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Abstract 
In the framework of different projects, among which “LTV O&M thema Veiligheid - Deelproject 1” and “LTV O&M thema 
Toegankelijkheid - Ontwikkeling van een slibtransportmodel”, a calibration of the existing hydrodynamic NEVLA model of the 
Scheldt estuary is executed.  This report gives a summary of all the steps which are undertaken to improve the model.   
The objective of the study “LTV O&M thema Veiligheid -- Deelproject 1” is to analyze the effect of different changes and their 
influence on the hydrodynamics of the estuary. Based on a literature review and data analysis some hypotheses concerning the 
change in tidal penetration in the estuary will be made. Afterwards these hypotheses will be verified with numerical models. In 
order to obtain reliable results, it is necessary that the numerical model performs well. Therefore a sensitivity analysis, a 
calibration and a validation of the NEVLA model, which will be used for 2D-3D hydrodynamic simulations, were carried out. 
The objective of the sensitivity analysis was to understand the impact of different model parameters on the tidal penetration. 
The results of this analysis are described in (Ides et al., 2008) and (Vanlede et al., 2008a). In (Vanlede et al., 2008b) the 
calibration was performed for the calculated water levels and discharges, based on the phase and magnitude of the most 
important harmonic tidal components of these parameters. In (Maximova et al., 2009) the calibration of the NEVLA model was 
extended. The resulting model parameters from (Vanlede et al., 2008b) were used as the reference simulation. The 
methodology was based on the comparison of phase and magnitude of the calculated and measured high and low water levels. 
This extended calibration was mainly focused on the Upper Sea Scheldt and the tributaries Zenne and Dijle because in these 
regions the differences between calculated and measured water levels were the largest. As a result of the calibration, the 
accuracy of the model for high water levels and low water levels was improved for most stations along the Scheldt estuary.  
The calibrated model was validated for a period with normal tide and for a period with an extreme high water. The calibrated 
model performs rather well for a period with normal tide. However, it does not simulate accurately a period with an extreme high 
water level. The reason for this and the possibilities to improve the model accuracy for such circumstances should be studied 
more in the future. 
The roughness field used for the calibrated model is strongly related to the bathymetry that was used during calibration of the 
model. If we use a different bathymetry for the scenario analysis the roughness field might change as well. Therefore, a simple 
roughness field without variation in the transversal direction was found, which gives rather similar results as the calibrated 
model with the space varying roughness field.  
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1 Introduction 

During the passed centuries the tidal regime of the Scheldt estuary has seriously changed. There are 

many factors that contributed to this evolution, such as land reclamation, enlargement of the navigation 

channel, permanent withdrawal of sand from the estuary for different purposes, changed tidal conditions 

in the North Sea, etc. The objective of the study “LTV O&M thema Veiligheid - Deelproject 1” is to 

analyze the effect of different changes and their influence on the hydrodynamics of the estuary. Based 

on a literature review and data analysis some hypotheses concerning the change in the tidal penetration 

in the estuary will be made. Afterwards these hypotheses will be verified with numerical models. In order 

to obtain reliable results, it is necessary that the numerical model performs well. Therefore a sensitivity 

analysis and a calibration of the NEVLA model, which will be used for 2D-3D hydrodynamic simulations, 

were carried out. The effort of this model calibration was carried out in the framework of different 

projects, among which “LTV O&M thema Veiligheid - Deelproject 1” and “LTV O&M thema 

Toegankelijkheid - Ontwikkeling van een slibtransportmodel”.  

This report gives a summary of all the steps which are undertaken to improve the model.  All different 

steps of the sensitivity analysis and the calibration process are described in detail in separate reports. 

The objective of the sensitivity analysis was to understand the impact of different model parameters on 

the tidal penetration. The results of this analysis are described in (Ides et al., 2008) and (Vanlede et al., 

2008a). In (Vanlede et al., 2008b) the calibration was performed for the calculated water levels and 

discharges, based on the phase and magnitude of the most important harmonic tidal components of 

these parameters. The model was calibrated for the year 2006. In (Maximova et al., 2009) the calibration 

of the NEVLA model was extended. The resulting model parameters from (Vanlede et al., 2008b) were 

used as the reference simulation. However, the methodology of analysis was different in (Maximova et 

al., 2009). It was based on the comparison of the phase and magnitude of the calculated and measured 

high and low water levels. The tidal components of the water levels were not considered. This extended 

calibration was mainly focused on the Upper Sea Scheldt and the tributaries Zenne and Dijle because in 

these regions the differences between calculated and measured water levels were the largest.  
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2 Units and reference plane 

Time is expressed in MET (Mean European Time).   

Depth, height and water levels are expressed in meter NAP (Normaal Amsterdams Peil). A bathymetric 

depth is positive below the reference plane, water levels are positive above the reference plane. 

The horizontal coordinate system used for the model is RD Parijs.   
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3 The numerical model 
SIMONA (Simulatie Modellen Natte waterstaat) is a numerical model developed by Rijkswaterstaat the 

Netherlands. It describes hydrodynamic processes. SIMONA is a program for 2D and 3D modelling of water 

movement (Adema, 2006).  

At Flanders Hydraulics Research the NEVLA model was developed for the Western Scheldt, the Sea 

Scheldt and connected Flemish rivers. The results of simulations of this model were used for analysis in this 

report. The model was developed in the SIMONA software and it includes a broad sea area and all Flemish 

tidal rivers, such as Schelde, Durme, Rupel, Nete (Beneden, Grote and Kleine), Dijle and Zenne. These 

rivers are represented until their tidal border.  

The study area is shown on Figure 1. Figure 2 presents the grid of the NEVLA model. 
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4 Available data from measurements 

Data from measurements had to be used for both sensitivity analysis and model calibration described in 

this report. A short description of the data used in this project is given here.  More detailed description of 

the data can be found in (Vanlede et al., 2008a).   

4.1 Boundary conditions 

The NEVLA model has several upstream boundaries. At these upstream boundaries daily averaged 

discharges are measured at the following stations: Grobbendonk (Kleine Nete), Itegem (Grote Nete), 

Eppegem (Zenne), Haacht (Dijle), Dendermonde (Dender) and Merelbeke (Bovenschelde en Leie). 

These discharges are available from the Hydrometry department of Flanders Hydraulic Research. 

Furthermore, in (Ides et al., 2008) it was analyzed what is the effect of the use of more frequent time 

series of discharges at Merelbeke.  

The downstream boundary of the NEVLA model as it is used in this study is defined by the line 

Westkapelle - Cadzand. As a consequence the measured water levels from Cadzand and Westkapelle 

can be used as boundary conditions. However, because of the orientation of the grid at the downstream 

boundary on the one hand and because of the fact that the downstream boundary needs to coincide 

with a grid line at the other hand, the used sea boundary does not coincide with the real boundary 

Cadzand - Westkapelle.  The station Westkapelle is located on the boundary; however the model 

boundary at the left bank is located between Cadzand and Zeebrugge (Figure 3). At the boundary 

location between Cadzand and Zeebrugge the measured water level of Cadzand is used, with a phase 

shift related to the distance between these two locations. This phase shift was studied in (Maximova et 

al., 2009).  

4.2 Topo-bathymetry 

A topo-bathymetric survey of a river produces a field of points where the depth of each point is known. 

However, location of the topo-bathymetric measurement points can differ from the grid points of the 

numerical model. Therefore, it is necessary to use interpolation in order to calculate the depth for each 

grid point. Different interpolation techniques exist that can be used to change measured bathymetric 

data to the model bathymetry with a certain depth value per calculation point. These techniques were 

analyzed during the sensitivity analysis in (Vanlede et al., 2008a). 

In the NEVLA model new bathymetric data are used. These are obtained on the basis of the most recent 

topo-bathymetric measurements of the modeled area:  

- The Upper Sea Scheldt, Rupel and Durme: Single Beam measurements from 2001; 

- The Lower Sea Scheldt: Single Beam measurements from 2004-2005; 

- The Western Scheldt: Single Beam measurements from 2006, LIDAR survey of intertidal and 

supralitoral areas from 2003; 

- The mouth area of the Western Scheldt: Single Beam measurements from 2003. 
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4.3 Wind 

Wind is included in some model runs during the sensitivity analysis and calibration. Wind data are 

available from the Hydro Meteo Centrum Zeeland (HMCZ) database. The wind data measured at certain 

station are imposed in some simulations as a uniform wind field influencing the whole model area. This 

data consist of wind magnitude (10 minute average value) and direction (10 minute average value in 

degrees towards North). The sensitivity of the model to the use of wind was studied in (Vanlede et al., 

2008a). 

4.4 Water levels 

For the model calibration it is necessary to compare the simulation results with the measurements. 10 

minute time series of measured water levels (in m NAP) are available from the Hydro Meteo Centrum 

Zeeland (HMCZ) database for the stations on the Dutch territory and some Belgian stations. 1 minute 

time series of measured water levels (in m TAW) are available from the Hydrologic Information Centre 

(HIC) database for the Belgian stations.  

Water levels measured in m TAW were converted to m NAP as follows: NAP = TAW - 2.33m. The time 

series from the HIC database were shifted by one hour in order to express all time series in MET. The 

measurement data from the HIC datasource are unvalidated data, as retrieved from the AOSO 

measurement stations in the Sea Scheldt. The HIC measurements can therefore have an (unknown) 

bias. 

More detailed information about water level stations used for the calibration can be found in (Vanlede et 

al., 2008b) and (Maximova et al., 2009).  
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5 Sensitivity analysis 

The sensitivity analysis of the NEVLA model was performed in order to understand the impact of 

different model parameters (bathymetry, boundary conditions, bed roughness, …) on the model results. 

The sensitivity analysis was performed in (Ides et al., 2008) and (Vanlede et al., 2008a).  

The effect of the changes was analyzed based on the water levels, phase and magnitude of the most 

important harmonic components, discharges and distribution of the flow in the flood and ebb channels. 

The results of the reference simulation were compared with a simulation where only one of the 

parameters was changed. The results of the sensitivity analysis give necessary information for the 

model calibration. Furthermore, this information can be useful for other model applications in the Scheldt 

estuary. 

The sensitivity analysis of the 2D NEVLA model was carried out for the overall model domain, however 

special attention went to the tidal area of the Scheldt estuary upstream Antwerp.  

5.1 Grid  

The model grid was adapted in the most upstream zone of the estuary, in order to improve the 

bathymetric schematization of the river in this area (i.e. grid lines with the same orientation of the 

thalweg). Afterwards, a sensitivity analysis was performed for the resolution of the grid in the upstream 

zone of the Scheldt estuary. For all simulations the model parameters were kept constant except the 

model grid. This allowed comparison of high and low waters calculated for different stations in different 

model runs.  

5.1.1 Grid adaptations 

The results of the model simulations with different grid schematizations in the upstream part of the 

Scheldt estuary were compared. This was done in order to find an optimal grid to reproduce correctly the 

tidal penetration in the estuary. Table 1 in Appendix shows an overview of the model runs with different 

grid schematizations. 

The NEVLA model grid was adapted for the Rupel river with its tidal tributaries (run A02) and for the 

Upper Sea Scheldt between Temse and Melle (run A03c). The examples of grid adaptations are shown 

on Figures 4 – 6. This adaptation is a synthesis of the work that has been already previously done on 

the parts of the grid to improve the flow representation in the upstream parts of the estuary. Downstream 

Schelle the adapted grid is identical with the NEVLA grid.   

After the grid adaptations in the Upper Sea Scheldt the changes in water levels downstream Antwerp 

were negligible. The largest changes were observed in the Scheldt estuary upstream Hemiksem and in 

the Rupel river. The grid adaptations (run A07) in the Upper Sea Scheldt, in the Rupel river and its tidal 

tributaries resulted in a better tidal penetration in the upstream part of the estuary (Ides et al., 2008; 

Vanlede et al, 2008a).  
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As a result of the new grid schematization the high and low waters changed significantly in the Rupel 

river, the tidal amplitude increased. In the Upper Sea Scheldt from Temse to Schoonaarde the high 

waters increased with order of 10 cm, while the low waters almost did not change. Upstream 

Schoonaarde the low waters decreased and the high waters increased (Figure 7). This increase of the 

tidal amplitude becomes more important upstream. It indicates a better penetration of the tidal wave in 

this part of the estuary.  

