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Abstract. Bathymodiolus azoricusmussels thrive at Mid-
Atlantic Ridge hydrothermal vents, where part of their en-
ergy requirements are met via an endosymbiotic association
with chemolithotrophic and methanotrophic bacteria. In an
effort to describe phenotypic characteristics of the two bac-
terial endosymbionts and to assess their ability to assimi-
late CO2, CH4 and multi-carbon compounds, we performed
experiments in aquaria using13C-labeled NaHCO3 (in the
presence of H2S), CH4 or amino-acids and traced the incor-
poration of13C into total and phospholipid fatty acids (tFA
and PLFA, respectively). 14:0; 15:0; 16:0; 16:1(n−7)c+t;
18:1(n−13)c+t and (n−7)c+t; 20:1(n−7); 20:2(n−9,15);
18:3(n−7) and (n−5,10,13) PLFA were labeled in the pres-
ence of H13CO−

3 (+H2S) and13CH4, while the 12:0 com-
pound became labeled only in the presence of H13CO−

3
(+H2S). In contrast, the 17:0; 18:0; 16:1(n−9); 16:1(n−8)
and (n− 6); 18:1(n− 8); and 18:2(n− 7) PLFA were only
labeled in the presence of13CH4. Some of these symbiont-
specific fatty acids also appeared to be labeled in mussel
gill tFA when incubated with13C-enriched amino acids, and
so were mussel-specific fatty acids such as 22:2(n−7,15).
Our results provide experimental evidence for the potential
of specific fatty acid markers to distinguish between the two
endosymbiotic bacteria, shedding new light on C1 and multi-
carbon compound metabolic pathways inB. azoricusand its
symbionts.
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1 Introduction

Deep-sea hydrothermal vents host peculiar ecosystems fu-
eled by methane, sulfide, iron or even hydrogen (e.g., Perner
et al., 2009). The symbiotic association of bacteria with ma-
rine invertebrate hosts provides the former with access to
the chemical substrates necessary for their metabolism and
the latter with a source of organic carbon (and nitrogen).
One of the two species of endosymbiotic bathymodioline
Mytilids occurring along the Mid-Atlantic Ridge (MAR),
Bathymodiolus azoricus, is found at the northernmost sites
Menez Gwen, Lucky Strike and Rainbow (Desbruyères et
al., 2001). Transmission electron microscopy has demon-
strated the presence of two distinct Gram-negative bacterial
endosymbionts inside specialized gill epithelial cells (bacte-
riocytes). One of these symbionts has centrally stacked intra-
cytoplasmic membranes characteristic for methane-oxidising
gamma-proteobacteria (Fiala-Médioni et al., 2002). Analy-
sis of 16S rRNA sequences followed by fluorescence in situ
hybridization (FISH) evidenced thatB. azoricusendosym-
biotic 16S rRNA phylotypes cluster with natural symbiotic
and cultured sulfide-oxidising (SOX) and methane-oxidising
gamma-proteobacteria (Won et al., 2003; Duperron et al.,
2006; Spiridonova et al., 2006). Enzymatic and physiolog-
ical assays using gills ofB. azoricusfrom the Lucky Strike
and Menez Gwen vent sites revealed the presence of active
enzymes of the metabolic cycles of inorganic C assimila-
tion and sulfide oxidation and of the C1 carbon assimilation
pathway (Fiala-Ḿedioni et al., 2002). Furthermore, Riou et
al. (2008) report active13C incorporation from bicarbonate
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in the presence of sulfide as well as from methane within the
gills of B. azoricus. This incorporation was followed by car-
bon transfer to the host’s aposymbiotic muscle tissue.

In order to understand the modes of matter and energy
transfer to the host, the phenotypes ofB. azoricussym-
bionts’ need to be characterized. Classification of phospho-
lipid ester-linked fatty acids (PLFA) profiles has proven use-
ful to clarify bacterial genus and species interrelationships
established by DNA-based phylogeny (Bodelier et al., 2009).
PLFA profiles thus allow to distinguish between differ-
ent methane-oxidising bacteria (MOB) species as evidenced
for example by the fact that methane-oxidising gamma-
proteobacteria (formerly named after “Type I MOB”) mainly
contain fatty acids with 14 and 16 carbon atoms, while
methane-oxidising alpha-proteobacteria (formerly “Type II
MOB”) PLFA are mainly composed of 18 carbon atoms
(Nichols et al., 1985). In addition, MOB bacteria possess
fatty acids that are not found in any other known microorgan-
ism (methane-oxidising gamma-proteobacteria: 16:1(n−8)
and 16:1(n − 5)t ; alpha-proteobacteria: 18:1(n − 8)) and
these compounds therefore represent valuable biomarkers
(e.g. Nichols et al., 1985).

