Poster No: 2

KATHOLIEKE UNIVERSITEIT

Heterogeneous Flocculation Combining the Biological and Mineralogical Populations in a Marine and Coastal Environment

B. Joon Lee¹, Michael Fettweis², and Erik A. Toorman¹

HYDRAULICS LABORATORY

1 Hydraulics Laboratory, Department of Civil Engineering, Katholieke Universiteit Leuven (Info: joon.lee@bwk.kuleuven.be) 2 Royal Belgian Institute of Natural Science Science, Management Unit of the North Sea Mathematical Models

1 Heterogeneous Flocculation

Heterogeneous Flocculation:

3 Conceptual Model: TEP-Mediated Heterogeneous Flocculation

TEP combines the Biological and Mineralogical Populations into a Heterogeneous Floc.

4 Mathematical Model: Initiative Strategy

Ecological Modeling

Microbial Growth and Death:

Phytoplankton, Zooplankton, Heterotrophic Bacteria, etc. Nutrient Flux: N, P, Si, Fe, etc. **Carbon Flux:** CO₂, Dissolved and Particulate Organic s, etc.

e.g. SWAMCO (Lancelot, 2000)

TEP Formation

Polymerization & Aggregation: Self-Assembling Polymerization, **Cluster-Cluster Aggregation** e.g. Engel et al. (2004)

Combining **Three Model Compartments**

Cohesive Sediment Transport & Flocculation

Transport: Advection, Dispersion, Sedimentation, Erosion, Deposition, Fluid-Sediment Interaction, etc. e.g. FENST, COHERENS (Toorman, 2002) Flocculation: Floc-Size Growth and Decay by Aggregation and Breakage e.g. TCPBE (Lee et al., 2011)

5 Multi-disciplinary Collaboration Required

Ecological Engineer	Microbiologists	Hydraulic Engineer	Process Engineer	Marine Geologist
Developing Ecological	Physiology of Microbial	Large-scale Simulation	Developing Biological	Mineralogical and
Models of Microbial	Species, e.g. Finding	of Sediment Transport	and Physicochemical	Geomorphological
Population Dynamics	EPS-Producing Species	and Ecological Models	Process Models	Investigation
			This is me	and more

References

• Alldredge, Passow, Jackson, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. I. 40: 1131-1140. •Lancelot, Hannon, Becquevort, Veth, De Baar, 2000. Modelling phytoplankton blooms and carbon export in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep-Sea Res. I 47, 1621–1662.

• Engel, Thoms, Riebesell, Rochelle-Newall, Zondervan, 2004 Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428, 929–932 •Lee, Toorman, Molz, Wang, 2011. A two-class population balance equation of marine or estuarine sediments. Water Res. 45: 2131-2145. • Toorman. 2002. Modelling of turbulent flow with cohesive sediment. In: Proceedings in Marine Science, Vol.5: Fine Sediment Dynamics in the Marine Environment (J.C. Winterwerp & C. Kranenburg, eds.). Elsevier Science, Amsterdam, 159-169.

Acknowledgements: This research is funded by the Research Foundation – Flanders (the FWO project G.0263.08), the Maritime Access Division of the Ministry of the Flemish Community (MOMO project), and the Belgian Science Policy (Science for a Sustainable Development, QUEST4D, SD/NS/06A).