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Abstract. An important issue for the interpretation of data on a steady-state modern circulation suggest that the relative
from deep-sea cores is the time for tracers to be transportedisequilibrium between the deep Atlantic and Pacific is on
from the sea surface to the deep ocean. Global ocean cithe order of “only” 1200 years or less for a Neumann bound-
culation models can help shed light on the timescales overry condition and does not depend on the size and location
which a tracer comes to equilibrium in different regions of of the patch where the tracer is injected.

the ocean. In this note, we discuss how the most slowly de-
caying eigenmode of a model can be used to obtain a rel-
evant timescale for a tracer that enters through the sea sug-
face to become well mixed in the ocean interior. We show

how this timescale depends critically on the choice betweennp g recent article Wunsch and Heimbach (2008) (hereinafter
a Neumann surface boundary condition in which the flux of referred to as WHO08) pose an important question for the in-
tracer is prescribed, a Robin surface boundary condition irterpretation of pa_|e0ceanographic proxy tracer data: “How
which a combination of the flux and tracer concentration |ong to oceanic tracer and proxy equi"brium?" One spe-
is prescribed or a Dirichlet surface boundary condition in cific motivation for posing the question is the large differ-
which the concentration is prescribed. Explicit calculationsence in the apparent time for t4&80 of deep Atlantic and
with a 3-box model and a three-dimensional ocean circulapacific oceans to reach equilibrium subsequent to the input
tion model show that the Dirichlet bOUndary condition when of dep|eted§180 water from the me|t|ng of ice sheets noted
applied to only part of the surface ocean greatly overestimateby Skinner and Shackleton (2005). WHO08 suggest that a
the time needed to reach equilibrium. As a result regional+ransient tracer disequilibrium can more than account for the
“injection” calculations which prescribe the surface concen-3900 year lag in the Pacific relative to the Atlantic recorded
tration instead of the surface flux are not relevant for inter'in the sediment. |ndeed' simulated transient tracer experi_
preting the regional disequilibrium between the Atlantic and ments performed by WHO8 suggest that in the case where a
Pacific found in paleo-tracer records from deep-sea coresyacer enters the ocean over a limited-area patch of the high
For tracers that enter the ocean through air-sea gas exchanggitude Northern Atlantic or Southern Ocean, the deep Pa-
a prescribed concentration boundary condition can be usegific can lag the deep Atlantic by as much as 4000—-6000
to infer relevant timescales if the air-sea gas exchange ratgears before it reaches 90% of its equilibrium value. While
is sufficiently fast, but the boundary condition must be ap-\e agree entirely with the main point of the WHO8 article —
plied over the entire ocean surface and not only to a patchhat a substantial passage of time is needed before a tracer be-
of limited area. For tracers with a slow air-sea exchange ratgomes uniformly mixed throughout the ocean after it enters
such as**C a Robin-type boundary condition is more rele- through the sea surface, and that this transient response can
vant and for tracers such a8°0 that enter the ocean from resyit in significant regional differences in the time to reach
melt water, a Neumann boundary condition is presumablyyniformity — we wish to bring attention to the importance of
more relevant. Our three-dimensional model results baseghe choice of boundary condition on the implied time to reach
equilibrium.

The long equilibration timescale obtained by WHO08 de-

Correspondence td=. Primeau pends critically on their choice of surface boundary condi-
BY (fprimeau@uci.edu) tion. In their numerical simulations they prescribe the tracer
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1.6 : : : : : equilibrium, however, is dramatically different. After 25000
years of simulation the tracer with a prescribed concentration
1.4+ N 1 boundary condition has barely reached 90% of its final equi-
eumann b.c. L . o .
1.9l Ilbrlum_ concentration but the tra_cer_that is mtrgduced using a
prescribed flux boundary condition is already in approximate
1.0 equilibrium after only 1200 years.

o | N PR b b The reason for the vastly different equilibration timescales
0.8 ,;——”’— ‘ ] is easy to understand physically. For the case in which the
06l e iy =am v | concentration is prescribed, the tracer is introduced into the

' /"Dirichlet b.c. ‘ ocean only gradually because the flux of tracer through the
0.4l ,/ ] surface patch depends on the trageadientnormal to the
! surface. As the tracer enters the ocean its gradient near the
0.2y 1 surface, and hence its flux through the surface, decreases
0 ‘ ‘ ‘ ‘ ‘ rapidly because the tracer naturally spreads first to waters
0 5 10 15 20 25 30 that are near the patch. Further uptake of tracer depends
¢t (Kyrs) on the rate at which pristine waters can cycle through the

patch so as to maintain a concentration gradient normal to the
Fig. 1. Time evolution of two tracers at the same location indicated patch. For th? cfase In Wh'c_h the flux of tra}cer is prescribed,
by the red star in the inset map°®, 19 W, depth=3195m) in all the tracer is introduced into the ocean instantaneously at
the deep Northern Atlantic showing the very different equilibration time =0 and the role of the circulation is then to mix the
time for a Dirichlet (prescribed concentration) versus a Neumanntracer throughout the ocean. Equilibrium is reached when
(prescribed flux) boundary condition. The solid curve correspondsthe tracer becomes uniformly mixed everywhere. In case
to the Neumann boundary condition in which a pulse of tracer isthe reader objects that in reality tracers enter the ocean more
injected at timer=0. The injection is uniformly distributed in a gradually, we demonstrate in Se8t2.1that the overshoot
50m thick patch with an area 140" km? located in the high lat-  seen in Fig1 for the case in which the flux is applied impul-
itude Northern Atlantic as indicated by black_ region in the inset sively is greatly diminished if the flux is distributed over a
map. The dashed curve corresponds to the Dirichlet boundary ot ousand years or more. However, an important point for the

dition in which the tracer concentration is prescribed to unity for interpretation of paleo-broxy records is that time lag for dif-
t>0 in the same 50 m thick patch used for the Neumann problem, P P Proxy 9

At time =0 the concentration of both tracers is zero everywhere infere'f‘t p?'m.s of th? dgep chgn to reach equilibrium When the
the ocean. flux is distributed in time is still controlled by the equilibra-

tion time of the impulsive response and remains drastically

shorter than for the prescribed concentration response.
concentratiorin a patch at the surface of the ocean. Ifinstead The boundary condition used by WHO08 can be thought
of prescribing the concentration of tracer they had prescribedf as labeling fluid elements with a tracer as they circulate
the flux of tracer, the time to reach equilibrium would have through the surface patch. The concentratiénjncreases
been drastically shorter. This is illustrated in Figwhich monotonically fromC=0 at timer=0 to C=1 ast—oc. The
shows the time evolution of the concentration in the deep At-tracer concentratior( (r, ¢), can therefore be interpreted as
lantic ocean at (AN, 19 W, depth=3195m) of two tracers the fraction (by volume) of the water parcel centered at
simulated using a three-dimensional ocean circulation modeét timer that has circulated through the patch at least once
to be described in Se@. One tracer, denoted by the dashed since the time=0. The timergo(r) at whichC=0.9 for the
red curve, was introduced using the same type of boundaryirst time and used by WHO08 as a measure of tracer equi-
condition used by WHO08. Its concentration was prescribedlibration time corresponds to the time at which 90% of the
to be unity starting at=0 over a 50 m thick patch in the fluid elements at have made contact with the surface patch
high latitude North Atlantic Ocean. As—oo and all the  sincer=0. To the extent that the circulation can be thought
ocean’s water parcels have cycled through the surface patclof as being stationanG(r, ¢), can also be interpreted as a
the concentration of this tracer approaches unity everywhereumulative distribution function of times, since the fluid
in the ocean. The other tracer, denoted by the solid blueslements at have last circulated through the surface patch.
curve, was introduced by prescribing an instantaneous uniNote that when the surface patch covers the entire sea sur-
form flux at timet=0 into the same 50 m thick patch. For face the distribution is sometimes called the age distribu-
this second tracer, the amount of tracer flux into the oceartion (e.g. Primeau, 2005). With this interpretatiag(r), is
was prescribed to be exactly the amount needed such thadhe 90th percentile of the distribution function of times since
once the tracer is mixed uniformly throughout the ocean itsfluid elements at have made last contact with the patch. As
concentration is equal to unity everywhere. By construction,is evident from Figl, the time for an initially concentrated
both tracers have the same initial condition at tim® and  patch of tracer — such as would occur from a localized input
the same equilibrium condition as>oo. Their approach to  of anomalouss*0 water from melting ice sheets — to mix
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uniformly throughout the ocean is much shorter than the time (a) (b)
needed for 90% of the fluid elements to cycle through the ™ (5o « (1-a)s—»