The main difficulty consists in the impossibility to grow
B. azoricus’ symbionts in pure cultures. Tracer experiments
represent powerful tools enabling the detection of the bac-
terial fatty acid signal inside the host. However, in a tis-
sue total lipid extract, the symbionts’ fatty acid molecules
are “diluted” by the fatty acids of the eukaryotic cells since
the bacterial symbionts are hosted inside mussel cells. Un-
like plant and animal cells, bacteria do not contain acyl lipid
stores (lipids containing O- or N-ester or ether linked fatty
acids), and it is believed that their acyl lipids are confined
to membranes. Phospholipids represent 90 to 98% of bacte-
rial lipids (King et al., 1977; White et al., 1979) and around
50% of eukaryotic lipids (Vestal and White, 1989). Studying
PLFA thus somehow “concentrates” the signal of the bacte-
ria, and is more adapted than a total fatty acid study in the
perspective of identifying the fatty acids that are produced
by the symbionts from the assimilation of CH4 and CO2 (in
the presence of sulfide).

In the present study, we thus investigated the incorpora-
tion of 13C-labeled HCO−3 (in the presence of H2S) or CH4
into gill-extracted PLFA fromB. azoricusin order to assess
the metabolic activity of the endosymbionts. This enabled
us to establish specific fatty acid (FA) patterns which pro-
vide insights into the symbiont phenotypes. On the contrary,
a technique with a high yield of tissue total fatty acid (tFA)
recovery was preferred to retain most of the information rel-
ative to both the symbionts and the host’s fatty acids when
analysing the assimilation of13C-labeled amino acids (dis-
solved into seawater) intoB. azoricusgill fatty acids. This
last experiment was indeed designed to observe (i) the po-
tential for heterotrophic growth by the symbionts, and/or (ii)
the occurrence of lipogenesis from the assimilation of amino
acids by the Mytilid cell machinery (which could also use

free amino acids as osmotic regulators of the cells, metabolic
fuel, protein synthesis or in the glucogenesis). Close exami-
nation of the labeled FA patterns helped interpreting physio-
logical processes occurring inB. azoricus.

2 Material and methods

2.1 Sampling and aquarium experiments

During the MOMARETO cruise (R/V Pourquoi Pas?) in
August 2006, a cage was deployed at the Menez Gwen site
(37◦51′ N–32◦31′ W, 817 m) and loaded with around 400
mussels. The cage was retrieved in May 2007 by the Por-
tuguese vesselR/V Arquiṕelago. Bathymodiolus azoricus
specimens were transferred to cooled seawater (9◦C) for a
14 h transit to Horta, Faial Island (Azores). Their valves were
scrubbed clean of visible material, rinsed in chilled seawater
and transferred to the Azorean land-based hydrothermal vent
laboratory, LabHorta (Colaço and Santos, 2003). Before the
start of the experiments, mussels were kept for 38 days in aer-
ated seawater amended with methane and hydrogen sulfide,
as described in Riou et al. (2008).

2.2 Mussels incubation with13C -enriched substrates

All stable isotope enriched chemicals were purchased from
Campro Scientific (The Netherlands). For the experiments,
42 adult mussels (55.6 to 72.4 mm Shell Length) were dis-
patched into 4 separate refrigerated 4-L aquaria with aerated
0.2 µm-filtered natural seawater replaced every second day
and monitored daily for temperature (7.8–9.8◦C), pH (7.1–
8.6) and O2 saturation (median: 45%). The available quan-
tity of labelled methane (25%13C) allowed running the tracer
experiment with13CH4 for a period of 15 days with a final
dissolved concentration ranging between 14–200 µmol L−1

(Riou et al., 2008). The control experiment (with filtered
seawater only) and the experiments with NaH13CO3(99%
added to the filtered seawater to obtain a concentration of
2.85 mmol L−1, 16.3%13C) + H2S (0–32 µmol L−1, Riou
et al., 2008) or with 9 mg L−1 of a 13C-labeled amino acid
mixture (98%13C, Riou et al., 2010) were continued over
a period of 20 days. The amino acid mixture consisted of
Gly 20–25%, Ala 15–20%, Tyr 10–15%, Leu 5–10%, Lys
5–10%, Ser 5–10%, Thr 2–5%, Phe 1–5%, Pro 1–5%, Val
1–5%, Met<3%, Trp<1%, Ile<1%, His<1%.