A grid that has only a few cells, that transport flow, can cause obstacles to the flow when the axis of the 

river is not parallel to the axis of the grid. The adaptation of the grid so that it follows the axis of the river 

better can significantly improve modeling of the flow. For example, near Uitbergen the axis of the river is 

diagonal to the orientation of the original grid (run A00, A01b) (Figure 8), which creates an obstruction to 

the flow during low water periods. Near Kessel (Grote Nete) the original grid does not follow the shape 

of the river (run A00, A01b) (Figure 9). In the improved grid (runs A02, A03c, A07) these zones are 

schematized differently, the grid follows the shape of the river better (Figure 10, 11), which results in a 

better tidal penetration (Ides et al., 2008; Vanlede et al., 2008a).  

At locations where the river strongly meanders, it can be chosen to let the grid of the river deviate from 

the reality (include less river bends in the model). This technique helps to avoid calculations with too fine 

grid, which describes all meanders upstream in detail. Thus, it helps to decrease calculation time. This 

technique was applied for the Rupel river and its tributaries (Vanlede et al., 2008a).  

The original NEVLA grid (run A00) includes a large number of areas lying outside the dikes. These 

areas were studied in the framework of the actualized Sigmaplan to determine their potential as 

controlled inundation areas. The dikes that separate these areas from the river are in reality high enough 

to prevent flooding at this moment.  

In the case the areas outside the dikes are presented in the grid, it is necessary to represent the dikes in 

the model bathymetry. However, the height of the dikes during the interpolation of the measured depth 

points becomes averaged because of lower surrounding depth measurements. This can result in 

unwanted flooding of the areas outside the dikes. Therefore, the areas that stay dry during the entire 

simulation were preventively deleted from the grid (Figure 12).  

The removal of the areas outside the dikes (the so-called potential controlled inundation areas) from the 

model grid in the Sea Scheldt has, as expected, not significant or no effect on the water levels in the 

Western Scheldt. In the Sea Scheldt a clear effect is observed upstream Hemiksem. In Schoonaarde the 

high waters increase with about 10 cm (Figure 13). This is explained by the fact that the (unwanted) 

simulated flooding of the areas outside the dikes lower the high waters in the surrounding areas, 

comparable to the work of a controlled inundation area. 

The low waters in the Sea Scheldt in the model run without the areas outside the dikes (run A07b) are 

lower in comparison to the run with these areas (run A07). A maximal decrease of 6 cm is observed at 

Temse. Probably this can be explained by the effect of delayed outwatering from the areas outside the 

dikes. In the Rupel and its tributaries the same effect is observed as in the Sea Scheldt concerning high 

waters. The effect of the decrease of low waters is observed only in the Rupel river itself (Ides et al., 

2008).  
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The removal of the areas outside the dikes from the model improves the accuracy of the model. 

Furthermore, it results in a decrease of the number of calculation points and a decrease of calculation 

time.  

The original NEVLA grid has 214.130 active cells with dimensions in M en N direction 340 and 2557 

respectively (matrix is 24% full). The adapted grid has 219.426 active cells in the matrix of 340 by 2948. 

This is 5296 more active cells than in the NEVLA grid (increase of 2%). 

5.1.2 Grid resolution 

To study the effect of the grid resolution on the model results, a small detail model was used in (Ides et 

al., 2008). The attention was concentrated on the most upstream part of the estuary because grid 

resolution is rather rough there. Dendermonde was chosen as the downstream border, the upstream 

border was at Gentbrugge, Zwijnaarde and Merelbeke (the tidal border). Model runs with different grid 

resolutions were performed (Table 2).  

The grid cells – which are about 50 m long and 18 m wide in the original model – were refined in the 

direction perpendicular and parallel to the thalweg. The results showed that minimal changes were 

observed at Dendermonde. It is located in the downstream part of the detail model and water levels at 

this station were determined to a large extent by the downstream boundary conditions. The differences 

between different runs became larger at Schoonaarde and Wetteren, at Melle they decreased again.  

The use of the refined grid resulted in an increase of high waters and a decrease of low waters (Figure 

14). With the use of 2x2 refining of the grid the tidal amplitude increased with about 25 cm; with the use 

of 4x4 refining this increase reached 45 cm. These changes in the tidal amplitude are important, they 

indicate a better tidal penetration. The grid resolution of the NEVLA model in the Upper Sea Scheldt 

seems to be too rough to represent the tidal evolution correctly. It was observed that a higher grid 

resolution results in a higher tidal amplitude.  

Therefore, with the use of the refined grid the model results become closer to the measurements and 

the modeling of the tidal penetration in the estuary improves. However, the calculation time significantly 

increases. The grid adaptations described in this chapter resulted in the important changes of the tidal 

propagation. The tidal penetration in the upstream part of the estuary improved and the calculated tidal 

amplitude became closer to the measured one.   

5.2 Topo-bathymetry 

There are many interpolation methods that can be used to calculate the bathymetry for each grid cell 

from the measured bathymetric data. Table 3 presents an overview of the interpolation methods used for 

the analysis. It was analyzed how different interpolation methods affect the tidal storage and thus 

indirectly affect the tidal propagation in the estuary.  
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5.2.1 Comparison of Gridcell averaging, Maximum and Minimum value of near points 
algorithms 

The analysis of the amplitude and phase of the important tidal components M2 and M4 showed that a 

deeper bathymetry (Maximum value of near points) and an undeeper bathymetry (Minimum value of 

near points) affect the amount of the tidal energy that can reach the end of the estuary (Figure 15). The 

use of the Maximum of near points algorithm resulted in an increase of the number of flow transporting 

cells (Figure 16), therefore the tidal flow could penetrate easier. The increase of depth in the case of 

Maximum value of near points algorithm resulted in a decrease up to 7 cm of the M4 amplitude in the 

upstream areas (Vanlede et al., 2008a).  

As expected, the analysis of the phase M2 showed that the tidal wave was slower in the shallow 

bathymetry in comparison to the average bathymetry. The tidal wave became faster in the deeper 

bathymetry. This effect is noticeable in the Western Scheldt from the station Hoofdplaat and it becomes 

stronger more upstream. The effect of the different bathymetries on the water movement is the strongest 

in the upper parts of the estuary where the water depth is the smallest (Vanlede et al., 2008a). 

The use of the deepest or the less deepest bathymetry affects high and low waters differently. In the 

deeper bathymetry high waters at Antwerp come on average 6.5 minutes faster than in the average 

bathymetry. In the undeeper bathymetry they come more than 12 minutes later. This asymmetry is less 

pronounced for low waters. In the deeper bathymetry low waters at Antwerp come 10.8 minutes faster. 

In the undeeper bathymetry they come 13.3 minutes later (Vanlede et al., 2008a). 

The tidal penetration in the upstream areas could be improved by the use of the deepest bathymetry for 

these areas. In the Upper Sea Scheldt the best results were obtained using the Maximum depth of near 

points interpolation algorithm. This conclusion was made based on the analysis of the most important 

harmonic components composing the water level in this part of the estuary. For the rest of the estuary 

the average values of the depth give the best results. 

The use of the Maximum value of near points and the Minimum value of near points interpolation 

methods resulted in a large change of the tidal storage in comparison to the use of the Gridcell 

averaging method. While the effect of the Minimum value of near points method on the tidal amplitude 

with larger tidal storage is limited to maximum of 40 cm, the effect of the smaller tidal storage with the 

Maximum value of near points method between Sint Amands and Schoonaarde is larger than 200 cm. In 

both cases the effect is the most pronounced upstream Temse (Ides et al., 2008).  

5.2.2 Comparison of Gridcell averaging, Closest value, Shepard and Inverse distance weighted 

mean algorithms 

The effect of the use of the Closest or Shepard interpolation techniques is rather not significant in 

comparison to the Gridcell averaging technique, for both amplitude and phase of M2, but also for other 

analyzed components (M4, M6, O1, K1, S2) (Figure 15). The magnitude of the high and low waters in 

Antwerp changed with less than 1 cm and the tidal phase changed with less than 1 min in the case of 

the use of the Averaged, Schepard or Closest algorithms (Vanlede et al., 2008a). 

The algorithms that take into account the distance between the depth measurement point and the 
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calculation grid point (the Shepard and the Closest algorithms) result in a little larger tidal storage in the 

deepest parts and in a little smaller tidal storage in the undeepest parts. This is explained by the 

concave shape of the deepest part and the convex shape of the undeepest parts of the estuary.  

Because of the concave shape of the deepest parts of the bottom, the Closest and Shepard algorithms 

result in a bathymetry in the deeper zones (under -3 m NAP) which is up to 0.3 % deeper than in the 

case of the use of the ‘”average” algorithm. Because of the convex shape of the undeep zones (above -

3 m NAP) both algorithms give a bathymetry which is up to 0.2 % less deep than with the use of the 

“average” algorithm. However, the effect of these changes on the tidal storage is negligible (Vanlede et 

al., 2008a). 

The comparison of the Gridcell averaging, the Closest value and the Inverse distance weighted mean 

methods showed that these methods give very similar results concerning the tidal propagation. The 

preference is given to the Inverse distance weighted mean method because it is most physically based. 

Nevertheless, the Gridcell averaging and Closest value methods can be used too because they produce 

results with limited differences (Ides et al., 2008).  

5.2.3 Analysis of bathymetry for intertidal areas 

After the analysis of the model sensitivity to the different interpolation techniques, it was analyzed how 

the use of a less accurate bathymetry for intertidal areas affect the model results. Bathymetry of the 

intertidal areas can not be measured with the single beam technique. The water depth in this zone is too 

small for the measuring vessel. The depth of these areas is measured with the LIDAR technique from an 

airplane. This technique has a smaller accuracy in comparison to the single beam technique.  The effect 

of this smaller accuracy was schematically studied during the sensitivity analysis. The bathymetry for the 

intertidal areas was assigned 20 cm higher and 20 cm lower than the measured values. The effect of 

these changes on the model output was studied in order to analyze how the measurements with a lower 

accuracy affect the model results.  

In the Western Scheldt there was almost no effect of these changes. In the Sea Scheldt only a small 

effect was observed during the high waters. From Bath to Wetteren there was an uniform decrease of 

the high waters of about 2 cm in run with a lower bathymetry of the intertidal areas. In the case of a 

higher bathymetry for the intertidal areas, the high waters increased with 2 cm upstream Bath (Ides et 

al., 2008). There was almost no effect during the low waters. 

An increase or a decrease of the depth of the intertidal zones has a limited effect on the harmonic 

components (Figure 17). The effect on the component M4 is the strongest in comparison to other 

analyzed components (M2, M4, M6, O1, K1, S2). The increase of the bathymetry of the intertidal areas 

with 20 cm resulted in the increase of the M4 component with 1 cm and in the increase of the ratio of 

amplitudes M4/M2 with 1%.  

5.3 Boundary conditions 

5.3.1 Discharge at Merelbeke 

The most important fresh water discharge comes into the Upper Sea Scheldt from the sluice complex 

near Merelbeke. Measured time series of discharges at Merelbeke are used in the model as one of the 
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upstream boundaries. If more detailed measurements are not available, daily averaged discharges are 

used. The frequency of the discharge time series at Merelbeke can have an important effect on the 

model results.  

On the basis of 5 minutes, hourly and daily discharge time series (Figure 18) it was analyzed what is the 

effect of the frequency of the measurements on the model results (Table 4). This analysis showed that 

the frequency of the discharge measurements at Merelbeke affects the model output upstream 

Hemiksem. The differences between the use of 5 minutes averaged discharges and hourly averaged 

discharges are not high (< 5 cm). However, there is a large difference in the case of the use of daily 

averaged discharges in comparison to 5 minutes averaged discharges (up to 80 cm for the low waters in 

Wetteren (Figure 19)). These differences are smaller during the periods with a quasi constant discharge 

(small differences in the water level) and they are the largest during the periods with a strongly varying 

discharge (Figure 20). This effect is significant (> 5cm for water level) until Temse. The variation of the 

discharge at Merelbeke has a stronger effect on low waters than on high waters. 

