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GENERAL INTRODUCTION

THE OCEANS

A world under pressure

Strong anthropogenic pressure rapidly induces changes in the oceans. Oceans are directly
exploited by fisheries, gravel and mineral extraction, construction of oil platforms and wind
mill farms, the use of wave and tidal energy, installation of pipe lines and distribution cables
(Halpern et al., 2008). Moreover, other non-intentional effects such as organic and inorganic
pollution, the emergence of invasive species, ocean acidification and climate change
operate. As a result, over 40% of the world's oceans are heavily affected by human activities
and few, if any areas remain untouched (Halpern et al., 2008) (Fig. 1.1).
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Fig. 1.1. Global Map of Human Impacts to Marine Ecosystems (from Halpern et al., 2008)

Some of these impacts strongly affect local biodiversity: numerous publications report on
the impacts of fisheries (Pauly et al., 1998; EC, 2009; FAO, 2010; Froese et al., 2010;
Shephard et al.,2010) and climate change related effects (Caldeira and Wickett, 2003;
Edwards and Richardson, 2004; Perry et al., 2005). Although marine extinctions are not
easily uncovered, it has been shown that regional ecosystems are rapidly losing species and
functional groups (Worm et al., 2006).
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Global awareness that our ecosystems need protection was raised at the UN Convention of
Biological Diversity in 1992 in Rio de Janeiro. The main outcome of this convention consists
of two key documents: the Rio declaration and the Agenda 21. One of the objectives in
Agenda 21 is to improve the conservation of biological diversity and the sustainable use of
our biological resources. A significant reduction of biodiversity loss by 2010 was advocated
at the 2002 Convention on Biological Diversity at The Hague (Butchart et al., 2010). This
target was further refined in 2006 (CBD, 2006). Specifically, at least 10% of each of the
world’s ecological regions should be effectively conserved and areas of particular
importance to biodiversity should be protected (Toropova et al., 2010). Targets focusing on
specific biomes such as the conservation of marine and coastal areas were specified. Marine
Protected Areas (MPA’s) should be established to protect species, maintain productivity, and
preserve nursing grounds for fishes or to protect complete ecosystems (CBD, 2006). A
drawback however is that the degree of protection and the activities allowed in these MPA’s
are not well defined and may vary considerably (Toropova et al., 2010). At a European level,
the European Commission issued an action plan to halt the loss of biodiversity by 2012 for
the marine environment (EC, 2006). Therefore, the European Commission agreed on two
directives to oblige member states to designate MPA’s in the frame of the Natura 2000
network:

e The European Birds Directive (2009/147/EC) aims to protect all European wild birds
and the habitats of listed species, in particular through the designation of Special
Protection Areas (SPA). In relation to the marine environment this is translated in the
designation of habitats of sea birds.

e The Habitats Directive (92/43/EEC) focuses on creating a network of Special Areas of
Conservation (SAC).

Other European strategies which can be deployed to protect the marine environment are:

e Integrated Coastal Zone Management (2002/413), which promotes the sustainable
management of coastal zones, while balancing environmental, economic, social,
cultural and recreational objectives all within the natural limits.

e The Water Framework Directive (WFD) (2000/60/EC), which obliges the member
states to achieve good status of all water bodies, including marine waters up to 1.85
kilometre off coast by 2015.

e The Marine Strategy Framework Directive (MSFD) (2008/56/EC), which aims to
protect the EU marine environment in an effective way. A good environmental status
of the EU marine waters should be achieved by 2020. Within this directive European
Marine Regions will be established based on geographical and environmental criteria.
To meet the requirements of this directive each EU member State is committed to
develop strategies for their marine waters.

The decisions taken in the framework of these legal instruments should be based on sound
scientific knowledge and it has been advocated that in the marine management, habitat
suitability maps, biological valuation maps and biodiversity maps are suitable instruments
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for communication with policy makers and marine managers (Derous et al., 2007; Degraer
et al., 2008; Fraser et al., 2008; Willems et al., 2008).

A world to discover

Whereas land biodiversity patterns and the factors influencing this biodiversity are known
for numerous taxa, our understanding of global biodiversity in the sea is more limited
(Tittensor et al., 2010). The ocean surface hides a diverse world which can only be
discovered by sampling or diving at sea. This is an expensive and labour intensive task since
adequate equipment and research vessels are needed. Therefore, it is important not only to
collect but also to preserve valuable scientific data. In the 20" century, a lot of effort was
done to discover the unknown marine world: sampling campaigns were organised,
thousands of species were described, and information on species diversity and communities
in the oceans was gathered. This information was often fragmented, but recently a lot of
effort has been put into compiling this information in databases (Table 1.1). This is achieved
by gathering researchers in regional or global consortia such as MarBEF and Census of
Marine Life. In this way a better insight in the biodiversity of the oceans and the world as a
whole can be achieved. This wealth of information gives new opportunities to explore and
study the biodiversity of the oceans.

Project name Database content Number of  Website
species*
CBOLiBOL DNA barcode sequences of 93 543 http://www.barcodeoflife.org/
marine and terrestrial species  Target 2015:  http://ibol.org/
5000 000
Encyclopedia of Marine and terrestrial species Target: http://www.eol.org/
Life 1900 000

Catalogue of Life Marine and terrestrial species 1333 403 http://www.catalogueoflife.org/col/

GBIF Marine and terrestrial species 919 873 http://www.gbif.org/

Itis Marine and terrestrial species 518 498 http://www.itis.gov/

WoRMS Marine species 207 762 http://www.marinespecies.org/
OBIS (Census of Marine species 114 879 http://www.iobis.org/

Marine Life)

ERMS Marine species 31 000 http://www.marbef.org/data
NeMys Marine and terrestrial species 14 945 http://nemys.ugent.be

MarBOL DNA barcode sequences of 6 199 http://www.marinebarcoding.org/

marine species

MANUELA Marine meiobenthic species 1250 http://www.marbef.org/projects/Manuela/

Table 1.1. Examples of biodiversity databases available on the web (*on February 1°' 2011).
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Need for accurate models to understand and protect the marine
habitat

The disclosure of this large amount of data helps in understanding the complexity of marine
ecosystems, and modelling may serve both in the understanding and protection of this
habitat. Mathematical models can reveal the factors influencing the biodiversity and may in
this way contribute to the understanding of the structure of marine communities. On the
other hand, there is a need to delineate areas which need to be preserved to protect the
diversity and resilience of the seas. The designation of these protected areas should be
based on sound scientific models. Delineating a protected area involves spatial multi-criteria-
analysis (Villa et al., 2002; Pomeroy et al., 2004) encompassing a vast number of criteria such
as geological features, diversity and composition of benthic and pelagic communities,
potential human use of the area (tourism and fisheries), the protection of specific species,
pollution status of the area, and many more (Villa et al., 2002). Biodiversity maps and habitat
suitability maps should thus be considered during the decision process. Given the
importance of these models, it is crucial that these models are beyond discussion and all
potential modelling pitfalls should be tested for, and avoided. In this way, these models can
really contribute to understanding and preserving biodiversity. In this thesis, we investigate
how the construction of erroneous or non-significant models caused by spatial
autocorrelation and preferential sampling can be avoided.