Three mussels from each experiment were selected for
fatty acid analysis, and dissected into gill, mantle, muscle,
and remaining tissues. Mussel tissues were immediately
stored at−20◦C till they were freeze-dried, a few days af-
ter dissection.

2.3 PLFA and tFA preparation

Prior to use, all glassware was precombusted 4 h at 450◦C.
Lipids were extracted from approximately 100 mg dry tissue
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(ground to a fine powder right before extraction, using a
mortar and pestle) by a modified Bligh and Dyer protocol
(Boschker et al., 1998), whereby water in the first extraction
step was replaced by Sörens phosphate buffer pH 7.4 (White
et al., 1979). Lipid extracts were fractionated on silicic acid
columns into different polarity classes by sequential elution
with chloroform, acetone and finally methanol. The phos-
pholipids collected in the methanol fraction were derivatized
using mild-alkaline methanolysis (using a methanolic KOH
solution) to yield fatty acid methyl esters (hereafter refered
to as PLFA since they were derived from the phospholipid
fraction).

Total fatty acid methyl esters (tFA) were obtained from
25 mg tissue powder by direct acid methanolysis catalysed
for 2 h at 90◦C (modified from Lewis et al., 2000) in 3 mL
of a fresh solution of methanol/hydrochloric acid 37%/chlo-
roform (10:1:1 volume). After cooling down to room tem-
perature chloroform (1 mL) and water (1 mL) were added to
the samples which were then well mixed before the bipha-
sic system was allowed to separate. The chloroform fraction
was transferred to a fresh tube and the upper phase was re-
extracted with fresh chloroform (1 mL). Chloroform extracts
were pooled, cleaned with 2 mL water, dried under a mild ni-
trogen flow and the tFA were re-suspended in 300 µL hexane.

2.4 FAME fractionation on Ag+-SPE cartridges

PLFA and tFA fractions were resolved further as a function of
degree of unsaturation (saturated,trans-mono-unsaturated,
cis-mono-unsaturated, di-unsaturated and poly-unsaturated),
using silver ion solid phase extraction columns (Ag+-
SPE cartridges, Supelco Inc., Bellafonte, PA). The pro-
tocol used by Kramer et al. (2008) was modified to re-
cover poly-unsaturated fatty acids (PUFA) using 5 mL ace-
tone/acetonitrile (60:40 volume), directly after eluting the di-
unsaturated fraction.

2.5 FAME 13C content analyses and identification

The isotopic composition of individual FAME was anal-
ysed by gas chromatography-combustion-isotope ratio mass
spectrometry (GC-c-IRMS) using an HP6890 coupled to a
Thermo Finnigan delta+XL via a GC/C III interface. The
FAME mix and Ag+-SPE fractions were resolved on a
fused-silica capillary column (100 m× 0.25 mm) coated with
0.20 µm CP-Sil 88 (100% cyanopropyl polysiloxane, Var-
ian BV, The Netherlands) after injection in splitless mode
at 270◦C. Helium was used as a carrier gas at a flow rate of
1 mL min−1 and the following temperature program was ap-
plied: 4 min at 45◦C; an increase at 10◦C min−1 to 135◦C
and a plateau of 90 min; an increase at 5◦C min−1 to 170◦C
and a plateau of 25 min; an increase at 10◦C min−1 to
195◦C and a plateau of 15 min; an increase at 10◦C min−1

to 235◦C and a plateau of 5 min. A careful selection of the
type of chromatographic column and the optimization of the

Fig. 1. Bathymodiolus azoricus(n = 3 specimens, mean± min-
max) gill FAME carbon isotopic signatures. Theδ13C signa-
tures were corrected for the methyle group added during the trans-
esterification using formula (1), and weighed averages were ob-
tained using formula (2)(A) Gill PLFA after 15 days with 28 µM
25% 13CH4 (black bars) or 20 days with 6 µM H2S + 16%
H13CO−

3 (grey bars).(B) Gill total fatty acids (tFA) after 20 days
in control conditions (striped bars) or 20 days with 300 µM dis-
solved 98%13C-amino acids (white bars). Sat: saturated, MUFA:
mono-unsaturated, DUFA: di-unsaturated, PUFA: poly-unsaturated
chains.

temperature program (enabling the detection of FAME 10:0
to 24:0) ensured baseline resolution of the IRMSm/z44 trace
for the majority of the components (including 16:1 and 18:1
positional isomers) and enabled an accurate identification of
labeled PLFA. Theδ13C ratios of each FAME was corrected
for the addition of one methanol carbon per molecule to ob-
tain the isotopic signature of the fatty acid as in Abrajano et
al. (1994) using the mass balance equation taking a measured
δ13CCH3OH value of−40.3‰:
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δ13CFAME = [x]δ13CFA +[1−x]δ13CCH3OH (1)

Wherex is the fractional carbon contribution of the free fatty
acid to the methyl ester (e.g.: 18/19 for FA 18:1(n−7)).

