioaccumulation refers to the degree of contaminant uptake by an organism. Total 

accumulation will depend upon intake rate through multiple exposure routes (dietary, dermal, 

respiratory) and depuration rate (excretion and breakdown). Bioconcentration refers to the 

accumulation as a result of direct exposure to the surrounding medium. The bioconcentration 

factor (BCF) is commonly applied to aquatic species and is defined as the ratio of the 

concentration in the water column to the concentration in the organism. According to EU 

regulations on the registration, evaluation, authorization and restriction of chemicals 

(REACH), a substance is considered to be bioaccumulative (B) when the BCF is higher than 

2,000 l kg
-1

, and very bioaccumulative (vB) when its BCF is higher than 5,000 l kg
-1

. 

In contrast to many other persistent EDCs, OTs have a very low lipid solubility, do not 

accumulate in fatty tissues and subsequently show limited biomagnification. Instead, they 

bind to electronegative atoms (e.g. N, P, S, and O) in proteins. Among invertebrates, annelids 

and crustaceans exhibit BCFs around 10
3
, while molluscs and particularly predatory 

prosobranchs exhibit concentration factors up to 10
5
 (ECHA 2008). In marine species, an 

inverse relationship of BCF with concentration is observed (the lower the concentration, the 

higher the BCF value; Salazar & Salazar 1996). In biota, OT compounds are actively 

depurated from the detoxifying organs. In the gills and digestive gland of the blue mussel 

(Mytilus edulis), the depuration of TBT is a biphasic process involving a rapid and a slow 

TBT depuration process, with half-lifes of 2.2-5.3 and 28-69 days, respectively (Page et al. 

1995). The depuration in other tissues only followed the slower process. In marine fish, 

depuration half-lives between 7 and 29 days are reported (Yamada & Takayanagi 1992). 

 

1.4.6 Persistence 

Persistence reflects the resistance of the substance towards degradation, which can be of a 

chemical (e.g. hydrolysis, photolysis) or biological (i.e. enzymatic breakdown or 

transformation) nature. It is quantified by the degradation half-life, i.e. the time needed to 

degrade or transform half of the substance. A substance with a half-life of more than 60 days 
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in marine water or more than 180 days in marine sediment is considered to be persistent (P) 

according to REACH regulations. 

TBT degradation consists of a progressive dealkylation down to less toxic inorganic tin: 

 

(    )      (    )       (    )           

 

Dissolved in sterile water and in the dark, the C-Sn bonds are stable against hydrolysis. In 

sunlight however, a slow iron (III) photo-induced degradation (half-life > 89 days) is 

observed (Maguire et al 1983). Dissolved in non-sterile estuarine water, the half-life 

drastically decreases to 7 to 13 days and 3 to 6 days in the dark and in sunlight, respectively 

(Lee et al. 1989), suggesting the importance of bacteria and microalgae (diatoms and 

dinoflagellates). OT compounds are however rapidly adsorbed to suspended solids and 

subsequently deposited (see 1.3.4), where degradation is much slower. Sarradin et al. (1995) 

estimated the half-life of TBT from the vertical distribution of butyltin compounds in marine 

sediments to be 2.1 years, while other scientists reported half-lives of 1 up to 15 years 

(Sarradin et al. 1995; ECHA 2008). Bacteria as well as Eukaryota have an active cytochrome 

P450 dependent monooxygenase system that oxidizes TBT to a series of hydroxylated 

derivatives. These hydroxylated derivatives spontaneously dealkylate to less toxic DBT or 

MBT or are transformed to water soluble sulphate or carbohydrate conjugates by phase-two 

enzyme systems, which facilitates the depuration of TBT (Lee 1996). 

 

1.4.7 Toxicity 

Toxicity is the degree to which a certain chemical can cause harm on a certain target 

organism. Generally, a distinction is made between acute toxicity and chronic toxicity. Acute 

toxicity focuses on lethal effects of high exposure during a short time period (e.g. 96 hours). 

Mortality values such as the median lethal concentration (LC50) and median lethal dose (LD50) 

refer to the concentration (e.g. in µg l
-1

) and dose (e.g. in mg kg
-1

 body weight (BW) day
-1

), 

respectively, that kill half of the organisms during the exposed time period. Regarding chronic 

toxicity, the focus is on sublethal effects of lower, often environmentally relevant 

concentrations during an extended time period (weeks up to years). Sublethal effects include 

alterations in growth, immune response, reproductive success, and even offspring effects. 

Sublethal effect values include the median effect concentration (EC50) and median effect dose 

(ED50). The lowest observed effect concentration (LOEC) and lowest observed effect level 

(LOEL) refer to the lowest concentration or dose, respectively, at which an effect is observed. 
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The no observed effect concentration (NOEC) and no observed effect level (NOEL) refer to 

the highest concentration or dose, respectively, at which no statistically significant effect is 

observed. Although the use of NOEC and NOEL values is disputed as they are in conflict 

with the scientific fundament of hypothesis testing, they are still common practice (Yanagawa 

2001). According to REACH regulations, a substance is toxic when the NOEC for marine 

organisms is less than 0.01 mg l
-1

, or when the substance is classified as carcinogenic, 

mutagenic, or toxic for reproduction, or when there is other evidence of chronic toxicity. 

The impairment of the mitochondrial ATPase-ATPsynthase complex at micromolar levels is 

since long known as the main lethal effect of OTs (Aldridge 1958; Stockdale et al. 1970). 

TBT blocks the proton channel of ATPase (Stockdale et al. 1970) and ATPsynthase (von 

Ballmoos et al. 2004), thereby completely blocking the electron transport chain and thus the 

cellular energy metabolism. Non-mitochondrial biochemical effects include haemolysis 

(Kleszcynska et al. 1997), release of Ca
2+

 from the sarcoplasmatic reticulum (Kang et al. 

1998), inhibition of phosphatidylserine-induced histamine release (Iwai et al. 1992), and the 

induction of apoptosis in lymphocytes (Stridh et al. 1999). In general, acute OT toxicity 

strongly decreases with decreasing number of alkyl substituents: 

 

                           

 

While inorganic tin and monoOTs are considered non-toxic, diOTs are considered mildly 

toxic and triOTs are extremely toxic to all types of living species. The sensitivity of the 

various zoological groups depends on the length of the alkyl chains. Higher organisms are 

most sensitive to trimethyl- and triethyltins, fungi and bacteria are most sensitive to tripropyl- 

and tributyltins (Evans & Smith 1975). The acute toxicity strongly decreases with further 

lengthening of the alkyl chains. Trioctyltins are practically considered non-toxic. The 

inorganic substituent (L) does not have a significant effect on toxicity, but influences 

volatility and solubility, and thus the bio-availability.  

The sublethal effects of TBT on marine invertebrates, especially molluscs, have been well-

documented since the 1980s, when TBT was linked to shell deformations and effects on the 

reproduction of the Pacific oyster (Crassostrea gigas) (Alzieu et al.1982) and to the incidence 

of imposex in dog whelk (Nucella lapillus) populations (Bryan et al. 1986). Imposex is 

characterized by the formation of male sexual organs, i.e. penis and vas deferens, the latter 

blocking the oviduct, and by ovarian spermatogenesis, ultimately resulting in sterile females. 

Imposex has been reported in over 150 mollusc species from field observations (Matthiessen 
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et al. 1999). N. lapillus is the most sensitive species and also the most widely used in TBT-

specific environmental monitoring programs. A LOEC of 2 ng l
-1

 was reported for N. lapillus 

(Gibbs et al. 1987). TBT also induces a second masculinization phenomenon in the 

periwinkle Littorina littorea, referred to as intersex (Oehlmann 1998). It is a change in the 

female pallial organs towards a male morphological structure. Intersex occurs at 100-fold 

higher concentrations than imposex, and is used as biomarker in areas of high TBT exposure.  

 

1.4.8 Mode of action 

Prior to 2001, several hypotheses have been proposed concerning the mechanism of TBT 

induced imposex, but experimental evidence is weak: 

 

 increased levels of APGWamide (Ala-Pro-Gly-Trp), a neuropeptide hormone that controls 

the production of male accessory sex organs in gastropods (Féral & LeGall 1983; 

Oberdörster & McLellan-Greene 2000). 

 increased androgen levels, such as testosterone, due to inhibition of P450 aromatase 

(Bettin et al. 1996), or due to inhibition of testosterone excretion (Ronis et al. 1996). 

 

In 2001, it became clear that expression of the aromatase gene was down-regulated by TBT 

and TPhT in human ovarian granulosa cells, similar to the effects of treatment with ligands 

for either Peroxisome-Proliferator-Activated Receptor γ (PPARγ) or RXRs (Mu et al. 2001). 

In 2004, Nishikawa et al. (2004) showed that TBT and TPhT are high affinity agonists for 

human RXRα. As RXR is a strongly conserved NR within the animal kingdom, a similar 

pathway may lead to imposex in molluscs. Furthermore, Nishikawa et al proved that 9-cis-

RA, the (putative) natural RXR ligand, also induced imposex in rock shell Thais clavigera, 

which implies that RXR plays an important role in the differentiation and growth of male 

genital tracts in female gastropods.  
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1.4.9 EU policy regarding the use of TBT 

The harmful effects of TBT on the coastal environment were first observed in the Bay of 

Arcachon, located along the French Atlantic coast halfway between the Gironde estuary and 

the Spanish border (Alzieu et al. 1982). Here, shellfish farming, primarily oyster farming 

(10,000-15,000 tons per year), and watersport tourism (a total mooring capacity of 7,800 

pleasure boats) are the major activities. TBT contamination of the bay waters coincided with a 

major crisis, starting in 1975, in the oyster farming sector. Oyster production within the bay 

suffered from a progressive decline of reproduction and juvenile recruitment (‘spatfall’) and 

from a general outbreak of shell calcification anomalies. Oyster production dropped back to 

3,000 tons in 1981. In January 1982, following the recommendations of an ad hoc committee, 

France enforced a 2-year ban on the application of paints containing more than 3% by weight 

of TBT on boats less than 25 m long, in areas of extensive oyster cultures along the English 

channel and the Atlantic coast (Champ 2000). In September of the same year, the ban was 

expanded to cover all the coastal areas of France and all TBT-containing paints. Other EU 

countries enforced similar national restrictions starting in 1985. In 1989, The EU adopted a 

ban on the use of TBT and TPhT antifouling paints on boats < 25 m (Directive 89/677/EEC). 

The following year, the members of the International maritime organisation (IMO) agreed 

resolution 29 of the IMO marine environment protection committee (MEPC), banning TBT 

on vessels < 25 m and limiting the vessel release rate at 4 µg TBT cm
-2

 day
-1

. The legislation 

was adopted internationally with governments imposing national regulations. At that time, 

TBT use on larger vessels was not targeted, as it was assumed that offshore levels would be 

too low to cause effects. At the 42
th

 MEPC meeting in 1998, several EU countries called for a 

world-wide ban on TBT paint on all ships. At the following meeting in 1999, the international 

convention on the control of harmful antifouling systems (AFS convention) was proposed. 

The convention stated that reapplication of TBT-containing paints would be prohibited after 

the 1
st
 January 2003, and no ships or structures (e.g. aquaculture cages) should bear TBT as of 

the 1
st
 January 2008. The 159 IMO member states adopted the Convention in October 2001. 

The treaty could only enter into force once a minimum of 25 member states representing 25 % 

of the world’s shipping tonnage had signed. The treaty was controversial, as adequate 

alternative antifouling agents were lacking (Champ 2000). Several IMO parties and shipping 

companies strongly opposed the forthcoming ban, while the TBT industry organized into a 

pressure group called organotin environmental programme (ORTEP). Consequentially, many 

countries became reluctant to sign the treaty. In 2000 and 2001, respectively, Germany and 

Belgium attempted to enforce their own legislation, but were ruled out by the Commission. In 
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November 2002, the EU adopted the IMO-proposal and interdicted the application of TBT 

based formulations on EU flagged vessels after 1
st
 of July 2003 and the presence of those 

paints on all ships visiting EU ports from 1
st
 of January 2008 (EC 782/2003). Meanwhile in 

the IMO, the deadline of 1
st
 January 2003 had passed. On 17

th
 September 2007, the AFS 

convention was finally ratified and entered into force on 17
th 

September 2008.  

At EU level, several Directives are also of importance in OT regulation, besides the AFS-

related EU measures discussed earlier. Regarding other uses of TBT, the biocidal products 

directive (BPD, directive 98/8/EC) led to an official cessation of non-notified use in 

September 2006. Non-notified use of other OTs already ceased in December 2003. 

 

1.4.10 EU policy regarding the environmental impact of TBT 

The convention for the protection of the marine environment of the North-East Atlantic 

(OSPAR) was set up in 1992 and entered into force in 1998. OSPAR is the current legal 

instrument guiding international cooperation on the protection of the marine environment of 

the North-East Atlantic. The OSPAR commission currently has 16 contracting parties (i.e. 15 

EU states and the EU itself) and observers which are an active part of the commission. The 

observers include 18 intergovernmental organizations (e.g. ICES, IMO, OECD, and UNEP) 

and 34 international non-governmental organizations, representing both environmental groups 

(e.g. Greenpeace, WWF) and industry. OSPAR’s hazardous substances strategy aims at 

reducing the discharge of persistent, bio-accumulative and toxic (PBT) substances to achieve 

(close to) zero concentrations for man-made synthetic PBT substances and near background 

values for naturally occurring PBT substances by 2020 (‘the generation goal’). OSPAR’s 

work on hazardous substances comprises the identification of such contaminants, the 

monitoring and assessment of their sources and pathways and their concentrations and effects 

in the marine environment, and the identification and promotion of control measures required 

to achieve the objectives.  

TBT is currently on the OSPAR list of chemicals for priority action, and monitoring of the 

concentrations in sediment and of the biological effects (imposex/intersex in marine 

gastropods) are mandatory elements of OSPAR’s coordinated environmental monitoring 

programme (CEMP) since 2003. Target compounds include TBT, dibutyltin (DBT) and 

monobutyltin (MBT) and TPhT, diphenyltin (DPhT), and monophenyltin (MPhT). 

Monitoring of TBT concentrations in marine biota is currently included in pre-CEMP, which 

contains components for which the contracting parties are preparing a co-ordinated 

monitoring. As filter feeders accumulate high OT concentrations, target species are the 
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bivalves Mytilus edulis and M. galloprovincialis, or Crassostrea gigas where Mytilus species 

are absent. In the EU water framework directive (WFD, directive 2000/60/EC) and the new 

EU marine strategy framework directive (MSFD, directive 2008/56/EC), TBT is also included 

on lists of priority hazardous substances for monitoring.  

 

1.4.11 Alternatives to TBT 

After 1996, shipping companies slowly started to proactively switch back to copper-based 

coatings, which were regarded as the best intermediate alternative (Cao et al. 2011). 

Meanwhile, the paint manufacturing sector started developing alternatives. In 2003, while the 

IMO ban was not ratified yet, production of TBT-based antifouling paints almost completely 

ceased. In some alternative coatings, TBT had been replaced by other biocides (e.g. irgarol, 

zinc pyrithione, ziram and thiram). Since 2005, non-toxic and non-stick coatings (e.g. 

hempasil) were developed, which render the ship’s hull too smooth for organisms to attach. 

Although they are more expensive than copper-based coatings, their efficacy and longer shelf 

life make them a success story.  
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2.1 Introduction 

In 2004, Nishikawa et al. (2004) showed that TBT binds and activates the human RXRα, and 

that 9-cis-RA, the natural ligand for RXRα, induced imposex in the rock shell Thais 

clavigera. In contrast with vertebrate RXR, invertebrate RXRs do not form active 

homodimers, but are believed to act as a ‘silent’ but ‘obligate’ partner for many other NRs. In 

other words, invertebrate RXR is believed not to bind a hormone ligand, but its presence 

within the heterodimer is necessary to attain a high activity of the partner receptor. Thus, 

while RXR does not have a transactivational capacity on itself, it is of major importance in 

modulating the activity of other NRs. As a consequence, RXR activity can only be measured 

indirectly by measuring the altered activity of the partner protein. EcR is the most well-known 

invertebrate partner protein for RXR. Through EcR, circulating levels of ecdysteroid 

hormones, such as 20E and ponA, determine developmental (e.g. moulting) and reproductive 

(e.g. spawning) timing in many invertebrates. In this chapter the molecular cloning of RXR 

and EcR from common shrimp is described. The obtained genetic sequences are analysed 

phylogenetically and their 3D protein structure is reconstructed in silico. In chapter 3, this 

information will then be used to develop and apply an ecdysteroid-responsive cell line 

containing shrimp EcR and RXR. 

 

2.2 Material and Methods 

2.2.1 Collection of C. crangon and isolation of RNA 

Ovaries were dissected out of a large (>75 mm LT) female C. crangon which was sampled 

during low tide at Bredene beach (Belgium). Total RNA was isolated through acid 

guanidinium-phenol-chloroform extraction (Chomczynski and Sacchi, 1987) using 

TriReagent
®

 (Sigma-Aldrich, Bornem, Belgium), according to the manufacturer’s protocol. 

The quality and quantity of the extracted RNA was examined by gel electrophoresis and 

spectrophotometry using a Nanodrop™ ND-1000 (Thermo Fisher Scientific, Asse, Belgium).  

 

2.2.2 Molecular cloning of conserved partial sequences of CrcEcR and CrcRXR 

First strand cDNA synthesis was performed using SuperScript™ II reverse transcriptase 

(Invitrogen, Merelbeke, Belgium) with the oligo(dT)12-18 primers according to the 

manufacturer’s protocol. The cDNA sequences of CrcRXR and CrcEcR were derived using 

several successive PCR techniques. First, partial sequences for the strongly conserved DBDs 

were obtained through degenerate PCR consisting of 35 cycles of 50 μl reactions (3 mM 
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MgCl2 and annealing temperature 59°C). Degenerate primers were designed based on the 

known coding sequences from four other Decapoda species: C. maenas, Gecarcinus lateralis, 

C. pugilator and Marsupenaeus japonicus (see table 2.1 for the primer sequences). The PCR 

products were purified after gel electrophoresis using the QIAEX II gel extraction kit (Qiagen 

Hilden, Germany), were ligated in pGEM
®
-T easy vector (Promega Benelux, Leiden, The 

Netherlands) and transformed in Escherichia coli TOP10F’ cells (Invitrogen). After a 

standard colony PCR (using a primer pair targeting the T7 and SP6 promoter), the plasmids 

from several positive colonies were purified using the Qiaprep Spin Miniprep kit (Qiagen) 

and sequenced by AGOWA (Berlin, Germany). Based on the partial DBD sequences 

obtained, forward non-degenerate primers in the DBD were designed and combined with a 

reverse degenerate primer situated in LBD. The same cloning routine was performed as 

described above.  

 

2.2.3 Molecular cloning of the 5’ and 3’ ends of CrcRXR and CrcEcR 

5’ and 3’ Rapid Amplification of cDNA Ends PCR (RACE PCR) were performed using gene 

specific primers (GSPs) designed in the T-box and H3-H4 of the obtained DBD-LBD 

sequences, respectively (see Table 2.1 for primer sequences). Initially, the SMART™ RACE 

cDNA amplification kit (Clontech Laboratories, Palo Alto, CA) was used with some slight 

alterations to the manufacturer’s proposed reaction mix. Reactions included 1% (v/v) RACE-

Ready cDNA, 1.5 mM MgCl2, 0.2 mM dNTP mix, 0.025 U/µl Platinum
®

 Taq DNA 

Polymerase (Invitrogen) and 0.25 µM GSP in a total volume of 10 µl. Further nested PCR 

with inner primers on the undiluted primary RACE PCR products was needed to obtain a 

satisfactory yield, except for the 3’ cDNA ends of CrcRXR. The RACE PCR for the 3’ cDNA 

ends of CrcEcR had to be performed with the FirstChoice RLM RACE kit (Applied 

Biosystems, Lennik, Belgium) and included an extra nested PCR, using 2 mM MgCl2, 0.2 

mM dNTP mix and 0.025 U/µl Platinum
®
 Taq Polymerase in 50 µl reactions. After 

purification using the E.Z.N.A.
®

 Cycle Pure kit (OMEGA Bio-Tek, Norcross, GA), the 

RACE PCR products were ligated with T4 DNA ligase (Promega Benelux, Leiden, The 

Netherlands) in the pGEM
®
-T easy vector (Promega), and transformed in E. coli TOP10F’ 

cells (Invitrogen). For each ligation reaction (i.e. 5’CrcRXR and 3’CrcRXR, 5’CrcEcR, and 

3’CrcEcR) the inserts of 16 colonies were amplified through a standard colony PCR and 

visualised through agarose gel electrophoresis. 