input patch. Consequently, the, criterion used by WHO08 JD c (}) .o
greatly overestimates the time needed for a pulse of anoma- o 2
lous 5180 water to reach equilibrium. - B = % v v
D

q)a, 1

"

Our goal in the following sections is to further elucidate b5 ¥
the dependence of the equilibration time on the choice of C5(2)
boundary condition. However, one of the main conclusions
from this article should already be evident — the relevant
boundary condition for studying the differences in equilibra-
tion time between the Atlantic and Pacific ocean indH®©

Fig. 2. (a) Geometry of the 3-box ocean model whétg V, and

record is not the one used by WHO8 in which the concentra-'3 3¢ the box volumes,§ and(1—a)$ with 0= <1 are the areas
of the interfaces separating box 1 from 3 and box 2 from 3 respec-

“On IS prescrlbed., bqt one in which the ﬂu.x of tracer is prg- tively, and whereS is the area of the ocean-atmosphere interface.
scribed. As We_‘{‘"” discuss later, a prescribed Conclentratlortb) Diagram showing the notation used for the tracer concentrations
boundary condition can be used to extract relevant timescales, ., andcs, for the fluxes between the boxgs 3=(c1—C3)avS,
for tracers that enter the ocean through air-sea exchange Prandg; 3=(co—c3)(1—a)vs, and for the flux from the atmosphere
vided the air-sea gas exchange rate is sufficiently fast, but ther runoff, ¢, 1.
prescribed concentration boundary condition must be applied
over the entire air-sea interface and not as was done in WH08
over a patch of limited area with no-flux boundary conditions
applying over the rest of the ocean. dc

A natural timescale for characterising the rate at which - +AC =S, (1)
a system approaches equilibrium is thdolding decay
timescale of the most slowly decaying eigenmode of the sysWhere,
tem. Ast— o0, the most slowly decaying eigenmode dom- y 0 —y
inates the time evolution of the system because the othep _ 0 y — |, )
eigenmodes eventually decay sufficiently to make a negligi-
ble contribution. The spatial pattern associated with the most
slowly decaying eigenmode together with the mode’s decayis the model’s flux-divergence operator (also known as the
rate provide a concise description of the regional differencedransport operator), where the state veatei{c1 ¢ c3]’
in the equilibration time. The plan for this paper is therefore represents the tracer concentration in each box and where
to compute the eigenmodes of a three-dimensional OGCMs=[¢, 1 0 0]’ is a source term. The prime denotes vector
and explore the dependence of the characteristic equilibratranspose. The parametersAnthat are not defined in the
tion time on the size of the patch in which the tracer is in- caption for Fig.2 are the inverse timescaje=vS/(V1+V2),
troduced. Before presenting the results for the OGCM, weand the small parametes=(Vy1+V2)/ Va.
first illustrate in the simplest possible terms the main dif-
ference for the equilibration time of a problem with a pre- 2.1 Neumann boundary condition
scribed flux (Neumann boundary condition) and a prescribed ) ) ) ) o
concentration (Dirichlet boundary condition) using a simple Y€ first consider the case in which a pulse of tracer is in-
3-box model. The available analytical solution for the simple

jected instantaneously into box “1” at time=0 prior to
3-box model will allow the interested reader to verify quali- which the tracer concentration was zero everywhere. The
tatively the results which we obtain numerically for the ful

| total amount of tracer injected is such thatrasoco and the
OGCM. mixing of the tracer is complete, the equilibrium tracer dis-
tribution is one in whichcy=co=c3=1. The total amount
of tracer injected at time=0 must therefore b&1+ Vo+ V3,
2 A simple 3-box model example and the concentration in box 1 at time0* (immediately
after tracer injection) is
To illustrate in the simplest possible terms how the time to
reach equilibrium depends critically on the choice between,., ot) — VitVo+Vs 1+ € A3)
a Dirichlet and Neumann boundary condition, we now con- V1 ae
sider the evolution of a passive tracer in a simple 3-DOXpqr ;- 0 there is no source or sink of tracer into the ocean so
model. A detailed formulation of the governing equation for {4t the total amount of tracer is conserved. The time evo-
the 3-box model shown in Fig.is presented in Appendix A.  |ytion of the tracer can then be obtained by propagating the
Expressed in matrix form, the governing equation is initial tracer distribution forward in time with the exponential
of the matrixA (e.g. Hirsch and Smale, 1974):

—aey (@ — Dey ey
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16 F. Primeau and E. Deleersnijder: Tracer equilibrium

The solution to this system can be written as the sum,
co o AC (@) Co=Cr+Cy, Of a steady forced solution

- 0y
wherec,=c(r=0")=[(1+¢)/(«e), 0, O] is the tracer distri-  Cf = —AgoAor =[1 1], (10)
bution immediately after injection when all the tracer is con- . . . .
centrated in box *1”. Expanding the exponential in terms of and a transient homogeneous solution which can be written
the eigenmodes d%, we obtain the solution in terms of the exponential of a matrix

c1(t) 1 Ao 1 cy = —ePoocy, (11)
(0%
- —1 . -
o | =1+ = e+ § e Note that at time =0, ch=—Cy so thatc, satisfies the zero
c3(t) 1 0 -1 initial condition.
(5) Expanding the matrix exponential into the eigenmodes of

i . . Aoo, the time evolution of the tracer subject to the Dirichlet
The first mode corresponds to a zero eigenvalue and is there-

. o Eboundary condition can be expressed as follows
fore independent of. It captures the equilibrium state of
the system which corresponds to a state in which the pulser ., ;) 1 =letd W
of tracer is mixed uniformly throughout the three boxes.e[cg(t)] = [1] + [ —1—(1;d2a)6+d } e

The last two modes decay exponentially witfolding time- (12)

; : . 1+e+d
scales given by the reciprocal of the eigenvalues, + |: 1+(—l—22>1)e7+d ] oM
A =—y and A_=—(1+e)y. (6) -

These two decaying modes describe the transient state of thVé/here

system. The longest lived of the two modes witreefolding , — Y [14+€eFd], withd =+ (14 €)2 — dae. (13)
timescale YA, controls the length of time for the system 2

to come to equilibrium. The adjustment timescale for the Both 5 and_ are real and negative so that the homoge-

Neumann problem is therefore neous solution decays to zero and the equilibrium solution
1 VitV corresponds to the forced solution which is a state in which
IN=YV = oS () the tracer concentration is uniform throughout the boxes. The

approach to equilibrium for the Dirichlet problem consid-
ered here is governed by the eigenmodes of the mAtix
The time to reach equilibrium is given by the mode whose
e-folding timescale is longest, i.e.