The weighedδ13C signature of fatty acid methyl esters,
grouped according to their degree of unsaturation (Fig. 1),
was obtained using the following formula (with mono-
unsaturated fatty acids -MUFA- taken as an example of fatty
acid class):

δ13CMUFA = (%MUFA1
∗δ13CMUFA1+ ...+ (2)

%MUFAz
∗δ13CMUFAz)/(6%MUFA1 to z)

where %MUFAx is the area obtained from MUFAx on the
chromatogram relative to the sum of the areas obtained from
all fatty acids, andδ13C MUFAx is the carbon isotopic sig-
nature of MUFAx .

For each PLFA, the incorporation of13C (I, expressed as
micrograms of13C per gram of total PLFA) was calculated
as in Knief et al. (2003):

I = (Fl −Fu) ·(Ax) (3)

whereAx is the peak area of PLFAx divided by the sum of
the peak areas of all of the PLFA.F is the fraction of13C in
PLFAx of samples incubated with13C (Fl) or in tFAx of con-
trol unlabelled samples (Fu): F =

13C/(13C + 12C) = R/(R+

1). The carbon isotope ratio (R) was derived from the mea-
suredδ13C values as follows:R = (δ13C/1000−1) ·RVPDB,
with RVPDB = 0.0112372.

FAME identification was achieved by GC-mass spectrom-
etry (GC-MS) using a Thermo Finnigan TRACE GC-MS
system, applying the same GC conditions as described for
the GC-IRMS analyses. The mass spectrometer was op-
erated under mild conditions of electron impact ionization
(EI+; 40 eV) and recorded the mass spectra in the scan
mode (m/z = 50–400). Aliquots of the PLFA or tFA mix-
ture and of the MUFA, DUFA and PUFA fractions were
derivatised further by a one step reaction into dimethyloxa-
zolines (DMOX) to locate the unsaturations by GC-MS (Fay
and Richly, 1991). We used a temperature gradient simi-
lar to the one used for FAME analyses, but since DMOX
derivatives are less volatile (see also Precht and Molkentin,
2000) we increased the temperature of the isotherm plateaus
at 135◦C, 170◦C and 195◦C for the temperature program
described above, by 10◦C to 145◦C, 180◦C and 205◦C,
respectively. The International Union of Pure and Applied
Chemistry PLFA nomenclature used here is described by
Guckert et al. (1985): the (n−) notation indicates the posi-
tion of the carbon-carbon double bond in the FA aliphatic
chain starting from the methyl end carbon. The1 notation,
giving the location of FA unsaturation from the carbon at the
carboxyl end, is only used in the next paragraphs to discuss
fatty acid synthesis.

3 Results and discussion

3.1 Methane- and sulfide-oxidizing bacteria PLFA
fingerprint

Phenotypic characterization is important for accurate tax-
onomic description of the endosymbionts (Bowman et al.,
1993) and interpretation of the compound specific natu-
ral stable isotopic signatures. Pond et al. (1998) observed
that the 14:0, 18:0, 18:1(n − 7), 20:1(n − 7), 18:3(n − 7),
and 20:3(n − 7) compounds in the total lipid extract from
Bathymodiolus azoricusgills were isotopically light and con-
cluded these compounds had been produced by the sulfide-
oxidising endosymbiotic bacteria (SOX). Our experimental
results contrast with these conclusions and indicate that (i)
14:0, 18:0, 18:1(n−7) and 20:1(n−7) compounds also in-
corporate C from13CH4 and (ii) 18:0, 20:1(n−7), 18:3(n−

7) and 20:3(n−7) compounds do not incorporate significant
amounts of13C from H13CO−

