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Abstract

Global change models predict effects of climate change on hydrological regimes at the

continental scale in Europe. The aim ofthis study was to gain a better understanding of
the possible effect of changing external forcing conditions on the functioning of
estuarine ecosystems. In densely populated areas, anthropogenic nutrient enrichment

and consequent alteration of nutrient biogeochemical cycles have already had a big

impact on these ecosystems. The average yearly discharge ofthe upper Schelde estuary

increased nearly threefold over the period 1996-2000, from 28 mt s-t in 1996 to 73 m3 s-

I in 2000. The continuously rising discharge conditions over the 5-year period were used

as a reference situation for possible future effects of climate on ecological firnctioning

through increase of discharge. At high discharges, nutrient ffi4*, NO3-, dissolved silica

and POa3-) concentrations in the tidal fresh- and brackish water showed a decrease of up

to 50o/o while total discharged nutrient loadings increased up to 100%. Opposite effects

of increasing discharge on NH4*-, NO3-- un6 dissolved silica concentrations in summer

and winter, resulted in the flattening out of seasonal cycles for these nutrients. Under

high discharge conditions, silica uptake by diatom communities was lowered.

Dissolved silica loadings to tle coastal area increased concurrently with total silica

loadings upstream. Salt intrusion to the marine parts of the esfuary decreased. This
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resulted in a downstream shift of the salinity gradient, with lower salinity observed near

the mouth. As a result. TDIN-, NO3-- str6 dissolved silica concentrations doubled at the

mouth of the estuary.
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Climate change and estuarine fluxes

4.1 Introduction

Coastal zones and shallow marine areas are among the most productive systems in the

world (Mann, 1988; Glantz, 1992). They form the main fishery grounds on Earth

(Postma & Zijlstra, 1988; Sherman et a1.,1991). One of the major worldwide problems,

in densely populated areas, is the eutrophication of these eshrarine and coastal waters

(Nixon, 1990; Gray, 1992;' Doering, 1996; Boesch 2002). For most temperate estuaries

and coastal ecosystems, N is the element most limiting to primary production and most

responsible for eutrophication (Howarth, 1988; Howarth et al., 1996, Nixon et a/.,

1996). Since the reduction of phosphorus inputs from polyphosphate-containing

washing powders, phosphorus concentrations in estuarine environments have decreased,

while nitrate concentrations remained high (van Damme et al.,1995; Billen & Garnier,

1997; Zwolsman, 1999). In contrast to N and P, the silica concentration in estuaries is

only indirectly influenced by human pollution. Diatom communities require about equal

amounts of N and Si. Diatoms are an essential element of coastal water food chains.

Increased N-concentrations can lead to a succession from phytoplankton communities

dominated by diatoms to phytoplankton communities dominated by species that are not

taken up by higher trophic levels (e.g. Phaeocystis sp., Gonyaulax sp.,

Chrysochromulina sp.) (Schelske et al., 1983; Smayda, 1990; Smayda, 1997). The

North Sea, with extensive input of nutrients from rivers (Rhine, Elbe, Schelde) and its

isolated nature, has been characterized by increasing eutrophication events (Lancelot et

al., 7987; Brockmann et al., 1988; Richardson, 1989; Lancelot, 1995; Ducrotoy et al.,

2000).

Coastal zone ecosystems are strongly affected by natural variations in climate (Holligan

& Reiners, 1992). Human induced climatic changes can accordingly have a further

effect on the ecology of estuarine environments. Regional and global shifts in

temperature, changes in cloud cover, increasing or decreasing precipitation regimes and

sea level rise are among the most commonly cited alterations due to human impact on

the trace gas composition of the atmosphere (Mitchell, 1989, Wigley & Raper, lg92). A

reliable forecasting of global change effects on the land-ocean interface is one of the

key aspects in the Land-Ocean-Interactions-in-the-Coastal-Zone-programme (LOrcD,

a core project of the International Geosphere-Biosphere Programme (IGBP)
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(Kondratyev & Pozdnyakov, 1996). Studies, both observational and theoretical,

addressing the issue of material fluxes to coastal zones under changing extemal forcing

conditions, have a critical intemational importance.

Our aim is to focus on the impact of changing hydrological conditions on estuarine

water quality and fluxes of nutrients to coastal waters. Generally, in river basins in

temperate regions (Belgium, Quebec, Scotland), an increase in discharges and flooding

events is predicted (Gellens & Roulin, 1998; Roy et al., 2001; Wenitty, 2002).