 



 

 

 

43 Retinoid-X and ecdysteroid receptors in common shrimp 

 

T
a
b

le
 2

.1
. 
O

v
er

v
ie

w
 o

f 
p

ri
m

er
s 

u
se

d
. 
K

e
y
 t

o
 d

eg
en

er
at

e 
n
u

cl
eo

ti
d
es

: 
Y

 =
 C

+
T

; 
R

 =
 A

+
G

; 
I 

=
 I

n
o
si

n
e;

 V
 =

 G
+

A
+

C
; 

N
 =

 A
+

C
+

G
+

T
; 

K
 =

 G
+

T
. 

R
es

tr
ic

ti
o
n
 s

it
es

 f
o
r 

li
g
at

io
n
 i

n
 t

h
e 

R
ac

t-
H

ad
h
 e

x
p
re

ss
io

n
 v

ec
to

r 
ar

e 
u
n
d
er

li
n
ed

, 
K

o
za

k
 s

eq
u
en

ce
s 

ar
e 

re
p
re

se
n
te

d
 i

n
 i

ta
li

cs
. 

 



 

 

 

44 Retinoid-X and ecdysteroid receptors in common shrimp 

Based on differences in electrophoretic mobility of the amplified inserts, a total of twelve 

colonies were selected for plasmid purification (E.Z.N.A.
®
 Plasmid Mini Kit I, OMEGA Bio-

Tek) and insert sequencing by AGOWA. 

 

2.2.4 Molecular cloning of the complete open reading frames of CrcEcR and CrcRXR 

Based on the obtained 5’ and 3’ sequences, 5’ and 3’ end primers were designed to amplify 

and ligate the complete ORFs into the Ract-Hadh expression vector. The purpose of cloning 

the complete ORFs of the RXR and EcR isoforms into an expression vector (Swevers et al. 

1996) is to analyse the functionality of the corresponding proteins in chapter 3. The Kozak 

sequences were slightly adapted to a Drosophila Kozak consensus sequence (Cavener 1987), 

while restriction sites were added to facilitate cloning in the RAct-HAdh expression vector, 

and extra nucleotides at the 5’-end of the primers were added to make sure that cloned PCR 

fragments contained undisrupted restriction sites for subcloning (see table 2.1 for primer 

sequences). It should be noted here that an alternative ORF reverse primer was constructed for 

CrcEcR as an alternative 3’ end was observed after the 3’RACE PCR reactions. The PCR of 

the full ORFs was performed with the Expand Long Range dNTPack (Roche Applied 

Science, Mannheim, Germany) at an annealing temperature of 48°C. PCR products were 

purified, cloned in PGEM-T vector and transformed in TOP10F’ cells as described above. 

Colony PCR was performed on twelve and 42 colonies for CrcRXR and CrcEcR, 

respectively, and plasmid inserts were visualised through gel electrophoresis. Based on 

differences in gel mobility of the amplified inserts, four and eight colonies for CrcRXR and 

CrcEcR, respectively, were selected for plasmid purification and sequencing. 

 

2.2.5 Sequence comparison and phylogenetic analysis 

Secondary structure predictions of the LBDs were performed with the freely available neural 

network algorithms NNPredict (McClelland & Rumelhart 1988; Kneller et al. 1990), Porter 

(Pollastri & McLysaght 2005)
 
and Prof (Ouali & King 2000; Meiler et al. 2001; Meiler & 

Baker 2003). The available RXR (including Diptera and Lepidoptera Ultraspiracle receptor, 

USP) and EcR (and related deuterostome LXR and FXR) sequences were obtained through a 

similarity search using the BLAST tool (http://blast.ncbi.nlm.nih.gov/blast.cgi) and reduced to 

52 RXR/USP and 45 EcR/LXR sequences (table 2.2), which subsequently were aligned using 

ClustalW2 (Larkin et al. 2007). The phylogenetic trees of receptor LBDs were constructed 

with MEGA 4.1 (Tamura et al. 2007) using the neighbour-joining method (Saitou & Nei 
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1987). Gaps in the alignment were handled with the complete deletion method and a bootstrap 

test with 1,000 replications (Efron 1979) was performed. The evolutionary distances were 

computed using the Poisson correction for amino acids (Zuckerland & Pauling 1965). 

 

Table 2.2. Overview of the RXR/USP and EcR/LXR amino acid sequences used for the 

phylogenetic analysis. GenBank accession numbers are given in the last two columns 

(continued on the next page). 

 

Species  RXR/USP EcR/LXR 

Crustacea > Malacostraca > Eucarida > Decapoda 

C. crangon Pleocyemata – Caridea ACO44668 ACO44665 

Celuca pugilator Pleocyemata – Brachyura AAC32789 AAC33432 

Gecarcinus lateralis Pleocyemata – Brachyura AAZ20368 AAT77808 

Carcinus maenas Pleocyemata – Brachyura ACG63787 AAR89628 

Marsupenaeus japonicus Dendrobranchiata  BAF75376 BAF75375 

Other Crustacea    

Neomysis integer Malacostraca - Peracarida  unpublished ACJ68423 

Daphnia magna Branchiopoda ABF74729 BAF49029 

Calanus finmarchicus Maxillopoda ACP19739 - 

Insecta    

Aedes aegypti Diptera AAG24886 AAA87394 

Chironomus tentans Diptera AAC03056 P49882 

Culex quinquefasciatus Diptera XP_001866328 XP_001844581 

Drosophila melanogaster Diptera NP_476781 NP_724456 

Lucilia cuprina Diptera AAG01569 AAB81130 

Bombyx mori Lepidoptera NP_001037470 NP_001037331 

Chilo suppressalis Lepidoptera BAC53670 BAC11713 

Helicoverpa armigera Lepidoptera ACD74808 ABN11286 

Spodoptera exigua Lepidoptera ACD39740 ACA30302 

Plodia interpunctella Lepidoptera AAT44330 AAR84611 

Apis mellifera Hymenoptera NP_001011634 BAF46356 

Camponotus japonicus Hymenoptera - BAF79665 

Melipona scutellaris Hymenoptera AAW02952 - 

Nasonia vitripennis Hymenoptera - NP_001152828 

Pheidole megacephala Hymenoptera - BAE47509 

Polistes fuscatus Hymenoptera AAX37292 - 

Scaptotrigona depilis Hymenoptera ABB00308 - 

Leptinotarsa decemlineata Coleoptera BAD99298 BAD99296 

Tenebrio molitor Coleoptera CAB75361 CAA72296 

Tribolium castaneum Coleoptera NP_001107766 NP_001107650 

Blattella germanica Blattodea CAH69897 CAJ01677 

Locusta migratoria Orthoptera AAF00981 AAD19828 

Acyrthosiphon pisum Hemiptera ACR45970 NP_001152832 

Bemisia tabaci Hemiptera ABN11285 ABN11284 

Myzus persicae Hemiptera ABN11290 ABN11289 

Pediculus humanus Phthiraptera XP_002424949 XP_002430228 

Xenos pecki Strepsiptera AAX37291 - 

Chelicerata > Arachnida 

Liocheles australasiae Scorpiones BAF85823 BAF85822 

Ornithodoros moubata Ixodida BAF91724 BAE45855 

Amblyomma americanum Ixodida AAC15588 AAB94566.1 

Ixodes scapularis Ixodida XP_002435070 XP_002405625 

Myriapoda 

Lithobius forficatus Chilopoda AAO18151 - 

Mollusca > Gastropoda 

Biomphalaria glabrata Pulmonata AAL86461 - 
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Lymnaea stagnalis Pulmonata AAW34268 - 

Nucella lapillus Prosobranchia ABS70715 - 

Thais clavigera Prosobranchia AAU12572 - 

Deuterostomia > Chordata > Vertebrata 

Danio rerio Osteichthyes  AAC59720 NP_001017545 

Gallus gallus Aves NP_990625 NP_989873 

Xenopus tropicalis Amphibia NP_001015937 NP_001072853 

Bos taurus Mammalia NP_001068876.1 AAX31375 

Sus scrofa Mammalia NP_001123685 ABP88970 

Rattus norvegicus Mammalia NP_036937 NP_113814 

Homo sapiens Mammalia AAH63827 EAW71850 

Other Deuterostomia 

Strongylocentrotus purpuratus Echinodermata XP_001201896 NP_001123279 

Saccoglossus kowalevskii Opisthobranchia - NP_001161579 

Ciona intestinalis Chordata – Tunicata NP_001071809 BAE06541 

Branchiostoma floridae Chordata – Cephalochordata AAM46151 EEN45473 

Radiata 

Tripedalia cystophora Cnidaria AAC80008 - 

 

2.2.6 In silico three-dimensional modelling of the LBPs of CrcRXR and CrcEcR 

The availability of the crystal structure of the PPARγ/RXRα complex bound to 9-cis-RA 

(RCSB Protein Data Bank (PDB) code 3DZU) (Chandra et al. 2008) allows us to model the 

3D structure of full length CrcRXR (ACO44668). Modeling of truncated CrcRXR∆EF 

(ACO44671) was not achieved, as too many of the amino acids of the LBP were missing to 

build an accurate model. Modeling of the LBD of CrcEcR and truncated CrcEcR∆EF 

(ACO44671) was based on the crystal structure of the TcEcR LBD of Tribolium castaneum in 

complex with ponA (PonA; PDB code 2NXX) (Iwema et al. 2007). Multiple amino acid 

sequence alignments were initially carried out with CLUSTAL- X (Thompson et al. 1997) 

using the Risler’s structural matrix for homologous amino acid residues (Risler et al. 1998). 

Molecular modelling was performed on a Silicon Graphics O2 R10000 workstation with the 

programs InsightII, Homology and Discover3 (Accelrys, San Diego, CA). Steric conflicts 

were corrected during the model building procedure using the rotamer library (Ponder & 

Richards 1987) and the search algorithm implemented in the Homology program (Mas et al. 

1992) to maintain proper side-chain orientation. An energy minimization of the final models 

was carried out with InsightII by 300 cycles of steepest descent using the consistent valence 

forcefield (cvff) of Discover2. PROCHECK (Laskowski et al. 1993) was used to assess the 

geometric quality of the 3D-models. Molecular cartoons were drawn with PyMol (W.L. 

DeLano, http://pymol.sourceforge.net). 3DZU and 2NXX and structurally-related proteins 

were also used as templates for CrcRXR and CrcEcR∆EF, respectively, in the fold recognition 

program Phyre (http://www.sbg.bio.ic.ac.uk/phyre/html/index.html) (Bennett-Lovsey et al. 

2008) to yield readily superposable 3D-models. Electrostatic potentials were calculated and 
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displayed with GRASP using the parse3 parameters (Nicholls et al. 2005). The solvent probe 

radius used for molecular surfaces was 1.4 Å and a standard 2.0 Å-Stern layer was used to 

exclude ions from the molecular surface (Gilson & Honing 1987). The inner and outer 

dielectric constants applied to the protein and the solvent were fixed at 4.0 and 80.0, 

respectively, and the calculations were performed keeping a salt concentration of 0.145 M. 

 

2.3 Results 

2.3.1 CrcRXR structure and isoforms 

Initially, a single clone of a partial DBD (84 bp) sequence was obtained through degenerate 

PCR. A 663 bp clone from DBD to LBD was sequenced using a degenerate reverse primer 

situated in the LBD. Two 591 bp and 653 bp cloned 5’ RACE PCR products exhibited 

different 5’ untranslated regions (UTRs) 63 bp upstream of the start codon, the three 3’ RACE 

PCR products (844 bp, 863 bp and 929 bp) were identical in the overlapping sequences. 

While in frame stop codons were detected in all clones, none of the sequenced 3’ UTRs 

contained a poly-A tail. Sequencing of the full ORF of 1218 bp shows 78 and 80% sequence 

identity to the RXR of C. pugilator and M. japonicus, respectively (Table 2.3). The A/B 

domain of CrcRXR is short but well conserved compared to the related species, particularly 

the 5’ sequence MSGSLDRQSPL and 3’ sequence LSTSP(S/T)QYPP(N/S).  

Minor differences can be observed in the DBD of CrcRXR compared to C. pugilator: Glu145 

is replaced by Asp116, Ser147 is substituted by Ala118, and Thr168 by Gly139 (Fig. 2.1). 

The 32 AA long hinge region is almost identical to CpRXR, only differing in two AAs. Based 

on secondary structure predictions the LBD appears to lack the second α-helix, a phenomenon 

also observed in RXR of other crustacean (Asazuma et al. 2007) and non-crustacean species 

(Hayward et al. 1999). Three ORF variants for CrcRXR of 406 AA (FJ231415), 400 AA 

(FJ231414) and 225 AA (FJ231416) in size were cloned (Fig. 2.4). The 400 AA variant, 

named as CrcRXRD-5, has a 5 AA deletion in the T-box in the hinge-region compared with the 

full length variant of 406 AA (CrcRXR). The 225 AA variant, named as CrcRXR∆EF, has an 

out of frame deletion of 91 AA starting in H3 of the LBD, leading to a premature stop codon. 

Interestingly, the deleted sequence is immediately flanked by two ACAGA sequences in non-

truncated CrcRXR, rendering a single ACAGA sequence in CrcRXR∆EF. The in vivo 

expression of CrcRXR, CrcRXRD-5, and CrcRXR∆EF was confirmed in multiple tissues 

through semiquantitative RT-PCR, using combinations of two forward and two reverse 

primers situated in the two variant sites (fig. 2.5, see also fig. 2.2 for variant sites and primer 
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situation). The existence of a CrcRXRD-5, ∆EF could not be confirmed due to the presence of 

multiple bands.  

 

2.3.2 CrcEcR structure and isoforms 

Initially, degenerate PCR yielded two short partial sequences of the strongly conserved DBD 

(79 bp) and LBD (168 bp). The use of a non-degenerate primer pair, targeting the DBD and 

LBD, allowed determination of four longer identical sequences (from DBD to LBD) of 778 

bp, allowing the development of gene specific primers for RACE PCR. A 442 bp and two 403 

bp identical 5’ RACE cDNA clones and two identical 501 bp 3’ RACE cDNAs were isolated. 

The full ORF cDNA sequence of 1323 bp were generated using primers designed at the start 

and stop codon. CrcEcR showed high similarity to EcR of other crustacean species C. 

pugilator and M. japonicus with 77% and 67% sequence identity over the entire length, 

respectively (Table 2.3).  

Compared to similar EcRs, CrcEcR contains a short A/B-domain of merely 25 amino acids 

(AAs), which appear to be strongly conserved within Decapoda (Fig. 2.3). The DBD domain 

AA sequence of CrcEcR is identical to that of the crab C. pugilator. The poorly conserved 

hinge region of CrcEcR is long compared to other Decapoda species and contains a predicted 

short α-helix (EEEGRQL).  

Three CrcEcR variants were cloned, consisting of 441 (FJ23410), 376 (FJ231411) and 358 

amino acids (AA) (FJ231412) in length (Fig. 2.4). The 376 AA variant, named as CrcEcR∆EF, 

is characterized by an alternative 3’ sequence starting at 355 AA, compared with the full 

length variant of 441 AA (CrcEcR). This alteration is situated between H9 and H10 of the 

LBD, leading to the lack of H10 to H12 of the LBD and thus possibly leading to an impaired 

ligand binding and heterodimerization. 

Interestingly, all secondary structure predictions applied indicate a C-terminal helix 

(SISYKSSGQKTNT) in the alternative CrcEcR C-tail. The 358 AA variant, named as 

CrcEcRD-18, ∆EF, is also characterized by this alternative C-tail, but in addition it exhibits an 18 

AA deletion in the hinge-region. These results suggest that a 422 AA variant, named as 

CrcEcRD-18, a variant containing a normal LBD and the 18 AA deletion, is likely to exist.  

The in vivo expression of CrcEcR, CrcRXRD-18, CrcRXR∆EF, and CrcEcRD-18, ∆EF was 

confirmed in multiple tissues through semiquantitative RT-PCR, using combinations of two 

forward and two reverse primers situated in the two variant sites (fig. 2.5, see fig. 2.4 for 

variant sites and primer situation).  
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Fig. 2.2. Nucleotide sequences and deduced AA sequences for CrcRXR. Variant sites are 

marked in black. The forward and reverse primers used are represented by green and red 

arrows, respectively (full ORF primers are not shown). The predicted secondary structures are 

shown in a graphical manner in grey scale in the background. The cysteine residues forming 

the zinc finger with the bivalent zinc ion (in blue) are marked red. 
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Fig. 2.4. Nucleotide sequences and deduced AA sequences for CrcEcR. Variant sites are 

marked in black. The forward and reverse primers used are represented by green and red 

arrows, respectively (full ORF primers are not shown). The predicted secondary structures (a-

helices, β-sheets and β-turns) are shown in a graphical manner in grey scale in the 

background. The cysteine residues forming the zinc finger with the bivalent zinc ion (in blue) 

are marked red. 
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Fig.2.5. Semiquantitative RT-PCR confirmation of in vivo expression of the putative CrcRXR 

and CrcEcR isoforms in several tissues. Amplified gene names and cycle number are given on 

the left, template tissue is given at the top, amplicon size is given at the right. The in vivo 

expression of CrcRXRD-5, ∆EF could not be confirmed due to the presence of non-specific 

bands. 

 

2.3.3 Phylogenetic analysis based on RXR and EcR LBDs 

The phylogenetic trees obtained through a neighbour-joining analysis using the LBD of 

USP/RXR and EcR are shown in Fig. 2.6. As these phylogenetic trees are based on amino 

acid substitutions within the LBD, sequence divergence may reflect changes in ligand binding 

preferences. Phylogenetic relationships within the crustacean order of Decapoda are clearly 

visible in both trees exhibiting strong bootstrap values: the infraorder sister groups Brachyura 

(crabs; Carcinus, Gecarcinus, Celuca) and Caridea (shrimps; Crangon) are representatives of 

the suborder Pleocyemata, which in turn is the sister group of the suborder Dendrobranchiata 

(prawns; Litopeneaus). These two belong to the order Decapoda (superorder Eucarida) which 

together with the order Mysida (superorder Peracarida) are representatives of the class 

Malacostraca. In our analysis, RXR and EcR of Daphnia (order Cladocera; class 

Branchiopoda) clusters with the subphylum Hexapoda, which, in case of the RXR tree, 

encompasses the divergent USP Lepidoptera and Diptera homologues. Both RXR and EcR 

phylogenetic relationships confirm earlier observations (Budd & Telford 2009) that insects 

can be considered as a terrestrial (Pan)crustacean clade. Arthropod RXR/USP clearly separate 

from the other Protostomia clade of Mollusca RXR, which clusters closely with 

Deuterostomia RXRs. This has been observed before (Wang et al. 2007) and may be related 

to a common high affinity of 9-cis-RA to Mollusca and Deuterostomia RXR (Mark & 

Chambon 2003; Nishikawa 2003). The remarkable divergence of the N. integer (Peracarida) 

EcR sequence used probably reflects a strongly divergent ligand binding specificity. As no 



 

 

 

55 Retinoid-X and ecdysteroid receptors in common shrimp 

 
Fig. 2.6. Phylogenetic trees of the LBD domains of RXR/USP (A) and EcR/LXR (B). Trees 

were constructed using the neighbour-joining algorithm (complete deletion and Poisson 

correction). The RXR tree was rooted with jellyfish Tripedalia cystophora, the EcR tree with 

the cluster of 11 Deuterostomia LXR(-like) receptors. The figures at the nodes represent 

bootstrap proportions out of 1000 bootstrap replicates. Branch lengths are proportional to 

sequence divergence, the bars below each figure represent the number of differences per site. 

It should be noted that Hemiptera (Acyrthosiphon, Bemisia and Myzus), Myriapoda 

(Lithobius), Echinodermata (Strongylocentrotus) and the crustacean clade Maxillopoda 

(Calanus) were deliberately excluded from the RXR phylogenetic analysis to promote tree 

reliability; otherwise Maxillopoda and Hemiptera would cluster with the Hexapoda clade; 

Myriapoda with Branchiopoda and Chelicerata; and Echinodermata with Mollusca, rendering 

overall poor bootstrap values. Detailed sequence information can be found in table 2.2. 
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other Peracarida EcR and RXR sequences are currently available, it is unclear at what 

phylogenetic level this differentiation occurs. 

 

2.3.4 In silico 3D-modeling of CrcRXR  

The high percentages of identity (~73%) and similarity (~92.5%) that full CrcRXR shares 

with the RXRα template allowed us to build a rather accurate 3D-model for CrcRXR. About 

80% of the residues of the CrcRXR model were correctly assigned on the best allowed 

regions of the Ramachandran plot, the remaining residues being located in the generously 

allowed regions of the plot except for the four residues Arg44, Asp129, Ala193 and Thr311 

which occur in the non-allowed region (data not shown). The fold-recognition program Phyre 

yielded a readily superposable 3D-model for CrcRXR with, however, some discrepancies that 

mainly concerned the loop regions. 