In order to calculate the water levels in the Upper Sea Scheldt upstream Temse correctly, it is necessary 

to use at least hourly averaged discharges at Merelbeke. Daily averaged discharges can also give 

acceptable results but only during the periods with a constant upstream discharge. However, during the 

periods with large fluctuations of the discharge, deviations of water levels can be large (more than 50 cm 

between Wetteren and Schoonaarde).  

Therefore, the sensitivity analysis showed that the discharge at Merelbeke has a significant effect on the 

model output. It is very important to have accurate and detailed time series of discharge for this location. 

At least 5 minutes or hourly averaged values should be used at Merelbeke. However, the detailed 

discharge data for Merelbeke are available only for a limited period. What is available with a higher 

frequency is a discharge measurement at Melle (Flanders Hydraulics – Hydrometry department). The 

possibility to shift the upstream model boundary to Melle and use the measurements of the ADM (10 

minutes values or hourly values) was not analyzed in this report. In this case discharge can become 

negative because Melle is tidally affected. This is not clear yet what can be the effect of the use of 

negative discharges on the model stability. It should be investigated whether shifting the upstream 

boundary condition from daily discharges at Merelbeke to hourly fluxes (positive and negative) at Melle 

gives a similar improvement in the model results. 

5.3.2 Wind  

The importance of the wind implementation in model simulations was analyzed in (Vanlede et al., 

2008a). The wind data measured at the station Vlissingen were imposed as a uniform wind field 

influencing the whole model area. For some periods wind velocity increased up to 12 m/s, which still can 

not be classified as a storm condition. Nevertheless, the wind implementation had a significant effect on 

the model results. The influence of the wind is included in the NEVLA model to a large extent via the 

imposed water level boundary Cadzand – Westkapelle. This can have an effect up to 20 cm on the 

water levels for the analyzed period. In the case of a storm this difference can become even higher and 

important differences in local flow velocities can occur. The relatively large surface of the Western 

Scheldt and the relatively small water depth result in an increase of the wind effect on the water levels. 
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Further studies are necessary to understand the importance of the wind direction and wind velocity in 

the total wind effect.  

5.4 Bed roughness 

The effect of the bed roughness on the water movement was studied (Table 6). It was analyzed how the 

roughness change in a certain area affects the results in and outside this area. This gave necessary 

knowledge for a more efficient approach for the model calibration. A special attention was paid to the 

effect of the roughness on the harmonic components M4 and M6, which have a strong effect on the 

maximal ebb and flood velocities. The output of all model runs was compared with the measured water 

levels and discharges. Furthermore, the harmonic analysis of the simulated water levels was performed 

and the results were compared with the harmonic components from the measured water levels. 

First, it was checked how the use of different Manning coefficients affects the tidal penetration into the 

estuary. A tidal amplitude can be decreased by the use of the higher bed roughness or it can be 

increased by the use of the lower roughness (thus, lower resistance to the tidal wave). An uniform 

increase of the roughness results in a decrease of M2, M4, S2 and M6 parameters for the entire estuary 

(Figures 21, 22). The effect on the parameter M4 is stronger in the Western Scheldt and upstream 

Antwerp than between the Dutch – Belgian border and Kallo. A uniform higher roughness gives a larger 

phase shift 2M2-M4 (Figure 23), and thus more flood dominant character of the tidal wave. M4/M2 

relation characterizes the tidal asymmetry. M4/M2 parameter increases with an increase of the 

roughness but only upstream Bath (Figure 23). Between the seaward boundary and Bath this effect is 

opposite (Vanlede et al., 2008a).   

The simulations with the uniform bed roughness showed that it is necessary to define not constant 

roughness for different areas to represent the tidal movement in the estuary correctly (Ides et al., 2008). 

The Scheldt estuary was divided in 10 zones (Figure 24). The roughness of each zone was increased 

and decreased in order to analyze how these changes affect the model results. Where the roughness 

was adapted, the M2 and M4 amplitudes changed along the estuary (for example, Figure 25). Increase 

of the bottom roughness resulted in a smaller gradient; decrease of the bottom roughness resulted in a 

larger gradient. A local change of the bed roughness in a certain zone also affects the M2 amplitude in 

the zone upstream. Since the M2 component is the most important component for the tidal production, 

the change of the M2 parameter shows the change of the tidal amplitude.  

By the analysis of the effect of the roughness in 10 parts of the estuary, the library describing the 

influence of the roughness change on the model results in a certain part of the estuary was composed in 

(Vanlede et al., 2008a). This library was later used for the model calibration.  

Afterwards, the depth dependent roughness was used for the analysis in (Ides et al., 2008). The 

average depth decreases and thus roughness increases more upstream. This resulted in an increase of 

the tidal amplitude between Hoofdplaat and Boerenschans. Upstream Boerenschans the amplitude 

decreased.  

The effect of the different roughness formulas on the model output was analyzed (Figure 26). SIMONA 

calculates internally with Chezy roughness coefficients. However, the user can specify different 

roughness coefficients in the input file. The effect of different roughness coefficients on the M2, M4 and 
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M6 amplitudes was studied. The higher amplitudes M2 were calculated downstream Temse in the case 

of the use of White Colebrook and Manning coefficients in comparison to the use of the constant Chezy 

value. The effect on M4 and M6 was not significant. This variation in amplitudes showed also in the tidal 

asymmetry.  

The ratio M4/M2 amplitude was the lowest for the simulation with Chezy coefficients. Upstream Temse 

the differences between the use of White – Colebrook and Manning coefficients became larger. The 

phase shift 2M2-M4 was the largest for the simulation with Chezy coefficients; there were very small 

differences between the model runs with Manning and White – Colebrook coefficients (Vanlede et al., 

2008a).  

5.5 Conclusion 

Sensitivity analysis in (Vanlede et al., 2008) and (Ides et al., 2008) was performed in order to analyze 

what is the effect of different numerical parameters on the model results.  

The analysis showed that the model grid has an important effect on the model output, especially in the 

most upstream part of the Scheldt estuary. The grid adaptations in the Upper Sea Scheldt and Rupel 

resulted in the improvement of the tidal penetration in these parts of the estuary.  

Different methods used to interpolate bathymetric measured data to the model grid were studied. This 

analysis showed that methods that use averaged depth give very similar results. Large differences in the 

tidal storage (and as a consequence in hydrodynamics) are observed when maximum and minimum 

values of the points are used.  

At the upstream model boundary Merelbeke it was analyzed what is the effect of the use of discharge 

measurements with a higher frequency. The analysis showed that the difference between the use of 5 

minutes or hourly averaged discharges is small. However, when daily averaged discharges are used, 

the effect of the natural fluctuation of the upper discharge is not modeled well. Differences in calculated 

water levels become high. This effect is observed in the Upper Sea Scheldt upstream Hemiksem. 

Therefore, the discharge at Merelbeke has a significant effect on the model output. It is very important to 

have accurate and detailed time series of discharge for this location. There is also a possibility to shift 

the upstream model boundary to Melle because 10 minutes discharge measurements are available for 

this location. However, this is not clear yet what can be the effect of this shift on the model results.  

The model sensitivity to the use of different bottom roughness values was studied. First, an uniform 

roughness was analyzed and then different roughness values were assigned for different areas. 

Furthermore, different roughness formulas were compared. The results of the sensitivity analysis gave 

important information for the calibration and validation of the NEVLA model.  

The model should be calibrated in order to produce the results close to the measurements. First, the 

model grid has to be adapted to improve the representation of the tidal penetration in the upstream part 

of the Scheldt estuary. Afterwards, the most recent bathymetric data has to be interpolated in order to 

get the bathymetry for the model. As an upstream boundary, at least hourly averaged discharges at 

Merelbeke should be used. For other upper tributaries daily averaged discharges can be used. Finally, 

the bed roughness field should be adapted to improve the accuracy of the model.  
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6 Calibration 

The calibration is performed in order to improve the model accuracy. It is done by change of the model 

parameters. The results of the sensitivity analysis described in the previous chapters were used for the 

calibration. General calibration of the NEVLA model was done in (Vanlede et al., 2008b). Afterwards, 

calibration was extended in (Maximova et al., 2009), where attention was concentrated on the 

improvement of the model accuracy for the upstream parts of the estuary. 

6.1 General calibration 

For the model calibration different simulations were performed with different changes of the roughness 

and bathymetry. The result of the sensitivity analysis gave an important input for the calibration. In 

(Vanlede et al., 2008b) the NEVLA model was calibrated based on the phase and amplitude of the most 

important harmonic components composing the water levels at different locations along the Scheldt 

estuary. This model was calibrated for September 2006. 

The objective of the calibration was to find optimal parameters for the numerical model that result in 

accurate modeling of the harmonic tidal parameters. If these tidal components are modeled correctly, it 

can be expected that tidal dynamics (and consequently water levels and discharges) is modeled 

accurately too. After the calibration on the basis of the harmonic components, the model results were 

compared with the measured discharges (so called MOVE transects) and the water levels in September 

2006. 

6.1.1 Methodology 

For the model calibration different model simulations were performed with different parameters of the 2D 

hydrodynamic model. For each model simulation the following was analyzed: 

- the amplitude and phase of astronomical components; 

- the tidal evolution of water levels and discharges at different locations in the Scheldt and Rupel. 

To distinguish the two most important harmonic components M2 and S2, it is necessary to use time 

series that are minimum two weeks long (spring – neap tidal cycle). Since a lot of measurement data are 

available for 2006, this year was chosen for the simulation. The simulation was performed for the period 

29 August – 30 September 2006. Thus, two neap-spring tidal cycles are included and as a consequence 

the harmonic components are calculated accurately.  

In total more than 30 runs were performed for the calibration. The following chapters of this report give 

an overview of the most important model runs. 

6.1.2 Grid adaptation 

The sensitivity analysis gave necessary information for the grid adaptation for the model calibration. 

More detailed information can be found in (Vanlede et al., 2008a). The grid used for the calibration is a 

combination of different grid optimizations. It is based of the NEVLA grid for the Western Scheldt and the 
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coastal zone. The grid for the Sea Scheldt upstream Temse is taken from (Verelst et al., 2008). The grid 

for the Rupel and its tributaries is taken from (Adema, 2006). Furthermore, a number of areas outside 

the dikes was deleted from the grid. The effect of this grid on the model results was studied during the 

sensitivity analysis in (Vanlede et al., 2008a). 

6.1.3 Simulation E01 

After the sensitivity analysis (Vanlede et al., 2008a) some important conclusions were made:  

- if the roughness of 0.022 m-1/3s is used, the M2 amplitude is modeled well between the seaward 

boundary and Breskens and between Hansweert and Antwerp. Between Breskens and Hansweert the 

increase of tidal amplitude was too strong and a higher roughness had to be used; 

- to represent the tidal penetration in the Upper Sea Scheldt (upstream Schoonaarde) better, the 

Maximum of near points algorithm could be used. 

These conclusions were used during the model calibration for run E01. Afterwards, different model 

parameters were changed in order to improve the accuracy of the model in comparison to the original 

NEVLA model. The calibration results were compared with the results of the original model E00. In run 

E01b only the bed roughness was increased without the change of the interpolation method for the 

upstream part of the Upper Sea Scheldt. 

The evaluation of the calibration runs was done on the basis of the analysis of the harmonic components 

along the Scheldt estuary. These parameters do not give direct information about the absolute values of 

the water levels and discharges, but they give an idea about the tidal penetration into the estuary. 

In the original E00 model run the bed roughness was defined as Chezy coefficients. Simulations E01 

and E01b have very simple roughness field defined as Manning coefficients. The use of the Manning 

values has an advantage that the roughness is depth dependent; the effect of turbulence on the bottom 

becomes smaller with an increase of depth.  