Although different scenarios exist, all scenarios of global change models, at the

continental scale of Europe, predict an increased run-off in North and Western Europe

(Amell, 1999). Schelde freshwater discharges could increase up to 28 Vo during the next

century (source: AWZ, Flanders Waterways and Maritime Affairs Administration).

Increased precipitation results in a larger proportion of rainfall transferred directly to

surface waters by surface run-off as soil storage capacity is exceeded (Wanielista 1990).

It is hypothesized that the diffuse nutrient and sediment inputs to the estuary are

positively related to the surface run-off and predicted climate change will result in

larger loads of nutrients transported towards the estuary.

Higher freshwater discharges can further influence estuarine ecology by decreasing

water residence times in the main estuarine channel. The upstream tidal freshwater

regions are likely to be most affected by changing freshwater discharges as the impact

of marine waters is negligible and advective freshwater flows dominate over dispersive

tidal flows. Muylaert et al. (2001) have shown how short-term freshets can result in the

flushing of entire diatom communities from the freshwater reach. Nutrients and organic

material are transferred more rapidly to coastal waters, and important ecological

processes (e.g. denitrification, nitrification, mineralisation, nutrient uptake) in nutrient

cycling have less time to act upon the large volumes of nutrients, which could lead to

alterations of fluxes of N, P and Si downstream to coastal waters.

Recent studies have mainly focused on predicting the impact of climate induced

hydrological changes on estuarine ecosystem functioning based on modeling different

scenarios (Schirmer & Schuchardt,200l; Nijssen et a\.,2007; Justic el al.1997).This

study is based on observations made during a period of continuously rising discharge.

The period 1996-2000 was characterised by steadily increasing flow conditions in the

Schelde estuary, caused by interannual precipitation variability. Detailed time-series of
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nutrient concentrations in the marine, brackish and freshwater reaches of the Schelde

esfuary (1996-2000) where studied under these continuously increasing discharge

conditions. Covariation between long-term nutrient and oxygen concentrations on the

one hand and freshwater discharges on the other hand was examined using standard

least-squares linear regression to assess correlation between nutrient concentrations or

nutrient fluxes and discharse.

4.2 Materials and Methods

4.2.1 Study area

The Schelde estuary @ig. 4.1), located in Northern Belgium (Flanders) and the

Southwest Netherlands, has a long history of extensive anthropogenic pollution (De

Pauw, 1971; Bakker & Heerebout,l97l; Wollast, 1988; Boderie et al.,1993, Baeyens,

1998). It is known as extremely eutrophic and receives large inputs of nutrients from

non-point as well as point sources (Heip, 1988). A large freshwater tidal area

characterizes the Schelde. This is approximately situated between Gent (km 155, i.e.

155 km upstream of the estuarine mouth) and Temse (km 100). The major tributaries to

the Schelde, situated respectively at Dendermonde (120 km upstream the mouth) and at

the interface between the freshwater and brackish zone near Temse (100 km upstream

the mouth), are the Dender and the Rupel. The Rupel receives large inputs of untreated

waste from the city of Brussels.

Upstream of Dendermonde, the tidal freshwater zorre is characterized by small channel

width (30 m) and depth (5-10 m). The volume of freshwater in this zone is only about

30% of total freshwater volume in the estuary. Consequently, the residence time is short

and relatively strongly influenced by freshwater discharges compared to downstream

regions (Van Damme, pers. comm.). Changes in freshwater discharge can induce a

threefold decrease in residence times in this tidal freshwater (2-6 days).

The brackish part of the estuary is situated between Temse and the Dutch-Belgian

border (km 55). The Dutch part of the estuary is the marine region. Dendermonde is

situated centrally in the freshwater tidal area. Water quality between Temse and Gent

usually shows little longitudinal variation compared to the downstream estuarine
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regions (Van Damme et al.,1995). Measurements at Antwerp and Vlissingen represent

respectively the brackish and the marine area.