3 in the presence of H2S.
Our study shows that mussels kept in the presence of

13CH4 or H13CO−

3 + H2S incorporate13C mainly in satu-
rated and mono-unsaturated PLFA (Sat and MUFA, respec-
tively, Fig. 1a). For instance, the weighed averageδ13C
signature of6MUFA from the gill PLFA fraction of mus-
sels incubated with13CH4 varied between +27 and +249‰
(Fig. 1a). From the13CH4 and H13CO−

3 + H2S experiments,
three patterns can be distinguished (Fig. 2): (i) PLFA en-
riched in13C from both substrates (CH4 and HCO−

3 +H2S),
i.e. 14:0; 15:0; 16:0; 16:1(n−7)c+t; 18:1(n−13)c+t and
(n − 7)c+t; 20:1(n − 7); 20:2(n − 9,15); 18:3(n − 7) and
(n− 5,10,13); (ii) PLFA enriched in13C only after expo-
sure to13C-CH4, i.e., 17:0; 18:0; 16:1(n− 9); 16:1(n− 8)
and (n−6); 18:1(n−8); and 18:2(n−7) (note that fatty acid
18:1(n−9) was enriched in only one of the replicate speci-
mens) and (iii) PLFA enriched in13C only after exposure to
H13CO−

3 and H2S: i.e., 12:0. Exposure to H13CO−

3 and H2S
also resulted in 17:1(n−8), 20:2(n−9,15) and 20:5(n−3)
enrichement in two, and 20:2(n−7,11) and 18:3(n−6) in
only one out of the three specimens analyzed.

Phylogenetic analyses on sequences of the genes encoding
the 16S rRNA subunit and the particulate methane monooxy-
genase (pmoAgene) revealed that theB. azoricusmethane-
oxidising endosymbiont is a gamma-proteobacterium re-
lated to free living MOB and to MOB symbionts from
other Bathymodiolids (Duperron et al., 2006; Nakagawa and
Takai, 2008; Spiridonova et al., 2006). Although Colaço
et al. (2007) did not identify any MOB PLFA biomark-
ers in wild B. azoricusspecimens from the Menez Gwen
site they did reveal the presence of large amounts of i19:0,
18:1(n− 13) and 18:1(n− 9), which were attributed to the
endosymbionts. Our tracer experiment with13CH4 revealed
that 18:1(n − 13) was indeed slightly labeled but this was
not the case for 18:1(n−9) (not enriched in the presence of
H13CO−

3 +H2S either) or for i19:0 which was not detected in
our specimens.
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Fig. 2. Bathymodiolus azoricusgill tissue PLFA (n = 3, average± min-max)13C incorporation per total PLFA content (as calculated using
Eq. 3) after a 15 day supply with13CH4 (black bars), or a 20 day supply with H13CO−

3 in the presence of H2S (grey bars).

As mentioned above, we found that13CH4 incorporated
in B. azoricusgill tissue ended up in 14:0, 15:0, 16:0
as well as incis and trans 16:1(n − 9,8,7 and 6) PLFA
(Fig. 2). 16:1(n−9) (one of the least abundant 16:1 isomers)
also became labeled, although this compound has not been
observed previously in PLFA profiles of isolated methan-
otrophic strains (Bodelier et al., 2009). Overall,Methylo-
halobium crimeensis 1Kihas a PLFA profile which overlaps
by 98.1% with the fatty acid profile identified by stable iso-
tope labeling with13CH4 of theB. azoricusMOB symbiont,
followed by Methylosphaera hansonii ACAM 549(97.0%,
Table 1, Bodelier et al., 2009),Methylocaldum sp. O–12
(95.8%) andMethylocaldum sp. H-11(93.0%). This result
is consistent with the study of Pimenov et al. (2002) who
could amplify total DNA isolated fromB. azoricusgill tis-
sue exclusively with 16S rRNA primers targeting the genera
MethylobacterandMethylosphaera.

Phylogenetically theB. azoricus SOX endosymbiont
stands far from any known cultured SOX bacteria. The clos-
est strains such as the obligate chemolithoautotrophic thio-
denitrifying gamma-proteobacteriaThiohalomonas nitratire-
ducens(Sorokin et al., 2007) only reach around 88% 16S
rRNA sequence homology (S. Duperron, personal communi-
cation, 2009). Furthermore, the PLFA labeled in our experi-
ments represented only 69% of the fatty acid (FA) extracted
from T. nitratireducens. It is thus difficult to relate the pheno-
type ofB. azoricusSOX symbiont to any free-living bacteria.