To represent the tidal propagation better in the Upper Sea Scheldt upstream Schoonaarde, the 

interpolation method that uses the deepest bathymetric value for the grid cell was chosen. This helped 

to improve the model accuracy for this part of the estuary. Upstream Temse the M2 parameter 

decreased and, as a result, the calculated amplitude became closer to the observations (Figure 27). 

Concerning the tidal asymmetry, the M4/M2 amplitude ratio improved upstream Schoonaarde and 

upstream Wetteren there was a good agreement with the observations (Figure 28).  

The M2 amplitude changed; however, there was no significant improvement. M6 calculated in run E01 

improved and became closer to the observations. The tidal asymmetry was modeled in E01 better than 

in E00 for the upstream sections of Hansweert – Walsoorden. The parameters M4/M2 and the phase 

difference 2M2-M4 show if the tidal penetration and the ebb-flood dominance are modeled accurately. 

These parameters were in a good agreement with the observations (Figure 29). 

6.1.4 Simulation E19 

After run E01 the harmonic parameters still required improvement. Therefore, the attention was 

concentrated on the adaptation of the bed roughness in the Western Scheldt, the Lower and Upper Sea 
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Scheldt. For the sections Breskens – Hansweert, Overloop van Valkenisse – Deurganckdok and 

Antwerp – Temse it was necessary to assign a higher roughness in comparison to the other parts of the 

estuary to model the tidal amplitude correctly. In general, the roughness decreases upstream Zandvliet. 

Adapted roughness field is shown on Figure 30. 

The roughness field was optimized on the basis of the M2 component because it has the largest 

amplitude. M2 has to be modeled well in order to calculate correct water levels along the estuary. The 

adaptations of the roughness helped to improve the accuracy of the M2 amplitude (Figure 31). 

The M4 amplitude was modeled well in run E19 for the entire estuary (Figure 32). There was very small 

difference between the calculated and observed M4 phase. The M6 amplitude calculated in run E19 is 

very similar to run E01. The amplitude ratio M4/M2 and the phase difference 2M2-M4 improved in run 

E19 for the Lower Sea Scheldt and the Western Scheldt.  

Therefore, the harmonic components were significantly improved in run E19. However, this was also 

necessary to compare the calculated discharges and the water levels with the measurements. The 

analysis showed that both high and low waters were underestimated in the model. However, the 

calculated tidal amplitude was close to the observations, which is important for the velocities and 

discharges. Considering the tidal propagation, not only the amplitude is important but also the velocity of 

the tidal wave plays an important role. In the model the tidal wave was delayed in comparison to the 

reality.  

6.1.5 Simulation E30 

It was necessary to improve the accuracy of the model for the calculated low and high water levels. 

Different roughness values were used for the flood and ebb channels in order to increase both high and 

low waters that were underestimated in the model. The roughness for the ebb channel was increased 

and it was decreased for the flood channel. These changes were made only in the Western Scheldt and 

in the lower parts of the Lower Sea Scheldt (Figure 33).  

The use of the bathymetry from run E01 (maximal depth per grid cell) has an advantage that the M2 

amplitude is less dumped. But since too low S2 component is chosen in this zone for smaller dumping of 

the tidal wave, the amplitude becomes larger downstream. The same effect is observed for the M2 

phase along the estuary.  

Upstream Schelle the difference between the calculated and measured M2 amplitude is higher in run 

E30 than in run E19 (Figure 34). However, the results of run E30 were chosen as a final model run 

because correct representation of the S2 amplitude in run E30 compensates too large M2 amplitude. 

Therefore, the tidal amplitude is simulated accurately.  

The use of the different roughness for the flood and ebb channels in the Western Scheldt results in a 

small increase of the M4 amplitude (Figure 35). It represents the reality better. Only between Temse and 

Schoonaarde this improvement is smaller. The amplitude and especially the phase of M6 in the Sea 

Scheldt improved in the comparison to run E19. 

The tidal asymmetry (M4/M2 ratio) along the estuary is better simulated in run E30 than in E19. Between 

the Overloop van Hansweert and Walsoorden the phase difference 2M2-M4 is simulated better than in 
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run E00, thus the ebb or flood dominance is better described by the model.  

The high waters improved for most stations along the estuary in run E30. They are still underestimated 

at some stations, but results are better than in run E19. The low waters calculated in run E30 are lower 

than the measurements. The difference between the calculated and measured low waters increases 

upstream.  

The model results show similar deviations of the high and low waters in the Western Scheldt and the 

Lower Sea Scheldt. This means that the tidal amplitude is modeled well. In the original model E00 the 

tidal amplitude was too large.  

The differences in the calculated and measured phase of high water are very small in the Western 

Scheldt and the Lower Sea Scheldt. This difference increases more upstream. The maximal difference 

of about 30 min is observed at Melle (both for high and low waters). Similar to run E19, there is a 

positive difference in the phase of high and low waters. This means that tidal wave is delayed. Since the 

differences for high and low waters are similar, this means that durations of rising and falling water are 

modeled correctly.  

Together with the analysis of the harmonic components and the water levels, the calculated and 

measured discharges were compared. Discharges through certain cross sections were analyzed. In final 

model run E30 the representation of discharges was improved in comparison to the original model. More 

detailed description of the results of this analysis can be found in (Vanlede et al., 2008b).  

The model calibration resulted in an improvement of the model accuracy for the change of water level in 

time. This parameter, named also dh/dt, is very important for the representation of specific phenomena’s 

that are related to the flow velocity.  

6.1.6 Conclusions 

In (Vanlede et al., 2008b) the model was calibrated for the year 2006 based on the phase and 

magnitude of the most important harmonic tidal components. During the calibration several model runs 

were performed in which some model parameters were changed. The main calibration parameters used 

in (Vanlede et al., 2008b) are bathymetry and bed roughness. Different bathymetric interpolation 

algorithms were analyzed. It was stated that the best results in the Upper Sea Scheldt were obtained 

using the maximum depth of near points interpolation algorithm. The roughness field of the Western 

Scheldt, Lower and Upper Sea Scheldt and tributaries was changed thoroughly. Different roughness 

values were defined for the flood and ebb channels in the Western Scheldt. Manning roughness 

coefficients were used instead of Chezy coefficients. The bed roughness of the Upper Sea Scheldt was 

decreased to ensure easier tidal penetration. This helped to improve M2 amplitude. 

As a result of the calibration, the following elements were improved: simulation of the harmonic 

components (M2, S2, M4, M6) and simulation of the flood flow in the Rupel river and the Upper Sea 

Scheldt. Especially the M4 and M6 components were significantly improved which should result in a 

better modeling of the tidal asymmetry in the estuary. As a consequence, in a number of locations the 

shape of the discharge curve improved. A better shape of the tidal curve was obtained by the calculation 

of the first derivative of the tidal signal over time, so named ‘dh/dt’. This parameter is significantly better 
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represented by the calibrated model from this study.  

6.2 Calibration of the model for the upstream part of the estuary 

The general calibration of the NEVLA model that was done in (Vanlede et al. 2008b) is extended. The 

resulting model parameters from (Vanlede et al., 2008b) are used as the reference simulation. However, 

the methodology of the analysis is different. It is based on the comparison of the phase and magnitude 

of the calculated and measured high and low water levels. The tidal components of the water levels are 

not considered. This report describes the changes made to the model in order to improve its accuracy. 

This extended calibration is mainly focused on the Upper Sea Scheldt and the tributaries Zenne and 

Dijle because the calculated water levels differ the most from the measured ones in these regions. The 

calibration is performed for June – July 2002 because more detailed input data are available for this 

period. 

6.2.1 Methodology  

Several model runs were performed in order to improve the model results for June – July 2002. The 

calibration was especially focused on the comparison of the phase and magnitude of the calculated and 

measured high and low water levels at different stations along the estuary.  

The phase and magnitude of the low and high water levels were found using Matlab, based on the sign 

of the first derivative of the water level time series. High and/or low waters for some locations were not 

found due to the limitations of the Matlab script: this is the case for the locations where the transition 

from rising water to falling water (or the opposite) is not very clear. On the other hand, the position of the 

measurement instrument in the river can also make it sometimes impossible to measure the exact low 

water (for example location Temse where the measurement instrument is located in a muddy 

environment, the level of the mud being approximately the level of the low water). 

For this study, the following parameters were changed in order to improve the model results: 

- Model bathymetry, 

- Bed roughness, 

- Boundary conditions,  

- Implementation of a weir in the model. 

6.2.2 Some general aspects 

Location of discharge point at Merelbeke 

In all runs except the first one new coordinates of the grid point for Merelbeke were defined. This was 

done, because after the first run it was found that the original grid point defined in the NEVLA model was 

off grid. Thus, the discharge defined in the input files for Merelbeke was not used in the calculations.  

Bathymetric interpolation algorithm 

In (Vanlede et al., 2008a) it was stated that the best results in the Upper Sea Scheldt were obtained 

using the maximum depth of near points interpolation algorithm. This conclusion was made based on 
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the analysis of the most important harmonic components composing the water level in this part of the 

estuary. In (Maximova et al., 2009) again the effect of different bathymetric interpolation algorithms was 

studied, based on the water levels instead of on the harmonic components. The best results were 

obtained using the average bathymetry. 

Location of water level point Cadzand 

The downstream boundary of the NEVLA model as it is used in this study is defined by the line 

Westkapelle – Cadzand. As explained in the chapter 4.1 of this report, the used sea boundary does not 

coincide with the real boundary Cadzand – Westkapelle. The station Westkapelle is located on the 

boundary, however the model boundary at the left bank is located between Cadzand and Zeebrugge 

(Figure 3).  

At the boundary location between Cadzand and Zeebrugge the measured water level of Cadzand is 

used, with a phase shift related to the distance between these 2 locations. In (Vanlede et al., 2008b) a 

time shift of 10 minutes was used. Since the tidal penetration in the model was different from the tidal 

penetration in nature for all stations, this 10 minute shift is studied again. The best results were obtained 

with the time shift of 20 minutes. This helped to improve both phase and magnitude of low and high 

waters for all stations.  

Accuracy of the model 

After the model adaptations described above, the accuracy of the model has increased. The model 

performs best in the Western Scheldt. The deviations between measured and calculated water levels 

increase more upstream.  

For the Lower Sea Scheldt (from Liefkenshoek to Hemiksem) and for the Grote Nete (station Kessel) the 

calculated water levels do not deviate too much from the measurements (Figure 36). At Emblem located 

on the Kleine Nete the high waters are modelled better than the low waters (Figure 37). The largest 

deviations between the measured and modelled water levels occur in the Upper Sea Scheldt (from 

Temse to Melle) (Figure 38 run3) and tributaries Zenne and Dijle (stations Hombeek, Mechelen and 

Rijmenam) (Figures 39, 40, 41). The next paragraphs describe the changes made in the model in order 

to improve the model accuracy for these parts of the estuary. 

6.2.3 Model calibration for the Upper Sea Scheldt 

Both the high and low water levels for the Upper Sea Scheldt were too low in comparison to the 

measured ones. To improve the model accuracy different steps were taken during the process of the 

model calibration.  

Adaptation of the bed roughness 

To improve the model results, different roughness fields for the Upper Sea Scheldt were tested. The 

change of the roughness value affects tidal water movement and therefore affects low and high waters. 

On the one hand, a decreased roughness results in an easier tidal penetration. Therefore, high water 

levels increase. On the other hand, water can move faster in the seawards direction during ebb. 

Therefore, low water levels can decrease. An increased roughness has an opposite effect on high and 

low waters. It was necessary to find a roughness field that results in optimal calculated high and low 
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waters which are close to the measurements for all stations. The original roughness field for the Lower 

and Upper Sea Scheldt is shown on Figures 42 and 43.  