 The modelled full CrcRXR consists of a small N-terminal DBD linked to a larger C-terminal 

LBD by a long α-helix-containing hinge linker (Fig. 2.7.A, B). Both domain structures 

superimpose with a few discrepancies mainly located in the more flexible loop regions (Fig. 

2.7.C). Mapping of electrostatic potentials on the molecular surface of CrcRXR reveals the 

prominent electropositive character of the DBD which specifically binds to DNA-elements for 

regulating gene expression (Fig. 2.7.D). The LBD of full CrcRXR contains a differently 

shaped and sized LBP, which is narrower and rather less extended than that occurring in the 

human RXRα template receptor (Fig. 2.7.E). In addition, the LBD of full CrcRXR differs 

from that of RXRα with respect to a more pronounced hydrophilic character. Docking 

experiments suggest that 9-cis-RA should accommodate the LBP of CrcRXR via essentially 

hydrophobic interactions like in RXRα (Fig. 2.7.G, H). 
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Fig. 2.7. In silico modeling of CrcRXR (A) and (B) Ribbon diagram (A) and molecular 

surface (B) of full-length CrcRXR showing the overall organization of the modelled full-

length CrcRXR in two distinct DBD (colored magenta) and LBD (colored orange) domains, 

connected by an a-helix-containing hinge linker (colored green). 9-cis-RA docked into the 

LBP is represented in pink stick. (C) Superposition of CrcRXR (colored orange) to the human 

RXRa (colored blue) harbouring 9-cis-RA (pink stick) into the LBP and DamRXR from D. 

magna (colored green). (D) Mapping of electrostatic potentials on the molecular surface of 

CrcRXR. Electropositive and electronegative areas are colored blue and red, respectively, and 

neutral areas are white. Residues at the LBP of RXRα (E) and CrcRXR (F) interacting with 9-

cis-RA (pink stick) by hydrophobic (residues colored yellow) and hydrophilic (residues 

colored blue) interactions. (G) Clipping planes of the superimposed LBPs of CrcRXR (red 

dotted line) and RXRα (blue dotted line) showing the docking of 9-cis-RA, represented in 

pink. Note the different size and shape between the human and the shrimp LBP. 
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2.3.5 In silico 3D modeling of the LBPs of CrcEcR and docking of PonA 

The high percentages of both identity (~69%) and similarity (~91%) that CrcEcR LBD shares 

with the template TcEcR LBD (Mouillet et al. 1997) allowed us to build a rather accurate 3D 

model. About 87% of the residues of the modelled CrcEcR LBD were correctly assigned on 

the best allowed regions of the Ramachandran plot, the remaining residues being located in 

the generously allowed regions of the plot except for Asp35 which occurs in the non-allowed 

region (result not shown). Some discrepancies that were observed with our lab-made 

modelled structures essentially deal with the shape of the loops connecting the α-helical 

stretches of CrcEcR LBD. These discrepancies occur outside the groove responsible for the 

binding of ecdysteroid hormone. The modelled CrcEcR LBD consists of a canonical EcR 

LBD structure built up by twelve α-helices tightly packed around a ligand binding groove that 

specifically anchors ecdysteroids (Fig. 2.8.A). In addition, Fig. 2.8.C demonstrates that the 

amino acid residues Glu224, Met254, Thr255, Gly310 and Tyr320 of the ecdysteroid binding 

cavity create a network of 9 H-bonds participating in the binding of PonA in association with 

stacking interactions of residues Phe309, Tyr315 and Trp436. Upon docking to the 

ecdysteroid binding cavity of CrcEcR LBD, the alkyl chain of PonA becomes inserted in one 

of the two pockets located at the bottom of the binding cavity (Fig. 2.8.E). Compared with 

coleopteran EcR (Iwema et al. 2007), differences in steric interactions of PonA within the 

LBD appear to be limited to the stacking interaction of Tyr315 and the lack of a water-

mediated binding of Asn410 at the end of the PonA hydrocarbon tail. The shorter alternative 

3’ tail in CrcEcR∆EF leads to a lack of H10, H12 and most of H11 (Fig. 2.8.B). H10 and H11 

are the major constituents of one side of the sandwich fold observed in the normal CrcEcR-

LBD, while H12 normally closes the LBP in the ligand-activated receptor.  
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Fig. 2.8. In silico modeling of the LBD of CrcEcR isoforms. (A) and (B) Ribbon diagram of 

the LBD of full-length CrcEcR and truncated CrcEcRΔEF, respectively, showing the α-helices 

building the 3D-fold of the receptor. Helices are differently colored and numbered H1–H12, 

the two short strands of β-sheet are colored purple and numbered b1 and b2. (C) and (D) Clip 

(yellow dotted line) showing the anchoring of PonA to the LBP of full-length CrcEcR and 

truncated CrcEcRΔEF, respectively. (E) and (F) PonA complexed to residues forming the LBP 

of full-length CrcEcR and truncated CrcEcRΔEF, respectively. PonA is represented in pink 

stick and H-bonds anchoring PonA to hydrophilic residues are in black dotted lines. 

Hydrophobic residues making stacking interactions with PonA are colored orange. 
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Interestingly, the α-helix observed at the end of the alternative 3’ tail (H11 in Fig. 2.7.B) 

replaces the 3’ end of H10 and as such conserves the LBP (Fig. 2.8.D), that only exhibits a 

confined distal expansion. Despite the lack of Trp436 and the related stacking interaction in 

the deleted isoforms, docking experiments reveal that the PonA-binding scheme in CrcEcR∆EF 

remains very similar to that observed earlier in non-truncated CrcEcR (Fig. 2.8.E and 2.8.F): a 

network of nine hydrogen bonds with residues Glu20, Met50, Thr51 and Tyr116 anchors 

PonA to the LBP (Fig. 2.8.F). Two additional stacking interactions with Phe105 and Tyr111 

complete the binding. 

 

2.4 Discussion and conclusions 

2.4.1 CrcRXR and CrcRXR structure and isoforms 

We cloned and characterized cDNAs encoding RXR and EcR from C. crangon. CrRXR and 

CrcEcR exhibit the strongly conserved domain structure which is typical for NRs: a poorly 

conserved A/B transactivating domain, a strongly conserved DNA binding C-domain, a 

variable hinge D-region, a well conserved ligand binding E-domain and an extremely short F-

tail, which is even lacking in crustacean RXR (Chung et al. 1998; Durica et al. 2002; Wu et 

al. 2004; Kim et al. 2005; Asazuma et al. 2007; Wang et al. 2007; Hopkins et al. 2008). Based 

on the high sequence similarities with CpRXR (83%) and CpEcR (75%) of the closely related 

land crab C. pugilator, we can assume the successful cloning of common shrimp CrcRXR and 

CrcEcR.  

In CrcRXR, a 5 AA insert exists in the T-box, a C-terminal extension of the DBD-region 

critical for dimerization. In concordance with Kim et al. (2004), we refer to the shrimp 

isoform lacking the insert as CrcRXRD-5. This insert has previously been observed in RXR 

from the crabs C. pugilator and G. lateralis (Kim et al. 2005; Wu et al. 2004). In G. lateralis, 

Kim et al. (2004) even observed three variants at this splicing site (T+7, T+8 and T+12) and 

another splicing insert site between H1 and H3 of the LBD (LBD+33) and one between H7 

and H8 (LBD+35) of the LBD. The latter two splicing sites, which were not observed in the 

C. crangon LBD, could also have a large impact on the dimerization interface normally 

observed at H7-H10 (Iwema et al. 2009). In C. crangon, truncated CrcRXR isoforms were 

found: a 275 bp deletion between H3 and H7 leads to a frame shift and a premature stop-

codon. Kim et al. (2004) also observed truncated forms in G. lateralis, exhibiting an 

alternative sequence starting at helix 3 and leading to a premature stop-codon. In 

concordance, we refer to the truncated shrimp isoform as CrcRXR∆EF.  
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The most striking sequential differences are found in CrcEcR, where the A/B-domain is 

limited to a strongly conserved stretch of 25 AAs and the hinge region has a C-terminal extent 

of 42 AA compared to the closely related Brachyura EcRs. A truncated CrcEcR isoform, 

CrcEcR∆EF, was cloned, exhibiting an alternative C-terminal sequence starting between H9 

and H10, leading to the lack of H10-H12 and a premature stop codon. Interestingly, secondary 

structure prediction algorithms indicate a C-terminal helix in this alternative C-tail. A second 

variant was found, CrcEcRD-18, ∆EF, exhibiting an 18 AA deletion at the C-terminal end of the 

D-domain. In C. pugilator EcR, a splicing site has also been identified in the C-terminus of 

the D-domain, rendering three isoforms (+6 AA, +10AA and +36AA) (Chung et al. 1998), 

however, sharing no homology with the CrcEcRD-18 variant. 

 

2.4.2 In silico three dimensional modeling of CrcRXR and CrcEcR 

We used the obtained sequence data to in silico reconstruct the LBD of CrcEcR and predict 

the steric interactions involved in PonA docking. The accurate 3D model indicates that the 

steric interactions involved in PonA docking are similar to that of coleopteran EcRs, as 

differences appear to be limited to the stacking interaction of Tyr315 and the lack of a water-

mediated binding at the end of the PonA hydrocarbon tail. However, a water molecule was 

also not observed in the structures of the Heliothis and Bemisia EcRs complexed with PonA 

(Billas et al. 2003; Carmichael et al. 2005). In silico analysis showed that the truncation in 

CrcEcR∆EF does not affect the LBP or the interactions with PonA, albeit a minor elongation of 

the cavity and the associated lack of the stacking/hydrophobic interaction of PonA with 

Trp436 were observed (Fig. 2.4). However, the C-terminal part of H9 and the complete H10 

believed to be important for heterodimerization with RXR, were lacking (Iwema et al. 2009). 

According to the in silico reconstruction, the C-terminal α-helix observed in the variant 3’ end 

of CrcEcR∆EF replaces the 3’ end of H11 and as such preserves the LBP. The modelled 

CrcRXR is characterized by an α-helix in the hinge region which introduces some restriction 

in the flexibility between the DBD and LBD. The more pronounced hydrophilic LBP of 

CrcRXR is narrower and less extended than that of the human RXRα template receptor. On 

the other hand, CrcRXR resembles RXRα in the fact that 9-cis-RA should accommodate the 

LBP (Fig. 2.2 E-G). In water flea D. magna (unpublished data Smagghe, Rougé, LeBlanc), 

DamRXR is also characterized by a long α-helix in the hinge region, but 9-cis-RA 

accommodation in DamRXR is subject to some steric hindrance. In CrcRXR∆EF, the 

truncation eliminates the LBP, assumedly rendering a ligand-independent CrcRXR isoform. 
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In T. castaneum, ligand-independence of the RXR receptor has been shown, and this was 

caused by the filling of the LBP with hydrophobic side chains of the loops L6 and L11 

(Iwema et al. 2007). Furthermore, due to the truncation in CrcRXR∆EF, the complete 

heterodimerization interface situated at H7-H10 is lacking, suggesting affected dimerization 

with CrcEcR. The availability of the Crangon EcR and RXR in silico models can have 

practical applications to predict endocrine disrupting activities of exogenous compounds. In 

silico generated 3D receptor models are interesting templates for 3D quantitative structure-

activity relationship studies (3D QSAR), where correlations between the binding affinity of 

the ligand molecules and structural features of the common target (i.e. in our case the receptor 

LBD) are sought. This approach is popular for predicting drug toxicity in vertebrate receptors 

(Vedani et al. 2006), more recently for vertebrate endocrine disruption (Lill et al. 2005; Iguchi 

and Katsu, 2008; Cui et al. 2009) or to a lesser extent for insecticide activity in target insect 

species (Hormann et al. 2008; Nakagawa et al. 2009). However, no such model has been used 

to our knowledge to investigate the endocrine disrupting potential of drugs and chemicals to 

important non-target invertebrate species such as C. crangon. The described accurate model 

of the LBDs of shrimp EcR and RXR should allow predictive in silico docking of potential 

ligands, thus establishing a shrimp specific high throughput virtual screening system to 

identify candidate EDCs. 
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3.1 Introduction 

In the previous chapter, the molecular cloning of RXR and EcR from common shrimp is 

described. In this chapter, we report the transfection of expression plasmids of these receptors 

in a Drosophila cell line, and the use of this transfected cell line in an assay with an 

ecdysteroid responsive reporter construct to screen for ecdysteroid responsiveness of the 

different shrimp EcR-RXR receptor complexes. The mutant Drosophila Kc cell line L57-3-11 

(Swevers et al. 1996; Cherbas and Cherbas 1997; Hu et al. 2003) used, is characterized by 

inactivated DmEcRB1 and DmEcRB2 isoforms, which results in a 90% loss of endogenous 

20E response and represents a continuous arthropod cell line which can be used to study 

ligand binding to exogenous (e.g. crustacean) EcRs. The EcRE-b.act.luc reporter construct 

used, is composed of seven copies of the ecdysteroid responsive element (EcRE), derived 

from the Drosophila hsp27 promoter, a Bombyx mori derived basal actin promoter (b.act), the 

reporter gene for firefly luciferase (luc), and a termination signal. The ecdysteroid activated 

shrimp EcR-RXR complexes will transactivate luciferase expression through the EcREs, 

which in turn will break down the enzymatic substrate luciferin (in excess in the cell 

medium), thereby producing a quantifiable luminescent signal. 

Regarding the potential RXR agonism of TBT, a 3D in silico model of TBT docked in the 

LBP of shrimp RXR is reconstructed. X-ray diffraction derived crystal structures of TBT 

bound to human RXRα LBD previously revealed that TBT lacks the typical carboxylate 

group which buries other RXR ligands, such as 9-cis-RA, in the hydrophobic ligand binding 

pocket (Antunes et al. 2010). Instead, TBT occupies the LBP only partially and the tin atom 

covalently binds with residue C432 of helix H11 (Le Maire et al. 2009). While this interaction 

is markedly different from other known RXR ligands, it induces identical residue positioning 

and side-chain orientations and hence full-agonism, as observed by Nahoum et al. (2007). 

The putative anti-ecdysteroidal effect of TBT on the CrcEcR:CrcRXR heterodimer is 

observed by exposing a Kc cell line containing a functional shrimp EcR-RXR receptor 

complex. Finally, the tissue-specific effects of in vivo exposure of shrimp to TBT on EcR and 

RXR gene expression is determined through semiquantitative RT-PCR. 

 

3.2 Material and Methods 

3.2.1  Transfection and growth conditions of EcR deficient Kc L57-3-11 cell line 

The variant CrcEcR and CrcRXR ORFs were restriction digested out of the PGEM-T vector 

(see 2.2.4), purified, ligated in the Ract-Hadh vector (Swevers et al. 1996) and transfected in 
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TOP 10F’ cells as described earlier (see 2.2.2). For each isoform, a colony containing the 

correct insert (after colony PCR and sequencing) was grown overnight in 200 ml liquid LB 

cultures and the plasmids were extracted with the E.Z.N.A.
®

 Plasmid Maxi Kit I (Omega Bio-

Tek) to obtain a sufficient amount of plasmid necessary for the in vitro study ( see 3.2.3). 

Plasmids used in experiments include the EcRE-b.act.luc reporter construct, the expression 

constructs for cloned EcR and RXR isoform ORFs described above, the expression vector for 

D. melanogaster EcR-B1 ORF (Swevers et al. 1996) and empty Ract-Hadh expression vector. 

The L57-3-11 cell line was obtained from the Drosophila Genomics Research Center (Indiana 

University, Indianapolis, IN) and maintained in Schneider’s medium containing 10% heat 

inactivated foetal bovine serum (Invitrogen, Merelbeke, Belgium) and 1% antibiotic-

antimycotic solution (Sigma--Aldrich) at 25°C under a constant 10 µM 20E selection to keep 

endogenous DmEcR expression low. Multiple transient transfections were simultaneously 

performed, each in a 500 µl reaction volume containing 3x10
6
 cells, 1.5 µg of reporter 

construct and a different combination of 1.5 µg CrcEcR- and CrcRXR isoform-expressing 

vectors. In parallel, control transfections were performed in a similar manner with 3 µg empty 

vector (as a negative transfection control) and 1.5 µg empty vector in combination with 1.5 µg 

of expression vector of DmEcR-B1 (as a positive transfection control), CrcEcR isoform and 

CrcRXR isoform. Starting at 3x10
6
 cells, the transfected cells were grown for 72 h in a 6-well 

plate at 25°C. 

 

3.2.2 Confirmation of CrcEcR and CrcRXR expression in the L57-3-11 cell line 

In order to confirm the high expression levels of the transfected CrcEcR and CrcRXR 

plasmids in comparison with the endogenous DmEcR, semiquantitative RT-PCR experiments 

were performed. RNA was extracted from approximately 6x10
6
 control L57-3-11 cells 

(negative transfection control) and L57-3-11 cells transfected with CrcEcR and CrcRXR. 

Prior to the cDNA synthesis, a RQ1 RNase-free DNase (Promega) treatment was applied 

using 1U µg
-1

 RNA template. cDNA was synthesized as described above using a final 

concentration of 10 ng/µl random hexamer primers. For the semiquantitative RT-PCR, 

reactions were performed containing 0.5% (v/v) cDNA, 1.5 mM MgCl2, 0.2 mM dNTP mix, 

0.025 U/µl Platinum® Taq DNA Polymerase (Invitrogen) and 0.25 µM GSPs at a final 

volume of 10 µl. Specific primer pairs were designed for CrcEcR (5’-CGG AAA TAA CTG 

CGA AAT GGA-3’ and 5’-CCT GAC AAT CTC GTC ATA GGC-3’), CrcRXR (5’-GCA 

CTG TGC GAA AAG ACC TCA-3’ and 5’-TTT GCC CAT TCT ACA AGT TGC-3’), 
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DmEcR (5’-CCT CCG GCT ACC ACT AC AAC-3’ and 5’-GGC TCG CAT GTC ATA 

AGG TC-3’ ) and DmUSP (5’-ATA GAC AAG CGG CAG AGG AA-3’ and 5’-GGA CTG 

TGG AAT AGG GAC CA-3’) which yield PCR products of ~360-380 bp for each primer 

pair. As for the external control, universal 18S rRNA primers were designed (5’-CCC GTC 

GCT ACT ACC GAT T-3’ and 5’-GAT CCT TCC GCA GGT TCA C-3’). Following PCR 

conditions were used: an initial 30 s denaturation at 94°C, followed by 35 cycles of 30 s 

denaturation at 94°C, annealing at 55°C and 30 s elongation at 72°C. The semiquantitative 

RT-PCR experiment consisted of triplicate reactions sampled at the end of the annealing step 

after 23-26-29 cycles for 18S rRNA, 29-32-35 cycles for CrcEcR and CrcRXR and 35-38-41 

cycles for DmEcR and DmUSP. All PCR products were visualized on a single 2% agarose gel 

by ethidium bromide staining. Relative intensity of each band was determined through ImageJ 

image processing program (Abramoff et al. 2004).  

 

3.2.3  In vitro reporter assay with transfected Kc L57-3-11 cell line 

After 72 h in 6-well plates at 25°C, 20,000 cells of each transfection reaction were exposed in 

quadruplicate to 10 nM PonA or an equal volume of pure ethanol in 100 µl volumes in white, 

flat-bottomed 96-well plates during 24 h at 25°C. Stock solutions of 1 µM PonA (≥95%; 

Invitrogen) were prepared in ethanol. Luciferase expression was measured using the Steady-

Glo
®
 luciferase assay system kit (Promega, Leiden, the Netherlands) with a Tecan M200 

luminometer (Tecan, Mechelen, Belgium). The fold inductions (FIs) were calculated as the 

quotient of the measured relative luminescence units (RLUs) of the PonA treatment and the 

RLUs of the ethanol treatment (blanc). Reporter gene transactivation is considered significant 

when a two-tailed student’s t-test (p < 0.05, n = 4) indicates a significant difference between 

the observed FI and the FI of the negative transfection control. 