Conway and MacDowell Capuzzo (1991) suggested that
all SOX bacteria desaturate their FA via the anaerobic path-
way. The anaerobic desaturation pathway produces long
chain MUFA by the elongation of medium chain lengthcis-
3-unsaturatedintermediates, with 18:1(n−7) as the major
end-product and 16:1(n− 7) as a secondary product. The

O2-dependent MUFA synthesis pathway is known to pro-
duce a large variety of fatty acids (FA) with a double bond
insertion occurring mainly in the19 position (Conway and
MacDowell Capuzzo, 1991). Note that the delta (1) nomen-
clature which imposes carbon atoms numbering to start from
the carboxylic acid end of the acyl chain, is used for describ-
ing biochemical reactions. Our results show that 18:1(n−7)
and 16:1(n−7), which are the main products of the anaer-
obic desaturation pathway, were significantly more labeled
(−19.8 and +182.2‰, respectively) than the main product
of aerobic desaturation,19 MUFA 18:1(n − 9) (−29.6‰,
Fig. 2). However, the latter fatty acid was less abundant, and
therefore incorporation of similar levels of label in the 3 fatty
acids could have resulted in a higherδ13C signature in PLFA
18:1(n−9). The fact that MUFA 16:1(n−7), which was ap-
proximately 3 and 9 fold more abundant than 18:1(n−7) and
18:1(n−9), respectively (Fig. 4), was the most labeled com-
pound together with saturated PLFA (12:0, 14:0 and 15:0;
see Fig. 2), supports the contention of Conway and Mac-
Dowell Capuzzo thatB. azoricusSOX symbiont desaturates
its FA via the anaerobic pathway.

3.2 Amino acid assimilation in tFA

Wright (1982) reports thatMytilus and Modiolus mussels
take up free amino acids dissolved in seawater. Once inside
the cell, free amino acids can be incorporated unchanged into
proteins (Eccleston and Kelly, 1972) or used for the synthe-
sis of other macromolecules. Excess amino acids (not being
incorporated into proteins) cannot be stored in the cells and
are generally used as metabolic fuel for the production of
FA, ketone bodies or glucose (Berg et al., 2002). The keto-
genic amino acids leucine, lysine, isoleucine, phenylalanine,

www.biogeosciences.net/7/2591/2010/ Biogeosciences, 7, 2591–2600, 2010
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Table 1. PLFA displaying significant enrichement after the tracer experiments with H2S+13CO2 (SOX) or with 13CH4 (MOB). X = 13C
labeled. % PLFA = proportion of the PLFA content in cultured strains ofMethylosphaera hansoniiandThiohalomonas nitratireducens.

MOB M. hansonii(% PLFA) SOX T. nitratireducens(% PLFA)
Bodelier et al., 2009 Sorokin et al., 2007

12:0 X 3.9
14:0 X 2.5 X 0.5
15:0 X 1.5 X 0.6
16:0 X 14.5 X 25.4
18:0 X 0 X 0.5
16:1(n−6) X 17.5
16:1(n−7)c+t X 20 X 27.3
16:1(n−8) X 39
16:1(n−9) X 0
17:1(n−8) X 0.9
18:1(n−7)c+t X 1.5 X 11.8
18:1(n−8) X 0
18:1(n−9) X 0.5 X 5.1
18:1(n−13)c+t X 0
20:1(n−7) X 0
18:2(n−7) X 0

tryptophan and tyrosine (accounting for 41 to 72% of the
13C-amino acid mix used in our tracer experiment, see Riou
et al., 2010) can be degraded into acetoacetyl CoenzymeA
or acetyl-CoA, which constitutes the basis forde novoFA
biosynthesis (e.g., Payne et al., 2001). Alanine, serine and
cysteine can be converted to pyruvate which can further turn
into acetyl CoA. Tracing the incorporation of amino acid
13C into FA biomarkers may thus provide evidence for an
osmotrophic activity (feeding on dissolved organics) byB.
azoricusitself and/or by its endosymbionts. While from the
present study (and Riou et al., 2008) it is now clear thatB.
azoricus’ symbionts assimilate CH4 or HCO−

3 in the pres-
ence of H2S, their potential for osmotrophy has never been
studied. The gill tissue showed the most rapid evidence
of 13C incorporation from labeled amino acids (Riou et al.,
2010). Since the symbionts are located in the gill tissue, they
might thus have increased access to such organic food source.
However, mussel epithelial cells are the first to access this
potential carbon and nitrogen source, since amino acids first
enter the gill epithelial cells before they can reach MOB and
SOX bacterial cytoplasms.