Discharge at Merelbeke 

Another way to affect low waters is to change the upstream discharge. An increase of the discharge 

affects mainly low waters. It does not have strong influence on high waters because the flood flow is 

much larger than the upstream discharge. It was analysed how the model would react if the discharge at 

Merelbeke was increased. The analysis showed that an increase of the discharge at Merelbeke helped 

to improve the results of the model simulation. However, there is not a physical reason why the 

measured discharge would underestimate the real discharge at this location. Therefore, in all next model 

runs the original measured time series of the discharge at Merelbeke were used. 

Flow barriers 

To improve too low low waters a kind of a barrier, similar to a sill, was made in the river. An example of 

this barrier is shown on Figure 46. This barrier does not prevent the flood flow from flowing more 

upstream, while it hinders the water during ebb periods to flow back to the sea, especially around low 

water where the influence of such a barrier is maximal. From the physical point of view, such a barrier 

can be an undeeper part in the river which might not be included in the model because of the grid 

resolution or the interpolation process. This kind of a barrier was implemented by change of the local 

bathymetry. The effect of the barrier implementation in the different parts of the Upper Sea Scheldt was 

studied. 

An influence of a flow barrier is limited only to a part of the Upper Sea Scheldt. It was necessary to 

increase low waters at all stations at the Upper Sea Scheldt. The implementation of the weir resulted in 

the improvement of the low waters only at some stations closest to the weir. The low waters at other 

locations were not influenced. Therefore, a flow barrier is not a global solution and it was not 

implemented in the Upper Sea Scheldt in the final calibrated model.  

High water levels at Melle 

The calculated high water levels for Melle were too low (on average 22 cm lower than the measured 

ones) (Figure 38). Different attempts were made to improve them. 

First, the roughness between Wetteren and Melle was decreased. This improved the high waters but 

worsened the low water levels at Melle considerably. Then, different roughness values were assigned 

for the upper and lower parts of the river bottom between Wetteren and Melle. It was expected that a 

decrease of the roughness of the upper part of the bottom would affect only high waters. However, this 

did not result in significant changes. Afterwards, the roughness upstream Melle was increased. It was 

expected that the flood flow would be delayed at Melle due to the high roughness upstream and the high 

waters would increase. However, this did not give the expected result.  

Therefore, the roughness field for the simultaneous improvement of both high and low waters at Melle 

was not found. 

Final model run 

The roughness field used in the final run is shown on Figures 44, 45. In the final model run (run 27) the 
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high water levels improved for all stations located along the Scheldt estuary (Figures 50, 51). They 

increased in the Upper Sea Scheldt and came closer to the measurements. The calculated high water 

levels at Temse and Melle increased too. However, the model still underestimates the high waters at 

these stations.  

The low water levels improved everywhere at the Scheldt estuary upstream Vlissingen except 

Hemiksem and Temse. The low water levels at Vlissingen were accurate and did not require 

improvement. At Hemiksem and Temse the low water levels worsened as a consequence of the 

improvement of the high water levels. As it was explained above, the low water levels at Temse are not 

very well measured and should not be considered as accurate.  

After the calibration, the differences between the calculated and measured high and low waters in the 

Upper Sea Scheldt decreased. They do not exceed 11 cm for both high and low waters for all stations, 

except the high waters at Melle and Temse and the low waters at Temse. A limited period of the 

available measurements and not accurate measurements of the low waters at Temse could affect the 

analysis of the results for this station.  

The phase of the calculated low and high waters was improved. The time delay observed in the model 

results was decreased.  

6.2.4 Model calibration for Zenne 

In this report the water levels at Hombeek located along the Zenne river were analysed. The calculated 

high water levels are close to the measurements and the calculated low water levels are much higher 

than the measurements (Figure 41). This means that water can not leave Zenne as fast as in reality 

during the ebb periods. Several attempts were made to decrease too high water levels by the adaptation 

of the bathymetry (Figure 47) and roughness. However, no successful change was found to improve the 

low waters at Hombeek. The difference between the model and measurements is not yet understood 

and has to be studied in the future.  

6.2.5 Model calibration for Dijle 

The water levels at two measurement stations at the Dijle river were analyzed. Before the calibration the 

calculated low water levels were too high for Mechelen and too low for Rijmenam (Figures 39, 40).  

To improve the model accuracy for the Dijle river, a weir (which is a simplification of the real weir at 

Mechelen) was implemented in Mechelen. It was expected that this weir would be an obstacle for the 

water flow and would result in increased low waters at Rijmenam. At the same time, less water would be 

moving seawards during ebb at Mechelen. As a result of this, the low water levels at Mechelen would 

decrease. A weir at + 2 m NAP at Mechelen was implemented by the use of the weir structure in the 

SIMONA model. This improved the low water levels at Rijmenam (Figure 48). They increased and 

became close to the measurements. However, there was not any significant improvement in Mechelen 

(Figure 49). 

Several attempts were made to improve the low waters at Mechelen by adaptation of the local 

bathymetry and the bed roughness up- and downstream Mechelen. However, this did not result in a 

decrease of too high low waters at this station.  
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6.2.6 Conclusions and recommendations 

The calibration of the 2D SIMONA model was performed in this study for June – July 2002. The analysis 

was exclusively based on the comparison of both phase and magnitude of the calculated and measured 

high and low water levels. The objective of this study was to improve the model accuracy for the Upper 

Sea Scheldt estuary and tributaries Zenne and Dijle. The model was calibrated by changes of several 

parameters: bathymetry, bed roughness and boundary conditions. Furthermore, a weir was 

implemented at Mechelen.  

The following changes were made in the final run: 

- corrected coordinates of the discharge point for Merelbeke, 

- bathymetry with averaged depth (grid cell averaging interpolation algorithm), 

- time shift of 20 min of water level series at downstream boundary location Cadzand 

- changed bathymetry of several cells for the river Zenne, 

- changed roughness field for the Lower and Upper Sea Scheldt, 

- changed roughness for the river Zenne, 

- weir at Mechelen (at + 2 m NAP). 

As a result of the calibration, the accuracy of the model for high water levels was improved for all 

stations along the Scheldt estuary. The difference between the calculated and measured high water 

levels for the Upper Sea Scheldt decreased. However, the high water levels at Melle are still too low. 

Different attempts were made to improve them. But they did not result in the simultaneous improvement 

of the model accuracy for both high and low water levels at Melle.  

The high water levels were improved for the Rupel river and the Dijle river. However, the high water 

levels worsened at Kessel located at the Grote Nete.  

The accuracy of the model for low water levels was improved everywhere for the Scheldt estuary 

upstream Vlissingen except Hemiksem and Temse. At Hemiksem and Temse the low water levels 

worsened as a consequence of the improvement of the high water levels. Due to not accurate 

measurements of the low waters at Temse, it is not possible to analyse the improvement of the results 

for this station. 

The low water levels worsened a little at Boom and Walem located along the Rupel. The implementation 

of the weir structure at Mechelen resulted in the improvement of the low water levels at Rijmenam.  

After the model calibration the time delay for both low and high waters decreased. Furthermore, for 

some stations (Vlissingen, Baalhoek, Schaar van de Noord, Bath and Kessel) the calculated high waters 

are observed earlier than the measured ones after the model calibration. It can be concluded that the 

changes made in the model in this study improved the accuracy of the model for most stations.  

Figures 50 and 51 show the differences in time and magnitude – averaged values over the simulation 

period – for the calculated and measured high and low water levels for some stations. The differences 

between the model and measurements are presented for the initial NEVLA model as described by 

(Hartsuiker et al., 2004), the model as calibrated for September 2006 by (Vanlede et al, 2008b) and for 
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the model calibrated for June – July 2002 by (Maximova et al., 2009). The model accuracy for high and 

low waters have clearly impoved through the three calibration steps. 

However, further studies of the model are needed. The model accuracy should be improved for the high 

waters at Melle and Temse. The high waters at Melle are too low. The roughness field for the 

simultaneous improvement of both high and low waters at Melle still needs to be found.  

The high and low waters at Temse are not accurate. It is necessary to analyse the water levels at 

Temse based on a longer period of measurements and more accurate measurements of low waters.  

The low waters at Mechelen and Hombeek still require further improvement. A solution for the decrease 

of too high low waters at these stations was not found. The large difference in the low waters between 

the measurements and the model is not understood and should be studied in the future.  

Furthermore, the model accuracy for the stations located on the Rupel river (Boom and Walem) and the 

Nete river (Emblem and Kessel) should be studied more in the future. The accuracy of the model for low 

waters at these stations still can be improved.  
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7 Validation 

After calibration of the model it is necessary to check how the calibrated model performs for a different 

simulation period. A testing of the model performance on data that have not been used for the 

calibration is called model validation.  

7.1 Validation for normal spring-neap tidal cycle 

7.1.1 The simulation period 

The model was calibrated for June – July 2002. The validation was performed for the period 29/08/2006 

00:00 to 01/10/2006 00:00. Since this calibration period is approximately 4 weeks, the effect of the 

spring-neap tidal cycle is included in the mean water level values, as well as a broad range of the 

upstream discharges. New upstream and downstream boundary conditions are specified for this period. 

All other input parameters are left the same as in the calibrated model.  

7.1.2 Boundary conditions 

The water levels at Cadzand and Westkapelle (HMCZ database) are used as downstream boundary 

conditions. The NEVLA model has several upstream boundaries. The discharges at these upstream 

boundaries are available from the Hydrometry group of Flanders Hydraulics Research. The daily 

discharge series for a simulation period are available for Scheldt – Dendermonde, Zenne – Zemst, Dijle 

– Haacht, Grote Nete – Itegem and Kleine Nete – Grobbendonk. Zero discharge was specified for 

Durme – Waasmunster, Schelde – Gentbrugge and Bovenschelde – Zwijnaarde. 10 minutes discharge 

time series are available for the Bath canal.  

The discharge at Merelbeke is the largest fresh water discharge coming to the Scheldt estuary. Thus, it 

has the most significant effect on the model output. Therefore, it is very important to have accurate and 

detailed time series of the discharge for this location. However, for the simulation period only daily 

discharge time series are available at Merelbeke. 

Wind is included in the model run. Wind data are available from the Hydro Meteo Centrum Zeeland 

(HMCZ) database. The wind data measured at the station Hansweert are imposed as a uniform wind 

field influencing the whole model area. This data consist of wind magnitude (10 min average value) and 

direction (10 min average value in degrees towards North). 

7.1.3 Results of the model validation 

The results of the model validation are presented in Tables 7 and 8 and on Figures 52 - 55.  The 

differences between the calculated and measured high water magnitude and phase and low water 

phase are not high. The differences in magnitude do not exceed 10 cm at any station except Melle (at 

Melle the difference is 15 cm). The differences in high and low water phase are small in the Western 

Scheldt and the Lower Sea Scheldt. Upstream Schoonaarde the differences in low water phase become 

a little larger (6 – 16 min). For most stations the modeled high waters for the year 2006 are even more 
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accurate than for 2002.  

However, the model accuracy for the low waters worsens considerably in 2006. The calculated low 

waters are lower than the measurements. The largest differences between the calculations and 

measurements are observed upstream Hemiksem and in the Rupel river. The average difference 

between the calculated and measured low waters at Melle is very small (- 3 mm). However, the actual 

differences in the low water at this station are much larger at some moments in time (Figure 56). They 

vary in time from plus 20 - 40 cm to minus 20 – 60 cm.  

The large differences in the low waters upstream Hemiksem can be related to the fact that only daily 

discharge time series were available at Merelbeke. From the sensitivity analysis (Ides et al., 2008) it was 

found that the use of daily averaged discharges at this location worsens the calculated discharges in the 

Upper Sea Scheldt up to Hemiksem compared to hourly averaged discharges. When 5 min averaged 

discharges are used, the correspondence between the calculation and measurement is even better; 

however the difference between the 2 results is small. 

The use of daily averaged discharges at Merelbeke affected mainly low waters because during the ebb 

period the upstream discharge is more important than during the flood.  

There are large differences in the low waters at Boom and Walem because the accuracy of the 

calibrated model still needs to be improved for these stations to represent the low waters correctly. 