 

3.2.4 TBT: in silico docking in the modelled CrcRXR-LBP and in vitro effect on 

CrcEcR-CrcRXR-heterodimer functioning  

For in silico docking of TBT in the CrcRXR LBP, the human RXRα LBD in complex with 

TBT (PDB code 3E94) (Le Maire et al. 2009) was used as a template. For methodological 

details on the reconstruction we refer to Section 2.3.4. TBTO was purchased at Greyhound 

Chromatography, Birkenhead, UK (≥99% pure). Prior to the in vitro exposure of the L57-3-11 

cell line transfected with the full CrcEcR and CrcRXR receptors to TBTO, cell toxicity of 

TBTO was determined by the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxyme-
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thonyphenol)-2-(4-sulfophenyl)-2-tetrazolium, inner salt (MTS) approach (Cory et al. 1991): 

150,000 cells were exposed to 1 nM, 10 nM, 100 nM, 1 µM and 10 µM of TBTO in 100 µl 

volumes in quadruplicate in a flat-bottomed transparent 96-well plate. After incubation at 

25°C during 24 h, 20 µl of Celltiter 96
®
 AQueous One Solution (Promega Corp., Madison, WI) 

was added and the plates were incubated at 37°C during 2 h prior to absorbance measurement 

at 490 nm in a microtiter plate reader (PowerWave X340, Bio-Tek Instruments Inc., 

Winooski, VT). Subsequently, the cell line was exposed in triplicate during 24 h at 25°C to the 

highest observed non cytotoxic TBTO concentration (10 nM) in the presence and absence of 

10 nM PonA. The luciferase expression was measured as described earlier in Section 3.2.3. 

 

3.2.5 In vivo effect of TBTO on tissue-specific expression of CrcEcR and CrcRXR 

isoforms 

Interference of TBT in ecdysteroid signalling may lead to an altered gene expression of EcR 

and RXR, as NRs are known to autoregulate and cross-regulate their own gene expression. 

EcR is known to be subject to a positive autoregulatory loop to increase EcR levels and 

sensitize the animal to ecdysone pulses (Karim & Thummel 1992).  

Prior to 96 h-exposure to TBTO, non-gravid female shrimp caught at the Oostende bank of 

40-45 mm LT were acclimatized in 0.47 µm filtered natural seawater (35 ppt) at 14.8 ± 0.6°C 

under a 16L:8D regime in 50 l glass tanks for approximately two weeks. 50% of the tank 

volume was replaced each 48 h. The shrimp were fed ad libitum with mussels (Mytilus 

edulis), plaice filet (Pleuronectes platessa) and brine shrimp nauplii (Artemia salina). After 

acclimatization, 64 shrimp were transferred individually to disposable polypropylene 

containers and exposed during 96 h to three concentrations (16.78, 67.10, and 268.42 nM, 

including a solvent control containing 0.05% DMSO; 16 shrimp/treatment) of TBTO (stock 

solutions were prepared in dimethylsulfoxide (DMSO)) in 0.5 l filtered natural seawater. 

Shrimp were considered dead when rigor mortis and discoloration was observed. LC50 was 

determined through Probit analysis using GraphPad Prism version 4.03 (GraphPad Software, 

San Diego, CA). After 96 h, live shrimp from the solvent control and from the 67.10 nM 

TBTO-exposure were collected for immediate dissection in RNAlater
®
 (Ambion Inc, Austin, 

TX) and processed for semiquantitative RT-PCR. Ovaries, hepatopancreas, cuticular 

hypodermis (i.e. endocuticle, epidermis and basal membrane) and tail muscle were isolated 

and pooled for both samples. Subsequently, 10-30 µg of each tissue was homogenized 

manually using a microcentrifuge tube pestle in 300 µl TRK lysis buffer (Omega Bio-Tek). 
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RNA extraction and DNase treatment were performed using the E.Z.N.A.™ tissue RNA kit 

(Omega Bio-Tek) according to the manufacturer’s protocol. Good RNA integrity was 

confirmed visually on a 2% agarose gel, RNA quantity and DNA and protein contamination 

were quantified using a Nanodrop
®
 ND-1000 spectrophotometer, after which the RNA 

concentration was adjusted to 100 ng µl
-1

. cDNA was synthesized using the RevertAid First 

Strand cDNA synthesis kit (Fermentas, St. Leon-Rot, Germany) using 5 µM of a 10:1 random 

primer:oligo(dT)18 primer mix. The obtained cDNA was purified using the High Pure PCR 

purification kit (Roche Applied Science, Mannheim, Germany). The second step reactions of 

the semiquantitative protocol were performed using the 2 x Red Taq 1.5 mM MgCl2 master 

mix (VWR International, Leuven, Belgium), 0.5% (v/v) cDNA and 0.25 µM of gene specific 

primers (GSPs) at a final volume of 50 µl. The primer sequences used are given in Table 3.1. 

The CrcEcR and CrcRXR isoform sequences obtained in chapter 2 indicate two variant sites 

in both receptor sequences. For both receptors, the combination of two forward primers, 

which can discriminate between isoforms in the 5’ variant site, and of two reverse primers, 

that can discriminate between isoforms in the 3’ variant site, leads to four possible primer 

pairs and thus potentially four CrcEcR and CrcRXR isoforms (Fig.2.2 and 2.4). External 

control reactions (detecting glyceraldehyde-3-phosphate (GADPH) mRNA, β-actin mRNA 

and 18S rRNA; primer sequences are given in table 3.1) were performed at the same reaction 

conditions. The following PCR conditions were used: an initial 2 min-denaturation at 94°C, 

followed by 35 cycles of 20 s-denaturation at 94°C, annealing at 54°C during 30 s and 30 s-

elongation at 72°C, finished by a final elongation step at 72°C for 5 min. PCR products were 

visualized on a single 2% agarose gel by GelRed™ (Biotium, VWR International) staining. 

 

Table 3.1. Overview of primers used for the semiquantitative RT-PCR. 

 CrcEcR CrcRXR 

Isoform 

specific 

primers 

1 5’-TGA ATT GGC CTC ATG AAA AG-3’ 5’-CAG GTA GGG GGA ATA GAG GA-3’ 

2 5’-TTT AAG CCC ATT GCC TAT GA-3’ 5’-AAG CGG TCC AGG AAG AAC-3’ 

3 5’-TTC TCG TAA TGC TGG ACG TT-3’ 5’-GTT GCA CTA AAT GTC TGT CAG C-3’ 

4 5’-CAA TTG GCT TGT CTT ACC TGA-3’ 5’-CGC AAA CAT CCT AAC TCT GTC-3’ 

    

Control gene Forward primer Reverse primer 

β-actin 5’- ACT-TCG-AGC-AGG-AAA-TGA-CC -3’ 5’- CGT-GGA-TAC-CGC-AGG-ATT -3’ 

GADPH 5’-AAC-ATT-CCA-TGG-AGC-AAG-G-3’ 5’-GTG-GTG-CAG-GAA-GCA-TTG-3’ 

18S rRNA 5’- CCC-GTC-GCT-ACT-ACC-GAT-T -3’ 5’-GAT-CCT-TCC-GCA-GGT-TCA-C-3’ 
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3.3 Results 

3.3.1 In vitro transactivational activity of CrcEcR and CrcRXR isoforms 

Semi-quantitative RT-PCR on the transfected L57-3-11 cell line clearly confirms that co-

transfected CrcEcR and CrcRXR are overexpressed, compared to the endogenous DmEcR 

and DmUSP mRNAs (Fig. 3.1). The FIs generated by 10 nM PonA in the cell lines after 

transfection with the possible combinations of CrcEcR and CrcRXR isoforms are given in 

Fig. 3.2. The cell line transfected with D. melanogaster DmEcR-B1 isoform was considered 

as a positive transfection control and exhibited a 3.6-fold higher induction after treatment with 

10 nM PonA compared with the negative transfection control (i.e. cell line transfected with 

empty expression plasmid).  

Overall, these results indicate that transactivation of the EcRE depends on the constitution of 

the heterodimer. The full CrcEcR receptor was able to activate reporter gene expression 

without the need for CrcRXR, which would suggest functional CrcEcR homodimerization 

and/or dimerization with endogenous DmUSP. Co-transfection of CrcRXR with CrcEcR did 

not have any enhancing effect, while co-transfection of the two variant CrcRXRs apparently 

neutralized CrcEcR-related transactivation. The truncated CrcEcR isoforms, CrcEcR∆EF and 

CrcEcR∆EF, D-18, behave differently: CrcEcR∆EF, D-18 was only active in combination with 

CrcRXR D-5, while CrcEcR∆EF was active in combination with every CrcRXR isoform. 

Interestingly, CrcRXR and CrcRXR∆EF transfection significantly increases luciferase 

expression without the need of CrcEcR. This suggests that these RXRs transactivate the 

ecdysteroid-responsive element as heterodimer with endogenous DmEcR isoforms. 
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Fig. 3.1. Quantification of mRNA levels of exogenous CrcEcR/RXR and endogenous 

DmEcR/USP in transfected L57-3-11 cells by semiquantitative RT-PCR. Intensities (after 

background subtraction) are given under each band. Fragment lengths are presented at the 

right in base pairs, and PCR cycle numbers are given above the figure.  

 

 
Fig. 3.2. Overview of luciferase induction by 10 nM PonA through different combinations of 

CrcEcR and CrcRXR isoforms. FI is calculated as the RLUs after 10 nM PonA treatment 

divided by the RLUs after ethanol treatment (blank). The arced background band represents 

the mean of the negative control FI with its associated SEMs (n = 4). Asterisks above bars 

indicate FIs significantly different from that of the negative control after a Student’s t-test 

(two-tailed, p < 0.05). 
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3.3.2 TBT: in silico docking in the CrcRXR LBP 

The in silico analysis predicts that the CrcRXR LBP can accommodate the smaller TBT 

biocide molecule (Fig. 3.3) in a similar manner as in RXRα (LeMaire et al. 2009). The three 

butyl substituents of TBT establish enough van der Waals interactions with most of the 

residues belonging to the 9-cis-RA binding pocket to position the tin atom against H11and 

stabilize CrcRXR in its active conformation. 

 

 
Fig. 3.3. Clipping planes of the superimposed LBPs of CrcRXR (red dotted line) and RXRα 

(blue dotted line) showing the docking of TBT into the LBP of CrcRXR (green) and RXRα 

(blue). 

 

3.3.3 TBT: in vitro effect on CrcEcR-CrcRXR transactivational activity 

In the in vitro assay with D. melanogaster cells, the cell viability (expressed as EC50) of 

TBTO after 24 h was estimated at 96.5 nM (95% confidence interval 76.5-121.5 nM, R² = 

0.992; Fig. 3.4).  

 
Fig. 3.4. L57-3-11 cell toxicity (Y-axis) after 24 hrs in vitro exposure to different TBTO 

concentrations (X-axis), measured through the MTS approach. 



 

 

 

71 Disruption of the hormone-nuclear receptor interaction by organotin 

10 nM TBTO did not affect cell viability but significantly reduced reporter gene activation by 

10 nM PonA with 64% (Student’s t-test, two tailed, p < 0.05) (Fig. 3.5).  

 

Fig. 3.5. Influence of 10 nM TBTO on reporter gene trans-activation by 10 nM PonA through 

CrcEcR–CrcRXR (receptor isoforms were not tested). Four different treatments were 

performed in quadruplicate (from left to right): a negative control, exposure to 10 nM TBTO, 

a positive control (10 nM PonA) and exposure to 10 nM TBTO in the presence of 10 nM 

PonA. Data are presented as the mean ± SEM (n = 4). An asterisk denotes a significant 

difference with the respective control (Student’s t-test, two tailed, p < 0.05). 

 

3.3.4 TBT: tissue specific effect on CrcEcR and CrcRXR expression 

The LC50 after 96 h of in vivo exposure of shrimp to TBTO was determined at 67.10 nM 

(95% confidence interval 29.0-155.2 nM, R² = 0.937; Fig. 3.6). The semi-quantitative RT-

PCR revealed that acute TBTO exposure evoked tissue- and isoform-specific effects on 

CrcEcR and CrcRXR expression (Fig. 3.7): The high expression levels of CrcEcR, CrcEcRD-

18 and CrcRXR observed in ovaries were strongly reduced. 

The semiquantitative approach also indicated that the low expression levels of CrcEcR in 

dermis and of CrcEcRD-18 and CrcRXRD-5 in hepatopancreas were up regulated. Control gene 

expression remained stable after TBTO exposure, although a small decrease in β-actin 

expression can be observed in tail muscle. 
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Fig. 3.6 In vivo toxicity (Y-axis) after 96 hr exposure of adult female shrimp to different 

TBTO concentrations (X-axis). 

 

 

 
Fig. 3.7. mRNA levels in ovaries, hypodermis, hepatopancreas and muscle of C. crangon 

after exposure to TBT. Semiquantitative RT-PCR results of C. crangon exposed to 67 nM 

TBTO (40 µg l
-1

) for 96 h compared with mRNA expression in the control group for the non-

truncated CrcEcR and CrcRXR isoforms. mRNA levels of the control genes b-actin, 

glyceraldehyde-3-phosphate (GADPH) and 18S rRNA are also represented. Amplified gene 

names and cycle number are given on the left, template tissue and experimental group are 

given at the top, amplicon size is given at the right. Truncated CrcEcR and CrcRXR isoforms 

are not shown as they were detected at higher PCR cycle numbers. 
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3.4 Discussion and conclusions 

3.4.1 Applications of the L57-3-11 cell line 

The in vitro EcR reporter assay clearly indicated the activity of the CrcEcR receptor in the 

mutant Drosophila L57-3-11 cell line: binding of 10 nM PonA to expressed shrimp 

CrcEcR/RXR led to a six-fold increase in EcR-dependent reporter activation. The FI after 

‘rescue’ transfection with fly DmEcRB1 was twice as high. In similar experiments with the 

L57-3-11 cell line with exogenous lepidopteran EcR (Swevers et al. 1996), induction in the 

BmEcR expressing cell line was much lower than in the DmEcR rescued cell line. These 

researchers proposed that higher exogenous EcR concentrations are required because of 

quantitative differences in protein interaction with either USP or the transcriptional apparatus 

in the Drosophila host cell line. The transfected L57-3-11 cell line can be used as in vitro 

bioassay to confirm candidate EDC activity in crustaceans. While a crustacean cell line would 

be ideal for a cell based bioassay, but are not available, primary cell cultures obtained from 

crustaceans are practically unsuited for bioassays due to their limited lifespan. Immortal cell 

lines require less labour and represent a continuous and reliable bioassay instrument. 

However, so far no reports on an established crustacean cell line exist (Claydon & Owens 

2008; Lee et al. 2011). To achieve a cell line for investigating the functioning of a crustacean 

EcR, non-crustacean cell lines can be transfected with crustacean EcR and RXR. Mammalian 

cell lines have the major advantage that endogenous EcR is naturally absent. Kato et al. 

(2007) used a complex two-hybrid system with transfected chimeric genes containing the 

LBDs of D. magna EcR and RXR in vertebrate CHO cells. An arthropod cell line is closer to 

crustacean cells (e.g., posttranslational modifications, co-factors). Based on our results, we 

believe that using the transfected Drosophila Kc L57-3-11 cells can be used to efficiently 

evaluate different compounds for possible endocrine disrupting effects in crustaceans. Good 

examples are compounds that influence crustacean moulting (Zou 2005) such as certain 

pesticides (Schimmel et al. 1979; Baer & Owens 1999; Snyder & Mulder 2001; Meng & Zou 

2009a; Palma et al. 2009), PCBs (Fingerman & Fingerman 1977; Zou and Fingerman, 1999), 

aromatic hydrocarbons (Cantelmo et al. 1981, 1982), estrogenic agents (Zou & Fingerman 

1997; Montagna & Collins 2007), phtalates (Zou & Fingerman 1999) and non-steroidal 

ecdysteroid agonists used in insect pest control (Weis & Mantel 1976; Clare et al. 1999; 

Dhadialla et al. 1998; Waddy et al. 2002; Soin et al. 2010). Moreover, the cell line could also 

present a more fundamental scientific vehicle to compare the functionality and interactions of 

intra- and interspecies EcR-RXR/USP isoform heterodimers. For example, it would enable to 
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screen potential RXR ligands for their effect on ecdysteroid signalling, which is expected to 

be different between insects and crustaceans (Fang et al. 2005; Hayward et al. 2003; Iwema et 

al. 2009; Wang & LeBlanc 2009).  

The results however indicate the sensitivity and robustness of the used Drosophila reporter 

system can be enhanced. The observed luciferase induction levels by the exogenous shrimp 

receptors were only slightly (but yet significantly) higher than that of the negative control 

(non-transfected L57-3-11 cells). The cell line exhibits a noticeable FI, as endogenous 

DmEcR receptor isoforms other than B1 and B2 are still active. The endogenous expression 

of DmEcR isoforms and DmUSP may be specifically inactivated through modern in situ 

genome editing techniques such as zinc-finger nucleases and transcription activator-like 

effector nucleases (TALENs). Minor differences in the cellular machinery involved in 

ecdysteroidal transactivation (e.g. substituents of the coactivator complex) between dipterans 

and crustaceans may also be an important factor, as the positive control (transfection with 

DmEcR-B1) gave much higher FIs than the CrcEcR transfections. The use of a crustacean 

EcRE in the reporter construct instead of a Drosophila EcRE can be a relatively easy 

adaptation to increase the sensitivity of the system towards exogenous crustacean EcR 

receptors. Furthermore, in transient transfected cells, variability in cell number and especially 

transfection efficiency can have an unwanted effect on the magnitude of receptor and reporter 

expression and hence in measured FIs. After the expression of the exogenous CrcEcRs and 

CrcRXRs has been successfully performed through transient transfections, stable transfections 

(using a vector containing a selectable marker gene) can be performed to isolate and 

propagate clones which have incorporated the transfected CrcEcR and CrcRXR genes in the 

cellular genome. The use of robust stable cell lines would greatly reduce the variability which 

is inherent to transient cell lines. 

 

3.4.2 The antagonistic ecdysteroidal effect of the RXR agonist TBT 

While the physiological presence and functionality of natural RXR ligands is still under 

debate, the ubiquitous environmental pollutant TBT has been shown to be a potent RXR 

agonist in many species, especially in gastropods. In the current experiment, a reduction of 

64% in gene transactivation was demonstrated caused by 10 nM PonA, when our insect cell 

reporter system containing CrcEcR and CrcRXR was exposed to 10 nM TBTO. Along this 

line, 3D docking confirmed that TBT indeed fits in the modelled LBP of CrcRXR. Earlier, 

Mu & LeBlanc (2004) reported that TBT and other RXR agonists such as MF and 
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pyriproxyfen also have an antagonistic effect on the ecdysteroid signalling in water flea D. 

magna. Recently, Wang & LeBlanc (2009) reported that TBT directly activates D. magna 

RXR, in contrast to the other RXR agonists tested. Furthermore, they found a potentiating 

effect of TBT at 100 nM on the signalling by 1 µM of 20E in human HepG2 cells transfected 

with D. magna EcR and RXR. The differences in activity of TBT(O) between our and the 

latter study (inhibition versus stimulation) likely are the result from the type of in vitro 

reporter system used. In Wang & LeBlanc (2009), luciferase expression is induced by the 

Gal4-RXR construct. Heterodimerization of this construct with the daphnid EcR renders the 

construct ecdysteroid responsive, and thus creates a situation opposite of natural EcR:RXR 

heterodimer functioning. Our system better reflects the natural situation, as luciferase 

expression is induced by interaction of the CrcEcR DBD with an ecdysteroid responsive 

element, while TBT negatively modulates CrcEcR activity through its heterodimerization 

partner RXR. 

Furthermore, using a semiquantitative RT-PCR approach, we showed that TBTO leads to 

tissue- and isoform-specific alterations of EcR and RXR expression. EcR and RXR are 

ecdysteroid responsive genes as proven in adult female D. magna (Wang et al. 2007) and 

Americamysis bahia (Hopkins e al. 2008). Wang et al. (2007) showed that the RXR agonist 

pyriproxifen down regulates RXR mRNA expression in female D. magna, while 20E up 

regulated RXR mRNA expression. In contrast, exposure of C. pugilator to the RXR ligand 

all-trans-RA increased UpRXR mRNA expression, while no immediate change in UpEcR 

mRNA expression was observed (Chung et al. 1998). In C. crangon, we observed a strong 

down regulation of CrcEcR, CrcEcRD-18 and CrcRXR in the ovaries and up regulations of 

CrcEcRD-18 and CrcRXRD-5 in the hepatopancreas and of CrcEcR in the hypodermis. To our 

knowlegde, this is the first report that a TBT compound is inducing tissue- and isoform-

specific alterations of EcR and RXR mRNA expression in Crustacea.  
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4.1 Introduction 

Spatial and recent data on OT concentrations in common shrimp are too scarce to investigate 

the potential hazardous effects of OTs in wildlife C. crangon populations. A limited amount 

of data on OT concentrations in C. crangon is available for the Westerschelde and the 

Southern Bight only (Table 4.1).  

 

Table 4.1. Earlier reported OT concentrations (in µg kg
-1

 DW shrimp meat) in C. crangon. 