Fig. 4.1: The Schelde estuary and its tributaries; " 
: monitoring measuring point

4.2.2 Sampling

Between January 1996 and December 2000, surface water samples were taken monthly

in the middle of the river from a boat at 16 stations along the longitudinal gradient of

the Schelde estuary and in the mouth of the Rupel (from April 1996 on). No samples

were taken on the Zeeschelde and Rupel in January 1997 because of ice formation on

the rivers. Discharges were measured by AWZ. Discharge of the Bovenschelde (the

Schelde just upstream Cent, where tidal influence is stopped by sluices), the Dender and

the Rupel was continuously measured, and daily means were calculated. Freshwater

discharge at Dendermonde is the sum of discharges of Bovenschelde and Dender,

freshwater discharges downstream Antwerp are the sum of Rupel and Dendermonde

discharges. The marine (Dutch) estuary is sampled by NIOO-CEME (National Institute

of Ecological Research, Centre for Estuarine and Marine Ecology). NIOO-CEME did

initially not sample at the same frequency as for the Belgian sampling, especially in

winter 1996 and 1997. Some analyzing methods are different for the NIOO-CEME, but

intercalibrations were performed to ensure reproducibility.
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4.2.3 Analysis

oxygen was measured in situ with a 'wrw oxl 91' oxygen-meter. All other variables

were analysed ex situ within 24 hours after sampling. Specific conductivity was

measured with a 'WTW LF 91' conductivity-meter. Chloride, ammonium lNHa*-N),

nitrite 6NOr--N), nitrate (NO::N) and DRP (PO43 -P) concentrations were analyzed.

colorimetrically on a 'Segmented Flow Atralyzer Skalar@'. Kjeldahl-N (NH+*-N +

organic N) and totP were analyzed after digestion in H2Soa. Dissolved silica

concentration measurement was conducted on an 'Inductively Coupled Plasma

Spectrophotometer Iris@'. Silica was monitored since July 1996.

Water quality and discharge data were analyzed for Dendermonde, Antwerp and

vlissingen, respectively 120 km and 80 km upstream of the mouth of the estuary and at

the mouth, as well as for the Rupel tributary @ig. a.1). Winter and summer were

defined as January-March and June-September respectively. These periods were chosen

because they show the least intra-annual variation in water quality and low and high

chlorophyl a-concentrations (biological activity) respectively (Van Damme, pers.

comm.). To measure the influence of discharge on quality trends, it is important to make

a seasonal distinction, as nutrient concentrations and discharge show similar seasonal

trends.

Discharged loads per time unit 19 s-r) were calculated from equation (1):

F=o*s-EAdt
ox

in which F is flux (mol s-' over cross-surface), Q is freshwater discharge 1m3 s-r;, s is

concentration (mol m-3), E is dispersion coefficient (-' t t) and A is cross-surface (m2).

This equation is at the basis of the model used in Soetaert & Herman (1985). At
Dendermonde and Antwerp, dispersive transport is negligible, discharged loads were

essentially calculated by multiplying monthly measured concentration (mg L-t) and

monthly averaged discharge (*' r-t). A recent standardization study of the dataset

within tidal, vertical and longitudinal water qualify variation, has shown that measured

(l)
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nutrient concentrations are very good indicators for conditions throughout the whole

month (Van Damme et a1.,2005). The consistence of the measuring methods ensures

that bias (if present) on calculated loads was similar throughout the study period.

For regression analysis on the concentration and freshwater discharge data, these data

were log-transformed (log (x+1)). (Log-transformed concentrations were in mg N L-r'

mg P L-r, mg 02 L-t, mg Cl-r, mg Si L 1). This is an effective transformation to

normalize estuarine water quality data (Jordan et al.,l99l; Doering, 1996).

4.3 Results

4.3.1 Hydrology

The average yearly discharge at Dendermonde showed a large variation from a

minimum of 28 m3 s-t in 1996 to a maximum of 73 m3 s-t itt 2000 (Fig.4.2a). There was

a clear seasonal variation with maxima in winter and minima in summer (Fig. a.2b).

Absolute discharge increase was much higher in winter than in summer (Fig. 4.2c).

Average monthly discharge was strongly related to total monthly rainfall in winter (R2 :

0.64, p<0.001,Fig.4.2d)). In summer this relationship was less pronounced but still

significant 82:0.39, p:0.003, Fig.4.2d). The same increase in rainfall results in bigger

discharge differences in winter than in summer. Discharge data from Antwerp show a

similar pattern.