BIOLOGICAL DATA

Here, we will focus on the marine benthos, with emphasis on free-living nematodes and the
distribution of two macrobenthic species: an ecosystem engineer, the polychaete Lanice
conchilega and an invasive species for the North-East Atlantic Area, the bivalve Ensis
directus. The marine benthos encloses all those species associated with the sea floor. This
diverse community can be divided in different groups according to size, location and type.
Generally, benthic organisms are grouped according to size: macrobenthos (i.e. benthic
organisms retained on a sieve with 1 mm mesh size), meiobenthos (i.e. metazoan organisms
passing a 1 mm sieve but retained on a sieve of 38 um) and microbenthos, (i.e. microscopic
benthos passing a 38 um sieve). The lower size of 38 um for the meiobenthos may vary: sizes
of 32 um, 44 um and 63 um are also applied (Giere, 2009).

Nematodes

In this thesis we focus on a phylogenetic group within the meiobenthos: the Nematoda. The
nematodes or roundworms are the most diverse phylum of pseudocoelomates, and one of
the most diverse of all animals. Over 26 000 species have been described, of which over

16 000 are parasitic and more than 4 000 are free-living marine nematodes (Hugot et al.,
2001) (Table 1.2). It has been estimated that the total number of nematode species might be
approximately 500 000 (Hammond, 1992) or even 1 000 000 (May, 1988) and they could be
the second most diverse group after the Arthropoda (Hugot et al., 2001). Nematodes are not
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only highly diverse, but are often complex and biologically specialised metazoans (De Ley,
2006). Free-living nematodes represent a high diversity in many benthic environments in
terms of species numbers (Heip et al., 1985): more than 50 species are commonly found in a
single 10 cm” core. In meiofaunal samples, nematodes are usually the dominant taxon both
in abundance and in biomass (Giere, 2009).

Nematode communities are very useful as indicator organisms (Bongers and Ferris, 1999;
Kennedy and Jacoby, 1999; Geetanjali et al., 2002) in the assessment of sediment quality and
pollution status of the environment (Schratzberger et al., 2000a) for numerous reasons: they
show a wide distribution from pristine to extremely polluted habitats, they do not rapidly
migrate from stressful conditions; they respond rapidly to disturbance and enrichment; and
they show a clear relationship between structure and function which can be deduced from
the mouth cavity and the pharynx (Bongers and Ferris, 1999). In addition, owing to their
interstitial life style, biogeochemical properties of the sediment have a strong influence on
the diversity and the composition of nematode assemblages (Heip et al., 1985; Steyaert et
al., 1999; Schratzberger et al., 2000a; Vanaverbeke et al., 2011).

Life style # of species
Free-living marine 4070
Free-living terrestrial 6610
Plant parasites 4110
Invertebrate parasites 3500
Vertebrate parasites 8 360
Total 26 650

Table 1.2. Number of described nematodes (Hugot et al., 2001).

Moreover, biodiversity loss of nematode communities might be associated with exponential
reduction of the ecosystem function (Danovaro et al., 2008). Free-living nematodes fulfil
many different functions in the sediment. Wieser (1953) divided nematodes in four trophic
groups according to the shape of their buccal cavity. Selective and non-selective deposit
feeders, epigrowth feeders and predators/omnivores were discerned. However, this
classification is a simplification of the complex and diverse feeding patterns in nematodes.
Some species are facultative predators or feed on ciliates (Moens and Vincx, 1997); other
species show switches in feeding behaviour, depending on the available food (Giere, 2009)
or the ontogenetic age (Lorenzen, 2000). Most nematodes are nowadays considered
selective feeders (Giere, 2009). They can selectively differentiate between prey organisms
(Moens et al., 2000) and even between bacteria (Moens et al., 1999). It has been postulated
that the high diversity within a nematode community is caused by this food partitioning and
resulting niche separation (Heip et al., 1985; Moens and Vincx, 1997; Moens et al., 1999).

These characteristics make the Nematoda a perfect phylum to study community patterns on
a broad and local scale.
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Macrobenthic species

In this thesis we also focus also on two macrobenthic species: Lanice conchilega and Ensis
directus.

Lanice conchilega (sand mason) is a tube building polychaete and is a species with a wide
spread bathymetrical (0-1900 m) and geographical range (Hartmann-Schroder, 1996).
Conservation of the species as such is therefore not the main issue here. However, the
habitat built by dense aggregations of the species is considered to be a reef (Rabaut et al.,
2009). The species changes its direct environment considerably (Rabaut, 2009) as it is
considered to be an important ecosystem engineer (sensu Jones et al., 1994). The worm
builds linear tubes consisting of coarse sand grains cemented with mucus (Jones and Jago,
1993) which can reach a diameter of 5 mm and a length of 65 cm (Ziegelmeier, 1952). The
tube is located mainly in the sediment, and only one to four centimetres protrude in the
water column. This species has the ability to build dense aggregates and patches with more
than 1500 ind.m™ are not uncommon (Ziihlke, 2001). These aggregations change the local
sedimentary and hydrodynamic environment and the tubes themselves compact the
sediment and increase the rigidity (Jones and Jago, 1993). This altered habitat induces
changes in the benthic community, resulting in an increase of both macrobenthic abundance
and diversity (Callaway, 2006; Rabaut et al., 2007; Van Hoey et al., 2008). Moreover, the L.
conchilega reefs have a high functional value (Godet et al., 2008) and are related to higher
densities of juvenile flatfish such as Pleuronectes platessa (plaice) (Rabaut et al., 2010).
Recent research indicated the value of the species as a bio-irrigator, which pumps oxygen in
the sediment. This mechanism can contribute to the mineralisation and denitrification
process in the sediment (Braeckman et al., 2010) and creates an extended habitat for
nematodes (Braeckman et al., 2011).