OT Location Concentration Date Reference 

TBT BCS3 368 June 2003 Willemsen et al. 2004 

TBT BCS3 259 June 2003 Willemsen et al. 2004 

TBT W. Schelde 575.2 Spring 2003 Veltman et al. 2006 

TPhT W. Schelde 50.1 Spring 2003 Veltman et al. 2006 

TBT W. Schelde 350-1700 March 2003 – July 2005 Janssen et al. 2007 

TPhT W. Schelde 36-260 March 2003 – July 2005 Janssen et al. 2007 

 

In this chapter, TBT and TPhT concentrations are reported in C. crangon caught within a 

short time frame (1
st
 of September – 10

th
 of November 2009) at multiple sampling stations 

ranging from De Panne (Belgium) to Esbjerg (Denmark), covering the major commercial 

fishing grounds. Furthermore, we focus on the Westerschelde as a heavily polluted European 

estuary, associated with one of the most densely populated areas (Flanders) and largest ports 

(Antwerp) in the world, while it encompasses a large C. crangon population and an important 

nursery ground, the estuarine tidal marsh “Verdronken Land Van Saeftinghe” (Cattrijsse et al. 

1997). The trend in C. crangon TBT and TPhT content along the salinity gradient is related to 

the sediment concentrations. Associated biota-sediment accumulation factors (BSAFs) are 

derived.  

 

4.2 Material and methods 

4.2.1 Sample collection 

Samples were collected between the 1
st
 of September 2009 and the 10

th
 of November 2009 

during the Dutch, German and Belgian Demersal (Young) Fish Surveys (DFS in the 

Netherlands, DYFS in Germany and Belgium), performed by the Institute for Marine 

Resources and Ecosystem Studies (IMARES, The Netherlands), Johann Heinrich von 

Thünen-Institute, Institute of Sea Fisheries (vTI-SF, Germany) and the Institute for 

Agricultural and Fisheries Research (ILVO, Belgium; all sample information is given in 

Table 4.2). 
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Samples were immediately frozen aboard and stored at -20 °C at the related institutes prior to 

dispatching in polystyrene foam insulated containers to ILVO in Oostende. Further sample 

preparation, extraction, clean-up, gas chromatographic (GC) analyses and quality control were 

done in accordance with the guidance for monitoring OTs in marine biota (Monteyne et al. 

2010) and were performed at the marine chemistry lab of the Management Unit of the North 

Sea Mathematical Models and the Scheldt estuary (MUMM) in Oostende, an accredited 

laboratory in accordance with the recognized International Standard ISO/IEC 17025:2005.  

 

4.2.2 Sample preparation 

Shrimp were allowed to thaw overnight, peeled and briefly rinsed with ultrapure water to 

obtain approximately 100 g of tail muscle for each sampling station. Samples were mixed in 

borosilicate petri-dishes using a rotor/stator type homogenizer (Ultraturrax T25 basic, IKA-

Labortechnik, Staufen, Germany), freeze-dried with a Christ LMC-2 (Martin Christ 

Gefriertrocknungsanlagen, Osterode am Harz, Germany) lyophilizer and pulverized manually 

using a porcelain mortar and pestle. The powder was weighed for calculation of dry weight 

(DW) – wet weight (WW) ratio, and stored in a desiccator cabinet for days until analysis. 

 

4.2.3  Sample extraction and clean-up 

The procedure for OT extraction was based on the use of acid reagents in methanol and 

stirring in hexane. About 1 g of shrimp powder was transferred into an amber 40 ml screw cap 

vial, l5 ml methanol and 7 ml hexane were added. Samples were buffered to pH 5 by adding 3 

ml 4 M sodium acetate. An aliquot of 25 µl of tripropyltin solution (10 µg Sn g
-1

 in methanol) 

was added as recovery standard prior to derivatization for QA/QC purposes to control the 

ethylation efficacy of TBT. Ethylation is combined with a continuous desorption process by 

adding 4 ml of sodium tetraethyl borate (Sigma-Aldrich,) prepared with deionized water (5%, 

v/v) drop by drop to vigorously stirred samples. For degradation of boroxin, formed due to the 

intensive derivatization (Smedes et al. 2000), an aliquot of 5 ml of 10 M sodium hydroxide 

was added to the samples. Finally, internal standards tetrapropyltin (used for quantification) 

and pentyltriphenyltin (additional standard for QA/QC purpose) of a concentration of 4 µg Sn 

g
-1

 in hexane were added to the samples, and the phases were separated by centrifugation. All 

solvents used were of purity for organic residue analysis. Chlorinated and ethylated OTs were 

obtained from QUASIMEME (Wageningen, The Netherlands). Internal standard and recovery 

standard tetrapropyltin and tripropyltin chloride were purchased from Schmidt (Amsterdam, 
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The Netherlands). Glassware was washed with 10% hydrochloric acid and rinsed six times 

with ultrapure water. Custom-made chromatography columns (200 mm x 9 mm internal 

diameter (ID)) filled with 2 g of florisil (Merck, Darmstadt, Germany) and 25 ml of hexane 

was used for clean-up elution. The extracts were stored at 4 °C until GC-analysis.  

 

4.2.4  Gas chromatographic analysis 

A large-volume injection technique was developed (Monteyne et al. in prep.). 50 µl of sample 

was injected by an autosampler (Combipal, CTC Analytics, Italy) at a rate of 1.7 µl s
-1

 

through a Programmed Temperature Vaporizing (PTV) injector (Thermo Electron 

Corporation, Austin, Texas), using a glass sintered liner. The analytic system consisted of a 

Trace GC (ThermoQuest, Milan, Italy), a 20 m Rtx
®

-5 SILMS analytical column (0.25 mm 

ID) with a 5% phenyl polysilphenylene-siloxane stationary phase (0.25 µm film thickness; 

Restek, Bellefonte, USA). The oven was kept at 35 °C for 4 min and temperature was risen at 

a rate of 20 °C min
-1

 to 120 °C (ramp 1), at a rate of 7 °C min
-1

 to 150 °C (ramp 2) and finally 

at a rate of 20 °C min
-1

 to 300 °C (ramp 3) (5 min hold). A carrier flow of helium of 1.5 ml 

min
-1

 was used. The compounds were detected by a Finnigan Trace MS in electron-impact 

ionisation mode operating in selected ion monitoring. 

 

4.2.5  Quality control 

Multi-level calibration curves (r
2
 > 0.995) in the linear response interval of the detector were 

created for quantification. The identification was based on retention times and intensity ratios 

of three monitored ions for quantification. The quality control was performed by regular 

analysis of procedural blancs, a procedural spike of 100 ng Sn g
-1

, duplo measurements, 

internal reference material (mussel tissue) and certified reference material (mussel tissue 

ERM
®
-CE477). Recovery of MBT, DBT and TBT in ERM

®
-CE477 was respectively 117 ± 

14%, 97 ± 15% and 99 ± 11% (n=12, 4 year period). Recovery of TPhT in the procedural 

spike is 90 ± 15%. Also half yearly an international proficiency test was successfully 

participated (QUASIMEME). Limits of quantification (LoQ) for TBT and TPhT were 1 µg 

kg
-1

 DW. LoQs of monobutyltin (MBT), dibutyltin (DBT), monophenyltin (MPhT) and 

diphenyltin (DPhT) were 10, 10, 3 and 1 µg kg
-1

 DW, respectively. 

All concentration results further used in this article are expressed as µg of OT ion kg
-1

, 

expressed on a DW basis. 
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4.2.6  Sediment data and the biota-sediment accumulation factor 

Concentrations of OTs and other pollutants and organic carbon content in the <63 μm 

sediment fraction and median grain size and CaCO3 content of unsieved sediment at the 

sampling stations in the Westerschelde estuary during 1999-2009 were obtained through 

online databases of the Belgian Marine Data Centre (BMDC, 

http://www.mumm.ac.be/datacentre/) and the Dutch Rijkswaterstaat (www.waterbase.nl). 

Sediment OT concentrations were used to calculate the biota-sediment accumulation factor 

(BSAF), a parameter describing bioaccumulation of sediment-associated non-polar organic 

contaminants into organisms or their tissues (Burkhard 2009). BSAFs are useful for 

ecological risk assessments because concentration data are usually available for sediment, in 

contrast to biota. BSAFs are applied to TBT as the organic portion of the molecule provides 

properties conducive to yielding meaningful BSAFs. As TBT does not accumulate in fatty 

tissues as organic contaminants but accumulates in body tissues in a similar manner as metals 

(i.e.through selective binding to proteins; Kannan et al. 1996; Kim et al. 1996; Tanabe 1999), 

tissue concentrations were not lipid normalized and expressed on a DW basis. Thus, the 

BSAF for TBT is calculated from three measured variables: concentration of TBT in the 

organism on a dry weight basis (Co, in µg kg
-1

 DW), concentration of TBT in the <63 µm 

sediment fraction on a dry weight basis (Cs, in µg kg
-1

 DW),), and the organic carbon content 

of the dry <63 µm sediment fraction (fsoc, in g organic carbon g
-1

 DW): 

     
  

      ⁄
, in µg kg

-1
 tissue DW / µg organic carbon kg

-1
 DW 

  

4.2.7 Tolerable human daily intake (TDI) 

Based on the no observed adverse effect level of TBT for immunotoxicity in rats, multiplied 

with a safety factor 1/100, a TDI of 0.25 μg kg
-1

 body weight has been proposed (Penninks, 

1993). The European Food Safety Authority (EFSA) established a group TDI for the sum of 

DBT, TBT, TPhT and dioctyltin (DOT) to 0.25 μg kg
-1

 body weight, due to the similarity of 

their immunotoxic properties. Hence, for each sampling station, summed OT concentrations 

were used to calculate the allowed daily consumption (in kg FW shrimp meat). 
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4.3 Results and discussion 

4.3.1  Spatial distribution of OT accumulation in common shrimp  

In the autumn of 2009, TBT and TPhT levels in shrimp ranged from 4-124 and from 1-24 μg 

kg
-1

 DW, respectively (Fig.4.1; Table 4.2). Levels of MBT, DBT, MPhT and DPhT were all 

below the LoQs (10, 10, 3 and 1 μg kg
-1

 DW, respectively) and are not further discussed. In 

general, offshore OT concentrations are low, but increase towards major estuaries 

(Westerschelde, Rhine-Meuse Delta, Ems-Dollard, Weser and Elbe). In this respect, shrimp 

OT concentrations in the German Bight (GW2-GW10, Fig.4.1; Table 4.2) are relatively high, 

increasing towards the Elbe estuary. The German Bight is characterized by a high direct 

inflow of riverine water from the Weser and Elbe and advection from the rivers Rhine, Meuse 

and Ems-Dollard through the continental coastal current. In the German Bight, intensive 

shipping activity and strong tidal shear currents lead to a continuous disturbance of the 

sediment bed and resuspension of particulate matter, which affects the biological availability 

of pollutants (Becker et al. 1992). 

TPhT concentrations relative to TBT were highest (>50%) in the stations near the Schelde and 

Ems-Dollard estuaries and within the Oosterschelde estuary (BCS1, BCS2, ES1, NW8, 

NCS5, GW1), reflecting the large (historic) use of fentin fungicides in (potato) agriculture in 

the related catchment areas. Lowest OT concentrations were observed inshore in the Southern 

Wadden Sea near Texel, near-shore at the Northern Wadden islands Sylt and Rømø and 

offshore at the Southern sandbanks near De Panne. 

 

 

 

 

 

 

 

 

Fig. 4.1. (pages 82-83). Spatial distribution of TBT (light grey bars) and TPhT (dark grey 

bars) concentrations in shrimp meat (Y-axis, in μg kg
-1

 DW) from the stations along the 

South-Eastern coast of the North Sea. 

 

Table 4.2. (page 84). Sample station details, measured OT concentrations (in µg kg
-1

 dry 

weight (DW) shrimp meat) and the allowed daily consumption of shrimp meat (in kg fresh 

weight (FW)) according to the TDI of OTs for a 60 kg person. 
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Station Date Latitude Longitude Vessel  TBT TPhT  TDI 

BCS1 1/10/09 51°19.35’N 2°27.80’E Belgica  5 3  8.37 

BCS2 2/10/09 51°18.55’N 2°38.06’E Belgica  6 4  4.70 

BCS3 29/09/09 51°25.50’N 3°7.00’E Belgica  29 13  1.59 

ES 1 22/09/09 51°38.90’N 3°44.98’E Schollevaar  12 7  3.52 

NCS1 2/11/09 51°50.62’N 3°52.37’E Isis  27 7  1.97 

NCS2 1/10/09 52°27.05’N 4°29.27’E Isis  13 4  3.94 

NCS3 22/10/09 52°44.30’N 4°35.21’E Isis  9 3  5.58 

NW 1 7/09/09 53°4.52’N 4°59.38’E Stern  6 2  8.37 

NW 2 2/09/09 53°9.87’N 4°53.56’E Stern  5 1  11.16 

NW 3 20/09/09 53°13.08’N 5°11.23’E Stern  9 2  4.09 

NW 4 1/09/09 53°17.13’N 5°3.58’E Stern  7 2  7.44 

NW 5 16/09/09 53°22.03’N 5°47.72’E Stern  14 2  4.19 

NCS4 7/10/09 53°32.32’N 5°47.56’E Isis  6 2  8.37 

NW 6 17/09/09 53°24.04’N 6°15.22’E Stern  11 5  4.19 

NW 7 21/09/09 53°32.43’N 6°25.58’E Stern  12 4  4.19 

NW 8 23/09/09 53°27.82’N 6°33.68’E Stern  7 4  4.09 

DE 1 30/09/09 53°19.04’N 7°4.70’E Isis  31 11  1.59 

NCS5 7/10/09 53°42.64’N 6°43.18’E Isis  5 4  7.44 

GW 1 15/09/09 53°43.12’N 7°28.63’E Chartered  6 4  4.70 

GCS1 16/09/09 53°48.47’N 7°31.85’E Chartered  8 3  4.09 

GW 2 9/09/09 53°47.13’N 8°8.25’E Chartered  15 6  3.19 

GW 3 10/09/09 53°43.08’N 8°23.12’E Chartered  33 7  1.67 

GW 4 10/09/09 53°49.72’N 8°18.03’E Chartered  16 5  3.19 

GW 5 30/09/09 53°57.45’N 8°32.85’E Chartered  39 7  1.46 

GW 6 29/09/09 53°51.43’N 8°49.97’E Chartered  61 7  0.98 

GCS2 15/09/09 54°4.27’N 8°31.60’E Chartered  32 4  1.86 

GW 7 16/09/09 54°5.45’N 8°38.70’E Chartered  28 6  1.97 

GW 8 14/09/09 54°8.32’N 8°49.27’E Chartered  24 5  2.31 

GW 9 24/09/09 54°23.22’N 8°33.43’E Chartered  17 3  3.35 

GW10 24/09/09 54°27.12’N 8°42.58’E Chartered  14 3  3.94 

GW11 23/09/09 54°34.60’N 8°24.78’E Chartered  8 3  4.09 

GW12 8/10/09 55°0.50’N 8°21.00’E Isis  6 2  8.37 

DCS1 28/09/09 55°13.33’N 8°17.25’E Chartered  4 1  13.39 

DCS2 10/11/09 55°21.33’N 8°20.58’E Chartered  9 2  4.09 

DCS3 28/09/09 55°25.10’N 8°14.35’E Chartered  12 2  4.78 

DCS4 28/09/09 55°31.53’N 8°5.65’E Chartered  9 3  5.58 

DCS5 28/09/09 55°34.00’N 8°0.50’E Chartered  9 2  4.09 

WS 1 29/09/09 51°25.46’N 3°21.50’E Belgica  46 17  1.06 

WS 2 14/10/09 51°24.00’N 3°31.75’E Zeeleeuw  50 14  1.05 

WS 3 14/10/09 51°25.87’N 3°40.21’E Zeeleeuw  73 17  0.74 

WS 4 14/10/09 51°22.11’N 3°43.92’E Zeeleeuw  107 20  0.53 

WS 5 15/10/09 51°20.85’N 3°49.86’E Zeeleeuw  124 20  0.47 

WS 6 15/10/09 51°21.42’N 3°53.13’E Zeeleeuw  122 22  0.47 

WS 7 14/10/09 51°25.67’N 4°0.71’E Zeeleeuw  85 21  0.63 

WS 8 15/10/09 51°22.32’N 4°5.33’E Zeeleeuw  107 24  0.51 

WS 9 14/10/09 51°22.62’N 4°8.99’E Zeeleeuw  91 23  0.59 
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4.3.2 Detailed spatial distribution of OT accumulation in common shrimp in the 

Westerschelde estuary 

In Westerschelde estuary shrimp, TBT concentration increases gradually from 50 μg kg
-1

 DW 

near Vlissingen (WS2) to 124 μg kg
-1

 DW upstream of Terneuzen (WS5) (Fig. 4.1). Further 

upstream near Hansweert (WS7) the concentration drops to 85 μg kg
-1

 DW, and tends to rise 

again further upstream (107 μg kg-
1
 at WS8). A similar spatial pattern in OT concentration in 

sediment is observed (Fig. 4.3.2A) (Monteyne & Roose, data courtesy of BMDC). The lower 

OT concentrations in shrimp and sediment at WS7 is related to the strong currents associated 

with the narrow cross-section of the estuary near Hansweert, which prevent the local 

deposition of finer, CaCO3 rich sediments (Fig. 4.2B). Sediment data also reveal TBT does 

not tend to accumulate like the organic pollutant benzo-[a]-pyrene (fig 4.2.E) but rather like 

mercury (Fig. 4.2C), which is in line with the metal-type accumulation of TBT observed in 

biota (Tanabe 1999). For TPhT, a similar trend was clear in the sediment but less clear in 

shrimp. TPhT concentrations in shrimp increase gradually from 14 to 24 μg kg
-1

 DW between 

Vlissingen and Saeftinghe. In sediment, TPhT concentration increases from 2 to 7.5 μg kg
-1

 

DW, with an intermediary minimum at WS7. 
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Fig. 4.2. (A) TBT and TPhT concentrations (Y-axis, in μg kg

-1
 DW) in shrimp meat and in the 

<63 µm sediment fraction along the longitudinal gradient in the Westerschelde estuary (X-

axis).(B) CaCO3 content (Y-axis, in g kg
-1

 DW) and the inverse median grain size (Y’-axis, 

inverted, in μm) of the sediment. (C) and (D) <63 µm sediment mercury and benzo-[a]-pyrene 

content (Y-axis, in μg kg
-1

 DW), respectively. (E) Total organic carbon content of the <63 µm 

sediment fraction. 
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4.3.3 Temporal variation of TBT in shrimp and sediment and BSAF in the 

Westerschelde estuary 

Based on our measurements at sampling station BCS3 (29 μg kg
-1

 DW) and the findings of 

Willemsen et al. (2004) near BCS3 (368 and 259 μg kg
-1

 DW), the TBT concentration in 

shrimp has decreased 8-fold in 10 years. Several observations indicate that the associated 

BSAFs should be based on the TBT concentrations measured in sediment instead of in 

suspended solids. TBT content in shrimp exhibits a comparable spatial trend as in sediment 

(Fig. 4.2.A). The sediment in the Westerschelde exhibits a clear spatial (Fig. 4.2.A) and 

temporal trend in TBT content (Fig. 4.3).  

 

 
 

Fig. 4.3. Temporal trend of <63 μm sediment TBT concentrations (Y-axis, in μg kg
-1

 DW) in 

the Westerschelde lower estuary (Terneuzen–Vlissingen, between WS2-WS6) and mouth 

(Southern Vlakte van de Raan, roughly near BCS3-WS1) during 1999-2009 (X-axis). 

Concentrations from different sampling locations (see Fig.4) were pooled for the lower 

estuary and mouth. Means, standard deviations and sample sizes are presented for each 

sampling date. The single measurement (<LoQ) in the Westerschelde mouth in the summer of 

2009 is depicted as 1 μg kg
-1

 DW. 

 

 
 

Fig. 4.4. Geographical situation of the sample locations used in Fig.4.3 and equations 4.1 and 

4.2. The concentrations at the locations marked with a white diamond and black square were 

used for the Schelde mouth and estuary, respectively. 
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The exponential regression associated with the temporal trend (equation 4.1) show a good fit 

(R² = 0.93).  

 

Equations 4.1 and 4.2. Exponential regression formula of the temporal trend in TBT 

sediment (<63 µm fraction) concentration in the Westerschelde lower estuary (4.1) and mouth 

(4.2). 
 