It is important to note that unlike the adjustment timescale
7p obtained for the Dirichlet problem to be considered in
Sect.2.2, ty is independent of the relative sizes of the two
surface boxes As time progresses mixing and diffusion

erases the details of the tracer injection so that the size of 1

the initial injection box becomes irrelevant. ™o = Z

2.2 Dirichlet boundary condition _ 2yt (14)
14+€—+(1+¢€)2—4ae

The box model analogue of the Dirichlet boundary condi- 1

tion considered by Wunsch and Heimbach (2008) consists of ~ y_, e — 0.

holding the tracer concentration in box “1” to unity starting e

att=0. Fort <0 the tracer concentration in each box is pre- Note thatrp, depends on, the relative size of the surface
scribed to be zero. Becausgis prescribed, the differential boxes. This is consistent with the results of WH08 who also
equation corresponding to the first row Afin Eq. (1) can  noted that the timescale to reach equilibrium increases as the
be ignored and we are left with only the last two equations.size of the surface patch where the tracer enters the ocean
The resulting governing equation for the Dirichlet boundary decreases.

condition reduces to

dco 2.3 Discussion of the simple box model results
o AooCo + Aoica, (8) ' .
If we form the ratio oftp to Ty we obtain,
whereco=[c2(2), c3(¢)]’, and
(%)) 1
0 —y y — ~—, €—0, (15)
Ao1 = [aeyi| » Aoo = [(1 —a)ey —ey] ’ oo«
0.1 <0, which shows clearly that the timescale for the Dirichlet prob-
c1= {1’ 2o (9)  lem is much greater than the adjustment timescale for the

corresponding Neumann problem.
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The Dirichlet boundary condition implies a definite time- ary condition (prescribed flux) to a model with a Dirichlet
dependent “air-sea” flux of tracer into box “1”. In- boundary condition (prescribed concentration), we use the
deed, a consideration of the total tracer budget yieldsthree-dimensional tracer transport model of Primeau (2005).
¢a,1()=¢13=avS[1—c3(t)]. From which we see that as The advantage of this model is that its advection-diffusion
c3(t) approaches its equilibrium value the implied flux of tracer transport operator is available in matrix form making
tracer decreases to zero. We see also that the implied fluit possible to compute the model’s three-dimensional eigen-
is proportional tox S the area of the patch where the tracer modes by solving a matrix eigenvalue problem.
is introduced. The smaller the area where the tracer is intro- The tracer transport model is driven by the velocity field
duced into the ocean the more slowly the tracer is fluxed intoand eddy diffusion tensor field derived from a dynamical
the ocean. The slow equilibration timescale for the Dirichletocean general circulation model (OGCM). The dynamical
in comparison to the Neumann problem can be understood i©OCGM is a version of the climate model of the Canadian
terms of the slow rate at which the tracer is introduced intoCenter for Climate Modeling and Analysis, based on the
the ocean in the Dirichlet solution. This slow input rate is not NCAR CSM Ocean Model (Pacanowski et al., 1993; NCAR
relevant for interpreting th&80 record because the timing CSM Ocean Model Technical Note, NCAR/TN-423+STR,
and amplitude of the melt water pulse is causally independenNCAR Oceanography Section, 1996). The dynamical model
from the concentration af'80-depleted water in the ocean. uses the KPP (Large et al., 1994) vertical mixing scheme
The melting of the ice prescribes a fluxddfO-depleted wa-  and the GM (Gent and McWilliams, 1990) isopycnal eddy-
ter into the ocean and, given the melting rate, does not depenahixing scheme. Convection is parameterized by using an
on the circulation as is the case for the Dirichlet boundaryimplicit vertical diffusion scheme with a large diffusivity co-
condition. The surface concentration f0-depleted wa-  efficient. Second-order centered differences are used on a
ter on the other hand is determined by the balance between3.75°x3.75° grid with 29 levels ranging in thickness from
the prescribed flux and the mixing of surface and interior wa-50 m near the surface to 300 m near the bottom. The model
ters. It is therefore the relatively fast timescale of the Neu-has a velocity field and transport characteristics typical of
mann problem that is the relevant one for interpreting theOGCMs with similar resolution and produces a maximum
8180 record. Atlantic meridional overturning streamfunction of 18 Sv. It

An alternative way of thinking about the slow adjustment has been used to simulate transient and equilibrium tracers
timescale of Dirichlet problem is to think of the solution to such as“C and CFC’s (Krakauer et al., 2006) and biological
the Dirichlet problem as the concentration of surface watertracers such as phosphate, dissolved inorganic carbon, and
(e.g. Deleersnijder et al., 2002), i.e. the concentration of wa-alkalinity (Kwon and Primeau, 2006; Kwon and Primeau,
ter particles that have touched box-“1" at least once. The2008). The water mass ventilation properties of the annu-
smaller we makex the less likely it is for a water particle ally averaged circulation are described in detail in Primeau
to have hit the box-“1” air-sea interface and thus have beer(2005), Primeau and Holzer (2006), Holzer and Primeau
transformed into a “surface water particle”. Tiggtimescale (2006, 2008).
defined by WHO8 as the time at which the tracer concentra- The tracer transport model uses a state vectof di-
tion at some point in the interior of the ocean equals 0.9 is mension 63 091 whose elements correspond to the tracer
precisely the time at which 90% of the water in a parcel at concentration in each ocean grid box to represent a three-
has been in contact with the patch where the tracer is introdimensional tracer concentration field. The advection-
duced. The solution to the Neumann problem shows clearhydiffusion flux-divergence operator subject to no-flux condi-
that a pulse of tracer becomes well mixed long before 90% ottions on all boundaries, once discretized, can be expressed as
the water particles have made contact with the patch wher&3090< 63090 sparse matrig=V-[u—K-V], in whichu is
the tracer is injected. the fluid velocity anK is the eddy-diffusivity tensor.

The box model is sufficient to demonstrate clearly how . N )
the Dirichlet versus Neumann boundary conditions lead to3-1 Dirichlet boundary condition: prescribed tracer con-
highly different adjustment timescales. However, in order to centration

get more quantitative results relevant to the real ocean and tev t th blem f lation in di te f Th
look at the relative disequilibrium between the Atlantic and . € present the problem formufation in discrete torm.  The
nterested reader is referred to Appendix B for the continu-

Pacific Oceans, we now turn to a three-dimensional ocean . ) e
circulation model. ous formulation of the eigenmode problem. For the Dirichlet

boundary condition the tracer concentration is prescribed in
the patch so that only the equations for the grid points out-
side the patch need to be solved for. The in-patch points for
which the concentration is prescribed to be unity appear on
the right hand side as a forcing term to a reduced system of

In order to compare the eigenmodes of a three-dimensiondfduations for the out-of-patch grid boxes,
global ocean circulation model with a Neumann bound-

3 Eigenmode analysis for a 3-D ocean tracer transport
model
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18 F. Primeau and E. Deleersnijder: Tracer equilibrium

separated out the leading eigenfunctiege~'/™, because its
dco eigenvalue is purely real. To see why this is so, note that
o T AooCo = —Aosls, (16) in the limit of — oo the time evolution of any tracer dis-
=0, atr =0 tribution that has an initial projection oy will ev_entually
’ ’ become dominated byp because all the other eigenmodes
in which 15 is a vector of ones of lengtNs, the number of ~ decay to zero more quickly. In this asymptotic regime, the
grid points inside the patch. In writing EdL), we used the  tracer concentration would change sign at certain values of
partitioning of the state vector and matrix transport operatorif @o7#0. Because such changes of sign are a physical impos-

into sibility, wp must necessarily vanish. We can also conclude
from this argument that the leading eigenvectgris neces-
c= [CS} , andA = [255 250] , (17) sarily sign definite otherwise an initially positive tracer dis-
0s oo tribution would ultimately produce negative tracer concentra-

in whichs indicates the set of indices corresponding to modeltions once the other eigenmodes had decayed away. Further-
grid boxes inside the surface patch anidicates the set of MOre, @y positive tracer distribution must have a projection
indices corresponds to grid boxes outside the patch. ontovg because in a connected domain with finite diffusivity