Thus, L. conchilega can be considered to be a valuable species in a conservation context (Van
Hoey, 2006; Godet et al., 2008; Rabaut et al., 2009) and the development of habitat
suitability models for this species has been advocated (Rabaut, 2009).

Ensis directus (Atlantic jackknife, American jackknife clam or razor clam) is a large edible
bivalve species. It is indigenous to the Atlantic coast of Canada and North-America and
prefers muddy, fine sand with small amounts of silt (Beukema and Dekker, 1995; Kennish et
al., 2004) and is found in the intertidal or subtidal zones (Mihlenhardt-Siegel et al., 1983;
Swennen et al., 1985). It can burrow very quickly (Swennen et al., 1985), and is also able to
swim (Drew, 1907). It is probably introduced into Europe as larvae in ballast water of a ship
crossing the Atlantic around 1978 (von Cosel, 1982). The first strong year class occurred in
the German Bight in 1979 (von Cosel, 1982). Since then it has spread across the Dutch and
Belgian coast. The first Belgian observations date from 1987 (Kerckhof and Dumoulin, 1987)
and since its arrival, it has become the bivalve with the highest biomass in several areas
along the coast (Tulp et al., 2010). The species can occur in high densities (i.e. bivalve banks)
and densities of 1000-2000 ind.m™ are not uncommon (Armonies and Reise, 1999; Tulp et
al., 2010). These banks show a patchy distribution, but these patches are not permanent and
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in Europe prominent events of mass mortality in late winter or early spring have been
observed (Armonies and Reise, 1999). The potential distribution of this invasive species and
its potential harmful effect on the natural community in Europe is largely unknown. This
invasive species may compete for space and food with indigenous species and dense
populations may change the community structure of the benthic fauna (Gollasch et al.,
1999). Therefore, habitat suitability modelling can be useful for creating insight in the
ecology and the possible distribution of the species. Also, fisheries have shown interest in
fishing this bivalve and there might be a link between sea ducks (i.e. Common Scoter
(Melanitta nigra)) and high densities of E. directus (Houziaux et al., 2010). Therefore,
distribution maps reflecting densities will be created by applying geostatistics.

STUDY AREA

The study area changes throughout the thesis since different databases and different
subsets of these databases have been used. However, the main areas of interest are the
continental shelf area of the Southern Bight of the North Sea (referred to as SBNS) (Fig. 1.2)
and the Belgian Part of the North Sea (BPNS)™.

The North Sea is a shallow sea located between Great Britain, Scandinavia, Denmark,
Germany, the Netherlands and Belgium. The SBNS is delimited to the North by the thermal
stratification of the water column during summer (around 54°N) and to the South by the
Strait of Dover between Great Britain and France. The area has a maximum depth of about
54 m (Fig. 1.2) and is characterised by strong semi-diurnal tidal currents (up to about 1 m.s™)
and frequent strong winds. This results in a well mixed water column throughout the year
(Lee, 1980). The area is characterised by a complex system of sand banks which follow the
residual current and are therefore oriented parallel to the coast (Muylaert et al., 2006). The
net bottom shear stress is directed to the North (Pingree and Griffiths, 1979).

The seabed sediments consist mainly of fine to medium sands (125-500 um) (Verfaillie et al.,
2006). The Eastern part of the Belgian coast is characterised by high concentrations of silt-
clay (Fig. 1.2). The origin and the formation of these silt-clay deposits in front of the coast
are explained by the neap-spring tidal cycles and the different sources of Suspended
Particulate Matter (SPM). These sources are mainly the erosion of exposed clay layers and
the import of SPM from the Strait of Dover (Fettweis and Van den Eynde, 2003).

The SBNS receives carbon and nutrients from river inputs (mainly from the Rhine, Meuse
and Scheldt), atmospheric deposition, and exchanges with the Atlantic Ocean through the
English Channel (Baeyens et al., 2007). The sources of nutrients and carbon are mostly linked
to anthropogenic activities (agriculture, industries, domestic wastewater) (Baeyens et al.,
2007). These nutrients give rise to pronounced phytoplankton blooms in spring and late
summer. The spring bloom is dominated by two major phytoplankton groups, diatoms and
Phaeocystis (van der Zee and Chou, 2005). Chl a deposition on the sea floor is directly

' In Chapter 2 the BPNS is referred to as the Belgian Continental Shelf (BCS)
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related to these phytoplankton blooms (van Oevelen et al., 2009). The organic matter in the
water column can enter the sediment through physically mediated input (advective injection
and passive deposition), or by benthic organisms which actively filter and deposit organic
matter from the water column on and into surface sediments (Kautsky and Evans, 1987;
Kotta et al., 2005). Mineralisation of this newly settled organic matter can induce hypoxic or
even anoxic conditions in the sediment (Graf, 1992).
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Fig. 1.2. Bathymetry, silt-clay fraction of the sediment, and average chlorophyll a in the water
column of the Southern Bight of the North Sea®

BIODIVERSITY

Biodiversity indices

Biodiversity is defined by Glowka et al. (1994) as ‘The variability among living organisms
from all sources including, among other things, terrestrial, marine, and other aquatic
ecosystems and the ecological complexes of which they are a part; this includes diversity
within species, between species and of ecosystems.’ Biodiversity can be expressed in many
different ways: it can be linked to species richness, evenness, taxonomical diversity, genetic
diversity, functional diversity or other features of the species community. The most common
expression of biodiversity is the number of different species in a given area (species
richness). However, this estimate of biodiversity is strongly influenced by sample size, and a
number of statistical techniques have been developed to correct for this: estimators for total
species richness (Chao, 1984; Chao, 1987) and evenness (Chao and Shen, 2003), the
expected species richness (Sanders, 1968; Hurlbert, 1971; Simberloff, 1972), and taxonomic
diversity indices (Clarke and Warwick, 1998). Depending on the scale a-, B- and y-diversity
can be distinguished: a-diversity is the biodiversity within a particular area (e.g. within the