         (                      )                          (                       )⁄⁄   (Eq. 4.1) 

 

         (                      )                         (                       )⁄⁄  (Eq. 4.2) 

 

 

The regression formula was used to extrapolate the decreasing TBT concentration in the lower 

Westerschelde estuary to October 2009, the period of shrimp sampling, and to subsequently 

derive the related BSAFs. Based on the average TBT content in shrimp muscle (101.3 ± 19.1 

µg kg
-1

 DW) at stations WS3-WS9, the TBT content in the <63 µm fraction in the lower 

Schelde estuary in September 2009 deduced from equation 4.1 (12.3 µg kg
-1

 DW), an organic 

carbon normalized BSAF of 0.15687 ± 0.03029 (in µg kg
-1

 tissue DW / µg kg
-1

 organic 

carbon DW) is derived for shrimp in the Schelde estuary. An averaged organic carbon content 

of 1.88 ± 0.15% (n = 49, at 9 sampling stations) was applied, as the spatial variation in 

organic carbon content in the <63µm sediment fraction of the Westerschelde estuary content 

was small during 1993-2007 (Fig. 4.2.E). For reasons of comparison with other marine biota, 

Veltman et al. (2006) derived a C. crangon BSAF of 1.4 based on the TBT concentration in 

DW suspended solids, which was the highest BSAF observed in various marine invertebrates 

and fish species. These findings were in line with these of Takahashi et al. (1999), who found 

a limited metabolization capacity of TBT in Caprellidae (Crustacea; Malacostraca) compared 

to other marine species. 

 

4.3.4 Consumer health risk 

DW to FW ratio of peeled shrimp was determined at 22.4 ± 1.1% (n = 46). According to the 

TDI set by EFSA, a 60 kg person is allowed to consume 5.22 ± 2.86 kg on a daily basis (n = 

35; Table 4.2) of FW shrimp meat from commercially exploited shrimp areas (excluding the 

inner Ems-Dollard estuary, Oosterschelde and Westerschelde). This renders common shrimp 

a healthy seafood product, in contrast to less than a decade ago. In 2003, the daily 

consumption of 169 g of peeled shrimp was sufficient to exceed the TDI for TBT alone. 

According to Avia et al. (2011), the average daily consumption of C. crangon meat in 
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Germany and Belgium is estimated at 0.063 g and 1.4 g per person, respectively. These 

numbers should be handled with care, as a large part of especially the German population are 

virtually non-consumers, but it can be concluded that even people consuming common shrimp 

on a daily basis can do so with no health risks with respect to OT intake. 
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Disruption of downstream gene 
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5.1 Introduction 

Although the in vitro assay clearly showed disruption of NR functioning at subtoxic TBT 

concentrations in chapter 3, it remains tedious to link these molecular observations with the 

observed population decline and reduced percentage of gravid shrimp (Siegel et al. 2008), due 

to the intrinsic complex nature of the shrimp endocrine system and the limited fundamental 

insights in these pathways. Most importantly, disruption of NR functioning does not 

necessarily translate into observable endocrine disruption in the actual organism. Moreover, 

there are invariably multiple potential stressors in the natural environment, further hampering 

the examination into the causative MOA of the observed effects in the natural population. 

Even under stringent laboratory conditions, end-point effects may be of an obscure, but nocif 

nature. Subtle changes in endocrine functioning may have delayed, but detrimental 

consequences that become evident later in adult life, or even in a subsequent generation. 

Therefore, long-term multi-generation exposures are preferred to verify EDC effects at the 

organism and population level, but such tests are practically unfeasible due to long exposure 

times and poor survival of shrimp under laboratory conditions. An alternative approach is to 

look at the EDC induced changes in normal patterns of gene expression, either as a direct or 

as a compensatory response. The relatively new research field of ecotoxicogenomics, which 

combines classical toxicity testing with high-throughput genomic techniques (i.e. microarray) 

and related bioinformatics, has the potential to unravel the complex gene expression cascades 

affected by TBT.  

In this chapter, the effects of TBT on shrimp gene transcription is assessed by constructing a 

shrimp specific DNA microarray, which allows us to compare the relative expression of 

multiple genes in two different samples (e.g. exposed shrimps versus a reference sample) in 

one analysis. A DNA microarray is a specially treated glass microscope slide on which many 

small, known DNA ‘spots’ are linked to the surface in a well-organized pattern (i.e. replicate 

spots, control spots,…). The mRNA from both samples is then extracted, converted into two 

cDNA samples which each receive a different fluorescent label (cyanine 3 and 5). Then, both 

samples (exposed and reference) are combined on a single microarray slide, where the 

differentially labelled cDNAs will compete for hybridization with the available DNA spots of 

matching sequence. The resulting image of fluorescent spots is visualized in a confocal 

scanner and digitized for quantitative analysis, and thus indicates the relative abundance of 

each spotted DNA gene fragment in the mRNA samples.  
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To date, no full genomic DNA sequence or large scale transcript datasets are available for C. 

crangon. A shrimp EST library enriched with sex-associated gene fragments was constructed 

through SSH-PCR to be able to build the custom microarray. In SSH-PCR, hybridization and 

subsequent suppression of common gene fragments within both mRNA samples (i.e. male and 

female) leads to a 10 to 100 fold enrichment of differentially expressed mRNAs.  

5.2 Material and methods 

5.2.1 Suppressive subtraction hybridization – PCR (SSH-PCR) 

RNA was extracted using TriReagent
®
 (Sigma-Aldrich NV, Bornem, Belgium), according to 

the manufacturer’s protocol, from five large male (56-63 mm LT) and five female (78-86 mm 

LT) shrimp. A DNase treatment was performed with 1U RNAse-free DNase and 1U RNAse 

inhibitor per 30 µl sample (Fermentas, St. Leon-Rot, Germany). The quality and quantity of 

the extracted RNA was examined by gel electrophoresis and spectrophotometry using a 

Nanodrop™ ND-1000 (Thermo Fisher Scientific BVBA, Asse, Belgium). The five male and 

five female RNA samples were brought to a common concentration of 200 ng µl
-1 

and pooled 

per sex to two 1 µg RNA samples. cDNA was prepared using a SMART approach (Zhu et al. 

2001). SMART Oligo II oligonucleotide and CDS primer (Table 5.1) were used for first-

strand cDNA synthesis. In both cases, first-strand cDNA synthesis was started from 0.5 µg 

RNA in a total reaction volume 10 µl. 1 µl of 5-times diluted first-strand cDNA was then used 

for PCR amplification with SMART PCR primer. 19 PCR cycles (each cycle included 95°C 

for 10 s; 66°C for 20 s; 72°C for 3 min) were performed. SMART-amplified cDNA samples 

were further digested by Rsa I endonuclease. 

 

Table 5.1. Oligonucleotides used during SSH-PCR 

 

  

SMART Oligo II 5’-AAGCAGTGGTATCAACGCAGAGTACGCrGrGrG-3’ 

CDS primer 5’-AAGCAGTGGTATCAACGCAGAGTAC-d(T)30-3’ 

SMART PCR primer 5’-AAGCAGTGGTATCAACGCAGAGT-3’ 

Adapter 1 5’-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3’ 

3’-GGCCCGTCCA-5’ 

PCR primer 1 5'-CTAATACGACTCACTATAGGGC-3' 

Nested primer 1 5'-TCGAGCGGCCGCCCGGGCAGGT-3' 

Adapter 2R 5'-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3' 

3'-GCCGGCTCCA-5' 

Nested primer 2R  5'-AGCGTGGTCGCGGCCGAGGT-3' 
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Subtractive hybridization was performed in both directions (male vs. female and female vs. 

male) as described in Diatchenko et al. (1996, 1999). A graphical representation of the SSH-

PCR method is given in Fig. 5.1.Briefly, the following procedures were performed: for each 

direction, two tester populations were created by ligation of different suppression adapters 

(Adapters 1 and 2R). These tester populations were mixed with 30X driver excess (driver 

cDNA had no adapters) in two separate tubes, denatured and allowed to renature. After first 

hybridization, these two samples were mixed and hybridized together. Subtracted cDNA was 

then amplified by primary PCR (25 cycles with PCR primer 1) and secondary PCR (10 cycles 

with nested primers 1 and 2R). 

 

5.2.2 Sex specific shrimp cDNA library 

cDNA fragments of both enriched libraries were ligated into the pGEM-T vector (Promega, 

Madison, WI) and transformed competent JM 109 E. coli cells (Promega, Madison, WI), 

according to the manufacturer’s protocols. Insert containing clones were isolated from the 

LB-agar plates using blue/white screening (Messing et al. 1977), and grown overnight in 

150µl liquid LB medium in 96-well microtiter plates. Lysates, replicates and glycerol stocks 

were made. Clone inserts were amplified from the lysates with vector-specific primers (SP6 

and T7 primer). PCR products were purified enzymatically with exonuclease I and shrimp 

alkaline phosphatase according to Werle et al. (1994). Specificity of amplification was 

checked with agarose gel electrophoresis, and PCR yield was quantified using a Nanodrop™ 

ND-1000 microspectrophotometer. The PCR products were sequenced by the VIB Genetic 

Service Facility (http://www.vibgeneticservicefacility.be). Expressed sequence tag (EST) 

sequences were extracted from the raw data by trimming vector and primer sequences from 

the insert sequences and removing any sequences of poor quality (<50 bp). The Codoncode 

sequence assembly program was applied on the combined EST data of both cDNA libraries to 

obtain a maximal of contiguous consensus sequences (‘contigs’). The obtained contig and 

singlet sequences were identified based on their similarity to sequences in the National Center 

for Biotechnology Information (NCBI) database as determined by the Basic Local Alignment 

Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/BLAST). The obtained sequences were 

compared with DNA and protein databases using BLASTN and BLASTX analysis software, 

respectively. Functional annotation with Gene ontology (GO) terms was performed using the 

bioinformatics tool ‘BLAST2GO’ (www.blast2go.de).  
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Fig. 5.1. Scheme of the SSH method. Solid lines represent the RsaI digested tester or driver 

cDNA. Solid boxes represent the outer part of adapter 1 and corresponding PCR primer P1. 

Shaded boxes represent the outer part of adapter 2 and corresponding PCR primer P2. Clear 

boxes represent the inner part of the adapters and corresponding nested PCR primers NP1 and 

NP2. Note that after filling in the recessed 3’ ends with DNA polymerase, types a, b, and c 

molecules having adapter 2 are also present but are not shown (reproduced from Diatchenko 

et al. 1996) 
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5.2.3 Microarray construction 

A total of 604 unique EST fragments were chosen from both cDNA libraries (Fig. 4.1), 

amended with CrcEcR, CrcRXR, β-actin, GAPDH and 18S rRNA cDNA fragments, for 

microarray construction. Before spotting, PCR products were purified using Montage PCR96 

Plates (Millipore, Billerica, MA, USA) and transferred to 384-well V-bottomed plates 

(Genetix, Hampshire, UK) in 50% DMSO at a concentration of approximately 67.5 ng l
-1

. A 

Qarray Mini Robot (Genetix, Hampshire, UK) with an 8- solid pin-head was used to spot 9 

blocks in quadruplicate fields on aminosilane coated Nexterion
®
 microarray slides (Schott 

AG, Mainz, Germany). Each replicate field also contained artificial control genes 8,9, 10 from 

the SpotReport Alien cDNA Array Validation System (Stratagene, La Jolla, CA) (labelling 

and hybridization efficiency, sensitivity, intra-array variability), negative control spots human 

β actin and salmon sperm DNA (non-specific hybridization); and a SSC buffer spot (pin 

carryover). After spotting, the arrays were moistened over a hot water bath, snap-dried and the 

cDNA was covalently cross linked to the slide using 3×10
5
 J ultraviolet radiation (UV 

Stratalinker 2400, Stratagene, La Jolla, CA, USA). 

 

5.2.4 Chemicals, exposure, and RNA preparation  

The TBT concentrations in C. crangon observed by Janssen et al. (2007) in the period 2002-

2006 ranged between 350-1,700 µg kg
-1

 DW. However, no BCF for TBT in C. crangon is 

currently available to estimate the needed exposure level to obtain these tissue concentrations. 

BCFs for other crustaceans are available, but vary considerably between species. Regarding 

the close relationship of shrimp with the sediment, one of the main routes of exposure of 

shrimp to TBT is through sediment pore water. In estuarine sediments, filtered pore water 

concentrations of TBT up to 2.35 µg l
-1

 have been observed (Burton et al. 2004). As this level 

more or less corresponds to the LC1 (1.3 µg l
-1

) observed in the 96 hr acute exposure of 

shrimp to TBT in chapter 3 (Fig. 3.4.), the highest exposure concentration for the subtoxic 

exposure was set at 2 µg l
-1

. The static-renewal exposure experiment consisted of four 

exposure concentrations (i.e. 2,000, 200, 20 and 2 ng l
-1

 TBTO) and a control, each in four 

replicate 40L glass tanks and 10 shrimp per replicate. Adult shrimp were bought from North 

Sea Life (www.northsealife.be). 200 female shrimp from 55-60 mm LT were selected and 

acclimatized in the exposure facility during 24 hours. In each replicate, shrimp were separated 

by vertical, perforated PET-G plates to avoid social stress (e.g. cannibalism). The shrimp were 

fed 25 g Calanus finmarchicus (“Red plankton”, Ocean Nutrition Europe NV, Essen, 

Belgium) ad libitum in the late afternoon on a daily basis. A 18L:6D light regime (28.7 ± 13.7 
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lux) was applied, including an artificial sunrise and sunset of 30 min each. Seawater was 

directly pumped from the nearby beach in Oostende, filtered through a 10µm carbon filter, 

continuously aerated and kept at 15°C. pH, temperature, %O2 and salinity were monitored in 

the control replicates on a daily basis and just before and after water renewal. Debris (i.e. 

unconsumed food, faeces, shedded exoskeletons) was removed and 80% of the tank volumes 

was renewed each 48 hours through siphoning. Prior to each renewal, a stock solution of 120 

µg l
-1

 TBTO was prepared in a disposable polypropylene measuring jug. Effluent water was 

filtered over a double 10µm carbon filter (>99.8% of OTs were captured) prior to disposal. 

Because of the poor laboratory survival of shrimp, the exposure experiment was sustained as 

long as the average survival of the control replicates was higher than 70%. 

From each replicate, cephalothoraxes were collected in 7.5 volumes of RNAlater
®
 (Qiagen) 

and placed at 4°C overnight for RNA extraction. Abdomens were pooled per concentration 

(including the control) to obtain a sufficient amount of tissue for OT determination. 

Subsequent homogenization, sample extraction, clean-up and gas chromatographic analysis 

were described in 4.2.2-4.2.5. 

 

5.2.5 Preparation of cDNA, labelling and microarray hybridization 

The pooled cephalothorax samples were homogenized with mortar and pestle in liquid 

nitrogen and stored at -80 °C. RNA from 100 mg from each pooled replicate was extracted 

with TriReagent® (Sigma-Aldrich), followed by a DNase treatment with 1U RNAse-free 

DNase and 1U RNAse inhibitor per 30 µl sample (Fermentas, St. Leon-Rot, Germany). RNA 

integrity was controlled by denaturing formaldehyde-agarose gel electrophoresis. RNA 

concentration and purity were analysed on a Nanodrop 2000 spectrophotometer (Thermo-

Scientific). From each RNA sample, 5µg of RNA was diluted in 14.5 µl DEPC-treated water. 

4µg RNA from each sample was pooled in 80µl DEPC-treated water to obtain the reference 

sample needed for the reference design microarray experiment. For this design, two replicates 

from each treatment will be labelled with Cy3 and two with Cy5, which will be competitively 

hybridized with Cy5 and Cy3 labelled reference sample on a total of 20 spotted slides, 

respectively. Single strand cDNA from each sample (including references) was prepared in 30 

µl volumes with final concentrations of 0.2 µg µl
-1

 random hexamer primers (Invitrogen); 15 

µmol dATP, dCTP and cGTP and 9 µmol dTTP from the Fermentas dNTP pack; 6 µmol 

aminoallyl labelled dUTP (Gentaur BVBA, Kampenhout Belgium); 0.3 µmol DDT and 400U 

Superscript II Reverse Transcriptase (Invitrogen). cDNA samples destined to be labelled with 
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Cy3 were spiked with 1 ng mRNA spike 8, 0.5 ng mRNA spike 9 and 0.1 ng mRNA spike 1 

from the SpotReport Alien cDNA Array Validation System (Stratagene). cDNA samples 

destined to be labelled with Cy5 were spiked with 0.1 ng mRNA spike 8, 0.5 ng mRNA spike 

9 and 1 ng mRNA spike 10. Remaining RNA was hydrolysed by heating (65°C, 15 min) and 

adding 20 µl of 0.5 M NaOH and 0.25 M EDTA. These aminoallyl labelled cDNA samples 

were purified with the QIAquick PCR purification Kit (Qiagen). The columns were washed 

with potassium phosphate wash buffer (4.75 mM K2HPO4, 0.25 mM KH2PO4, pH 8.6) in 80% 

ethanol and eluted with a total of 60 µl potassium phosphate elution buffer (3.8 mM K2HPO4, 

0.2 mM KH2PO4, pH 8.6). The samples were dried in a vacuum centrifuge at 30°C during 1hr 

and labelled with Amersham CyDye Cy3 or Cy5 mono N-hydroxysuccinimidyl esters (GE 

Life Sciences) in 9 µl 50 mM Na2CO3-50% DMSO (pH 9) during 1.5 hrs in the dark at room 

temperature. Excess dyes were removed from these probes by purification with the QIAquick 

PCR Purification Kit and eluted with a total of 60 µl kit elution buffer. Labelling efficiency 

was determined with a Nanodrop 1000 spectrophotometer (Thermo-Scientific) at 550nm 

(Cy3) and 650nm (Cy5). The threshold for optimal dye incorporation was 150 pmol, and a 

frequency of incorporation of 20–50% was considered appropriate for hybridizations. From 

each labelled sample a subsample of 100 pmol dye was dried to completion in a vacuum 

centrifuge in the dark at room temperature. Prior to hybridization, the spotted microarray 

slides were pretreated with hybridisation buffer (50% formamide, 5 times standard sodium 

citrate buffer (SSC, 8.765 g l
-1

 NaCl and 4.41 g l
-1

 sodium citrate, pH7), 0.1 % SDS and 0.1 

mg ml
-1

 BSA) during 1hr at 42 °C, washed with ultrapure water (1 min) and isopropanol (1 

min) and finally dried at 1,200 rpm during 5 min. Per hybridization, the Cy3 and Cy5 labelled 

probes were each resuspended in 24 µl hybridization buffer including 0.1 mg ml
-1

 sheared 

salmon sperm DNA (Invitrogen). The resuspended probes were combined, mixed and 

denatured at 95°C during 5 min prior to application on the spotted array. Arrays were covered 

with cleaned 25 × 75 × 0.1mm coverslips (Schott AG) and incubated in a hybridization 

chamber (Genetix, Hampshire, UK) in a hybridization oven at 42°C overnight (16 hours). 

Hybridized arrays were washed in Coplin jars in a series of wash buffers, while being gently 

stirred in darkened conditions: 5 min in 2 times SSC, 0.1% SDS at 42°C; 20 min in 0.1 times 

SSC, 0.1% SDS at room temperature; 5 min in 0.1 times SSC at room temperature; 15 s in 

0.01 times SSC at room temperature; 1 min in ultrapure water at room temperature; and 

finally 1 min in isopropanol at room temperature. Washed arrays were immediately dried at 

1,200 rpm during 5 min.  
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5.2.6 Data acquisition, preprocessing and detection of differential expression  

Hybridized and washed slides were scanned at 532 and 635 nm using the Genepix Personal 

4100A confocal scanner (Axon Instruments, Union City, CA), which was placed in a Nozone 

cabinet (SciGene) to avoid ozone depletion of the fluorescent labels. The photomultiplier tube 

voltage was automatically adjusted for each slide to obtain an overall ratio close to one. 