4.3.2 Nutrient concentrations and fluxes

In general, concentrations decreased at Dendermonde and Antwerp as water discharged

increased, and this decrease was mainly apparent in winter (Table 4.1). Average winter

concentrations in 1999-2000 (average ofall winter period observations in period 1999-

2000, period with high discharges) of ammonia and totP were only half the

concentrations observed in 1996-1997 (period with lower discharges). TDIN, totN and

DRP concentrations decreased by around 20-30%. In summer (average of all summer

observations in periods 1996-1997 vs. 1999-2000), concentrations did not drop

likewise. In Antwerp, totN and TDIN even increased. A Wilcoxon Rank-Sum test was
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performed to test the significance of the observed differences (Table 4.1). In contrast to

other nutrients, nitrate concentrations increased by around 20 Yo inAntwerp in winter

RainfaU(mm)

Fig. 4.2: Discharge at Dendermonde 1996-2000 (source: AWz); a) yearly averaged discharge; b)

Seasonal patterns; c) Yearly winter and summer averages; d) Discharge dependence (least-squares

regression) on rainfall. Monthly averaged discharged at Dendermonde versus total monthly

rainfall at Geraardsbergen (source: KMI, Royal Meteorological Institute) (Least-squares

regression: summer p{.003, R2{).39, F:12; winter p{,0006, R2{.64,F:22).

and summer and in Dendermonde in winter. Summer nitrate concentrations in

Dendermonde slightly decreased, while oxygen conditions tripled in the freshwater

zone. However, this improvement was not observed farther downstream. winter

concentrations of dissolved silica (DSi) remained virtually constant, but summer

concentrations greatly increased over the 5-year study period, especially in Antwerp.

water quality over the studied period in the Rupel showed similar pattems as in

Antwerp. No wilcoxon-test was performed for the Rupel for winter data, due to less

frequent data in the 1996-1997 period. In contrast to the other sites, at vlissingen

nitrate, silica, DRP and TDIN concentrations greatly increased, while totp
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concentrations were stable (Table 4.1, Fig. 4.3). No yearly average is shown for 1996'

bscause in winter there was no sampling at Vlissingen.
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Fig. 43: Yearly averaged TotP, DRP-, DSi-, NO3-- and TDIN concentrations at Missingen (1997-

20fi)), DRP = dissolved reactive phosphorous, TDIN: total dissolved inorganic nitrogen

In contrast to nutrient concentrations, discharged loads ofnutrients generally increased

throughout the study period. Total discharged loads of DRP, totP (Fig. 4.4a), nitrate,

TDIN (Fig. 4.4b), dissolved silica (Fig. 4.4c) and chloride (Fig. a.ad) showed clear

increasing trends over the study period in the freshwater zone. Ammonia loads

remained more or less constant (Fig. a.ab). The relative proportion of nitrate in the total

nitrogen load increased steadily. Similar results were observed at Antwerp and in the

Rupel (not shown). However, totP loads did not increase in Antwerp. TotP loadings

here were lower than the sum of Rupel and upstream freshwater totP loads. In the

Rupel, totP loads only increased in 2000. At Vlissingen, total discharged load of totP,

DRP (Fig. 4.4e), TDIN and nitrate (Fig. a.aD showed no real consistent trend.

Discharged loads of silica nearly doubled (Fig. a.ag). Ammonia loads dropped to near
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zero over the same period (Fig. 4.4e). Discharged nitrogen, silica and phosphorus loads

were much higher at Vlissingen than upstream at Dendermonde.

Table 4.1: Average winter- and summer concentrations (all pmol L-r, except oxygen) ofoxygen (mg

L-r), nitrate, ammonia, TDIN, totN, DRP, totP and si at Dendermonde, Antwerp, vlissingen and in

the Rupel. Comparison for the periods 1996-1997 and 1999-2000 and procentuat difference. [ | :
concentration, n = number of measurements, p : significance value of Wilcoxon Rank Sum test.

Bold: significant difference (p<0.05) between period 1996 for this parameter

paramotea

Dendmonde
O, (mg.l-1)

Nog-
NHo*

TDIN

totN

DRP
totP
si

Antwrp
O, (mg.l'l)

No:'
NHr'
TDIN

totN

DRP
totP

si
Rupel

O, (mg.11)

NOi
NHo'
TDIN

totN

DRP
totP

si
Vlissingen
oz (mg.l-')

Nog-

NHo*

TDIN

totN

DRP
totP

Si

1,24 8
241 8
748
329 8
429 8

98
178
507

1,01 8
286 8

538
359 I
M38
88
148
121 8

%g
3/r9 O,O2

-5 0,40
-18 0,64
-10 0,21

-'r3 0,09
-14 0,29
-28 0,05
39 0,42

-19 0,49
'r9 0,10
-29 0,67
I O,12

3 0,49

-'t1 0,37
-21 0,06
14 0,1r,[

1

17

-16

-2
-3

-37

63

-6

57

-29

T
12

0

96

winter 96-97

lln
5,41 5
346 5
422 5

781 5

902 5

435
223 2

4,'t2 6
291 6
368 6

733 6
86
186
222 3

wints
wlnter 99-{X,

lln
6,87 5
445 5

154.5
611 5
694 5
125
21 5
233 5

5,59 6
356 6
149 6
513 6
569 6

56
96

221 6

Yop
27 0,03
2a <0,01

-64 <0,01

-22 <0,01

-23 <0,01

42 <0,01

-52 <0,01

36 0,1'l
22 0,11

-60 <0,01

-23 <0,01

-22 <0,01

-35 0,02
-50 <0,01

summr
summer96-97 summorgg.(X)