? source: Renard Centre of Marine Geology (RCMG, www.rcmg.ugent.be) of Ghent University and

the Hydrographic Service of the Royal Netherlands Navy and the Directorate-General of Public Works and
Water Management of the Dutch Ministry of Transport, Public Works and Water Management for the
oceanographic and sedimentological data.
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area of a core sample). B-diversity is a measure of biodiversity which compares the species
diversity between ecosystems. This involves comparing the number of taxa that are unique
to each of the ecosystems and gives a view on species turnover across habitats. y-diversity
refers to the total biodiversity over a large area or region (Whittaker, 1972). The ‘intrinsic’
diversity of a community is given by its a-diversity. Thus, an area with higher a-diversity may
be considered more important than one with lower a-diversity values, for conservation
purposes (Hernandez-Stefanoni and Ponce-Hernandez, 2004). But the contribution of an
area to the overall y-diversity is also depending on the B-diversity. Therefore, areas with
lower a-diversity may still be important to conservation management because of their
contribution to the total diversity of the area. Developing an additional map with an
estimation of the B-diversity would be interesting from a conservational point of view
(Samson and Knopf, 1982). However, available approaches to predict B-diversity are
hampered by the twofold scale dependence of B-diversity, owing to the size of sampled units
as well as their mutual distances (Feilhauer and Schmidtlein, 2009). Moreover, for the SBNS
more species have a sample specific name (e.g. Araeolaimoides sp.1 MV, with MV the
reference to the data supplier) than there are species with an accepted name. On average
about 17% of the species in a sample are sample specific. Thus, these species can be used to
estimate the a-diversity of a sample, but they cannot be used for estimating B-diversity.
Moreover, the maps of the environmental variables should be transformed in gradient maps
which will further increase the error on the model. For these reasons an error proliferation
on the prediction of B-diversity might be expected. Therefore, to keep the error rate as low
as possible, we focussed on a-diversity of the core samples.

Biodiversity patterns

Local or regional variation in biodiversity has fascinated many researchers. Which processes
and factors may explain those differences in biodiversity? Darwin described evolutionary
processes and natural selection as the driver behind species differentiation (Darwin, 1876).
The distribution of these species is however not homogeneous and the spatial and temporal
variation in benthic biodiversity reflects not only evolutionary processes but also ecological
processes which operate at different spatial and temporal scales (Levin et al., 2001). Many
hypotheses have been postulated to offer an explanation for these spatial variations in
biodiversity (Table 1.3). There is a considerable overlap between these theories, and some
operate on a large temporal and spatial scale, some on a small scale. These small-scale
processes are hierarchically embedded in processes taking place on a larger scale. The local
processes include competition, exclusion, facilitation, resource partitioning, disturbance of
the physical environment and physiological tolerance (Etter and Mullineaux, 2001). On a
larger regional scale, environmental factors are important for structuring benthic
communities (Fig. 1.3).
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Fig. 1.3. Processes regulating species diversity at local, regional and global scales (from Levin
et al,, 2001)

their response to environmental factors (Ricklefs and Shluter, 1993). On a large scale,
metacommunities are formed: metacommunities are local communities connected by the
dispersal of multiple species (Hubbell, 2001). Leibold et al. (2004) suggested four types of
metacommunities: the species sorting, source-sink dynamics, the neutral model and patch
dynamics type. Here, research on metacommunities is impaired, since little is known about
the dispersal capacities of nematode species. Nevertheless, we touch upon two aspects in
the discussion: patch dynamics and species sorting.

In this study, the importance of both local and regional factors on biodiversity will be
addressed: local processes involve species interactions and will be investigated by null
models involving ‘species assembly rules’. On a larger scale, environmental factors are
assumed to be important. The influence of these abiotic factors on biodiversity and species
distributions will be investigated with techniques such as artificial neural networks,
generalised least squares and habitat suitability modelling.

Species assembly rules

Species are often unevenly distributed in space and form distinct species communities. One
of the fundamental questions in ecology is how unexpectedly strong species associations are
created in nature. Evolutionary ecologists are concerned about the question: how do
speciation and extinction form a species pool, while community ecologists focus rather on
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the question: how are communities formed from this species pool (Weiher and Keddy,

2001). The latter question is addressed by the ‘assembly rules’.

Hypothesis

Description

Competition (Dobzhansky, 1950;
Dayton, 1971; Grassle and Sanders,
1973; Diamond, 1975)

Biological disturbance hypothesis (Paine,
1969; Dayton and Hessler 1972)

Intermediate disturbance hypothesis
(Connell, 1978) and the dynamic
equilibrium (Huston, 1979)

Habitat heterogeneity hypothesis
(MacArthur and MacArthur, 1961;
Bazzaz, 1975)

Productivity-diversity hypothesis
(Connell and Orias, 1964; Yount, 1956;
Rex, 1981)

Island biogeography (MacArthur and
Wilson, 1967)

Stability-time hypothesis (Connell, 1978)

Theory of climatic stability (Klopfer,
1959)

Historical explanation (Jackson, 1992)

Latitudinal diversity hypotheses (Fischer,
1960; Rohde, 1992; Rex et al., 1993)

Species evolve through competition, occupy their own niche and
develop therefore specific morphology.

Predator-controlled diversity reduces abundance of competitors,
maintains resource availability and prevents competitive
exclusion.

Diversity is maximised at an intermediate frequency and/or
magnitude of disturbance

Spatial heterogeneity leads to faunal diversification.
Specialisation arises through microhabitat exploitation and niche
partitioning.

Positive (Connell and Orias, 1964), negative (Yount, 1956) and
optimum relations (Rex, 1981) between productivity and
diversity have been found.

Isolated islands foster the evolution of new species.

Stressed and young environments will have less species than old
and/or stable environments.

Regions with stable climates allow the evolution of finer
specialisations.

Past geological events (e.g. sea level rise) may explain present
diversity patterns.

Diversity decreases with increasing latitude. Several hypotheses
have been postulated to explain this pattern.

Table 1.3. Selection of hypotheses and influences explaining spatial differences in

biodiversity.