The eigenmode problem for the discretized model with a@ll the other eigenmodes, for n=1, 2, - - - oo cannot be sign
Dirichlet boundary condition consists of looking for solu- d&finite, that is they must have both positive and negative re-

tions of the formey (1)=ve*'. Substituting this modal form gions. This fact follows from the bi-orthogonality property

into the homogeneous counterpart of Etg)(leads to the of the eigenvectors ak and its adjoint which are both proper
following matrix eigenvector problem advection-diffusion tracer transport operators. The fact that

any positive tracer distribution must have a projection agto
AooVy = AV, forn=0,--- | Ng, (18) for the Dirichlet problem means thage~//™ is always the

i ) i relevant eigenmode for describing the asymptotic approach
where N, is the number of grid boxes outside the patch. {4 equilibrium of the Dirichlet problem.

In the following we will assume that the eigenmodes are

X ! i Because the type of boundary condition that is used inside
ordered in terms of their real papi{),}=t, - such that

the patch (prescribed concentration) is different from the type
T0>712722 - 2IN. of boundary condition that is used outside the patch (no flux)
Note that by eliminating the rows and columns corre- yhere s ng single eigenspectrum relevant to each Dirichlet
sponding to grid points inside the patch we have made theyoplem corresponding to a different patch size and location.
matrix in Eq. (8) depend on the location and size of the A geparate eigenvalue problem must be solved every time the
patch. This should be contrasted with the Neumann eigengface patch is changed. We note also that because differ-
mode problem. As we will see in Sed&.2 (Eq.23) the  on¢ tynes of boundary conditions are used inside and outside
eigenmode problem for the Neumann problem uses the fullye natch the principle of superposition does not apply if one
matrix and is therefore completely independent of the patchyants to add up the concentrations from different patches.
size and location. The-folding decay rate of the most g points again to the fact that the regional-“injection” runs
slowly decaying elgenmoqle for the D|_r|chlet problem will _of WHOS8 cannot be used in a simple way to interpret real
therefore depend on the size and location of the patch. Thig,cers for which we expect to be able to add the contribution
is consistent with the results of WHO8 who found that the ¢om giferent patches to obtain the total tracer concentration.
190 timescale tended to increase as the patch size was made 1, explore the dependence of thefolding decay
smaller. timescale of the most slowly decaying mode on the location
and areal extent of the patch where the tracer concentration
is prescribed, we randomly chose 20 points at the surface of

The solution of Eq. 16) can be expressed as the sum of a the ocean and for each point we constructed a set of 6 patches

forced and a homogeneous solution. The forced solution def@nging in area from that of a single grid box to that of the

scribes the equilibrium state of the system and the homogef-u“ ocean surface. In this way a total of 101 distinct surface
neous solution describes the transient approach to equilipP@iches were constructed. For each of these patches we con-

rium. If we expand the homogeneous solution in terms ofStructed a matridoo by deleting the rows and columns Af

the system’s eigenmodes, the full solution can be written a$Orreésponding to grid points inside the patch. We then solved
the matrix eigenvalue problem in EdqL8) for each of the

3.1.1 Approach to equilibrium for the Dirichlet problem

follows : . o
101 Ay matrices using the sparse matrix eigenvalue solver
No Arpack (Lehoucq and Sorensen, 1996) as implemented in
_ ~t/70 (1Tt P q ’ P
Co(t) = 1o + bovoe ™/ + ) " buVne ; (19)  Matlab'seigs function. For each case we recorded the

n=1 folding decay timescalesp=1/A0 andr1=1/%{A1}, of the

where the leadind, corresponds to the forced response duetwo most slowly decaying eigenmodes. Fig@®eshows a
to the prescribed concentration of unity in the patch. We havescatter plot ofrg and as a function of the reciprocal of the

Ocean Sci., 5, 1328, 2009 www.ocean-sci.net/5/13/2009/
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areaA of the surface patch. The figure shows clearly howthe  1¢°
equilibration timescale for the Dirichlet problem increases
without bound asA approaches zero. There is also a conspic-
uous scattering ofp for small area patches indicating a large
sensitivity to the precise location of the patch. This sensitiv-
ity is expected due to local differences in the vertical velocity,
diffusive mixing and penetration depth of the mixed layer. In
contrast, the variability in timescalg (not shown) associ-
ated with the decay rate of the second most slowly decaying
eigenmode decreases and approaches the decay rate of th
most slowly decaying eigenmode of the Neumann problem
as A—0. This behavior ofrg andry is consistent with the
fact that as4—0 the eigenspectrum of the Dirichlet prob-
lem approaches the one for the Neumann problem. In other 2 ‘ ‘ ‘ ‘
words, asd—0 the number of grid boxes inside the patch 1077 10 10° 107" 10 10
decreases untihoo—A and 1/7o—0 as is required for the AT (m?)
Neumann problem where the no-flux boundary condition en-
sures that the total amount of tracer is conserved. Fig. 3. Plot of tg=1/A¢ (red squares) the-folding decay timescale

in units of years of most slowly decaying eigenmode of the
3.2 Neumann boundary condition: prescribed flux Dirichlet-problem versus the reciprocal of the ardapf the patch.

The set of patches used for this calculation is described in the text.
We again present the problem formulation in discrete form.As A—0, the equilibration time-scale given by approaches in-
The interested reader can refer to Appendix C for the contin-ﬁf‘ity' For comparison, the timescale of _the most slowly decaying
uous formulation of the eigenvalue problem with Neumann &i9énmode of the Neumann problem which does not depend on the
boundary conditions. The tracer transport problem in whichpatCh areais indicated by the thick blue line.
a flux of tracer is prescribed through a given surface patch
at timer=0 can be written in terms of a matrix system of ~ The eigenmode problem for the discretized model with

le (years)

10° .

10%} ., o

n@ decay timesca

107 e w s

e —foldi

differential equations of the form Neumann boundary condition consists of looking for so-

lutions of the homogeneous equation that are of the form
ic+Ac = pSS(1), (20) c(t)=ve~™. Substituting the modal form into the homo-
dt geneous equation leads to the following matrix eigenvector
subject to the initial condition problem,

Av, =1,V,, forn=0,--- N —1, (23)
c=0, atr =0, (21)

where N=63 090 is the number of grid boxes in the model.
wheres is a vector with ones in the elements correspondingThe eigenvectorsy,, capture the spatial pattern of the eigen-
to grid boxes inside the patch and zeros in the elements comodes and the eigenvalues, are such that the reciprocal
responding to grid boxes outside the patch and whéneis of their real parts give the-folding decay rate of the cor-
the Dirac-delta function. The dimensionless scalensures ~ responding eigenmodes. In the following we will assume
that enough tracer is injected in the patch at tim® so that  that the eigenmodes are ordered in terms of their real part
the asymptotic equilibrium tracer concentration is equal tofi{*:}=1, ! such thato>71>1o> - - > 1y.
unity everywhere. The parameteris therefore equal to the
ratio of the total volume of the ocean to the volume inside the
patch. EquationZ0) can be reduced to a homogeneous ini-
tial value problem (i.e. with no source term on the right hand
side) by integrating the equation froma-—e to t=¢ and let-
ting e—0, to obtain

3.2.1 Approach to equilibrium for the Neumann problem

The solution to Eq.40) is obtained by projecting the initial
condition,c=ps onto the eigenmodes @,

N-1
c(t) =eM(p9) = D apVue
n=0

d
—Cc+Ac=0, N—1 (24)
dt (22) =1+ § :a v e(—l/r,,+iw,,)t

c(t=0) = PS, - nVn ,

n=1

in which the effect of the pulse of tracer injected into the whereN is again the total number of grid boxes and hence
ocean at time=0 is encoded in the problem’s initial condi- eigenmodes, and where the leading vector of ones in the sec-
tion. ond line corresponds to the constant eigenfunction with the
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of T,,=2n/w1=5190 years. The next most slowly decay-
ing eigenmode has anfolding decay timescale of,=365

90N years. Figurel shows a contour plot of the phase and am-

60N plitude of the corresponding eigenfunction, in the deep
ocean.