The experiment with13C labeled amino acids resulted
in significant enrichment of the majority of the total fatty
acids (tFA, Fig. 3). Out of the 38 gill tissue tFA only 14
did not show significant enrichment. Among these were
the MUFA 16:1(n − 9) and 18:1(n − 8) (1.6% of the tFA
area, Fig. 4), 19:1(n−7) (0.5%), and 20:1(n−13) (4.4%);
the non-methylene interrupted di-unsaturated (NMID) fatty
acids 18:2(n−7,13) (0.4%), 20:2(n−7,15) (6.2%); and the
PUFA 18:3(n−5,10,13) (5.3%), 20:3(n−7) (2.3%) and 22:3
isomers (1.5%). The fatty acid showing most13C incorpo-

ration from the amino acids was 12:0 (representing 2.1% of
tFA, Fig. 4), followed by 16:1(n− 7) (16.0%), 18:1(n− 7)
(2.7%) and 16:0 (19.1% of tFA).

Mollusc lipids contain non-methylene interrupted di-
unsaturated (NMID) FA having unusual unsaturation fea-
tures, since they possess double bonds with more than one
methylene group between ethylenic bonds (reviewed in Bar-
nathan, 2009). We observed that the incorporation of13C
from labeled amino acids in gill tissue di-unsaturated tFA
(“DUFA” with these being mainly composed of NMID FA;
δ13CDUFA = −20.9‰) was significantly higher than the
13C incorporation from CH4 or HCO−

3 + H2S (−32.8 and
−35.6‰, respectively, Fig. 1a, b). In particular, the NMID
22:2(n−7,15) became labeled only when supplyingB. azori-
cus with 13C-amino acids (Fig. 3). In bivalves, NMID
22:2(n− 9,15) and 22:2(n− 7,15) (usually the most abun-
dant in marine invertebrates, see e.g., Dunstan et al., 1993;
Kawashima et al., 2003) are synthesizedde novoby elon-
gation and15 desaturation of 18:1(n− 9) and 16:1(n− 7)
(Zhukova, 1986) and subsequent elongation of 20:2(n−9,15)
and 20:2(n−7,15) into the 22:2(n−9,15) and 22:2(n−7,15)
acids. The incorporation of13C label in 22:2(n−7,15) there-
fore indicates that the mollusc host cells have assimilated the
amino acids directly in their fatty acids (as opposed to CH4
and HCO−

3 which are being assimilated by the symbionts).
Further evidence for this comes from the observation that
MUFA 18:1(n−9) as well as 20:1(n−9) were more enriched
in gills of specimens incubated with13C-amino acids (Fig. 3)
than in mussels kept in the presence of13CH4 or 13CO2+H2S
(Fig. 2), even though

∑
MUFA in the amino acid experi-

ment was less labeled (+39‰, Fig. 1b) than
∑

MUFA for
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Fig. 3. Bathymodiolus azoricusgill tissue tFA (n = 3, average± min-max)13C incorporation per total PLFA content after a 20 day supply
of dissolved13C-amino acids.

the 13CH4 or 13CO2+ H2S experiments (+168 and +46‰,
respectively, Fig. 1a). In animal cells, mono-unsaturation of
fatty acids is catalyzed by a19 desaturase which has a max-
imum affinity for FA 18:0 and yields 18:119 (18:1(n−9);
Cook, 1996). Since filter-feeding molluscs elongatede novo
produced 18:1(n−9) to 20:1(n−9) (Zhukova, 1986), the ob-
served preferential incorporation of13C from amino acids in
18:1(n−9) as well as 20:1(n−9), indeed points to direct as-
similation of amino acids by the Mytilid cell machinery.

As can be noticed from Fig. 3, FA belonging to the (n−7)
series were particularly enriched, with 16:1(n−7) showing
the highest13C incorporation within this series, followed by
18:1(n−7), 20:1(n−7), 18:3(n−7) and 18:2(n−7). One
of the pathways of 18:1(n − 7) synthesis is the anaerobic
pathway of desaturation, and Tunlid and White (1992) pro-
posed 18:1(n−7) to be a general indicator of the presence
of bacteria. However, the high enrichment from13C-amino
acids observed for 18:1(n−7), 18:2(n−7), 18:3(n−7) and
20:1(n − 7) could also indicate preferrential use of the la-
beled acetyl coA resulting from amino acid breakdown to
elongate 16:1(n−7), which is one of the most abundant FA
(around 10%, Fig. 4) in gill tissue. Indeed, had the13C-
amino acids been assimilated by the SOX endosymbionts
first, 16:1(n − 7) would have ended up being much more
labeled than 18:1(n−7), as was observed in the H13CO−