There are mainly two confronting ideas explaining the assembly of communities: the island

paradigm and the trait-environment paradigm (Weiher and Keddy, 2001). The island

paradigm relates the structure of communities to dispersal, competition, immigration and

extinction, while the trait-environment paradigm considers the environmental factors as the

main driving force in structuring communities. As mentioned before, the influence of the

environment on diversity and the occurrence of species are in this thesis investigated on a

larger geographical scale. Therefore, in this thesis, the term ‘species assembly rules’ will

relate to the ‘island paradigm’ and thus species interactions. This idea was first introduced

by Diamond (1975). He argued that interspecific competition between species occupying

similar niches results in a non-random pattern of species distributions. More specifically,

some species pairs may never be found together due to competitive exclusion, forming a

perfect checkerboard pair. His rules have been strongly disputed and there has been a

proliferation of studies promoting, refuting and testing these ideas (Connor and Simberloff
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1979; Diamond and Gilpin, 1982; Weiher and Keddy, 1995; Bell, 2000; Weiher and Keddy,
2001; Hubbell, 2001; Bell et al., 2006; Purves and Turnbull, 2010). It has been shown that
neutral factors such as birth, death, random dispersal and the total number of organisms in
the community may even result in these non-random patterns (Bell, 2000; Hubbell, 2001).
However, recent work shows that neutral processes alone cannot explain the observed
community patterns (Bell et al., 2006; Purves and Turnbull, 2010).

Most of the community assembly research concentrated on terrestrial studies (Gotelli and
McCabe, 2002; Ribichich, 2005) or marine macrobenthos (Pagliosa, 2005). In contrast,
Nematoda have received considerably less attention. The main advantages of using
nematodes lie in their resistance to disturbance and the vast number of species found in
small volumes of sediment.

While environmental variables structure nematode communities on a large scale
(Vanaverbeke et al., 2011), species interactions may become important on a smaller scale
(Joint et al., 1982; Steyaert et al., 2003). Therefore, we focussed our search for assembly
rules on repeated samples at the same location at the same moment in time (further
referred to as ‘replicate samples’). Replicate samples are generally collected within a small
area where differences in environmental variables are small relatively to the environmental
differences on a larger scale. Thus, the presence of non-random communities is tested on
replicate samples with the use of null models.

It is important to note that the goal of these theoretical models is only to recognise non-
random community patterns (Gotelli and Graves, 1996). Revealing the cause of these non-
random patterns can only be established by experimental set-ups (Gotelli and Graves, 1996;
Gotelli and McCabe, 2002).

Biodiversity and the environment

Levin et al. (2001) described six main factors structuring biodiversity in marine benthic
environments: boundary constraints, sediment heterogeneity, productivity and food supply,
bottom-water oxygen concentrations, sea currents and catastrophic disturbance. Their
overview focused mainly on deep-sea macrobenthic species, but studies on the nematode
communities of shallow seas revealed that many of these factors are important as well for
structuring nematode communities (Heip et al., 1985; Vanreusel, 1990; Vincx et al., 1990;
Steyaert et al., 1999; Vanaverbeke et al., 2002; Vanaverbeke et al., 2011).

As mentioned before, biodiversity can be expressed in different ways. In this study we
focused on diversity indices related to species richness, evenness and taxonomic richness.

Choice of modelling technique

The relationship between the diversity aspects and the environment may be complex and
difficult to model and commonly used mathematical models may be inadequate (Lek and
Guégan, 1999). In modelling different approaches can be used depending on the aim of the
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model. Multiple linear regression (MLR) is one the most frequently used predictive methods
in ecology. The popularity of MLR and linear models in general lies in its ease of use and its
capacity to give explanatory results, as the coefficients of the environmental variables
provide straight-forward information about their relative importance and they can give
some measures of confidence about the estimated coefficients. However, linear models are
based on the a priori selection of suitable functions and algorithms, such as linear relations
in traditional linear modelling or a link linear relation in generalised linear models (Park and
Lek, 2005). Therefore, linear models cannot deal with non-linear relationships between
dependent and independent variables, unless complex data transformations are performed
(Gevrey et al., 2003). Gevrey et al. (2003) stressed another drawback of linear regression
techniques: only variables with statistically significant coefficients are analysed, for which it
may lack resolution. That is why the use of more complex supervised learning techniques is
justified in ecology where the relationships between variables are principally non-linear (Lek
and Guégan, 1999; Gevrey et al., 2003). In data mining, a large range of modelling techniques
are available: support vector machines, classification and regression trees, random forests,
artificial neural networks (ANNs) and many more (Ilzenman, 2008). ANNs are known as
powerful computational tools. They can be used for many purposes: classification, pattern
recognition and modelling based on empirical data. Most of these tasks can also be
performed by conventional statistics. However, ANNs often provide a more effective way to
deal with problems that are difficult, if not intractable, for traditional computation (Park and
Lek, 2005). As mentioned before, linear models are based on the a priori selection of suitable
functions and algorithms. For ANNs no such a priori selection is needed. ANNs with a single
layer can approximate any mathematical function and they can treat complicated problems,
even if the data are imprecise and noisy. Their superior modelling capacity is also apparent
from the 35 papers we analysed: in 34 out of 35 papers ANNs outperformed conventional
linear models. Moreover, their implementation is not precluded by the theoretical
distribution shape of the data (Bishop, 1995). If enough data is available and the architecture
is properly selected, ANNs provide optimal solutions for any relation between the
dependent and the independent variables. In this way unknown or unsuspected relations
can be revealed. The relation between the sediment characteristics and the diversity of
nematode communities has been widely reported, however the relationship on a large scale
was not yet established. Moreover, our goal was to find out which aspects of biodiversity are
best explained by the large scale environmental variables. To allow a fair comparison
between the different diversity indices, a powerful and flexible tool, which is not subject to
modelling constraints, was needed. An additional advantage of using ANNs is that the
optimisation process to find an optimal architecture can be automated. This is especially
appropriate when several dependent variables need to be modelled. However, a drawback
of the flexibility of the ANNs is that the models are prone to overfitting. Therefore, special
attention was paid to find the optimal network which does not overfit. Moreover, ANNs are
often seen as ‘black boxes’” which means that the contribution of each input variable to the
model output is hidden in the model layers and is difficult to disentangle from the network
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(Lek et al., 1996a). However, to reveal the contribution of each environmental variable to
the resulting models, we applied three methods: two known in literature: the Perturb
method (Yao et al., 1998; Gevrey et al., 2003) and the Profile method (Lek et al., 1995,
19964, b; Gevrey et al., 2003). A third technique was developed to check the validity of the
previous two.