SON For our OGCM, the approach to the uniform tracer dis-

EQ.- tribution is governed by an over-damped exponentially de-
caying modeye(~1/tio)! By factoring oute /™ in the

3081 solution’s eigenmode expansion in E&4), we can rewrite

6051 the solution as follows

90S T T T T T T _ —t/11 |: iwt £ (—1/Tn+1/f1+iwn)l:|

0 60E  120E  180E  120W  60W C() = l+e av1e™? + > ayVye :
(b) "=
90N (25)
60N - - which shows that the exponentially decaying regime is itself

approached with a timescale determined by the relative decay

rate of the next most slowly decaying eigenmode through the

formulat,~t112/(11—12). FOr our model ig, =870 years.
Assuming that the initial projection on is not zero, as is

the case for our model, the relative disequilibrium between

points at two different locations in the deep ocean, in grid

boxesi andj say, can be obtained for times>z, from the

: : : : : : spatial structure of1 alone. If we consider two points in the

0 60E 120E 180E  120W 60W  ocean at grid boxesand j then the asymptotic disequilib-

rium of these two points is

30N
EQ.1
308+

60S 1

90S

0 0.2 0.4 0.6 0.8 1 11— ¢i()]] ~ llawvaille /™, (26)
: : . 11— c; 0] ~ llazvajlle™"/™,
Fig. 4. Amplitude and phase of the most slowly decaying eigen-
mode of the transport operator with a Neumann boundary conditionwhere v; and v; are theith and jth elements of;. The
Panel(a) corresponds to a depth of 2105m and paiglcorre-  time lag Az (i, j) between the equilibration time of boxes

sponds to a depth of 3185m. The mode is over-damped with a agith indicesi and j can be estimated from the requirement
e-folding decay rate of 628 years and a period of 5190 years. that

o _t+ALGL)
IViille ™ =llvjlle =, (27)

zero eigenvalue. All the eigenmodes with1 have a pos- _ _
itive 7, and therefore decay exponentially with time. As Which leads to the following formula,
t— o0 only the constant eigenmode with a zero eigenvalue Vi l|
1
()

survives to produce the asymptotic equilibrium state. In gen-Az (i, j) ~ —t1l0
eral, the approach to the asymptotic tracer field-asc is [Vl
dominated by, because the other eigenmodes decay morgyrovided neither ¥ or vy ; vanishes. At the few points where
quCkly In the Unlikely situation where the initial tracer dis- either Vi; Of Vi; vanishes, the next eigenmode in the ex-
tribution does not project ontey, the asymptotic tracer field  pansion (which decays even more rapidly) would need to be
will be dominated byze*2', the second most slowly decay- taken into account. For our model, the lag in the equilibra-
ing eigenmode and the approach to equilibrium will be eventjon time between any two points at depths below 3100 m
faster. is always less than 1200 years and much less on average.
To compute the slowly decaying part of the eigen- These time lags are much smaller than those obtained from
spectrum of A we again used Arpack (Lehoucq and the boundary condition used by WHO08, i.e. Dirichlet bound-
Sorensen, 1996) as implemented in Matlabigs func- ary condition on regional patches.
tion. As required by tracer conservatioA, has a con- Figure5 contrasts the time evolving response at two points
stant eigenvector with a zero eigenvalug=0. The most in deep ocean to a Dirac-delta function pulse of tracer in the
slowly decaying eigenmode for our model has eigenvalue surface ocean. One pointis in the Atlantic and the other point
r1=1/t1—iw1, which corresponds to an over damped modeis in the Pacific. The tracer concentration crosses its equilib-
with an e-folding decay time ofr1=629 years and a period rium value before 2000 years at both sites and is pretty much

(28)
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Fig. 5. Response to a flux into the top layer of the model prescribedrig. 6. Response to a flux into the top layer of the model is

as a Dirac-delta function pulse. The solid blue curve is for a pointprescribed to evolve according to a Gaussian function centered at
at (3% N 23.5° W) in the Atlantic Ocean and the dashed red curve ;=000 yrs with a standard deviatien=2000 yrs. For <0 the

is for a point at (18N, 120° W) in the Pacific Ocean. Both points  gyrface flux is zero. The solid blue curve is for a point at°(89
are taken at a depth=3185m. 23.5 W) in the Atlantic Ocean and the dashed red curve is for a
point at (13 N, 120° W) in the Pacific Ocean. Both points are taken

. I " . at a depthy=3185m.
in equilibrium at about 3000 years. The Pacific lag with re-

spect to the Atlantic is generally less than 1000 years. Fig-
ure 6 shows the response at the same two points for the caskn other words, when the air-sea gas exchange process is suf-
where the injection of tracer is distributed in time according ficiently fast the Robin boundary condition is essentially the
to a Gaussian pulse with a standard deviation of 2000 yearssame as prescribing the concentration at the sea surface. A
Distributing the tracer flux in time as opposed to injecting it mixed boundary condition in which a linear combination of
instantaneously using a Dirac-delta function has the effect othe flux and the surface tracer concentration is prescribed is
reducing the overshoot past the asymptotic equilibrium valueoften referred to as a Robin boundary condition (e.g. Haine,
and tends to further decrease the lag between the Pacific arD06). The interested reader is referred to Appendix D for
Atlantic responses. the continuous formulation of the eigenvalue problem for the
case of a Robin boundary condition applied at the sea sur-
3.3 Robin boundary condition: prescribed linear combina-face. Here we present the discrete problem for the approach
tion of flux and concentration to equilibrium subject to a Robin boundary condition. Be-

cause air-sea gas exchange occurs over the entire sea surface

In the case where the tracer enters the ocean through air-sggs \yiil only consider the case in which the Robin boundary
gas exchange itis often the case that the information we havggngition is applied to the entire surface ocean and will not

is for the atmospheric concentration of the tracer. The apnsider the localized-patch case as we did for the Dirichlet
propriate boundary condition is then one in which the flux problem.

of tracer through the air-sea interface is taken to be propor- the giscrete tracer transport problem for a Robin bound-

tional to the difference in the concentration of the tracer be-ary condition can be written in terms of a restoring timescale
tween the bulk ocean and the bulk atmosphere (e.g. Krakauetr:AZ/k whereAz is the thickness of the top most layer of
et al., 2006). This implies a surface boundary condition of 1o ocean model. In matrix form we have

the form,
d 1 1
T T

F=k-(Cs—Cyp), (29) dt (30)
. . c=0, atr =0,

whereF is the gas flux out of the ocean is the concen-

tration of the gas in surface watef, is the surface ocean wherel is a vector of ones and where

concentration of the gas in equilibrium with the partial pres- |« 0

surep of the gas in the air over the ocean surface. The pro-As = [Ozss OZZ] ) (31)

portionality constank, sometimes referred to as the piston
velocity is generally tracer dependent. Note that the Dirich-is a diagonal matrix with ones in the columns corresponding
let boundary condition is obtained asymptoticallykas oc. to surface grid points and zeros everywhere else.
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of the homogeneous solution. The eigenmodes in B8). (
that capture the approach to equilibrium are those of the en-
larged system in Eq.3@Q) that includes the process of air-
sea exchange. The eigenmodes are therefore functions of the
timescaler with which the 50 m thick top layer of the model
equilibrates with the atmosphere.