Scanned images were analysed using Genepix pro 6.1 software (Axon Instruments) for spot 

identification and quantification of the fluorescent signal intensities. The raw datasets were 

imported in R Bioconductor (Gentleman et al. 2004). The Bioconductor package 

“arrayQualityMetrics” (Kauffmann et al. 2009) was used to assess hybridisation quality 

(Kauffmann et al. 2009). In the MA-plot of the raw data, outlier detection of microarray 

replicates was performed by computing Hoeffding's statistic Da on the joint distribution of the 

average spot intensity (A=1/2(log2(I1)+log2(I2)) and the red/green intensity ratio (M = log2(I1) 

- log2(I2)) for each array. Subsequently, the following method was applied to detect outlier 

spots on the arrays. If the intensity of a spot is not higher than the local background intensity 

plus two standard deviations of the local backgrounds on the entire array, the spot receives a 

weight 0 on that particular array. Only spots receiving weight 0 on all arrays were excluded 

from the analysis. All remaining spots were included in the analysis. Raw data were 

background corrected, normalized and analysed through linear modelling in the Bioconductor 

package Limma (Smyth 2004). Because the quality control showed that there was high inter-

array variation, we chose to perform vsn (Huber et al, 2002) which is a between-array 

normalisation instead of only normalising within-arrays (e.g. loess). Spots were individually 

background corrected by subtracting background from the foreground signal. From each 

array, the best three spot replicates (i.e. the best red and green signal intensities after 

background correction but before normalisation.) were selected based on outlier detection. For 

each unique reporter identity, the spot which deviated the most from the mean of the spot 

replicates was deleted and this process was iterated until a maximum of three replicate spots 

remained. Differential gene expression (log-fold changes) was statistically analysed through 

moderated t-tests. Differentially expressed genes were selected based on both of the following 

criteria: log2 fold change logFC > 0.75 and uncorrected p < 0.05. P-values were adjusted for 

multiple testing with the Benjamini & Hochberg (1995) “fdr” approach for control of the false 

discovery rate. 
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5.3 Results 

5.3.1 SSH library 

A total of 1,536 random cDNA clones were sequenced from both libraries, yielding 500 

female and 606 male redundant EST fragments with an average sequence length of 359 ± 187 

bp. Female specific gene fragments included fragments from various cuticular proteins (58 

fragments, especially from endocuticle structural glycoprotein bd-1), vitellogenins (41), c-

type lectins (7), sptzle 2-like protein (4), cysteine dioxygenase (4), and ATP synthase f0 

subunit 6 (4). Male specific gene fragments included fragments from cathepsins (30, 

especially cathepsin l fragments), carcinin (15), a gene similar to a hypothetical protein from 

the insect Thermobia domestica (14), cytochrome c oxidase subunits (8), crustin-p (6), male 

reproductive related proteins (4), and legumain precursor (4).  

The ESTs were assembled using Codoncode Aligner to group the redundant ESTs into 

overlapping contigs. Clustering and assembly resulted in 161 contigs and 368 singlets, thus 

yielding 529 nonredundant ESTs. The redundancy of the library was 52.17%. BLASTX 

searches identified 209 nonredundant ESTs with significant BLAST hits (E-value < 1E-04) 

and 320 novel C. crangon ESTs. Gene Ontology (GO) analysis allowed the functional 

annotation of 188 nonredundant ESTs to a total of 400 GO-terms (934 GO-hits), with an 

average of five and a maximum of 33 associated GO terms per sequence. In order to visualise 

the multilevel GO terms represented by the ESTs, they were split over the 3 main categories 

[Biological Process (BP), Molecular Function (MF), and cellular localization (CC)) (Fig. 5.2). 

In the BP category the majority of second level GO terms were associated with either 

metabolic (22%) or cellular processes (18%), in the MF category the majority of third level 

GO terms were associated with either hydrolase activity (15%), protein binding (13%) or 

nucleotide binding processes (12%) and in the CC category most fifth level GO terms were 

associated either with the cytoplasm (27%), intracellular organelle (26%) or cytoplasmic part 

(20%). Also of note in the BP category were terms associated with biological regulation, 

developmental process, and reproduction. In the MF category a number of sequences were 

found to be associated with nucleic acid binding and structural constituents of the cuticle. In 

the CC category, several sequences were associated with the proton-transporting ATPase and 

ATPsynthase complexes. 
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Fig. 5.2. Pie chart representations of the distribution of GO terms associated with the 

assembled EST library (male and female cDNA libraries combined into 161 contigs and 368 

singlets) across the three major GO categories: (A) second level biological process GO terms, 

(B) third level molecular function GO terms, and (C) fifth level cellular component GO terms. 

Number in brackets represents the number of ESTs associated with each GO category. Keep 

in mind that one EST can be assigned to more than one GO terms.  
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5.3.2 Exposure experiment 

The experiment lasted 6 days, as the survival in the control replicates neared 70%. During the 

experiment, pH was 7.29 ± 0.11, salinity 36.82 ± 0.11 ppt, oxygen saturation 89.60 ± 2.63 %, 

and water temperature 16.46 ± 0.50 °C (n = 9). Mortality and moulting rates are given in table 

5.2. Mortality between all replicate treatments was high, ranging from 0 to 40%. Surprisingly, 

consistently higher mortality rates were observed in the control replicates, and were 

significantly lower than the mortalities observed in the 2 ng l
-1 

(p = 0.0255) and 200 ng l
-1

 (p = 

0.0036) treatments. Due to the high mortality in the control replicates, the exposure was 

terminated after 138 hrs. No significant differences were observed in moulting. Contradictory, 

mortality at ecdysis was only observed in the control treatments (33% of the moulted control 

shrimp, p = 0.024). 

 

Table 5.2. Mortality and moulting ratings after 138 hrs of TBTO exposure 

 

 

Mortality Moulting 

Control 32.5 ± 5.0% 22.5 ± 18.9% 

2 ng l
 -1

 12.5 ± 12.6% 22.5 ± 15.0% 

20 ng l
 -1

 20.0 ± 14.1% 17.5 ± 9.6% 

200 ng l
 -1

 7.5 ± 9.6% 25 ± 10.0% 

2 µg l
 -1

 17.5 ± 17.1% 10.0 ± 8.2% 

 

5.3.3 Microarray analysis 

Based on the nonredundant EST library, 604 inserts were selected from the male and female 

specific cDNA libraries to be analysed on altered gene expression after subtoxic exposure to 

TBT. Raw data of the four control replicates (0A-0D) and the four replicates of the highest 

exposure (i.e. 2 µg l
-1

; 4A-4D) were analysed for differential gene expression.  

 

Table 5.3. Overview of the analysed microarray hybridisations. The value of Hoeffding's 

statistic Da (last column) is a statistical measure representing the interarray variability in spot 

intensities and red/green intensity ratios. Arrays with Da ≤0.15 can be regarded as outliers. 

Array Cy3 Cy5 Da 

1 0A Reference 0.13 

2 0B Reference 0.17 

3 Reference 0C 0.14 

4 Reference 0D 0.08 

5 4A Reference 0.34 

6 4B Reference 0.17 

7 Reference 4C 0.37 

8 Reference 4D 0.08 
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Unfiltered pooled correlation between spot replicates across the arrays was estimated at R
2
= 

0.41, suggesting that replicate spots shared less than a quarter of their variability due to local 

artefacts on the hybridized microarray slides. A total of 653 out of 3,690 spots were deleted as 

they did not pass the QC (i.e. they received a weight 0 on all arrays). 600 distinct genes were 

left in the analysis, all represented by three spot replicates on each microarray. The filtered 

pooled correlation between spot replicates across the arrays after outlier removal was R ²= 

0.76. 43 genes had a p <0.05, meaning a significant difference in gene expression between 

control and exposure treatments (table 5.4). 10 of these gene fragments also passed the 

|logFC|>0.75 criterion for differential expression, meaning their transcript level after TBT 

exposure was more than 0.595 times down regulated or 1.68 times up regulated. Six genes 

were significantly up regulated, i.e. vitellogenin (Vtg), an endocuticle structural glycoprotein, 

actin 5c, and three unknown gene fragments. Four gene fragments were significantly down 

regulated, i.e. fragments from myosin heavy chain, arthrodial cuticle protein, sarcoplasmatic 

calcium-binding protein and an unidentified gene fragment. The gene fragments exhibiting a 

significant difference in expression level between exposed and control treatments, but not 

passing the logFC criterion, encompassed several cuticular proteins (chitinase, cuticle protein 

cb6, and cuticle proprotein), myosin and actin chains, adhesin wi1-like, hemocyanin, 

ribosomal protein, sodium and chloride dependent GABA transporter 1, and a peptidyl-prolyl 

cis-trans isomerase-like protein (PPIase-like).  

 

5.4 Discussion 

In order to expand upon the transcriptomic coverage of C. crangon, we generated transcript 

data representing the largest collection of C. crangon ESTs to date. As C. crangon is not an 

established model with a deep molecular-based research history, this EST library may 

contribute to comparative genomics for the discovery of new genes, alleles and 

polymorphisms. While a great deal of attention has been paid to developing certain insect 

models, much less attention has been paid on crustacean ESTs. 5,174,553 insect and 879,072 

crustacean EST sequences are currently available (http://www.ncbi.nlm.nih.gov). Of the 

429,449 Decapod ESTs, 213,063 ESTs belong to Pleocyemate species, of which the majority 

from Anomuran and Brachyuran crabs (166,389 ESTs from six species). 13,064 ESTs from 

the non crab Pleocyemate species originate from three Caridean shrimp species: 12,885 ESTs 

from Macrobrachium rosenbergii, 132 ESTs from Neocaridina denticulata, and 47 ESTs 

from Palaemonetes varians. The C. crangon EST library (529 nonredundant sequences) 
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obtained during this study are the first ESTs available from representatives of the Caridean 

superfamily Crangonoidea. While most EST libraries are constructed for creating a large 

catalogue of genes, we constructed our library for capturing (‘gene fishing’) a number of 

potential candidate expressed genes that may be of future importance in ecotoxicological 

studies. With the creation of a custom C. crangon microarray using this EST library, a first 

screening of gene expression changes in response to environmental TBT levels in crustaceans 

was performed. Female shrimp were exposed subchronically to subtoxic TBTO 

concentrations, ranging from 2 ng l
-1

 to 2 µg l
-1

 TBTO. Microarray analysis of exposed versus 

control shrimp revealed that the expression of 21 identified and 22 unidentified gene 

fragments was affected. Several myosin and actin gene fragments were down regulated. 

Muscle and cytoskeletal fibres are known to be one of the first targets of oxidative stress 

(Urbanciková & Korytár 1999), which may be induced by TBT by blocking the electron 

transport chain, thereby increasing radical oxygen species (ROS) levels. According to several 

authors, TBT also interacts with calmodulin, thereby increasing intracellular Ca
2+

 

concentration, activating some proteases which in turn lead to an increased depolymerisation 

of cytoskeletal fibres (Show & Orrenius 1994; Cima & Ballarin 2000; Dalle-Donne et al. 

2001 Gómez-Mendikute et al. 2002). The down regulation of sarcoplasmatic calcium-binding 

protein is likely also related to the known effect of TBT on the release of Ca
2+

 from 

intracellular stores. Other down regulated genes included arthrodial cuticle protein, chitinase, 

and cuticle protein cb6.  

 

 

 

 

 

 

 

 

Table 5.4. (pages 104 and 105). BLAST and Bioconductor results for the significantly 

differentially expressed genes (moderated t-test p < 0.05), ranked according to their logFC. 

Low LogFC values indicate a strong down regulation, high LogFC values a strong up 

regulation. Expressed genes passing the |logFC|>0.75 criterion are arced dark grey. For each 

probe, following parameters are given: identity code (ID), sequence length (Length), sequence 

description (Seq.Description), expect value (eValue), sequence similarity (Simil.), Log2-fold 

change of exposed (4A-D) versus control (0A-D) treatments (logFC), the average expression 

value (‘spot intensity’) across all arrays and channels (AveExpr), the logFC to its standard 

error (moderated t-statistic (t)), the associated p-value (P-value), and the p-value adjusted for 

multiple testing (adj.P.Value). The adjusted p-values indicate a high chance on false positives 

(~62.9%). 
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The expression of vitellogenin (Vtg), actin5c, and endocuticle structural glycoprotein were up 

regulated. Vtg is the precursor of the major egg-yolk protein vitellin and one of the most 

commonly employed vertebrate biomarkers of endocrine disruption (Mazurova et al. 2008). In 

invertebrates, multiple Vtg isoforms exist having different functionalities. For example, they 

are also involved in calcium or iron metabolism (Abdu et al. 2002; Yokota et al. 2003). In 

contrast to vertebrates and Lophotrochozoa (e.g. molluscs), arthropod vitellogenesis is 

regulated by ecdysteroid and juvenile hormones, and not by oestrogens. In arthropods, 

vitellogenesis is negatively regulated by ecdysteroids (Hannas et al. 2011). An up regulation 

of vitellogenesis would thus suggest an antiecdysteroidal effect of TBT, which we proved in 

vitro in chapter 3. Gene fragments from adhesin wi1-like, ribosomal protein lp1 (RPLP1) and 

hemocyanin were also found to be up regulated. Adhesin wi1 is a major fungal antigen. 

Whether the adhesin wi1-like gene fragment originates from C. crangon or rather from a 

shrimp pathogen is unsure, but its up regulation may indicate a lowered immune response. 

RPLP1 forms a pentameric complex with other ribosomal proteins that regulates ribosome 

assembly and plays a role in translation initiation. In arthropods (Pongsomboon et al. 2008; 

Carpenter et al. 2009), RPLP1 expression is known to be positively affected by viral 

infections, but TBT effects have not been found. Hemocyanin is the most abundant circulating 

blood protein, and acts as an oxygen transporting metalloprotein containing copper. 

Hemocyanin blood levels are known to be sensitive towards hypoxia and increased levels of 

trace metals (Cd, Cu, Zn) (Engel et al. 1993), but effects of TBT exposure have not been 

observed. In vertebrates, the circulating levels of the analogue (but not homologue) 

haemoglobin are known to be affected by OTs. Weakly up regulated gene expression included 

that of sodium- and chloride-dependent GABA transporter 1 and a peptidyl-prolyl cis-trans 

isomerase-like protein (PPIase-like). GABA transporter 1 is the major transmembrane 

transporter responsible for the rapid clearance of the major inhibitory neurotransmitter γ-

amino butyric acid (GABA), in order to maintain fast synaptic transmission, and its function 

depends on the electrochemical gradient across the neuronal membrane. TBT is known to act 

as a Cl
−
/OH

−
 antiporter, and likely affects the GABAergic system at low doses by disturbing 

Cl
−
 homeostasis (Yamada et al. 2010). PPIases are a large superfamily of ubiquitous enzymes 

involved in protein folding, signal transduction, trafficking, assembly and cell cycle 

regulation (Göthel & Marahiel 1999). Some of these isomerases bind and activate steroid 

receptors or act as a modulator of intracellular calcium release channels.  
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Within the observed TBT induced shifts in gene expression in this study, cytotoxic markers 

can be discerned related to the disruption of calcium homeostasis. The up regulation of 

vitellogenin and up as well as down regulation of several cuticular proteins may indicate a 

second, potentially endocrine-disruptive effect related on the y-organ – ecdysteroidal 

endocrine axis, which may affect shrimp development and reproduction. 

Recently, the group of Prof. dr. LeBlanc (Wang et al. 2011) proved TBT effects on ecdysis 

and reproduction of the crustacean D. magna (TBT LC50 = 2.5 µg l
-1

). In D. magna, 

prolonged exposure of neonatal Daphnids to 3.3 nM (0.95 µg l
-1

) TBT or less led to more 

offspring than observed among control organisms. At 3.6-5.0 nM (1.04-1.45µg l
-1

), Daphnia 

died during moulting at the release of the first brood of offspring. Above 5.0 nM, exposed 

Daphnids died during juvenile exuviation. According to the authors, these results demonstrate 

increased TBT toxicity at the time ecdysteroid levels (i.e. during exuviation and especially 

during reproductive activity) are at their highest, and include impaired ecdysis and suppressed 

vitellogenesis. Earlier, Iguchi and Katsu (2008) reported that 1 µg l
-1

 TBT reduces 

reproduction in Daphnia, but had no effect on moulting. After 21 days of exposure of 

neonatal D. magna to ≤ 1.25 µg l
-1

 of TBT, Oberdörster et al. (1998) did not find any 

differences in reproductive success or moulting, but found an increase in steroid 

metabolization. The contradicting results of especially Wang & LeBlanc (2009) and Wang et 

al. (2011) in Daphnia (i.e. pro-ecdysteroidal effect,) versus our results in common shrimp and 

those of Mu & LeBlanc (2004) and Iguchi & Katsu (2008) in Daphnia (i.e. anti-ecdysteroidal 

effect) appear paradoxal. However, subtle differences in test concentrations, endocrine 

systems of the test species, used developmental stages, differences in tested receptor isoforms 

or even used concentrations or combinations of receptor ligands, may lead to such paradoxal 

outcomes due to our relatively poor understanding of crustacean endocrine functioning. 

This study was the first to investigate subtoxic effects of TBT on the shrimp transcriptome.  

However, the discussion with respect to differentially expressed genes observed in this study 

has to be done with caution, because (1) differences in expression levels are rather low, (2) 

the false positive rates (adjusted p-values) are high, and (3) no confirmative studies using 

qRT-PCR have been performed. The high observed false discovery rates can be drastically 

reduced by improving shrimp laboratory survival and the quality of the microarray analysis. 

For future studies with common shrimp, a better laboratory survival is indispensable. 

Exposure studies require a homogenous testing population, ideally laboratory reared 

specimens. The low correlation between the expression profiles within the control and 
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exposure replicates observed in this study (leading to outlier microarrays) may be largely 

caused by a heterogeneous testing population and moreover poor laboratory survival. The 

quality of the microarray analysis could be strongly enhanced by tailoring oligonucleotides 

from the available cDNA sequences into suited microarray probes and commercially spotting 

of these probes on oligonucleotide arrays. Currently, the C. crangon transcriptome is being 

sequenced, with an estimated 66 times coverage and should provide a large EST database for 

a more comprehensive common shrimp microarray. With the rapid development and hence 

cost reduction in pyrosesquencing techniques, direct sequencing of the transcriptome 

(RNAseq) of TBT exposed and control shrimp could even provide a more sensitive approach. 

Regardless of the applied technique, characterizing the many unidentified ESTs observed in 

this and other studies would strongly increase the output value of microarray and RNAseq 

analyses. In case of ecotoxicological studies, this would greatly help to unravel the affected 

metabolic pathways. 
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6.1 General conclusions 

Since the early 1970s until the early 2000s, the Belgian landings per unit effort (LPUE), a 

proxy for local annual shrimp abundance based on fisheries statistics, shows a gradual, but 

severe decrease, threatening the sustainability of the Belgian shrimp fishing fleet. Since 2007, 

the local shrimp stock has suddenly recovered, resulting in record landings in 2010. In the 

Wadden Sea, which provides 95% of landed shrimp in the EU, a similar decrease in annual 

landings has been observed since the mid-1960s. The Wadden Sea shrimp stock however 

already started to recover gradually in 1990, also reaching record landings in 2010. Field 

observations indicate the potential involvement of (chemically mediated) endocrine 

disruption. In the Wadden Sea, a severe parallel decrease and subsequent increase in the 

percentage of gravid shrimp has been observed (Siegel et al. 2008). During the same period, 

unusual high prevalence of shell infections have been frequently encountered throughout the 

whole North Sea (Watermann & Dethlefsen 1983; Knust 1990; Dyrynda 1998). In 2004, 

Nishikawa et al. (2004) showed that TBT is a potent agonist of human RXRα, a NR which is 

strongly conserved throughout the animal kingdom. This dissertation hypothesized that 

environmental concentrations of the potent broad spectrum biocide tributyltin (TBT) affect 

NR functioning in common shrimp, leading to downstream alterations in the expression of 

genes involved in moulting and reproductive processes. Since the late 1950s, TBT had been 

used on a massive scale as antifouling agent to decrease drag or surface damage on especially 

ship hulls due to biofouling. In 1989, the use of TBT on vessels smaller than 25 m was 

banned at EU level due to severe reproductive failures in commercially exploited oyster 

populations and declining marine gastropod populations. A EU ban on all ship became 

effective in 2003, while a complete ban at IMO level entered-into-force in 2008. 

Since the 1960s, multiple environmental incidents with toxic chemicals had led to increased 

scientific, public and governmental awareness regarding the unsound use of chemicals. 

Endocrine mediated toxicity did not gather any special attention until the 1990s, when several 

reports associated certain health and environmental issues with the presence of previously 

thought harmless doses of chemicals. Since then, hundreds of peer-reviewed scientific 

publications have made associations of background EDC concentrations with health and to a 

lesser extent environmental effects. In the latter case, the identification of a single cause-effect 

linkage between a chemical and observed population level effects is severely hampered by the 

complexity of environmental exposures (e.g. multiple exposure routes, mixture effects). 

Furthermore, unravelling the underlying mode of action necessitates a profound knowledge of 
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the biology of the assumed affected species, which is most of the time lacking. Due to these 

obstacles, a weight-of-evidence approach is generally accepted to assess the cause-effect 

relationship based on concepts of temporality, strength of association, consistency of 

observation, biological plausibility, and evidence of recovery (WHO 2002). 