3 +
H2S experiment. Although it is true that 16:1(n − 7) and
18:1(n−7) are the most abundant FA in SOX bacteria (Mc-
Caffrey et al., 1989) and that 18:1(n−7) dominates the PLFA
profiles of facultative methanotrophic alpha-proteobacteria
Methylocellaspecies (Dedysh et al., 2005), these particular
FA are also biosynthesized by eukaryotic organisms. The
elongation of 16:1(n−7) to form 18:1(n−7) by the incor-
poration of enriched acetyl coA resulting from amino acid
degradation might thus be performed by the mussel itself.

The incorporation of amino acid13C into SOX and MOB
FA biomarkers (12:0, and 16:1(n− 8) and (n− 6), respec-
tively) might indicate that the symbionts could also be assim-
ilating the amino acids directly. Bacteria indeed possess ef-
fective metabolic mechanisms to survive long periods of low
food supply and to react rapidly to available suitable nutrients
(including low concentrations of dissolved organic matter;
Sepers, 1977). The SOXBeggiatoa bacteria, for instance,
can grow facultatively or mixotrophically on inorganic and
soluble organic compounds (Zhang et al., 2005). However,
in general, organic compounds do not stimulate the growth
of specialist phototrophs, lithotrophs, or methylotrophs. Al-
though some of the isolated bacteria strains using methane
and other Cl compounds also grow on sugars and acids (Patt
et al., 1974), many isolates capable of growth on methane
have proven incapable of growth on conventional organic
media (Whittenbury et al., 1970). Several factors may ex-
plain the lack of capacity to assimilate organic compounds
such as an inhibition effect by these compounds (although
balanced mixtures of amino acids can cancel the inhibition
by one or the other amino acid, Smith and Hoare, 1977), the
impermeability of the cell (e.g. Eccleston and Kelly, 1972)
or the loss of enzymes from the main assimilation pathways
(Theisen et al., 2005; Smith and Hoare, 1977). In obligate
methane-oxidising gamma-proteobacteria, the chemical con-
version of carbohydrates, lipids and proteins into CO2 and
H2O for energy production is blocked at the level of the
tricarboxylic acid (TCA) cycle, due to the concurrent ab-
sence of one of its key enzymes,α-ketoglutarate dehydro-
genase, and of isocitrate lyase and malate synthase from the
glyoxylate shunt (Trotsenko, 1983). In some cases, succinyl
CoA synthetase, another enzyme from the TCA cycle, is also
missing, like inThiobacillus denitrificansor M. capsulatus
(Smith and Hoare, 1977). However, our finding that some
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Fig. 4. Bathymodiolus azoricusgill tissue PLFA or tFA content (n = 3, average± standard deviation) after a 15 day supply with13CH4 (black
bars), or a 20 day supply with H13CO−

3 in the presence of H2S (grey bars), or with13C-amino acids (white bars); striped bars represent
control mussels.

of the MOB (16:1(n−8) and (n−6)) and SOX (12:0) sym-
bionts biomarkers were labeled after incubation with13C-
amino acids indicates that the symbionts had at least access
to acetyl coA (or acetate) produced during the degradation of
the amino acids by the host, and/or that they have the capac-
ity to absorb and metabolise external amino acids. Further
experiments are needed to ascertain these hypotheses.

4 Conclusions

PLFA and total FA 13C-fingerprinting in Bathymodiolus
azoricusgill tissues allowed us to trace the assimilation of
13C-enriched HCO−3 (in the presence of H2S) and CH4 into
the endosymbionts and host. Based on the selective label-
ing pattern of PLFA in each of the experimental treatments
we could establish qualitative FA profiles of MOB and SOX
endosymbiotic bacteria living in association withB. azori-
cus. Additionally, carbon from dissolved free amino acids
was found to be incorporated into host specific FA and also
into some of the symbiont biomarkers.

The tracer uptake experiments in the present study could
only be performed under conditions of atmospheric pressure.
It therefore needs to be verified through future experiments
whether or not the activated metabolic pathways are the same
under high, in situ pressure conditions and atmospheric pres-
sure. While more experimentation is needed to better under-
stand the physiology of the ensosymbionts, this experiment
has shown its usefulness for positioning the endosymbionts

among described strains, as well as for the direct identifica-
tion of the symbiont biomarkers, for which until now only
assumptions had been made.
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