As we have already mentioned the Dirichlet boundary con-
dition is a limit case of the Robin boundary condition. We
therefore expect that if the air-sea gas exchange time scale is
small compared with the residence time of water in the mixed
layer, the eigenmodes of the Robin problem will be similar
to the eigenmodes of the Dirichlet problem. Figidrshows
the e-folding decay timescale of the most slowly decaying
eigenmode of the Robin problem as a function of the air-sea
10 10° 107 10° equilibration timescale for a 50 m thick mixed layer. As be-

T (years) fore the modes were computed using Matlagigs func-
tion. As t—0, thee-folding timescale of the most slowly
Fig. 7. Plot of 7p=1/2¢ (blue diamonds) the-folding decay = decaying eigenmode asymptotes g=797 years, thee-
timescale of the most slowy decaying eigenmode of the Robin-fo|ding timescale of the most slowly decaying eigenmode of
problem versus the air-sea equilibration timescale for a 50 m the pirichlet problem with the surface patch being the whole
t_thk mixed layer. T_he red dashed line indicatesdfelding decgy sea surface. For values ofshorter than 3 months, the
tlmes_calg Of. the Dirichlet problgrm()_=797 year.s)' The straight folding timescale of the most slowly decaying mode for the
bluelllne indicates th.e asymptouefoldlng decay tlmespale for the. Robin problem is within 10% of the Dirichlet asymptote
Robin problem obtained form a first-order perturbation expansion . o : X T
of the Neuman problem in terms of the small parametet /<. If on the other hand the air-sea equilibration timescale is
sufficiently long, the reciprocal of is a small parameter,
and the eigenvalue problem in E@2] can be thought of as

To obtain the discrete eigenmode problem for thea perturbation to the eigenvalue problem for the Neumann
Robin boundary condition we substitute the modal form problem discussed in Se@.2 By having introduced the
c(r)=ve™™ in the homogeneous counterpart of Eg0)(to  process of air-sea gas exchange, the tracer can escape to the

T (years)

10

obtain, atmosphere and is not conserved in the ocean as it was for
the case of the Neumann problem. The process of air-sea
1 t hange theref turbs the null ei de of th
[A+ =AslVy = AV, fOrn=0,-.- N —1 (32) racer exchange therefore perturbs the null eigenmode of the
T Neumann problem into a decaying mode. A perturbation ex-
where, as beforey=63 090, is the number of grid boxes in pansion in powers of /& allows us to examine how the null
the ocean model. eigenmode of the Neumann problem is modified by the pro-
cess of air-sea gas exchange. Expanding the eigenvector and
3.3.1 Approach to equilibrium for the Robin problem eigenvalue of the Robin probem in powers ¢t 1

The solution of the Robin problem in EBQ) is mathemati- v — o+ }(/,1 4.
cally similar to the Dirichlet problem considered in S&8clL T
If we enlarge our system to include the air-sea tracer ex- — ,, 4 EJ/:L 4o,
change process, the Robin problem can be viewed of as a T

Dirichlet problem in which the tracer concentration is pre- sypstituting into Eq32 and equating like powers of/t we

scribed in the air 0ver|ying the sea surface instead of in thq'ecover to zeroth order the Neumann eigenva|ue prob|em’
water at the sea surface. Not surprisingly, the solution to the

Robin problem can be expressed as the sum of a forced plu8¢o = Yoo (35)

homogeneous solution as was the case for the Dirichlet prob-.
lem g P Taking ¢y andyp to be the null mode of the Neumannprob-

lem, we havepo=1 andyp=0. At first order we obtain,

(34)

N-1
c(t) = 1+ bovoe /™ + Z bpVye Y/ mtiont (33) Ad1+ Aspo =1l (36)

=t If we right multiply Eq. 86) by the matrix diagonal’W

where the leadind corresponds to the forced response duewhere the prime indicates matrix transpose #his a diag-
to the prescribed concentration of unity in the atmospherepnal matrix with the grid-box volumes down the main diag-
and where the remaining terms are the eigenmode expansianal we obtain
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Fig. 8. Spatial pattern of the most slowly decaying eigenmode for 0o 2000 4000 6000 8000 10000
a Robin surface boundary condition for several values of the air- t (years)

sea equilibration time-scale, for a 50 m thick mixed layer. The

left column shows the modal pattern zonally averaged in the Pacifidmig. 9. Plot of the time evolution of a tracer subject to a Robin

basin and the right column shows the modal pattern zonally averboundary condition for which the tracer concentration in the at-

aged in the Atlantic basin. mosphere is prescribed to unity for0 and for which the air-sea
equilibration time-scale for a 50 m thick mixed layer is set 610
years. The solid blue curve is for a point at {30, 23.5 W) in the
Atlantic Ocean and the dashed red curve is for a point at .3

WAl 120° W) in the Pacific Ocean. Both points are taken at a depth of

_, (37) z=3185m.

Twi

where we have used the fact that because of tracer conser-

vation volume weighted sum of a column of the transport  The long equilibration timescales obtained in the asymp-
operator is zero, i.el’'WA = 0'. The numerator in Eq3() totic limit of 1/7— 0 have of course more to do with the slow

is equal to the volume for the top layer of the ocean model,ajr-sea gas exchange process than with the circulation of the
and the denominator is equal to the total volume of the oceangcean. Figur& shows the spatial patterns associated with the
The larger asymptotic behavior of the most slowly decaying most slowly decaying eigenmode for the Robin problem for

V1=

eigenmode is therefore several values of in the transition region between the small

Vsurf1 and larger asymptotic limits. As:. incr(_eases, the spatial gra-
Ao ~ m? ast — o0 dients of the most slowly decaying eigenmode gradually de-
kf(l) (38) crease, first in the deep ocean but eventually throughout the

~ —ask — 0, whole ocean. Eventually, for>500 years, the modal pat-
tot tern is essentially constant. When the rate at which a tracer

where A is the surface area of the ocean anis the air- IS introduced into the ocean is slow compared with the rate at
sea tracer-exchange rate. Equatid8) Shows that when the  which the ocean circulation can mix a tracer on global scales,
air-sea exchange rate is sufficiently slow the tracer equilibrathe relative tracer disequilibrium between different parts of
tion timescale for the ocean can be obtained simply by di-the ocean is necessarily small.