The model validation showed that the calibrated model performs well for the stations downstream 

Hemiksem. Upstream Hemiksem the calculated low waters were not accurate in the validation run. The 

model accuracy upstream Hemiksem can be improved by the use of more accurate and detailed time 

series of discharge at Merelbeke. 

7.2 Validation for storm period 

In chapter 7.1 the calibrated model was validated for a period with a rather normal tide (September 

2006). Besides this it is useful – in the framework of a project which is dealing with safety against 

flooding – to check how the model performs in extreme conditions. A period with an extreme high water 

was chosen for the model validation in this chapter. 

7.2.1 The simulation period 

The model was validated for the period from 15/10/2002 00:00 to 15/11/2002 23:30. On 26/10/2002, 

27/10/2002 and 07/11/2002 the high waters at Antwerp were higher than 4.00 m NAP. A highest high 

water during the simulation period (4.30 m NAP) was observed at Antwerp on 07/11/2002 4:40. 

According to (Jeuken et al., 2007), the high water at Antwerp reaches 4.07 m NAP two times a year, a 

level of 4.22 m NAP once every year.  

Since the simulation period is approximately 4 weeks, the effect of the spring-neap tidal cycle is included 

in the mean water level values, as well as a broad range of the upstream discharges. New upstream and 

downstream boundary conditions were specified for this period. All other input parameters were left the 

same as in the calibrated model.  
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7.2.2 Boundary conditions 

The water levels at Cadzand and Westkapelle (HMCZ database) are used as downstream boundary 

conditions. The NEVLA model has several upstream boundaries. The discharges at these upstream 

boundaries are available from the Hydrometry group of Flanders Hydraulics Research. The daily 

discharge series for a simulation period are available for Zenne – Zemst, Dijle – Haacht, Grote Nete – 

Itegem, Kleine Nete – Grobbendonk and Scheldt - Merelbeke. 10 min discharge series are available for 

Scheldt – Dendermonde and for the Bath canal. Zero discharge is specified for Durme – Waasmunster, 

Schelde – Gentbrugge and Bovenschelde – Zwijnaarde.  

Wind is included in the model run. Wind data are available from the Hydro Meteo Centrum Zeeland 

(HMCZ) database. The wind data measured at the station Hansweert are imposed as a uniform wind 

field influencing the whole model area. This data consist of wind magnitude (10 min average value) and 

direction (10 min average value in degrees towards North). 

7.2.3 Results of the model validation 

The analysis was based on a comparison of the measured and calculated magnitude and phase of the 

high and low waters. The high and low water values for the whole calculation period were determined 

and compared with the measured values in the same period. The average differences in the calculated 

and measured low and high waters were found for the whole simulation period (one month). 

Furthermore, these differences were calculated for a short period with an extremely high water level 

(from 06/11/2002 10:00 to 08/11/2002 14:00). This was done in order to check if the model can simulate 

water levels correctly for a storm event. 

Results for the entire simulation period 

The results of the model validation for October – November 2002 are presented in Tables 7 and 8 and 

on Figures 52 - 55. The model performs well downstream Hemiksem. The average differences in 

magnitude and phase of high and low waters calculated for the entire simulation period are not high. The 

differences in magnitude do not exceed 8 cm, the differences in phase do not exceed 5 min. Upstream 

Hemiksem the model accuracy worsens. The high waters on average are lower than the measurements 

for all stations in the Upper Sea Scheldt, Rupel and its tributaries except Schoonaarde, Melle and 

Kessel. The low waters at all stations upstream Hemiksem are much lower than the measurements. The 

differences in some low waters at Wetteren and Melle exceed 50 cm (Figures 58 and 59). The 

differences in high water phase are small. The maximal differences of 16 min in low water phase are 

observed at Melle and Wetteren.  

The average difference in high waters at Walem is smaller than 1 cm. However, the actual differences 

are larger than 20 cm at some moments (Figure 57). Nevertheless, the differences in most high waters 

at this station are not high. Opposite to this, the calculated low waters at Walem are constantly too low. 

The average differences in high waters at Schoonaarde, Wetteren and Melle are small. However, the 

actual differences in high waters at these stations are much larger (Figures 58 and 59). They vary in 

time from positive to negative values and the average differences become close to zero. This is not the 

case for the stations downstream Hemiksem. The model accuracy is better there and the differences 
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between the calculated and measured high and low waters are less than 5 to 10 cm for most high and 

low waters except the period with the storm event (Figures 60 and 61).  

Therefore, the model validation showed that the calibrated model performs well downstream Hemiksem 

for a period with normal spring and neap tide. Upstream Hemiksem the differences between the 

calculations and measurements become larger. As explained in chapter 7.1, this can be related to the 

fact that only daily discharge time series were available at Merelbeke. From the sensitivity analysis (Ides 

et al., 2008) it was found that the use of daily averaged discharges at this location worsens the 

calculated discharges in the Upper Sea Scheldt up to Hemiksem compared to hourly averaged 

discharges. 

Results for a short period with a storm event 

The results of the analysis of the model accuracy for a short period with a storm event are presented in 

Tables 7 and 8 and Figures 52 - 55.  The analysis shows that the calibrated model can not simulate a 

period with an extremely high spring tide very accurately. The differences between the calculations and 

measurements become high already at Baalhoek (11 cm). The calculated high and low waters are lower 

than the measurements for most stations. Only in the Upper Sea Scheldt and Kessel the calculated high 

waters are higher than the measurements. At Melle the calculated low waters are too high on average. 

The high and low waters at most stations are delayed in the model. The maximal delay in the high water 

phase (16 min) is observed at Antwerp. The low waters in the Upper Sea Scheldt are delayed by 16 to 

25 min. 

The calibrated model does not simulate accurately a period with an extreme high water level. The 

accuracy of the model worsens in comparison to the period with normal tide. The reasons for this and 

the possibilities to improve the model accuracy for such circumstances should be studied more in the 

future. Some possible improvements are given here.   

A first reason for the model not to reproduce extreme high waters in the Sea Scheldt correctly is the lack 

of controlled inundation areas in the model grid. These areas will be inundated only from a certain, 

relatively high water level on and their main goal is to decrease the extreme high water levels for a 

couple of centimetres, but they will also influence the level of the low waters. Since these areas are not 

included in the model, it is to be expected that the model will not be a reliable tool for these extreme 

water levels in the Sea Scheldt.  

For the modelled high waters for example, the controlled inundation area of Paardeweide (located near 

Uitbergen) would have become active in reality. This controlled inundation area is inundated about once 

in a year during the period with the medium flood risk. The effect of the inundation of the Paardeweide 

area would have affected the measured high water levels in the upstream part of the estuary.  

The extreme water levels that have been simulated in the model are events which happen once to twice 

a year. If a stronger storm is simulated in the model, the differences between the model results and 

measurements will be even larger since more controlled inundation areas will be flooded in reality and 

this effect will not be taken into account in the calculations. However, the high water levels in the model 

are reproduced too low compared to reality for the Western Scheldt and the Lower Sea Scheldt. The 

effect of including the inundation area would even decrease the calculated high water levels, and thus 



LTV O&M thema Veiligheid 
Deelproject 1: Verbetering hydrodynamisch NEVLA model ten behoeve van scenario-analyse 

Final version WL2009R756_05_rev2_0 28 
FORM: F-WL-PP10-2 Version 02 
VALID AS FROM: 17/04/2009 

   

worsen the results of the model. In the Upper Sea Scheldt, the high water levels are calculated too high. 

As a consequence the introduction of inundation areas in this zone might improve the model results.  

Another reason for the rather poor model accuracy in the Upper Sea Scheldt may be the use of the daily 

discharges at Merelbeke. The averaging of some important peak discharges throughout a day can 

worsen the model accuracy. The use of the 10 minute time series can significantly improve the model 

accuracy for the Upper Sea Scheldt area.  

The low waters in the Upper Sea Scheldt during the extremely high water events are lower than the 

measurements for all stations except Melle during the storm period. On the contrary the high waters are 

higher than the measurements. It was analyzed how the model would react if the discharge at 

Merelbeke was increased by 20% respectively by 100%. It is expected that an increase of the discharge 

would affect the low waters more than the high waters because the flood flow is much larger than the 

upstream discharge. 

The increase of the discharge at Merelbeke resulted in an increase of the high and low waters in the 

Upper Sea Scheldt (Figures 62 – 63). The high waters increased and became too high. Some low 

waters at Wetteren improved when the discharge was increased by 20%. However, some of them 

became too high. When the discharge was increased by 100%, the high and low waters in the Upper 

Sea Scheldt became too high. At stations located more downstream the changes were smaller because 

the discharge at Merelbeke is much smaller than the flood discharge at these stations. The analysis 

showed that the increase of the discharge did not help to improve the model accuracy.  

A possible approach to improve the model accuracy during extreme storm events is to adapt the wind 

drag coefficient. This coefficient is used for the computation of the force on the water surface due to 

wind. If the coefficient increases than the wind effect on the water levels increases too. The wind 

direction is about 300 degrees during the period with extreme high water. This means that wind blows 

into the estuary and pushes the water. This can result in an increase of the high waters. However, the 

wind is not strong during the analyzed storm period (always less than 13 m/s). Thus, the increase of the 

wind drag coefficient in the model will probably not have an important effect on the results.  

Finally it is mentioned that the model is not calibrated yet for the intertidal (and subtidal) areas. They are 

inundated during the flood period and can have an important effect on the water level during storm 

events. In the current model no distinction is made between the bed roughness of the channels and the 

roughness of the intertidal areas.  
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8 Suitable roughness field for scenario analysis 

8.1 Introduction 

The roughness field used for the final calibration run varies in space along the estuary as well as in the 

transversal direction (the bed roughness used for the ebb and flood channel is different). Possibly this 

roughness field is very strongly related to the bathymetry that is used in the model and it is valid only for 

this bathymetry used during the calibration. If we use a different bathymetry for the scenario analysis the 

roughness field to be used might change as well since because of its space varying character it is 

coupled with the morphological evolutions (for example if the ebb channel is on a slightly different 

location, the roughness field assigned to this ebb channel should be shifted as well). 

Therefore, it is necessary to analyse if it is sufficient to use a uniform bed roughness field for the 

scenario analysis. Different roughness fields – with a rather small space varying distribution – were 

implemented and the accuracy of the model was compared with the measurements. The analysis was 

based on a comparison of the evolution of the water levels in time, measured versus calculated values. 

The high and low water values for the whole calculation period were determined and compared with the 

measured values in the same period. The average differences in the calculated and measured low and 

high waters were found (Tables 9 and 10, Figures 66 - 69). These differences for the new model runs 

with changed roughness were compared with the calibrated NEVLA model. 

8.2 The calibration process  

First, two uniform bed roughness fields were implemented in the model (run 1 and run 2). The analysis 

showed that the use of a uniform bed roughness value is not sufficient to obtain accurate results for the 

entire estuary. When a uniform roughness of 0.022 m1-/3s was used (run 1), the differences between the 

calculations and measurements became large already at Terneuzen for the low waters and at 

Hansweert for the high waters. The high waters were too high at all stations except Melle. The low 

waters were too low at most stations. Furthermore, at most stations both high and low waters were 

observed earlier in the model than in reality. In the Upper Sea Scheldt the low waters were observed 

later than in reality. 

The model run 2 with a uniform roughness of 0.025 m1-/3s resulted in more accurate water levels than 

run 1. The magnitude and phase of the high and low waters were accurate downstream Hemiksem. 

Upstream Hemiksem the differences became larger. The high waters were lower than the 

measurements; the low waters were higher than the measurements in the Upper Sea Scheldt. The low 

waters at Boom and Walem were accurate; however, the high waters at these stations were too low. 

Therefore, runs 1 and 2 showed that it is not sufficient to use a uniform roughness field for the entire 

estuary. In all next model runs a uniform roughness of 0.025 m1-/3s was used only downstream Schelle. 

Upstream Schelle the bed roughness field was adapted. 