MAPPING

Mapping biodiversity of regions

Biodiversity may vary considerably across and within regions. At this scale, environmental
influences contribute to these biodiversity differences. The relation found between the
environmental variables and the biodiversity can be used to create diversity maps by
applying geostatistics. Geostatistics is a branch of statistics that allows the estimation of the
values of a variable of interest at non-sampled locations. Although this approach is related to
interpolation methods, it extends far beyond simple interpolation problems (Van Meirvenne,
2007). It consists of a collection of mathematical techniques dealing with the
characterisation of spatial phenomena. The technique was originally developed to predict
probability distributions of ore grades for mining operations (Matheron, 1963). Currently,
geostatistics are applied in diverse disciplines including petroleum geology, oceanography,
geography, forestry, environmental control and landscape ecology. More recently, it is also
applied in the marine environment to map distribution patterns of marine species (Mello
and Rose, 2005; Rios-Lara et al., 2007) and biodiversity patterns (Reese and Brodeur, 2006).

Particularly interesting are the hybrid interpolation techniques. They rely on two techniques
(a) interpolation relying on point observations of the spatial variable; and (b) interpolation
based on regression of the target variable on spatially exhaustive environmental variables
(maps) (Hengl et al., 2007). One of these techniques is known as regression kriging (Hengl et
al., 2004). First a regression of the dependent variable with the environmental variables is
applied and then it uses simple kriging to interpolate the residuals from the regression
model. This allows the use of any regression method to correlate the dependent variable
with the environmental variables (Hengl et al., 2007).

Mapping a species’ potential distribution

The diversity of a taxon across a region gives an estimation of the species-rich areas.
However, this does not supply any information on the community composition. The
presence of a single species may be important and reveal underlying structures. Especially
keystone, indicator or umbrella species may hold more information about the community.
Other species such as Lanice conchilega contribute to the diversity of the area by modifying
the habitat as a habitat engineer (Callaway, 2006; Rabaut et al., 2007; Van Hoey et al., 2008)
and forming reefs, while the distribution of invasive species such as Ensis directus may be of
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interest to nature conservationists and fisheries. In that case habitat suitability models
(HSMs) reveal information on where the species can potentially be found.

Choice of modelling technique

Different modelling techniques have been developed to estimate the potential habitat of a
species. Depending on the type of input data, two types of HSMs can be discerned: those
based on presence/absence data and HSMs based on presence-only data. Presence/absence
data are commonly used for HSMs, but this includes some presumptions about the
information. Often the absence of a species is not 100% sure for different reasons 1) not all
organisms in a sample are identified, 2) species show patchy or ephemeral distributions and
may not be present at the time of sampling although the habitat is suitable for the species,
or 3) the species may not have obtained its full range because of a disturbed environment or
because it is an invasive species. In such cases presence-only modelling techniques are
preferred. Several presence-only modelling techniques have been developed: Bioclim (Nix,
1986), Domain (Carpenter et al., 1993), GARP (Stockwell and Peters, 1999), Maxent (Phillips
et al., 2004) and ENFA or Biomapper (Hirzel et al., 2002). Maxent has proven its better
predictive capacities compared to other presence-only modelling techniques in several
independent cases (Hernandez et al., 2006, 2008; Hijmans and Graham, 2006; Pearson et al.,
2007; Sergio et al., 2007; Carnaval and Moritz, 2008; Ortega-Huerta and Peterson, 2008;
Benito et al., 2009; Roura-Pascual et al., 2009) and may compete with or even outcompete
presence/absence modelling techniques such as boosted regression trees (BRT), generalised
additive models (GAM), generalised linear models (GLM) and multivariate additive
regression splines (MARS) (Elith et al., 2006; Wisz et al., 2008). These good predictive
capacities have been attributed to the 4 .regularisation which prevents the algorithm from
overfitting. Other models often do not apply any form of regularisation, and this can cause
the observed difference in predictive performance (Gastén and Garcia-Viias, 2011).
Moreover, Maxent is a generative approach, rather than discriminative. This can be an
inherent advantage when the amount of training data is limited (Phillips et al., 2006).
Research pointed out that the technique can be applied with as little as 5 sampling points
(Pearson et al., 2007). For the nematode species in the database occurrence data is often
scarce. A software related advantage is that it allows computerising the calculation of
thousands of HSMs by running batch-files. Therefore, Maxent was applied in this thesis to
create habitat suitability models. In spite of these promising features, Maxent models seem
to have two major drawbacks: the models may fail to make general predictions (Peterson et
al., 2007) and the models may be inaccurate in the presence of biased data (preferential
sampling) (Phillips et al., 2009). In this research, these drawbacks are tackled in various
ways.
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Mapping a common species

Species with specific habitat requirements and a small spatial range are generally easier to
model than common species (Segurado and Araujo, 2004; Evangelista et al., 2008) because
widely distributed species are not restricted to specific habitats. However, knowing where to
find high densities of a common species may be of interest to fisheries (e.g. Ensis directus) or
for conservation purposes (e.g. Lanice conchilega reefs). Application of regression kriging
techniques could be an option, but at least 100, and preferably 144 observations are
required for reliable kriging (Webster and Oliver, 2007). Clearly, this represents some
limitation to the applicability of regression kriging. Therefore, an alternative was
investigated: instead of using presence-only or presence/absence data, a threshold was
applied to the density or relative density of the species. The applicability of this methodology
was tested for 6 common nematode species and applied to Lanice conchilega.

MODEL OPTIMISATION

Creating a model is generally speaking not difficult. There are ample examples of software
modules which create a model within seconds if data is supplied in the correct format.
However, creating a significant model which provides correct insight in the ecology of
species and communities needs careful consideration. There are many pitfalls when it comes
to creating a model (Ulgen et al., 1996; Rosemann, 2006a; Rosemann, 2006b): pitfalls
concerning the data, the modelling technique and model interpretation. Counteracting these
pitfalls will result in more accurate and reliable predictive models.

Pitfalls concerning the data

Ecological and environmental data are spatial data, and spatial data may be subject to two
potential problems: spatial autocorrelation and preferential sampling.

A characteristic of most spatial data is that it shows spatial autocorrelation (SA). In other
words, if two samples are taken closely together they are more likely to resemble each other
than if the samples were taken at a larger distance from each other (positive SA).
Consequently, both samples are not independent and the statistical assumption of
independence is violated. SA may amplify or blur true ecological relations and incorporating
spatial autocorrelation may even invert observed patterns (Kiihn, 2007). Moreover, SA may
inflate validation statistics since the test localities are not spatially independent from the
training data (Hampe, 2004) (see Paragraph below for more information on training and test
set). The presence of spatial autocorrelation is established by calculating Moran’s I (Moran,
1950). Accounting for SA is often done by spatially separating training and test set (Pearson
et al., 2007; Murray-Smith et al., 2009).