viding the ocean volume by the rate of tracer input through Figure 9 shows the time evolution of a tracer subject to
the air-sea interface. The ocean, subject to a Robin bounda Robin boundary condition with the tracer concentration in
ary condition with a sufficiently slow air-sea tracer exchangethe atmosphere prescribed to unity for0. The air-sea equi-
rate, behaves essentially as a well-mixed box in terms of itdibration timescale is set to=10 years, the value in the mid-
equilibration timescale. The largeasymptotic limit is in-  dle of the transition between the two asymptotic limits. The
dicated in Fig.7 by the solid blue line. For values af approach to equilibrium is slow, consistent with the corre-
greater than approximately 100 years ¢Helding timescale  spondingly largee-folding timescale of 1690 years for the
of the most slowly decaying eigenmode is within 10% of the most slowly decaying eigenmode. The time for the tracer
asymptotic value given in Eq38). For =100 years the- concentration to come withing 10% of its final equilibrium
folding timescale of the most slowly decaying mode is 8225(t9g) is greater than 4000 years for both the deep Atlantic
years. For reference, the time for a 50 m thick mixed layerand Pacific oceans. Despite the long equilibration time, the
to come to equilibrium with the overlying air is on the order lag-time for the Pacific to reach the same level of equilibra-
of a week for oxygen or chlorofluorocarbon and roughly 10 tion with the atmosphere as the Atlantic is only on the or-
years for radiocarbon (Broecker and Peng, 1982). der of 1000 years. This is consistent with the eigenmode
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pattern shown in Fig8. The Atlantic-to-Pacific gradients in  of surface waters constant during the period over which the
the deep ocean are already substantially weakened=a0 ocean reaches equilibrium.
years. The modal pattern fee=10 years shows that the rel- For a tracer such a¥'C that enters the ocean through
ative disequilibrium between the surface and deep ocean iair-sea gas exchange a Robin boundary condition is appro-
expected to be much greater than the Atlantic-to-Pacific dispriate. To the extent that the air-sea gas exchange is suffi-
equilibrium. Direct time-dependent simulation (not-shown) ciently rapid, one might argue that a prescribed concentration
revealed that the time lag between the surface and deep oce@oundary condition can be used to provide timescales useful
to reach 10% of their final equilibration value is on the order for the interpretation of regional differences in tracer concen-
of 4000 years for=10 years, and only on the order of 2500 trations. However, for the specific case'®€ the air-sea dis-
years forr=1 month. equilibrium is sufficiently large that it needs to be taken into
It is interesting to point out that the air-sea equilibration account (Campin et al., 1999) by either using a Robin-type
time for 14C of t~10 years lies right in the middle of the boundary condition with an appropriate air-sea exchange rate
transition between Dirichlet and Neumann asymptotic lim- or by prescribing a flux boundary condition in a well mixed
its in Fig. 7. This implies that ignoring the air-sea exchange atmospheric box coupled to the ocean.
process (smalt limit) or treating the ocean as a well mixed  While the Neumann boundary condition in which the flux
box (larger limit) will result in significant underestimates of tracer is prescribed is the relevant one for understanding
in the equilibration time of*C. The importance of includ-  the equilibration time of a tracer such &80, the Dirichlet
ing both ocean circulation and air-sea exchange process fdvoundary condition in which the concentration is specified
understanding the time evolution &#C is of course well s still extremely useful for understanding the age concept in
known by the paleoceanographic community (e.g. Campin etnarine modeling (e.g. Delhez et al., 1999; Holzer and Hall,
al., 1999). 2000; Deleersnijder et al., 2001; Deleersnijder et al., 2002;
Haine and Hall, 2002). As mentioned in the introduction, for
the case of a stationary circulation the solution to the Dirich-
let boundary condition can be interpreted as the cumulative
distribution of times since the fluid elements in the ocean in-
- terior were last in contact with the surface patch. The time
The type of sur_face bou_ndary c_ondmon one S.h.OUId apply de'derivative of the cumulative distribution is often referred to as
pends on the information available. The Dirichlet bound-

e . . an age distribution and it gives important information about
ary condition is appropriate when the surface concentratloqhe distribution of times by which fluid elements are trans-

is known. The Neumann boundary condition is appropriate orted from the surface ocean to a point in the interior of

when the flux is known. In the case where the tracer enter he ocean via multiple pathways. However, in order for the

the ocean through air-sea gas exchange the information nge distribution to give specific information about the relative

have is often for thg atmospheric conggntrgﬂon 9f the t,racerdisequilibrium of a given tracer in the interior of the ocean it
In that case a Robin boundary condition in which a linear

o L - must be convolved with the time history of the surface con-
c_om_b Ination OT the flux and surface concentration is SPEClcentration of the given tracer. Unless the concentration his-
fied is appr_oprlat_e. ) tory of the tracer at the surface is known, the age distribu-

Tracer simulations that use a prescribed tracer concentrajon cannot be used to infer the relative disequilibrium of the
tion as a surface boundary condition allow the tracer flux to45cer. This point is made explicit from the integral equa-
be determined as part of the solution. This has the effect ofjg, relating the Green functiorG (r, 7; ) for propagating

making the flux dependent on the tracer concentration ang, pyise of tracer through a surface patehat timer=0 and
on the ocean circulation. However, for a tracer such'&,  the Green functiow(r, : t, ¢') for propagating a prescribed

the flux of melt water into the ocean determines the initial g, face concentration at timeat pointr’ inside
surface concentration 6#80 and not the other way around.

The injection of a tracer by a process such as ice melt is o 5, ;. ;.
consistent with prescribing a flux over a limited region of (-3 §2) 2/0 dt /Qd rgr o, )G, Q). (39)
the surface ocean. Prescribing the concentration as is done
by WHO08, implies that there is some instantaneous feed{The formulation of the governing equations that define
back mechanism that keeps the surfat®0 concentration andg can be found in Holzer and Hall, 2000). EquatiG)(
at some prescribed value as deeper waters with little or n@ehows how an initial pulse of flux through at timet=0 is
tracer signature are mixed into the surface layer. It is difficult propagated using (r’, ’; ) from Q back to a point’ on
to imagine a mechanism that could achieve this. We expecat some time’>0 and then fromt’ to a pointr in the interior
no such feedback from the runoff of ice-melt from rivers and at timer usingG(r, z; r’, t'). The appearance @ (r’, ¢’; Q)
streams and while the atmosphere is a reservoir with a fasbn the right hand side of Eq39) shows that detailed infor-
mixing timescale it is a rather small reservoir and is there-mation about the time evolution of the tracer concentration
fore not expected to have the ability to keep 4480 content  within €2 is needed to obtain the interior tracer disequilibrium

4 Discussion
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at timer. This information is not contained i@, the Green  found in thes'80 record is the Neumann boundary condi-
function for the Dirichlet problem. tion for which the flux is prescribed. Our three-dimensional
Holzer and Hall (2000) point out that the mean time sincemodel results suggest that the relative disequilibrium be-
last contact with a patcke, ngfa’o tG(r, t; Q)dr, tends  tween the modern day deep Atlantic and Pacific oceans is
to infinity as the size of2 shrinks to zero. In other words, on the order of 1200 years or less. This tracer equilibrium
as 2 shrinks to zero it takes infinitely longn averagefor timescale depends of course on the accuracy of our model's
fluid elements to find their way frof® tor. It may therefore  velocity field and eddy diffusivity coefficients. Given that
seem paradoxical that a tracer that is initially concentrated irthe model resolution is very coarse one might wonder how
a small patch2 can become well mixed in a finite time even accurately it can simulate the time-mean circulation. Early
as< shrinks to zero. There is no paradox, however. It is thestudies such as Cox, (1989) and England (1993) have shown
shortz part of theg distributions that carries the bulk of the that coarse-resolution models are capable of representing the
tracer because as the area of the patch shrinks to zero, thgdobal-scale water masses suggesting that at least on the
initial concentration tends to infinity. In the case of €0 largest scales the model circulation is reasonably accurate.
tracer for example, the concentrationsdfO depleted water ~ Given that the most slowly decaying eigenmodes are associ-
is expected to have been extremely elevated at the mouth aited with the largest spacial scales we do not expect that our
the melt water rivers and streams relative to the well mixedresult should be very sensitive to the model resolution. Of
asymptotic state. Therefore, whénhis small, it is the fast course, a realistic simulation of the dispersion of $A80
transport of waters with initially concentrated tracer valuessignal from the melting of the ice sheets needs to take into
that carry the bulk of thé180 signal and so bring the ocean account the changes in ocean currents that are expected to oc-
to its well mixed state long beforgg or I'g; is reached. cur as a result of the change in density due to the fresh-water
pulse. Without taking these effects into account we can still
guestion the “simpler explanation” offered by WHO08 that a
5 Conclusions steady modern-day circulation is sufficient to account for the
apparent 3900 year lag between the times for the deep Pacific
In this article we have used the eigenmodes of a simpleand Atlantic oceans to reach equilibrium.
three box model and of a three-dimensional ocean circula-
tion model to characterise the timescale for a tracer to come _
to equilibrium. We have shown that the timescale to reachAPPendix A
equilibrium is longer when one prescribes the concentration
of tracer instead of the flux of tracer. The difference in equi- Formulation of the governing equations for the
libration time is especially pronounced when the patch over3-box model