In[n
0,35 8 r,57 8
306 I 292 8
154 I ',t27 I
492 A 443 8
651 8 569 8
238208
478348
94 7 't31 8

0,40

0,06

0,92

oft

0,46
0,83

o,o2

10,36

68

22

1?

'1,8

4,7

36

151

20
-55

-25
-26

0

104

-64

::
56
4
58

4.3.3 Discharge dependence of concentrations

Discharge was an important causal factor in observed nutrient concentration variability

throughout our study period. In winter, oxygen-, TDIN-, totN-, totP- and ammonia-

concentrations were linearly dependent on discharge in Dendermonde, Antwerp and the

Rupel (Table 4.2). For oxygen, this relationship was positive; the other variables were
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negatively related to discharge. DRP was negatively related to discharge in

Dendermonde and Antwerp, but not in the Rupel. Dissolved silica was totally

independent of discharge in winter. For totN, TDIN, ammonia and DRP, linear

relationships were not observed in summer, in contrast to winter (Table 4.2). Dissolved

silica was positively linearly dependent of freshwater discharge at Antwerp and

Dendermonde in summer (Table 4.2\.

Table 4.2: Discharge dependence (total monthly discharges) of monthly concentrations of oxygen,

nitrate, ammonia, TDIN, totN, DRP, totP and si at Dendermonde, Antwerp and in the Rupel for

winter (up) and summer (down) (least-squares linear regression, data were log-transformed for

normalization). +/- indicates a positive respectively a negative relation, bold underlined:significant

relationship (p<0.05)

parameter p

02 0.007

NOr' 0,056

NHr' 0.008

TD|N 0.032

totN 0.004

DRP 0,101

totP 0.002

si 0,096

parameter p

02 0.017
NO:- 0,053

NH+' Q,17

TD|N 0,62

totN 0,54

DRP 0,16

totP O,22

si 0,57

Rupel
+l- R2 F

+ gEZ 12

+ 0,35 5

- 0.56 12

- 0.42 q
- 0.63 15

- Q,27 3

- 9J0 18

- 0.28 4

F

;

0

0
2

2
0

winter
Dendermonde

P+A
0.005 f 0.56

0.005 + 0.53

0.00r - 0.61

0.029 - 0.36

0.001 - 0.62

0.006 - 0.51

0.002 - 0.62

0,630 - 0,03

summer
Dendermonde

p +l-

0,070 + 0,18

0.023 - 0.26

0,053 + 0,'19

0,620 + 0,01

0,410 - 0,04

0,600 - 0,02

0,270 - 0,07

0.006 + qJz

Antwerp
p+t-RzF

0.007 + 9Jq 11

0,480 + 0,04 1

0.020 - 0.37 Z
0.002 - 0.57 16

0.001 - 0.63 21

0.030 - 0.34 0
0.021 - 0.37 Z
0,570 - 0,03 0

Antwerp
p+l-F

0,510 - 0,o2 I
0,950 + 0 0

0,160 + 0,11 2

0,230 + 0,08 2

0,290 + 0,06 1

0,910 - 0,08 0

0,920 - 0,01 0

0.019 + 0.29 Z

Rupel
+l-

+ 0zg
+ 0,19

- 0,10

- 0,01

- 0,02

- 0,1 1

- 0,08
+ 0,02

F

13

12

17
g

l8
12

18

0

F

4

0

0
'l

0
1

10

The relation between discharge and DSi-, ammonia- and nitrate- concentrations in the

tidal freshwater was further studied in the periods October-March (low biological

activity) and April-September (high biological activity) (Fig. a.5). The distinction

between low and high biological activity in the chosen periods was ecologically

relevant. The repective periods showed low and high chlorophyll-a concentrations

respectively throughout the estuary (Van Damme et al., 2005) DSi-, ammonia- and

nitrate-concentrations showed opposite relations with discharge over the five-year study
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period in the respective periods. Chloride shows the same relationship with discharge in

both periods: higher discharges lead to lower chloride concentrations in the freshwater.