When spatial data is collected, preferential sampling may occur, i.e. some areas are more
frequently visited than others. A model is more likely to deviate from a random model when
such collection bias occurs (Raes and ter Steege, 2007). If the sampling points correlate with
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some environmental characteristics, these environmental characteristics may erroneously
‘explain’ the patterns found in the data, while their contribution to the observed pattern
may be negligible. Ignoring preferential sampling can thus negatively affect model
parameter estimation and prediction. Here, we analyzed the presence of preferential
sampling by either plotting the declustered mean as a function of cell size (Van Meirvenne,
2007) or by the use of null models (Raes and ter Steege, 2007).

Pitfalls concerning modelling

Overfitting occurs when the overly complex model describes the random error or noise
instead of the underlying relationship. In that case, the model will fit very well the training
data but it will perform poorly when applied to new, unseen data. The model is therefore
not able to generalise (Izenman, 2008). Reducing model complexity will often result in better
generalisation capability. However, if the model is overly simple it will not be able to explain
the variation in the data. Consequently model complexity often has an optimum. This
optimum can be found by applying cross-validation or by using an independent validation set
which is solely used at the completion of the modelling exercise. In case of ANNs, three sets
are created: a training set, a validation set and a test set. During the refining of the model
weights, the error on the validation set is monitored. Once the error of the validation set
increases, the iteration process is stopped. This is an internal validation, thus the validation
set is not an independent dataset. Therefore, a third set, the test set, is created. k-fold cross-
validation is a technique to assess if a model is capable to generalise to unseen data. The
data is split in k partitions, each partition is once used as a validation set, while the other (k-
1) partitions are used to train the model (training data) (Olson and Delen, 2008). Choosing
the number of folds is always a trade-off between more samples for testing or more samples
for training the model. Generally a 10-fold cross-validation gives good results concerning the
bias and variance on the accuracy estimation of the models (Kohavi, 1995). For Chapter 3 a
10-fold cross-validation could be applied since a lot of data were available (209 samples) and
the fast Levenberg-Marquardt training algorithm is used (Beale et al., 2010). However, in
case of data and time limitations a three-fold or a five-fold cross-validation may be more
appropriate (Goethals, 2005). For the habitat suitability modelling (Chapter 4 to 7) the
number of data points varied between 5 and 106 and the modelling speed seriously dropped
with increasing number of samples. Therefore, a lower number of folds were applied, both
due to data and time limitations.

During the modelling, it is tempting to optimise and keep on optimising modelling
parameters or look for further refinements. Increasing the complexity of the model, leads
easily to being ‘lost in best practice’ (Ulgen et al., 1996; Rosemann, 2006b). Moreover, if an
immense amount of data is available, there is an almost unlimited choice in modelling
possibilities. Setting clear targets and limitations should also be part of the modelling
process (Ulgen et al., 1996).
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Pitfalls concerning the model output and interpretation

Statistical modelling involves finding a relation between the independent variables and a
dependent variable. However, it is important to realize that correlation does not necessarily
imply causality. In other words, if a mathematical relation is found between the dependent
and the independent variable, this does not necessarily mean that the independent variable
causes the changes in the dependent variable.

A model which can explain the variation in the data is only meaningful if the contribution of
the environmental variables to the model output is known. More specifically, ANNs are
generally known as ‘black boxes’. Several techniques have been developed to reveal the
contribution of each variable (Gevrey et al., 2003). In this way the model can contribute to
the ecological knowledge of the species. Having too much faith in the model output without
knowing the limitations of the model is hazardous and may lead to false conclusions (Ulgen
et al., 1996). Coupling back to the ecological relevancy of the conclusions is a first step in
counteracting this pitfall.

Explaining these limitations to potential end users should be part of the modelling process
(Ulgen et al., 1996).

DESCRIPTION OF THE DATA

Species data

The nematode data were retrieved from two databases: a database compiled within the
UGent and the MANUELA database, which partly comprises the UGent database.

The UGent database was compiled within the framework of this thesis. In order to build a
consistent database different quality controls were performed (Addendum 2). The database
consists of historical data collected at Ghent University. It consists of 22 subsets with data
collected in the framework of PhD research, BSc dissertations and funded research projects
(Addendum 2). The complete database contains information on locations from all over the
world, including the poles and tropical regions. However, the bulk of the data is collected at
the SBNS. The database contains more than 206 000 species identifications and assembles
data within the time frame 1971-2004. This database has the advantage that sampling and
identification techniques are more similar for the data used in the analyses (see Addendum
2). This database is used in Chapters 3 to 6.

The MANUELA database was compiled within the EU Network of Excellence MarBEF.
MANUELA was a Research Project focusing on the meiobenthic assemblages. The MANUELA
database captures data on meiobenthos on a broad European scale (Vandepitte et al., 2009).
Table 1.4 gives an overview of the main characteristics of the UGent and the MANUELA
database. The UGent database is included in the MANUELA database.

The macrobenthos data was retrieved from the MacroDat database and completed with
new data in the case of Ensis directus. The MacroDat database is compiled at Ghent
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University, with data of over 1275 stations and more than 640 000 species identifications
collected between 1971 and 2008 (Degraer et al., 2003a).

# of # of # of nematodes # of nematode Time frame
subsets stations identified species
UGent database 22 279 206 000 1975 (taxon level) 1971-2004
588 (species level)
MANUELA- 82 1213 > 1500 000* 1484 (taxon level) 1966-2006
database 951 (species level)

*Approximated value since counts were not always available

Table 1.4: Main characteristics of the UGent and the MANUELA database.

Environmental data

The environmental data was, if possible, retrieved from the databases. This is in fact the
most accurate data, since it links the biotic data directly with the environmental data.
However, in many cases this data is unavailable or incomplete and should be replaced by
data from environmental maps. The advantage of maps is that a value can be drawn for each
pixel within a given area that is mapped. A drawback is that these data are less accurate
compared to data collected in the field. The maps have a resolution of 199 m x 199 m for the
BPNS and 249 m x 249 m for the SBNS. Table 1.5 gives an overview of the available maps for
both areas.