In run 3 the roughness was decreased to 0.022 m1-/3s upstream Schelle and to 0.024 m1-/3s in the Rupel 

and its tributaries. This was done in order to increase too low high waters and decrease too high low 

waters in the Upper Sea Scheldt. However, the results of run 3 showed that this decrease of the 
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roughness was not enough to improve the model results.  

Therefore, in run 4 the roughness was decreased even more. It was assigned to 0.020 m1-/3s upstream 

Schelle and 0.022 m1-/3s for the Rupel and its tributaries. This helped to improve the high waters in the 

Upper Sea Scheldt. However, the low waters at Wetteren and Melle became too low. The high waters in 

the Rupel and its tributaries improved just a little, while the low waters decreased.  

In run 5 the roughness of 0.018 m1-/3s was used between Schelle and Temse and for the Zenne river; 

0.02 m1-/3s upstream Temse and for the rivers Rupel, Dijle and Nete; 0.024 m1-/3s for the Durme. This 

helped to improve (increase) a little the high waters in the Rupel and the Upper Sea Scheldt. The low 

waters in the Upper Sea Scheldt almost did not change and they decreased and became too low in the 

Rupel. 

The roughness field used upstream Schelle in run 6 is shown on Figure 65. Downstream Schelle a 

uniform roughness of 0.025 m1-/3s was used (Figure 64). This roughness field resulted in the smallest 

differences between the model output and measurements for the most stations in comparison to the 

previous runs with simple roughness fields (Tables 9 and 10, Figures 66 - 69).  

8.3 Conclusion 

The bed roughness field from run 6 can be used for the scenario analysis. It is uniform downstream 

Schelle and varies in space upstream Schelle. This roughness field is rather simple: it does not vary in 

the transversal direction (there is no different roughness for ebb and flood channel). We can expect that 

it is valid for different bathymetries. 

However, if the same bathymetry as for the calibrated model is used, it is better to use the roughness 

field from the calibrated model. This roughness field produces the best results for this bathymetry.  
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Tables 
Table 1. Overview of runs with grid adaptations in (Vanlede et al., 2008a) 

Name Grid description 

A00 NEVLA (M 753-01) 

A01b Rough schematization of Rupel and its tributaries (M756-01 LTV slib) 

A02 Rupel and its tributaries accordingly to KUSTZUID v5 (M729-09) 

A03c Grid adaptation for the Sea Scheldt (M800/1) 

A07 

NEVLA until Schelle. The Upper Sea Scheldt from M800/1, Rupelbekken accordingly to 

KUSTZUID v5 (M729-09) 

A07b A07, without flood areas  

 
 
 

Table 2. Overview of runs with different grid resolution in (Ides et al., 2008) 

Name Grid description 

Run110 Basis grid run 105 

Run111 Basis grid 1x2 refined 

Run112 Basis grid 2x2 refined 

Run113 Basis grid 4x4 refined 

 
 
 

Table 3. Overview of runs with different bathymetries in (Vanlede et al., 2008a) 

Name Bathymetry Interpolation method 

B01 Available samples for 2006 Gridcell Averaging 

B02 Available samples for 2006 Closest 

B03 Available samples for 2006 Max of near points 

B04 Available samples for 2006 Min of near points 

B05 Available samples for 2006 Shepard 

B06 

The same as B01, but Sea Scheldt 

based on ungrided measured samples Gridcell Averaging 

B07 Intertidal areas 20cm deeper Gridcell Averaging 

B08 Intertidal areas 20cm undeeper Gridcell Averaging 
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Table 4. Overview of runs with different boundary conditions in (Ides et al., 2008) 

Name Boundary condition Period 

Run 301 5 min averaged discharges at Merelebeke 26jun – 9jul 2002 

Run 302 Hourly averaged discharges at Merelbeke 26jun – 9jul 2002 

Run 303 Daily averaged discharges at Merelbeke 26jun – 9jul 2002 

 
 
 

Table 5. Overview of runs with different boundary conditions in (Vanlede et al., 2008a) 

Name 
Downstream  
boundary 
(discharge) 

Downstream 
boundary 
(water level) 

Wind Simulation period 

C00 Day (Melle) CZ-WK No Jun 2002 

C01 Day (Merelbeke) CZ-WK No Jun 2002 

C02 5 min (Merelbeke) CZ-WK No Jun 2002 

C03 Hour (Merelbeke) CZ-WK No Jun 2002 

B01 Day CZ-WK No 1-30 sept 2006 

C05 Day ZUNO No 1-30 sept 2006 

C06 Day CZ-WK Yes 1-30 sept 2006 

C07 Day ZUNO Yes 1-30 sept 2006 
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Table 6. Overview of runs with different bed roughness in (Vanlede et al., 2008a) 

Name Formula Block nr Bed roughness 
B01 Manning Manning 0.022 
D00 Manning Uniform 0.025 
D01 Manning 1 0.020 
D02 Manning 2 0.020 
D03 Manning 3 0.020 
D04 Manning 4 0.020 
D05 Manning 5 0.020 
D06 Manning 6 0.020 
D07 Manning 7 0.020 
D08 Manning 8 0.020 
D09 Manning 9 0.020 
D10 Manning 10 0.020 
D11 Manning 1 0.030 
D12 Manning 2 0.030 
D13 Manning 3 0.030 
D14 Manning 4 0.030 
D15 Manning 5 0.030 
D16 Manning 6 0.030 
D17 Manning 7 0.030 
D18 Manning 8 0.030 
D19 Manning 9 0.030 
D20 Manning 10 0.030 
D21 Chézy Uniform equivalent n=0.025 
D22 White-Colebrook Uniform equivalent n=0.025 
D23 Manning - n=f1(D) 
D24 Manning - n=f2(D) 

D25 Manning - 
Intertidal areas: 0.030; other 
areas 0.025 

D26 Manning Uniform 0.028 
D003D Manning (3D model) Uniform 0.025 

 
 

Parameter Value Simulation 
Manning coefficiënt 0.025 m-1/3s-1 D00 
Chézy coefficiënt 57 m1/2s-1 D21 
Nikuradse roughness length 0.0685 m D22 
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Table 7. Differences in magnitude of high and low waters for model calibration and validation (NV = water level could not be determined based on the used algorithm) 

Difference (calculation - measurement) 

high water (cm) low water (cm) 
Station 

final calibration 
(June-July 2002) 

validation 
(year 2006) 

validation 
(Oct-Nov 2002)

validation for 
storm period 

(06-08/11/2002) 

final calibration
(June-July 2002) 

validation 
(year 2006) 

validation 
(Oct-Nov 2002) 

validation for 
storm period 

(06-08/11/2002) 

Vlissingen 2.4 4.5 3.4 2.4 1.0 -1.6 0.4 1.5 
Terneuzen -6.0 -1.7 -3.1 -6.5 0.6 -2.4 -1.7 -1.8 
Hansweert -4.3 2.5 -0.4 -6.4 -0.2 -4.8 -1.9 -2.5 
Baalhoek -7.2 -0.8 -3.0 -11.2 -4.8 -7.6 -7.3 -10.3 

Schaar van 
de Noord -7.4 -1.6 -2.0 -9.6 -4.0 -7.7 -5.7 -8.6 

Bath -1.2 -0.2 0.3 -11.0 -3.1 -7.0 -5.4 -8.8 
                

Liefkenshoek -6.9 -0.5 -2.8 -15.8 -0.3 -3.8 -4.1 -4.9 
Antwerp -6.7 2.0 -2.4 -17.9 1.5 -5.6 -2.9 -3.2 

Hemiksem -3.0 -8.9 -13.9 -20.9 -7.0 -28.1 -22.5 -23.3 
                

Temse1 -11.9 -1.0 -7.1 -13.1 -21.1 -42.2 -32.2 -48.4 
Schoonaarde 1.1 8.0 1.4 8.5 -9.1 -27.3 -26.5 -23.5 

Wetteren -3.5 -2.5 -1.1 10.8 -9.5 -9.2 -14.0 -25.7 
Melle -22.3 -15.0 4.3 23.4 -11.0 -0.3 -5.3 11.3 

                
Boom -6.6 -3.5 -7.4 -12.2 -15.0 -31.9 -25.1 -27.8 
Walem -10.5 5.1 -0.4 -2.1 -29.1 -34.8 -31.2 -32.3 

Mechelen -2.0 -0.6 -6.5 -9.7 NV 
                 

Kessel 14.3 8.9 11.4 26.2 NV 
 

1 The low waters at Temse are not accurate. The measurement instrument is located in a muddy environment, the level of the mud being approximately the level of the low water 
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Table 8. Differences in phase of high and low waters for model calibration and validation (NV = water level could not be determined based on the used algorithm) 

Difference (calculation - measurement) 

phase of high water (min) phase of low water (min) 
Station 

final calibration 
(June-July 2002) 

validation 
(year 2006) 

validation (Oct-
Nov 2002) 

validation for 
storm period (06-

08/11/2002) 

final calibration 
(June-July 2002) 

validation 
(year 2006) 

validation (Oct-
Nov 2002) 

validation for 
storm period (06-

08/11/2002) 

Vlissingen 0 -2 -2 -1 3 3 1 3 
Terneuzen 1 -2 0 3 5 6 3 6 
Hansweert 4 2 2 1 7 6 6 8 
Baalhoek -1 -3 -1 5 3 1 1 -1 

Schaar van 
de Noord -1 -6 -2 5 3 1 0 -2 

Bath -1 -3 2 0 4 2 0 1 
                 

Liefkenshoek 4 3 2 5 6 3 3 8 
Antwerp 8 6 5 16 6 4 2 8 

Hemiksem 3 0 0 5 4 1 3 4 
                 

Temse1 3 1 0 0 2 2 4 25 
Schoonaarde 3 1 -2 2 9 6 10 16 

Wetteren 3 -2 0 11 12 9 16 25 
Melle 10 3 0 1 15 16 17 17 

                 
Boom 7 2 1 2 5 3 1 6 
Walem 5 2 0 2 2 0 1 2 

Mechelen 13 2 3 3 NV 
                 

Kessel -3 -3 3 11 NV 
 

1 The low waters at Temse are not accurate. The measurement instrument is located in a muddy environment, the level of the mud being approximately the level of the low water 
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Table 9. Differences in magnitude of high and low waters compared to measurements for the model runs with simple roughness fields ( NV = water level could not be determined 
based on the used algorithm) 

difference in high water (calculation - measurement) (cm) difference in low water (calculation - measurement) (cm) 

Station 
calibrated 

model  
run 1 run 2 run 3 run 4 run 5 run 6 calibrated 

model 
run 1 run 2 run 3 run 4 run 5 run 6 

Vlissingen 2.4 1.9 -3.1 -3.1 -3.2 -3.2 -3.1 1.0 -2.7 0.4 0.4 0.5 0.5 0.5 
Terneuzen -6.0 2.9 -5.9 -5.9 -5.9 -6.0 -6.1 0.6 -10.0 -4.2 -4.1 -4.0 -3.9 -3.9 
Hansweert -4.3 10.8 -1.2 -1.4 -1.6 -1.6 -1.7 -0.2 -13.7 -6.2 -6.0 -5.8 -5.7 -5.6 
Baalhoek -7.2 8.5 -5.8 -6.0 -6.2 -6.4 -6.4 -4.8 -18.7 -9.9 -9.6 -9.4 -9.3 -9.2 

Schaar van 
de Noord -7.4 9.4 -5.2 -5.5 -5.7 -5.9 -5.9 -4.0 -19.1 -9.3 -9.0 -8.7 -8.6 -8.5 

Bath -1.2 17.3 2.0 1.8 1.6 1.5 1.4 -3.1 -18.9 -9.2 -8.8 -8.5 -8.3 -8.3 
                             

Liefkenshoek -6.9 16.4 -0.5 -0.9 -1.2 -1.5 -1.5 -0.3 -18.6 -7.8 -7.3 -6.9 -6.7 -6.7 
Antwerp -6.7 18.2 -0.8 -2.2 -3.1 -3.9 -4.0 1.5 -15.9 -2.3 -1.3 -0.6 -0.4 -0.5 