4.4 Discussion

4.4.1 Fluxes in the freshwater and brackish zone

Based on a compilation of the scattered data of water quality of the Schelde estuary in

the period 1965-1995, van Damme et al. (1995) showed that water quality was worst

during the 1970's when large parts of the brackish and fresh part of the estuary were

anoxic. Investments in both industrial and urban wastewater treatment reduced organic

loadings which resulted in increasing oxygen conditions since 1980 from ca. 3 mg L-r to

5 mg L-r in 1995 (year averaged values) near the Dutch-Belgian boarder. At the same

sampling point, ammonia-concentrations decreased since 1980 from ca. 214 umol L-l to

71 pmol L-r, while nitrate-concentrations increased (ca.214 pmol L-lto 357 pmol L-l).

DRP-concentrations clearly decreased since the early 1980's from ca. 20 pmol L-t to 7

pmol L-I.

A further improvement of the water quality, based on concentrations, between 1996 and

2000, is clear in winter, both in the freshwater and brackish zone. TDIN-. totN-. DRp-

and NHa*-concentrations dropped, while oxygen-concentrations rose. Discharge seems

an important causal factor in the latest concentration drops. Dilution in higher water

volumes has been observed to have a positive impact on nutrient and pollutant

concentrations in the upper Clyde estuary and the river wear (Scotland) (curran &

Robertson, l99l; Neal et al., 2000).

The hypothesis of dilution with higher freshwater discharges and rainfall could be

further supported by the chloride dilution patterns with higher discharge. Freshwater

bodies receiving chloride mainly from precipitation differ, according to Gibbs (1970),

from freshwater bodies receiving chloride from soil erosion. The difference is made

according to total salt concentration and the ratio of cl to the sum of Cl and HCo:.

with an average chloride concentration of 83 ppm (5 year average 1996-2000, Schelde

river upstream Gent, beyond tidal influence) the chloride supply to the freshwater

Schelde would, according to this division, not be rainwater dominated but erosion

dominated. Non-point sources could probably include both run-off from industry and
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agriculture in the upstream region and run-off from roads treated against snow and ice

as well as soil erosion. Rainfall dilutes chloride concentration in freshwater bodies

receiving chloride mainly from erosion, as was observed over the study period.
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Fig, 4.4: Yearly total discharged loads at Dendermonde (a-d) and Vlissingen (e'0: a),e) DRP and

totP; b),t) TDIN, nitrate, ammonia, nitrite; c),g) silica; d) chloride

The strongest indication for increasing non-point surface run-off input is the observation

that, along with increased discharges, an increased load of eroded material is impoded
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to the Schelde estuary (Fig. a.O. over 50 % of this suspended matter originates from

land erosion (source: AWZ). Higher rainfall induces a higher diffirse input of materials

to the estuary.
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Fig.4.5: Relation Qeast-squares linear regression) between total monthly discharge and monthly

nutrient concentrations in spring-summer (April-September) and autumn-winter (October-March)

at Dendermonde. a) nitrate (summer-spring p{.40, nf:O.Ol; winter-autumn p{).fi)3, nf+.ZC) l)
ammonia (summer-spring p{.06, Rf : 0.13, winter-autumn p{.01D1, P:O.ll) c) silica (summer-

spring p{.0007, R2{,39, winter-autumn p{).53, R2{).02) d) chloride (summer-spring p{).00003,

R3=0.47, winter-autumn p<).00002, R':0.51)

Increased surface run-offofsediments induced increasing non-point input ofnutrients.

Nutrient loss from agricultural lands by rainfall land erosion can be estimated from

knowledge of soil loss (Hargrave & Shaykewich, 1997). Higher inputs of nutrients to

the estuary from diffuse souraes explain the strong increase of nutrient loadings in the

upper estuary. Increasing nitrogen discharges at Antwerp and agriculture NJoss (as

calculated by vMM, Flemish Environmental Agency) from agricultural soil over

Flanders show similar patterns (Fig. a.T. The absence of increased loadings for

ammonia, with little diffirse input origins, in winter, supports the origin from diffuse

input sources. The change in relative proportion of ammonia and nitrate can be
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explained by rising oxygen concentrations with higher discharges, resulting in more

intense nitrification and a decrease in denitrification, an anaerobic process (Seitzinger,

1988: Billen & Garnier. 1997).

Year

Fig. 4.6: Total discharged suspended solids (SS) by the Schelde (downstream Rupel). Yearly totals.