EDCs can affect endocrine regulation by blocking (antagonism) or activating (agonism) 

hormone receptors, or by interfering in hormone or hormone receptor metabolism (i.e. 

synthesis, transport or breakdown). In either case, the hormone-receptor interaction is directly 

or indirectly affected, leading to alterations in the downstream complex of cross-talking 

signalling pathways, which ultimately lead to changes in the behaviour or structure of the 

target cells. Due to the intensive cross-talk between these pathways, unpredictable effects may 

occur in other target tissues. Furthermore, these complex pathways are characterized by 

developmental stage and tissue specific receptor isoforms and cellular machineries (e.g. 

receptor coactivators), and thus the same extracellular signal may evoke opposite cellular 

effects, even within the same animal. 

While potentially being the largest subphylum of multicellular organisms (in species richness 

as well as in global biomass), crustaceans have received little attention regarding the potential 

impacts of EDCs. In crustaceans, ecdysteroid hormones play a pivotal function in 

development as well as reproduction. Circulating ecdysteroids diffuse into the intracellular 

compartment where they bind and activate their nuclear receptor EcR, which in turn recruits 

the nuclear receptor RXR to form an active heterodimeric EcR:RXR receptor. This active 

heterodimer can then directly interact with DNA to transactivate the expression of early 

ecdysteroid-responsive genes, thereby initiating multiple signalling cascades.  

In common shrimp, this dissertation shows that low, subtoxic concentrations of TBT exert a 

strong anti-ecdysteroidal effect, leading to alterations in the downstream complex of cross-

talking signalling pathways, which ultimately lead to changes in gene expression related to 

cellular calcium homeostasis cuticular structure and vitellogenin synthesis.  

 

A significant amount of evidence has been gathered during this study regarding the 

association of TBT with the long term decrease and afterwards recovery of shrimp stock size 

and reproduction: 

 

1) In silico prediction reveals TBT accommodates CrcRXR in a similar manner as human 

RXRα, locking the receptor in its agonist conformation. 
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2) In vitro, a low, subtoxic TBT concentration (5.8 µg l
-1

) strongly repressed 

CrcEcR:CrcRXR activity with 64%. 

3) In vivo acute exposure of shrimp to TBT (albeit at a toxic concentration of 38.9 µg l
-1

) 

leads to a strong downregulation of especially CrcEcR isoforms in the ovaries. EcR is 

known to be subject to a positive autoregulatory loop to increase EcR levels and 

sensitize the animal to ecdysone pulses (Karim & Thummel 1992). 

4) In vivo subchronic exposure of shrimp to an environmental subtoxic TBT 

concentration (1.9 µg l
-1

) resulted in significant alterations in expression of genes 

involved in intracellular calcium homeostasis and of cuticular genes and especially in 

the up regulation of vitellogenin, the precursor of the major eggyolk protein vitellin 

which is used as EDC biomarker in mostly fish species. 

5) Comparison of field data generated during this study with available monitoring data 

reveal that TBT concentrations in shrimp have decreased 8-fold since 1999, shortly 

after the major shipping companies started to switch to alternative antifouling agents. 

6) Fisheries data indicate a fast recovery of the shrimp stock at the Belgian coast shortly 

after the IMO ban on TBT in 2003. On EU scale, fisheries data and field data clearly 

indicate a recovery in stock size and percentage of gravid shrimp since 1990, shortly 

after the EU ban on TBT on ship <25 m (i.e. mostly recreational and fishing vessels). 

The difference in onset of recovery between the Wadden Sea and Belgian Flat can be 

explained by differences in local shipping activities. 

 

6.2 Future research needs 

As long as a crustacean cell line has not been achieved, the transfected L57-3-11 cell line can 

be used as in vitro bioassay to investigate EDC activity in crustaceans. It is recommended that 

the robustness and sensitivity of the cell line should be enhanced by e.g. stable transfection 

with CrcEcR and CrcRXR, a more profound inactivation of endogenous DmEcRs and 

DmUSP through in situ genome editing techniques, and the use of crustacean EcRE upstream 

of the luciferase reporter gene. If successful, this enhanced cell line could represent a 

sensitive, reliable, rapid, and cost-effective tool for identifying cause-effect relationships of 

chemicals on crustacean endocrinology. Concerning the putative effect of TBT, reliable dose-

response curves of the in vitro effect on CrcEcR:CrcRXR signalling may eventually bridge 

the gap between chemical measurements and population level effects. As the ecological 
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relevance of in vitro data may be arguable, they should ideally be accompanied by 

observations of higher order effects (e.g. histological, physiological and population effects). 

Although the economic and environmental important common shrimp has been studied 

intensively through field studies, its biology is poorly understood due to its poor laboratory 

survival. In order to perform reliable laboratory studies with common shrimp, successful 

laboratory rearing of this species is crucial to provide a more homogenous testing population 

and to achieve a strongly reduced mortality under artificial conditions. Because of this 

knowledge gap, reliable experimentally derived ecotoxicological parameters such as BCFs, 

BSAFs, depuration and degradation rates are not available for any compound in common 

shrimp. A good laboratory survival would enable the reliable quantification of such 

parameters as well as long-term exposure experiments, which are necessary to obtain dose-

effect data on physiological end-points such as reduced brood size or delayed moulting. 

In general, one of the major shortcomings of current ecotoxicity testing is the limited number 

of available test species, rendering extrapolations to most species impossible. Therefore, the 

ecotoxicological research community faces a huge challenge in expanding the set of model 

organisms. Otherwise, the usefulness of costly routine chemical environmental monitoring 

programmes will remain limited as long as the observed exposure levels cannot be linked to 

biological effects with certain reliability. It is striking that currently no invertebrate marine 

model organism is generally accepted or intensively investigated within ecotoxicology and 

environmental genomics research. The major reason is the poor knowledge on the culture of 

especially marine species. As such, the evolution of ecotoxicology and environmental risk 

assessment depends heavily on an accompanying progress made in the field of aquaculture, 

where the focus should not solely be laid on economic, but also on environmental important 

species. 

Another major drawback in current ecotoxicological research is the limited knowledge of the 

complex endocrine systems of potential target organisms. The relatively new research field of 

ecotoxicogenomics, which combines classical toxicity testing with high-throughput genomic 

techniques (i.e. microarray) and related bioinformatics, has the potential to unravel the 

complex gene expression cascades involved in endocrine signalling and endocrine disruption. 

In this dissertation, ‘home-built’ cDNA microarrays were prepared to screen the expression of 

a limited number of ESTs obtained through SSH-PCR and subsequent cloning. The sensitivity 

and specificity as well as transcriptome coverage of this approach was low (it should be noted 

here that the obligatory use of wild-caught shrimp and their poor laboratory survival lead to a 
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high variation in expression profiles among the replicate treatments). With the recent 

developments in pyrosesquencing techniques, huge EST databases can now be rapidly and 

cost-effectively generated by transcriptome sequencing (RNAseq). In combination with the 

rapid development and hence cost-reduction of commercially printed oligonucleotide 

microarrays, the sensitivity, specificity and transcriptome coverage can thus be greatly 

enhanced. 

 

6.3 Scientific uncertainties should not postpone political action 

At the moment, linking laboratory findings with wildlife observations or extrapolations of 

low-dose chemical effects is prone to many uncertainties (e.g. strictly controlled laboratory 

environment versus unknown biotic and abiotic variations) and as such, an easy target for 

well-funded scientific criticism. This problem shall persist, as long as our understanding of 

invertebrate endocrinology and ecosystem functioning is insufficient. Meanwhile, harsh 

policy decisions should not be postponed based on the argument of insufficient scientific data.  

The case of the much contested TBT ban is a textbook example of related brave political 

action. The TBT ban on ship <25 m was easily accepted, as it was based on a pernicious 

economic impact on shellfish farming and furthermore as it mostly targeted a recreational 

activity. In contrast, the ban in 2003 was much disputed, as critics stated that the sole reason 

was the environmental impact on several irrelevant sensitive gastropod species. Furthermore, 

the ban would lead to a high economic loss due to the lack of an efficient antifouling 

alternative to TBT, leading to increased fuel and maintenance costs. However, the ban 

stimulated the paint-manufacturers to look for decent alternatives. Although other obvious 

TBT induced effects than in marine molluscs were not detected, IMO and the EU acted on the 

principle of protecting an ecosystem by protecting the most sensitive species. Indeed, this 

approach proved to be a success. 

The increased shrimp stock size associated with decreasing TBT concentrations could also 

have profound beneficial effects on human health and economy, and on the environmental 

impact of shrimp fisheries. First of all, the direct impact on the health related issues regarding 

consumption of common shrimp and other seafood is evident. The daily consumption of 

common shrimp is no longer considered a health threat regarding OT intake. A higher catch 

efficiency of common shrimp may reduce hours at sea, hours of fishing and hence labour, 

related health risks, and fuel consumption. Reducing the fishing effort also leads to a 

reduction in fishing mortality, bycatch and sea bed disturbance.  
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With an annual catch of 35,000 – 50,000 tons and a commercial value of roughly €100 

million, common shrimp is one of the most valuable European fisheries and aquaculture 

commodities. Since the late 1960s, European landings strongly decreased until 1990, due to a 

strongly reduced shrimp abundance and percentage of egg-bearing females. In the Wadden 

Sea, the shrimp stock and hence landed volumes recovered slowly after 1990 to record 

landings in 2010. In the Southern Bight (i.e. Northern France to Dutch Delta), one of the 

busiest international shipping lanes, the stock only recovered after 2003. Until now, no 

explanation was found for these abnormal long-term trends in the shrimp stock. 

 The use of TBT as antifouling agent began in the 1960s, leading to exuberant TBT 

concentrations in the 1970s and 1980s, especially nearby recreational marinas, shipping lanes, 

and industrial harbours. At the end of the 1980s, the use of TBT on smaller ship (<25 m) was 

banned due to developmental and reproductive effects in oyster farms. A controversial ban on 

the use of TBT on all submerged surfaces (thus including commercial ships > 25 m) was only 

accepted in 2003 and finally entered-into-force in 2008. In 2004, Nishikawa et al. (2004) 

proved that TBT mimics vertebrate hormone signalling by activating the retinoid-X-receptor 

(RXR). As this receptor is strongly conserved in the animal kingdom, an identical mode of 

action (MOA) was generally accepted to have caused the observed reproductive and 

developmental defects in marine shellfish and gastropods. RXR is a nuclear receptor (NR) 

believed to directly modulate (i.e. by heterodimerization) the activity of many other NRs. NRs 

are the major targets of lipophilic hormones (e.g. steroids), and directly induce tissue specific 

expression of genes involved in development, reproduction, immune response, etc.  

Within this PhD-thesis, three main research questions were addressed. (1) Does TBT affect 

the functionality of the shrimp RXR receptor?, (2) what is the temporal and spatial 

distribution of TBT in North Sea shrimp, and finally (3) do the TBT concentrations observed 

in the North Sea disrupt shrimp endocrine functioning? In chapter 1, the reader is introduced 

to common shrimp, endocrine disruption and TBT. In chapter 2, the open reading frame 

(ORF) sequences from C. crangon RXR (CrcRXR) and its well-known invertebrate partner 

protein, ecdysteroid receptor (CrcEcR), were fully retrieved through a combination of several 

molecular techniques. Intra- and extraspecies variant regions were identified within the cloned 

CrcRXR and CrcEcR isoforms. A phylogenetic analysis based on CrcRXR and CrcEcR 

confirmed the close relationship with Brachyuran crabs for the first time on a molecular basis. 

In silico 3D protein structures of CrcRXR and CrcEcR were reconstructed based on existing 

(human) RXR and (insect) EcR templates. In chapter 3, in silico docking of TBT within the 
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reconstructed ligand binding pocket (LBP) of CrcRXR showed a good fit, indicating a 

plausible effect on NR functioning. Through an ecdysone responsive reporter assay using a 

mutant Drosophila cell line expressing CrcRXR and CrcEcR, a strong reduction of signalling 

activity of the heterodimeric CrcEcR-CrcRXR complex after exposure to a subtoxic TBT 

concentration was shown in vitro. Semiquantitative RT-PCR proved that the gene expression 

of both receptors was severely affected after in vivo acute exposure of shrimp to TBT. In 

chapter 4, samples collected during September-November 2009 in Belgian, Dutch, German 

and Danish waters were analysed through gas chromatography – mass spectrometry (GC-MS) 

to give an extensive as well as intensive spatial overview of TBT and other OT concentrations 

in shrimp from the Southern North Sea. Furthermore, we focused on the environmental 

behaviour of OTs in the heavily polluted Westerschelde estuary, and conclude the 

environmental fate of OTs is similar to that of metals rather than that of organic pollutants. 

Concentrations of TBT and the pesticide triphenyltin (TPhT) in shrimp tail muscle ranged 

from 4-124 and 1-24 μg kg
-1

 DW, respectively. High levels are accumulated in estuarine areas 

and are clearly related with sediment concentrations. Levels in shrimp and sediment have 

decreased approximately 8-fold since 1999. Furthermore, common shrimp consumption is no 

longer considered a health risk regarding human OT intake. 

In chapter 5, the effects of subtoxic TBT levels (2 ng – 2 µg l
-1

) on shrimp gene transcription 

was assessed by constructing a shrimp specific cDNA microarray. 604 cDNA fragments were 

sex-related fragments obtained through suppression subtractive hybridization PCR (SSH-

PCR) on male and female shrimp, and were appended with CrcEcR and CrcRXR isoforms 

and three household genes (18S rRNA, β-actin, and GADPH). The analysis revealed that the 

expression of 43 gene fragments was significantly affected by exposure to 2 µg l
-1

 TBTO. 

Within the observed TBT induced shifts in gene expression, cytotoxic markers could be 

discerned related to the disruption of calcium homeostasis. The up regulation of vitellogenin 

and up as well as down regulation of several cuticular proteins indicate a second, potentially 

endocrine-disruptive effect related on the y-organ – ecdysteroidal endocrine axis, which may 

affect shrimp development and reproduction.  
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Met een jaarlijkse vangst van 35 000 tot 50 000 ton en een commerciële waarde van ongeveer 

100 miljoen euro, is de grijze garnaal (Crangon crangon) één van de meest waardevolle 

Europese visserij- en aquacultuurproducten. Sinds eind jaren ‘60 daalden de Europese 

aanlandingen echter sterk door een grote afname in de abundantie en de vruchtbaarheid van 

garnaal in de Zuidelijke Noordzee (Noord-Frankrijk – Denemarken). Sinds 1991 herstelde de 

garnaalstock zich in de Waddenzee echter geleidelijk, tot zelfs recordvangsten in 2010. In de 

Zuidelijke Bocht (Noord-Frankrijk - Nederlandse Delta), één van de drukste scheepsroutes ter 

wereld, herstelde de garnaalstock zich pas na 2003. Tot op heden werd voor deze abnormale 

lange termijntrends geen oorzaak gevonden. Het gebruik van TBT als aangroeiwerend middel 

nam een vlucht in de jaren ‘60 en leidde algauw tot exuberante concentraties ervan in de jaren 

’70 en ’80, vooral nabij jachthavens. Op het einde van de jaren ’80 werd het gebruik van TBT 

op kleinere schepen (<25 m) verboden op basis van gerelateerde ontwikkelings- en 

voortplantingsstoornissen in oesterkwekerijen. Een controversieel verbod op het gebruik van 

TBT op alle onderwateroppervlakten (dus inclusief op de rompen van commerciële schepen 

>25 m) werd pas aanvaard in 2003 en trad uiteindelijk in werking in 2008. In 2004 toonden 

Nishikawa et al. (2004) aan dat TBT een hormoonactiviteit uitoefende op de humane retinoid-

X-receptor (RXR). Doordat deze receptor sterk geconserveerd is in het dierenrijk, werd 

verondersteld dat een gelijkaardig werkingsmechanisme de geobserveerde stoornissen in 

mariene schelpdieren en slakken zou hebben veroorzaakt. RXR behoort tot de nucleaire 

receptor (NR) familie, en zou via heterodimerizatie rechtstreeks de activiteit van vele andere 

NR’s moduleren. NR’s zijn de fysiologische doelwitten van vetoplosbare hormonen (bvb. 

steroïden), en induceren rechtstreeks weefselspecifieke expressie van genen betrokken in 

ontwikkeling, voortplanting, immuunreactie, enzovoort. 

In deze doctoraatsscriptie werd een antwoord gezocht op drie grote onderzoeksvragen: (1) 

beïnvloedt TBT de werking van RXR in grijze garnaal, (2) wat is de tijdelijke en ruimtelijke 

verspreiding van TBT in grijze garnaal in de Noordzee, en uiteindelijk (3), kunnen de 

geobserveerde concentraties de hormoonwerking in grijze garnaal verstoren? In hoofdstuk 1 

wordt de lezer geïntroduceerd in de grijze garnaal, hormoonverstoring en TBT. In hoofdstuk 2 

werden de gensequenties van de volledig open leesramen (‘open reading frames’) van 

CrcRXR en van de ecdysteroid receptor (CrcEcR), het best gekende partnereiwit van RXR in 

ongewervelden, via een combinatie van verschillende moleculaire technieken bekomen. 

Binnen de gekloneerde CrcRXR en CrcEcR isovormen werden de variante regio’s tussen de 

verschillende isovormen en tussen verschillende soorten geïdentificeerd. Een fylogenetische 
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analyse gebaseerd op de CrcRXR en CrcEcR sequenties bevestigde voor de eerste maal op 

moleculaire basis de nauwe verwantschap van grijze garnaal met krabben. De 3D 

eiwitstructuren van CrcRXR en CrcEcR werden ‘in silico’ gereconstrueerd op basis van 

bestaande (humane) RXR en (insecten)EcR 3D-structuren. 

In hoofdstuk 3 werd op basis van deze reconstructies bewezen dat TBT uitstekend in de 

hormoonbindingsplaats van CrcRXR past. Dit toont aan dat TBT hoogstwaarschijnlijk de 

nucleaire receptorwerking in garnaal beïnvloedt. Via een luciferase reporter analyse met een 

mutante Drosophila cellijn, die de CrcRXR en CrcRXR sequenties in actieve eiwitten 

vertaalt, werd in vitro een sterke activiteitsdaling aangetoond van het CrcRXR-CrcEcR 

receptorcomplex na blootstelling aan een subtoxische concentratie van TBT. Semi-

kwantitatieve ‘reverse transcriptase – polymerase chain reaction’ (RT-PCR) toonde aan dat de 

genexpressie van beide receptoren sterk aangetast werd na acute blootstelling van garnalen 

aan TBT. In hoofdstuk 4 werden via gaschromatografie – massa spectrometrie (GC-MS) 

stalen geanalyseerd die verzameld werden gedurende september-november 2009 in Belgische, 

Nederlandse, Duitse en Deense kustwateren, om zo een ruimtelijk overzicht te verkrijgen van 

de concentraties van TBT en andere organotinverbindingen (OT’s) in garnaal. Daarenboven 

werd het milieugedrag van OT’s in het zwaar vervuilde Westerschelde-estuarium meer in 

detail onderzocht, hetgeen aantoonde dat OTs zich in het milieu veeleer als zware metalen dan 

als organische polluenten gedragen. De concentraties van TBT en het pesticide trifenyltin 

(TPhT) varieerden respectievelijk tussen 4-124 en 1-24 µg per kg drooggewicht garnaalvlees. 

Hoge concentraties werden geaccumuleerd in en nabij grote riviermondingen en zijn duidelijk 

gerelateerd met de concentraties in het sediment. Sinds 1998 zijn de concentraties in garnaal 

en sediment, als gevolg van een internationaal verbod, bij benadering achtvoudig gedaald. 

Bovendien houdt de consumptie van garnaal niet langer een gezondheidsrisico in betreffende 

de inname van OT’s. 

In hoofdstuk 5 worden de effecten van subtoxische TBT concentraties (2 ng – 2 µg l
-1

) op de 

gentranscriptie in garnaal nagegaan door een garnaalspecifieke cDNA microarray te 

ontwikkelen. 604 genfragmenten waren geslachtsspecifieke cDNA fragmenten die bekomen 

werden via ‘suppression subtractive hybridisation’ PCR (SSH-PCR) tussen mannelijke en 

vrouwelijke garnalen, waaraan de CrcRXR en CrcEcR isovormen en drie huishoudgenen (18S 

rRNA, β actine, GADPH) werden toegevoegd. De analyse toonde aan dat de expressie van 43 

genfragmenten significant aangetast werd door blootstelling aan 2 µg l
-1

 TBTO. Binnen de 

geobserveerde shifts in genexpressie konden enkele cytotoxische merkers aangetoond worden 



 

 

 

119 Nederlandstalige samenvatting 

die gerelateerd zijn aan de verstoring van de celullaire calcium huishouding. De opregulatie 

van vitellogenine en op- en neerregulatie van meerdere cuticulaire proteines geven een 

tweede, mogelijk endocrien verstorend effect aan dat de ontwikkeling en voortplanting van 

garnaal kan aantasten.  
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