Hemiksem -3.0 20.0 -1.9 -3.8 -5.2 -5.5 -5.6 -7.0 -23.3 -6.6 -5.4 -4.5 -4.7 -5.0 
                             

Temse1 -11.9 10.2 -15.6 -15.4 -15.6 -14.5 -14.4 -21.1 -25.4 -12.0 -13.8 -15.0 -17.6 -18.2 
Schoonaarde 1.1 10.0 -19.5 -10.9 -4.9 -3.5 2.6 -9.1 19.1 27.7 14.8 4.8 4.5 1.5 

Wetteren -3.5 7.0 -23.6 -12.0 -3.2 -1.8 -0.9 -9.5 6.1 17.7 0.6 -12.6 -12.5 -1.0 
Melle -22.3 -12.4 -46.5 -31.6 -20.2 -18.7 -25.3 -11.0 -7.6 4.9 -14.1 -28.6 -28.4 -7.4 

                             
Boom -6.6 15.2 -9.7 -10.7 -10.8 -9.5 -9.5 -15.0 -20.7 -1.6 -2.7 -5.9 -10.3 -10.6 
Walem -10.5 9.4 -17.2 -17.5 -16.3 -13.6 -13.6 -29.1 -23.0 -4.6 -7.6 -14.4 -22.4 -22.6 

Mechelen -2.0 10.7 -16.4 -16.2 -14.7 -10.9 -10.9 NV 
                           

Kessel 14.3 21.4 -5.5 -2.8 2.1 10.2 10.4 NV 

1 The low waters at Temse are not accurate. The measurement instrument is located in a muddy environment, the level of the mud being approximately the level of the low water 
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Table 10. Differences in phase of high and low waters  compared to measurements for the model runs with simple roughness fields  ( NV = water level could not be determined 
based on the used algorithm) 

difference in time of high water (min) difference in time of low water (min) 

Station 
calibrated 

model  
run 1 run 2 run 3 run 4 run 5 run 6 calibrated 

model  
run 1 run 2 run 3 run 4 run 5 run 6

Vlissingen 0 3 7 6 6 7 6 3 3 7 7 7 7 7 
Terneuzen 1 1 5 4 5 5 4 5 -2 2 2 2 2 2 
Hansweert 4 -4 0 0 0 0 0 7 -5 2 2 2 2 2 
Baalhoek -1 -4 0 0 1 0 1 3 8 1 1 1 1 1 

Schaar van 
de Noord -1 -5 1 1 2 1 1 3 -9 0 0 0 0 0 

Bath -1 -5 0 0 0 0 0 4 -11 -1 -1 -1 0 -1 
                             

Liefkenshoek 4 -5 1 1 1 1 1 6 -10 0 0 0 0 0 
Antwerp 8 -2 6 4 5 5 5 6 -10 0 1 1 2 2 

Hemiksem 3 -7 0 1 2 3 3 4 -12 0 1 2 2 2 
                             

Temse1 3 -6 1 2 3 2 2 2 -15 1 1 1 1 0 
Schoonaarde 3 -6 6 2 0 0 -1 9 5 19 14 13 12 11 

Wetteren 3 -6 6 2 0 0 -1 12 10 29 22 15 15 17 
Melle 10 -3 9 5 1 1 2 15 10 30 19 17 16 23 

                             
Boom 7 -4 4 6 6 7 7 5 -7 5 5 5 4 4 
Walem 5 -4 4 4 4 5 5 2 -6 5 6 4 3 3 

Mechelen 13 -2 6 7 7 6 7 NV 
                             

Kessel -3 -9 4 5 2 -1 -1 NV 
 
1 The low waters at Temse are not accurate. The measurement instrument is located in a muddy environment, the level of the mud being approximately the level of the low water
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Figure 1R 756_05

The Scheldt estuary - Water level measurement stations
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Figure 2R 756_05

Grid of NEVLA model
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Figure 3R 756_05

bathymetry : m NAPLocation of the boundary point in model, located between Zeebrugge and
Cadzand
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Figure 4R 756_05

Grid adaptations in the tributaries of the Rupel river.
Grid A02 (red) and grid A00 (green)
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Figure 5R 756_05

Grid adaptations in the Upper Sea Scheldt.
Grid A03 (red) and grid A00 (green)
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Figure 6R 756_05

Grid adaptations in the Upper Sea Scheldt near Rupelmonde.
Grid A03 (red) and grid A00 (green)
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Figure 7R 756_05

Measured and calculated water levels at Wetteren for model runs with
different grids
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Figure 8R 756_05

Model bathymetry and velocity near Uitbergen
(Original schematization in NEVLA)
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Figure 9R 756_05

Model bathymetry and velocity near Kessel
(Original schematization in NEVLA)
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Figure 10R 756_05

Model bathymetry and velocity near Uitbergen (improved schematization)
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Figure 11R 756_05

Model bathymetry and velocity near Kessel (improved schematization)
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Figure 12R 756_05

Areas outside dikes removed from the grid.
Grid A07 (green) and grid A07b (red)

Mobiliteit en
Openbare Werken

departement

N



Figure 13R 756_05

Effect of the removal of areas outside dikes from grid on the water levels at
Schoonaarde
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Figure 14R 756_05

Influence of the grid resolution on water levels. Measured and calculated
water levels at Schoonaarde
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Figure 15R 756_05

M2 amplitude and phase and M4 amplitude for runs B01 – B05
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Figure 16R 756_05

Bathymetry and velocity for runs B01 (above) and B03 (below)
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Figure 17R 756_05

M2, M4 and M6 amplitude for runs B01, B07 (deeper tidal areas)
and B08 (undeeper tidal areas)
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Figure 18R 756_05

Measured discharges at Merelbeke
Comparison of 5 minutes, hourly and daily averaged discharges
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Figure 19R 756_05

Calculated water levels at Wetteren
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Figure 20R 756_05

Difference in calculated water levels in the case of use of 5 minutes and daily
averaged discharges
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Figure 21R 756_05

Comparison of the M2 and M4 amplitude for different uniform Manning
roughness coefficients
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Figure 22R 756_05

Comparison of the M6 amplitude for different uniform Manning roughness
coefficients
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Figure 23R 756_05

Phase shift between M2 and M4 and M4/M2 relation for different uniform
Manning roughness coefficients

Mobiliteit en
Openbare Werken

departement



Figure 24R 756_05

The Scheldt estuary divided in 10 parts for the sensitivity analysis
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Figure 25R 756_05

Comparison of the M2 amplitude for different roughness values in the area
from Hansweert to Schaar van de Noord (above) and between Vlissingen and
Hoofdplaat (below)
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Figure 26R 756_05

Comparison of M2 and M4 amplitude for 3 roughness coefficients: Chezy,
Manning and White-Colebrook
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Figure 27R 756_05

M2 en M4 amplitudes for the calibration runs E01 and E01b
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Figure 28R 756_05

M4/M2 amplitude and 2M2-M4 phase difference for the calibration runs E01
and E01b
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Figure 29R 756_05

M4/M2 amplitude and 2M2-M4 phase for original NEVLA model (E00) and
calibration run E01
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Figure 30R 756_05

Roughness field for the Scheldt estuary for run E19
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Figure 31R 756_05

M2 amplitude and phase for the original NEVLA model (E00) and runs E01
and E19
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Figure 32R 756_05

M4 amplitude and phase for the original NEVLA model (E00) and runs E01
and E19
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Figure 33R 756_05

Roughness field for the Scheldt estuary for run E30
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Figure 34R 756_05

M2 amplitude and phase difference for the original NEVLA model (E00) and
runs E19 en E30
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Figure 35R 756_05

M4 amplitude and phase difference for the original NEVLA-model (E00), and
runs E19 en E30
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Figure 36R 756_05

Water levels at Liefkenshoek for spring and neap tide
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Figure 37R 756_05

Water levels at Emblem for spring and neap tide
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Figure 38R 756_05

Comparison of the results of initial run and final run 27 for Melle

Mobiliteit en
Openbare Werken

departement

Comparison of water levels for Melle (neap tide)

-2

-1

0

1

2

3

4

3/07/02

0:00

3/07/02

6:00

3/07/02

12:00

3/07/02

18:00

4/07/02

0:00

4/07/02

6:00

4/07/02

12:00

4/07/02

18:00

5/07/02

0:00

date and time

w
a
te

r
le

v
e
l

(m
N

A
P

)

measured run 3 run 27

Comparison of water levels for Melle (spring tide)

-2

-1

0

1

2

3

4

26/06/02

0:00

26/06/02

6:00

26/06/02

12:00

26/06/02

18:00

27/06/02

0:00

27/06/02

6:00

27/06/02

12:00

27/06/02

18:00

28/06/02

0:00

date and time

w
a
te

r
le

v
e
l

(m
N

A
P

)

measured run 3 run 27



Figure 39R 756_05

Water levels at Mechelen for spring and neap tide
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Figure 40R 756_05

Water levels at Rijmenam for spring and neap tide
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Figure 41R 756_05

Water levels at Hombeek for spring and neap tide
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Figure 42R 756_05

Original roughness field for the Lower Sea Scheldt

Roughness values expressed as Manning value (m s)
-1/3
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Figure 43R 756_05

Original roughness field for the Upper Sea Scheldt

Roughness values expressed as Manning value (m s)
-1/3
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Figure 44R 756_05

Roughness field for the Upper Sea Scheldt for run 27

Roughness values expressed as Manning value (m s)
-1/3
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Figure 45R 756_05

Roughness field for the Lower Sea Scheldt for run 27

Roughness values expressed as Manning value (m s)
-1/3
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Figure 46R 756_05

bathymetry : below NAP (m)Bathymetry downstream Schoonaarde before implementation of the weir (above)
and after implementation of the weir (below)
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Figure 47R 756_05

bathymetry : below NAP (m)Original bathymetry for Zenne (above) and bathymetry after changes (below)
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Figure 48R 756_05

Comparison of the results of initial run and final run 27 for Rijmenam
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Figure 49R 756_05

Comparison of the results of initial run and final run 27 for Mechelen
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Figure 50R 756_05

Difference between calculated and measured water levels before and after
calibration (calculation – measurement)
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Figure 51R 756_05

Difference between calculated and measured phase of low and high waters
before and after calibration (calculation – measurement)
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Figure 52R 756_05

Difference between calculated and measured magnitude of high waters for
calibration and validation
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Figure 53R 756_05

Difference between calculated and measured magnitude of low waters for
calibration and validation
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Figure 54R 756_05

Difference between calculated and measured phase of high waters for
calibration and validation
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Figure 55R 756_05

Difference between calculated and measured phase of low waters for
calibration and validation
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Figure 56R 756_05

Measured and calculated water level at Melle in 2006
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Figure 57R 756_05

bathymetry : m NAPMeasured and calculated water level at Walem in 2002
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Figure 58R 756_05

bathymetry : m NAPMeasured and calculated water level at Wetteren in 2002
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Figure 59R 756_05

Measured and calculated water level at Melle in 2002
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Figure 60R 756_05

Measured and calculated water level at Liefkenshoek in 2002
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Figure 61R 756_05

Measured and calculated water level at Antwerp in 2002
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Figure 62R 756_05

Measured and calculated water level at Wetteren for the runs with increased
discharge at Merelbeke
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Figure 63R 756_05

Measured and calculated water level at Melle for the runs with increased
discharge at Merelbeke
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Figure 64R 756_05

Uniform bed roughness field for the Western Scheldt for run 6

Roughness values expressed as Manning value (m s)
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Figure 65R 756_05

Bed roughness field for the Sea Scheldt for run 6
Roughness values expressed as Manning value (m s)
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Figure 66R 756_05

bathymetry : m NAPDifferences in magnitude of high waters for the model runs with simple
roughness fields
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Figure 67R 756_05

bathymetry : m NAPDifferences in magnitude of low waters for the model runs with simple
roughness fields
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Figure 68R 756_05

Differences in phase of high waters for the model runs with simple roughness
fields
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Figure 69R 756_05

Differences in phase of low waters for the model runs with simple roughness
fields
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