(Taverniers 1999)

1 998

Yea r

I NitEte discharge Antwerp trAgriculture loss

Fig.4.7: Yearly total discharged nitrate loads at Antwerp vs. total yearly estimated agriculture loss

of nitrogen in Flanders Schelde Basin (source VMM, Flemish Environmental Agency, Model

Sentwa 4.06)

The increasing discharges oftotal P in the freshwater estuary apparently do not result in

increasing discharges farther downstream in the brackish zone. This could be explained
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by retention and sedimentation of P within the turbidity maximum, at the freshwater-

saltwater interface (wollast, 1982; zwolsman, 1994). This could also explain the less

clear trend of totP in the Rupel, situated near the turbidity maximum. This hypothesis is

supported by the observation that totP loadings at Antwerp are lower than the sum of
Rupel and freshwater estuarine loadings.

The impact of respiration and nitrification, processes that increase in efficiency with

higher temperatures, on the organic matter and nitrate load, was lowered due to lowered

residence times in the freshwater, and less oxygen was used. In summer, high oxygen

conditions only occurred at peak-discharges in the freshwater zorre. Higher loads of
ammonium and organic material were transferred to the downstream regions (Antwerp)

due to lower residence times and further processed in the brackish zone by respiration

and nitrification, which causes oxygen conditions to remain very low downstream of the

freshwater zone. The prolongation of the ammonium removal distance with higher

discharges was observed earlier in the Alaska tundra (vdrdsmarty & Peterson, 2000).

The significant negative relation between discharge and nitrate concentrations (less

ammonia is nitrified to nitrate at high discharges) in summer and spring in the fresh

water supports this hypothesis. In winter on the other hand, when nitrification and

respiration are less intense than in summer, oxygen concentrations increase concurrently

with increasing discharge. As a result, nitrification was enhanced in winter at higher

discharges. Balls er al. (1996) observed a comparable relation between oxygen and

discharge in the Forth estuary. All these effects of increasing discharge on ammonia and

nitrate concentrations in the periods April-September (higher temperature, nitrification

more efficient) and October-March (low temperature, nitrification less efficient) in the

freshwater in the end resulted in decreasing seasonal concentration variability. The

secondary effects of increasing discharge on nutrient concentrations through increasing

oxygen concentration, can add to observed dilution effects. Higher oxygen conditions

result in less DRP due to binding reactions with suspended matter (Krom & Bemer,

1980; Froelich, 1988).

The biogeochemistry of dissolved silica (DSi) is totally different from that of other

nutrients. Silica plays an important role in coastal eutrophication problems (Schelske et

al., 1983; Lancelot et al., 1987; Smayda, 1990; Smayda, 1997). In contrast to other

nutrients, no important anthropogenic input of silica exists. Dissolved silica (DSi)
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originates fiom biogeochemical reactions which set free dissolved silica from alkali and

aluminum silicate minerals (Hutchinson, 1957; Conell et al., 2000). In the period

October-March, silica concentration is totally independent of discharge conditions.

Seasonal variability in DSi is caused by uptake by diatom communities in spring and

summer, which results in lower DSi-concentrations. However, with highest discharge

conditions, summer and spring concentrations equal winter concentrations in the

freshwater Schelde estuary. Freshwater diatom blooms are negatively influenced by

higher discharge conditions, and complete diatom communities are "flushed" away by

peak discharges. Extreme runoff events were already shown to cause flushing of the

entire freshwater reach, whereby the estuarine phytoplankton community is replaced

with one of riverine origin, not adapted to growth conditions within the tidal area

(Muylaert et at.,2001). With the flushing of plankton, no DSi uptake takes place, which

causes summer-spring concentrations to approach winter-autumn concentrations. In

parallel with the influence of discharge on nitrate and ammonia concentrations, rising

discharge conditions result in the diminution of seasonal differences in silica

concentrations. Farther downstream, in Antwerp and at the Rupel, these effects are still

manifest. At Antwerp, silica concentrations have more than doubled over the study

period.

4.4.2 Fluxes to the coastal zone

Increasing water discharges have multiple effects on the nutrient status of coastal waters

near Vlissingen. With higher discharges, the estuarine plume expands farther into the

coastal waters. As a result, salinity has decreased at Vlissingen over the five-year study

period (Fig. 4.8). Due to conservative mixing with seawater, nutrient concentrations in

the Westerschelde decrease when moving towards saltier water (Ouboter et al., 1998).

This explains the rising concentrations of Si, DRP, NO: and TDIN near Vlissingen from

1996 to 2000.