The available maps were acquired in two ways: by remote sensing or by interpolating field
data and modelling. The data acquired by remote sensing covers data on total suspended
matter and chlorophyll a in the water column (Park et al., 2006). The data was collected by
the MERIS spectrometer on board of the Envisat satellite within the Belcolour project. Eighty
chlorophyll @ maps and 90 total suspended matter maps were gathered in the time frame
2003-2005. These maps were reduced to three biologically relevant maps: the minimum,
maximum and average values.

The second group of maps was derived from point sampling at sea or from modelling. The
water current properties were modelled by the Management Unit of the North Sea
Mathematical Models and the Scheldt estuary (MUMM). The sediment characteristics, such
as median grain size and the silt-clay fraction were supplied by the Renard Centre of Marine
Geology (RCMG) at Ghent University (Verfaillie et al., 2006) and TNO Built Environment and
Geosciences-Geological Survey of the Netherlands (TNO). The bathymetrical data were
provided by the Ministry of the Flemish Community Department of Environment and
Infrastructure, Waterways and Marine Affairs Administration and completed with data from
the Hydrographic Service of the Royal Netherlands Navy and by the Directorate-General of
Public Works and Water Management of the Dutch Ministry of Transport, Public Works and
Water Management (RNLN). The only map representing anthropogenic effects on the sea
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floor reflects information on the intensity of sand extraction. This data was supplied by the
Federale Overheidsdienst Economie (FOE).

Variable type variable BPNS SBNS Source
Anthropogenic Intensity of sand extraction X FOE
Biochemical Average total suspended matter X X Belcolour
Maximum total suspended matter X X Belcolour
Minimum total suspended matter X X Belcolour
Average chlorophyll content X X Belcolour
Maximum chlorophyll content X X Belcolour
Minimum chlorophyll content X X Belcolour
Average salinity X Belcolour
Maximum salinity X Belcolour
Minimum salinity X Belcolour
Current prop. Minimum bottom shear stress X MUMM
Mean bottom shear stress X MUMM
Maximum bottom shear stress X MUMM
Size of the residual currents X MUMM
Maximum depth-averaged current velocity X MUMM
Magnitude of the residual transports X MUMM
Residual currents X MUMM
Residual transports X MUMM
Tidal amplitude X MUMM
Maximum current velocity at the bottom layer X MUMM
Average current velocity at the bottom layer X MUMM
Oceanographic Water depth X X RCMG & RNLN
Slope of the sea bottom X RCMG
Bathymetric Position Index (1600 m range) X RCMG
Bathymetric Position Index (240 m range) X RCMG
Rugosity of the bottom X RCMG
Orientation of the slope of the bottom X RCMG
Sediment Median grain size X X RCMG & TNO
Gravel content X RCMG
Sand content (63 um - 2 mm) X RCMG
Silt-clay content (0-63 pm) X X RCMG & TNO

Table 1.5. Environmental variables available for the BPNS and the SBNS.
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AIM AND OUTLINE OF THE THESIS

The overall aim of this research is to develop powerful statistical models which cope with
modelling pitfalls which are typical for spatial data and data assembled from various sources,
but are often ignored (Dormann, 2007). In this respect issues such as spatial autocorrelation,
sampling bias (preferential sampling) and sampling effort are addressed. The aim of this
thesis is two-fold: 1) adapting the currently used modelling process in such a way that
potential pitfalls for a given dataset are revealed and circumvented; 2) getting insight in the
ecology and biodiversity of the taxa under study on a small and large spatial scale. More
specifically the diversity of nematode communities and the factors contributing to this
diversity are modelled. Besides, diversity and community modelling this research focuses on
habitat suitability modelling of nematode species and two macrobenthic species.

In this thesis, modelling focuses on statistical modelling. Therefore, different statistical
modelling techniques such as artificial neural networks, geostatistics and maximum entropy
modelling were used for the reasons mentioned before. These modelling techniques were
combined with techniques such as cross-validation and null models to improve model quality
and to address the previously mentioned pitfalls in order to create significant models which
are able to generalise to unseen data (Segurado et al., 2006; Dormann, 2007; Raes and ter
Steege, 2007).

In Chapter 2 the potential role of species assembly rules on a small scale are investigated by
applying null models to the original dataset. More specifically, we addressed the question
whether the species composition in replicate samples is different from a random species
distribution based on the local species pool and what might cause any possible non-random
patterns. A routine was developed in Matlab to evaluate if the species composition between
replicate samples is significantly different from a random distribution from the local species
pool.

Chapter 3 explores the relation between biodiversity indices and environmental variables.
Artificial neural networks are often considered to be ‘black boxes’, not revealing insight in
the relation between dependent (i.e. biodiversity indices) and independent (i.e.
environmental variables) variables. Therefore, two existing (Perturb and Profile) and one
new technique (Modified Profile) were applied to reveal these relationships. As such, we
were able to investigate the factors related to the observed diversity patterns.

In Chapter 4 different modelling and kriging techniques are compared to find the best map
of nematode diversity for the SBNS. The use of replicate samples in geostatistical modelling
is explored. These replicate samples may give a good insight in the local variation of the
biodiversity caused by sampling errors and variability at small distances and this information
may contribute to the quality of the final model.

Chapter 5 explores the influence of preferential sampling, spatial autocorrelation and
overfitting on habitat suitability models. Null models were applied before to reveal the
presence of preferential sampling (Raes and ter Steege, 2007), but they are equally useful in

23



CHAPTER 1

revealing spatial autocorrelation and overfitting. As a result habitat suitability models for
more than 100 nematode species were developed. These resulting models can be found in
Addendum 3.

Well performing habitat suitability models are generally difficult to develop for common or
generalist species with no specific habitat requirements. However, in some cases it is
relevant to know where these species can be found in high densities. Therefore, we
investigated the influence of the relative abundances on the outcome of habitat suitability
models of six nematode species in Chapter 6. Do the high relative abundances relate to
specific habitats?

Chapter 7 illustrates two applications of these modelling techniques to Lanice conchilega
and Ensis directus.

The final chapter, Chapter 8, holds general conclusions and possible opportunities for future
research. A theoretical introduction to artificial neural networks, geostatistics and maximum
entropy modelling is supplied in Addendum 1. The codes developed in Matlab and R can be
found in Addendum 5.

REMARK

Apart from the introduction, Chapter 7 and the general discussion, this thesis is a
compilation of research articles which have been published or will be submitted to peer
reviewed journals. This may result in overlapping information about the data and modelling
techniques in the different chapters, but it also means that the chapters stand on their own
and can be read individually.
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