which the tracer is injected is small. For the Dirichlet prob-
The volumes of the boxes are denoted Wy V> and Vs,

lem the time to reach equilibrium tends to infinity as the area i ,
of the patch shrinks to zero. In contrast, the equilibration@nd the corresponding tracer concentrations are denoted by
c=[c1 c2 c3]’. As indicated in Fig2, the index “3" is as-

time of the Neumann problem becomes insensitive to the de=—", : ) S0 = e
tails of the injection as the patch size shrinks to zero. ThisSociated with the deep ocean box, while the indices *1” and
are associated with the two surface ocean boxes. The

result should not be surprising to anyone who has observed? . .
the dispersion of a dye in fluid experiment — the size of the9€OMetry of the boxes, as shown in Fag, is such thaf de-

syringe used to inject the dye quickly become irrelevant tohotes the area of the interface separating the deep box from
the evolution of the dye. the surface boxes as well as the area of the ocean-atmosphere

Prescribing the surface concentration to be a constant imi_nterface_. The Iimit_ed area of the interface separa_\ting boxes
plies that the flux of tracer into the ocean depends on th and 3 is theaS with 0<a <1, and the area of the interface

concentration of this tracer in surface water. Such a bound- etween boxes 2 and 3 {&-«)S. To keep the algebraic

ary condition can be used for interpreting the time to unifor- cohmpletﬁtyt:]q i mwm;;;?l It is ;Jsefubl 0 cqn&der;hle catshe
mity of a tracer that enters the ocean through air-sea gas exynere the thickness ot the surtace LoXes 1S much 1ess than
at of the deep box. We therefore introduce the following

change, provided that the air-sea exchange rate is sufficientl

rapid and that the Dirichlet boundary condition is applied to mall parameter
the entire ocean surface. Applying the Dirichlet boundary Vi+ Vs
condition in patches of limited surface area breaks the supere =
position principle and makes it difficult to apply the resulting
time scales for the interpretation of real tracers. The net flux of tracer from bokto box j is denoted byp; ;

For the case 08180, the melting of ice sheets is causally as indicated in Fig2b, and the net flux of tracer from the
independent of the concentration&f0 in surface waters. atmosphere into surface box “1” is denoteddy;. The flux
The correct boundary condition for interpreting the relative of tracer from the atmosphere to box “2” is assumed to be
disequilibrium between the deep Atlantic and Pacific oceangzero. For simplicity and since is assumed small we will

<1 (A1)
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neglect the tracer exchange between the two surface boxes,
more precisely, we set; »=0. We parameterize the fluxes

between the ocean boxes as the product of (i) the area bed - (K -

F. Primeau and E. Deleersnijder: Tracer equilibrium

VC(t,r)) = 0forr on the boundaryl’ U I'1\ g,

tween the boxes, (ii) a constant velocity scaland (iii) the
difference in tracer concentration between the boxes:

$13 = (c1— c3)avS, ¢23=(c2—c3)A—a)vS. (A2)

C(t, 1) 0 for <0 onrerl
9 = e 9
1, fort >0 0

(B2)

The tracer budget for each of the three boxes yields the

following governing equations

where

der 7 : is a unit vector normal to the basin boundary,
1= —$1,3, +Pa,1 _ _ _
4 t I' : is the bottom and sides of the ocean basin,
C
Vzd_tz = —¢23, (A3) I'o : is a surface patch at the air-sea interface,
des I'1 : is the total air-sea interface,
3 =h13+d23. I'1\Ig : is the rest of the air-sea interface excluding

Combining the flux relations in EgAQ) with the differential
equations in Eq.A3) we obtain

the"g patch (B3)

The eigenfunctionsy, (r), of the Dirichlet problem are

ﬂ = —yc1+ye3+ a1 the solutions to the following eigenvalue problem
dt Vi’
@ — —yer+yes (A4) =1/t +iw)Yn(r) = =V - [U—=K - V]i,(r),
dt ’ ¥, (r) = 0forr onthe boundaryly,  (B4)
d —
f =aeyc1+ (1 —a)eycr — €ycs, n- (K- Viyy,()) = 0forr on the boundaryl'1\ I,
where we have introduced the time-scale where the eigenmodes are ordered such that their decay rate
. Vit W increases with increasing Note that because of the absorb-
= oS (A5) ing boundary condition ovdrg and the absence of any tracer
. . . . _ . ._source terms, the eigenmodes;’ v, (r), n=1,2, --- , oo,
]Ict is convenient to rewrite this system of equations in matrix o decaying functions of time, implying that-0 for
;rm all n.
c
— +Ac=s, A6
T (A6)
where Appendix C
o ‘1 o (p“'%/ € and Continuous problem for the case of a Neumann
- 22 T 0 ’ boundary condition
3
y 0 -y ad
—C,r)=-V-[u—K-V]C(@,r),
A= 0 y —y (A7) o (t, 1) [ 1C@, 1)
— -1 Vi
ey (@ )€y €y R ﬂ<S(t) for r on the boundary'o (C1)
n-(K-vC,r) =14 Ar
Appendix B Ofor r on the boundary” U I'1\I'g
. - where
Continuous problem for the case of a Dirichlet
boundary condition 7 : is a unit vector normal to the boundary of the domain

The mathematical formulation of the tracer initial value prob- I
lem with concentration prescribed over a fixed patch (i.e. the TI'7:
problem considered by WHO08) is given by

I'p:
9 5(t) :
—C@{,r)=-V.-[u—K- -V]C(,r),
ot ®" [ lewn (B1) Viot :
Cc@O,r) =0, Ar, :

subject to the boundary conditions

Ocean Sci., 5, 1328, 2009

is the bottom and sides of the basin boundary
is the total air-sea interface
is a surface patch on the air-sea interface
is the Dirac-delta function
is the total volume of the ocean
is the area of th&g patch.
(C2)
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The eigenfunctionsy, (r), of the Neumann problem are where the eigenvalues,=(—1/t,+iw,), n=0,1, --- , o0,
the solutions of the following eigenvalue problem are ordered such that tkefolding decay timescaler,, de-
creases with increasing

{ ( 1/}" FionYn() ==V - [u=K-VIg,(©), Acknowledgementd/Ve wish to acknowledge comments made by
n- (K- Vi,(r)) = 0forr onthe boundary” U 'y, C. Wunsch and discussions with Jake Gebbie on an earlier draft of
(C3) the manuscript which helped us improve the manuscript. ED is a
Research associate with the Belgian National Fund for Scientific
where the eigenvalues,=(—1/1,+iw,), n=0,1, - - - , 00, Research (FNRS). FP wishes to thank the Universatholique

are ordered such that tkefolding decay timescaler,, de- ~ d& Louvain (Louvain-la-Neuve) for a visiting professorship.
creases with increasing As already mentioned in Se@.1, This research was also funded in part by the National Science
the zero eigenvalue is a manifestation of the conservatiors oundation grant OCE 0726871.
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