Discharged silica loads at the mouth of the estuary have increased along with increasing

silica discharges at Antwerp and Dendermonde. This load could have further increased

due to decreasing salinity and increasing suspended matter in the Westerschelde, which

could both have reduced diatom srowth in the Westerschelde.
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Fig. 4.8: Monthly salinity at Vlissingen (199G2000)

In contrast to DSi loads near the mouth and nitrate, totP and DRp loads upstream,

nitrate, totP and DRP discharges did not increase at Vlissingen. As mentioned earlier, P-

retention occurs in the high turbidity zone, which could explain the absence ofany trend

in total P discharges downstream the turbidity maximum. The absence of any trend in

NO3-discharge to the North Sea, despite massive increases upstream, is not so readily

explained and a challenge for future research. Furthermore, nitrate-, TDIN-, DRp-, totp-

and silica discharges are much higher near the mouth of the estuary than at Antwerp. A
big part ofthese increased loadings probably results from the influx from the channel

Gent-Temeuzen (which flows into the estuary near Temeuzen, Fig. 4.1) and other

lateral inputs of nutrients and the degradation of organic matter, flushed through by

higher discharges.

Similar results and predictions for the pivotal role climate and hydrology can play in

determining the nutrient fluxes to coastal ecosystems have been obtained in other

systems across the world. The balance between storage of nitrate in the terrestrial

ecosystem and leaching ofthe nitrate was recently shown to be dependent on hydrology

and climate in a long-term study in the Mississippi-basin (Donner et a1.,2002). rn the

Hudson estuary (usA), effects of residence times on primary production have been

reported (Howarth et al., 2000). During periods of low freshwater discharge, a

combination of longer residence time and deepening of the photic zone, led to

increasing susceptibility of this system to eutrophication. scavia et al. (2002)
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summarised the potential effects of climate variability and change on coastal

ecosystems and highlighted increasing freshwater delivery as a key factor in

determining estuarine stratifrcation, residence times and consequently eutrophication.

4.5 Conclusion

The effects offlow variation on estuarine functioning shown in this study suggest that

global change could induce several major changes in estuarine water quality. In

freshwater and brackish reaches, higher discharges apparently improve water quality by

diluting nutrient concentrations and a positive effect on oxygen concentrations. This

masks a problem of increasing total loadings of nutrients. The effect of increasing

discharge on ammonia, nitrate and Si-concentrations is opposite in spring and summer

than in autumn and winter. Future global change could flatten out the seasonal cycles

for these nutrients. Although increasing loads observed upstream were not

unambiguously visible near the mouth of the estuary in this study, it is clear that higher

discharges of nutrients in the upper estuary, caused by increasing non-point input' could

pose a major problem to govemments trying to reduce nutrient inputs to estuarine

coastal regions. For example, in the 1990s, the Flemish govemment strongly increased

efforts to reduce waste input to the brackish and fresh area (Fig.4.9). These efforts have

mainly concentrated on point sources of nutrient pollution. The vast amounts of money

invested in point-pollution reduction did not result in decreasing total discharges ofN to

coastal waters, due to the changing hydrological conditions. In contrast' total N-

discharges even increased. In the Seine estuary (France) and the Schelde, it was

predicted that reduced organic C input to estuaries would result in increasing discharges

of N to coastal waters due to a decrease in denitrification (Soetaert & Herman, 1995;

Billen & Gamier, 1997).lncreasing freshwater discharge and surface run-off will only

add to this problem. The importance of reducing non-point nutrient input to the estuary

concurrently with the reduction of point-pollution, was clearly pointed out in

Chesapeake Bay (USA) (Boesch et a|.,2001).
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Fig.4.9: Expenses made by Flemish governmental institutes to reduce point source pollution to
surface waters (1996-2000) Source: VMM, Flemish Environmental Societv

In this context of global change, measures to reduce diffuse inputs from mainly

agricultural sources are more urgent than ever. The European directive on the control of
nitrates requires the creation of nitrate-vulnerable zones. In these zones, both wetland

restoration and changes in agricultural practices must be implemented (Ducrotoy et al.,

2000). Riparian vegetation can significantly reduce non-point nutrient flows to surface

waters (Lowrance et al., 1985; Correll et al., 1992). Furthermore, creating more

wetlands and thus giving more space to the water, could result in higher water residence

times. This could prove to be the solution to the problem of the flushing of entire diatom

communities from estuarine fteshwater reaches and reduce the flattenine out of seasonal

cycles.
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