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Abstract— This paper studies the potential of airborne hy-
perspectral imagery for classifying vegetation along the Belgian
coastlines. Here, the aim is to build vegetation maps using auto-
matic classification. Besides a general linear multi-class classifier
(Linear Discriminant Analysis), several strategies for combining
binary classifiers are proposed: one based on a hierarchical
decision tree, one based on the Hamming distance between
the codewords obtained by binary classifiers and one based
on the coupling of posterior probabilities. In addition, a new
procedure is proposed for spatial classification smoothing. This
procedure takes into account spatial information by letting the
decision for classification of a pixel depend on the classification
probabilities of neighboring pixels. This is shown to render
smoother classification images.

I. INTRODUCTION

Vegetation along coastlines is important to survey because
of its biological value with respect to the conservation of
nature, but also for security reasons. Some of the vegetation
tend to fix the natural seawall, while others do not. Erosion
accompanied by the rough conditions along coastlines, rein-
force the dynamic process of the existing vegetation. In order
to monitor this process, vegetation maps are required on a
regular basis. Therefore, an automatic classification is aimed
for.

The objective is to monitor a large variety of vegetation
types for the entire Belgian coastline (about 30 square kilome-
ters). This, together with the requirements on spatial resolution
and, not in the least, the cloudy weather conditions, urge on
airborne hyperspectral imagery. A test area at the west coast of
Belgium has been selected for which data cubes are obtained
from the Compact Airborne Spectrographic Imager (CASI-2)
sensor. The data has been acquired in October 2002 with 48
spectral bands and a spatial resolution of 1.3 meters.

In this paper, classification of this test site is performed.
13 vegetation classes were selected. For such high number
of classes, multi-class classification becomes very complex.
In this work, we investigate the use of combination of binary
classifiers. Besides the standard technique of maximum voting,
three methods of combination are proposed: one using a hi-
erarchical decision tree approach, one based on the Hamming

distance between codewords, obtained by binary classifiers
and one based on the coupling of posterior probabilities of
binary classifiers. Using the latter approach, we also introduce
a spatial smoothing procedure of the classification result. This
procedure combines posterior classification probabilities of
neighboring pixels, to render smoother classification maps. In
the next section, the binary linear classifier is introduced. In
section III, the multi-class classifier is presented and the three
different combinations of binary classifiers are proposed. In
section IV, the classification smoothing procedure is elabo-
rated and in section V, the experiments are conducted.

II. BINARY CLASSIFICATION

For the binary classifier, we adopted a simple linear dis-
criminant classifier (LDA) [1]. Assuming equal covariance
matrices

�
for both classes, this classifier finds the optimal

linear decision boundary. A projection weight vector
��

and
bias

���
are the parameters to estimate in the two class problem,

and are calculated by :���� ���
	�� �
��� � 	�� � � � � ����� � � 	�� �
� � (1)

where
� 	 and

�
� are the means of each class, and
�

is
the estimated class covariance matrix (we assume equal prior
probability for both classes). Test samples (

�� ) are then classi-
fied by the simple rule�� � �� � ��� ����� : sample assigned to class 1� � : sample assigned to class 2 � (2)

This method is very fast to train and to calculate the classifi-
cation. In case the training set is not sufficiently large

�
can

become singular. In these cases a pseudo-inverse approach can
be used to find

��
and

� �
[2].

In this work, we are not only interested in the assigned
class, but in the posterior probabilities for both classes, which
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are estimated by:� � class  "! �� � � � � �� ! class  � � � class  �#�$&% 	(' � � � �� ! class ) � � � class ) �  �+*-, �
where (3)� � �� ! class  � � *. ��/ �� � �10 ��32"465879: �<; �� � � � 0 � �� �>= �� � �� � � 0 �� � ?A@B �

being the probability of the projected point.

III. MULTI-CLASS CLASSIFICATION

A. Linear Multi-class Classifier

The most widely used classifier for multi-class problems
is based on the normal distributed conditional probabilities.
Here, all classes are described by a normal distribution with
mean  0 , and covariance

�C0
. It is easy to show [1] that this

assumption results in quadratic discriminant functions D 0 :D 0E� �� � �GFIHKJ � � � class  �E� � *� FLH-J � ! �10 ! � � *� � � 0 � �� � � � �M	0 � � 0 � �� �
(4)

When using equal covariances for all classes, linear discrimi-
nant functions are obtained:D 0&� �� � �NFLH-J � � � class  �E� � *� � 0O���M	 � 0 � *� �� � � �M	0 � 0 (5)

A point
�� is assigned to class ) for which D $ � �� �1P D 0 � �� �OQ  .

B. Combining Binary Classifiers

Due to the complexity of multi-class classifiers, a common
approach is to combine the output of several binary ones.
Mostly, one-against-all or one-against-one [3], [4] approaches
are used. With the one-against-all strategy, each classifier is
trained to differentiate one class from all the others, which
requires a number of classifiers equal to the number of classesR

. In the one-against-one approach, all possible pairs of
classes are compared, requiring SUTIS �M	EV� classifiers. Different
methods defining other codings of the classes were also
suggested [5], [6]. Here, we will apply the one-against-one
scheme. To combine these one-against-one binary classifiers
several approaches are proposed.

1) Maximum Voting: Often, a maximum voting mechanism
is used [4]. For each binary classification, a vote is given to
the winning class. The class with the maximum number of
votes is assigned to the test sample.

2) Hierarchical decision tree: The binary classifiers are
ordered according to their discriminating ability on the training
samples. The Bayes error, derived from equation 3, can be
used for this purpose. To classify a test sample, the most
discriminating binary classifier is applied first. Suppose this
is a classifier for classes ) and W . The most likely class, for
example W , is retained as a candidate for the class decision.
From all the remaining binary classifiers, those that test for
class ) can be discarded for this test sample. As a result,
the number of classifiers is reduced from SUTIS �
	>V� to

R � *
.

The procedure ends when a single candidate class is left. This
explains the importance of the ordering. A wrong decision

in the beginning of the decision tree is disastrous. However,
if well ordered, this scheme has a distinct advantage over
maximum voting, in particular for heterogeneous classes with
diverse discriminating abilities.

3) Codewords: Another method is based on the Hamming
distance between codewords, built, by the binary classifiers.
Each binary classifier represents one bit in the codeword. For
example, if the result of the classifier for class ) and W , is class) , then the corresponding bit is set to 0. Else, it is set to 1. As
a result, a codeword of SUTIS �
	>V� bits is obtained. A codeword
is created for each training sample during training. Likewise,
the classifier builds a codeword for a test sample. The class
containing the training sample with the nearest codeword in
Hamming distance is then assigned to the test sample.

4) Coupling Probabilities: So far, all presented combina-
tions of binary classifiers into a multiclass procedure use the
binary classification result to come to a class decision. But,
for each of the binary classifiers a posterior probability can be
obtained from (3). We will follow [7] to obtain a combined
posterior probability for the multiclass case. Define X 0 $ � �� � as
the probability for obtaining class  as calculated by (3) for
the binary classifier comparing class  against class ) . For theR

-class case we have to look for
R � 0 ’s (  �Y*K, ���A� , R ) which

satisfy X 0 $ � � 0� 0 � � $ and
SZ 0 % 	 � 0 �+*-,

(6)

This set of equations, to be solved for � 0 , has
R � *

free pa-
rameters and SUTLS �M	EV� constraints, so it is generally impossible
to find [� 0 ’s that will meet all equations. In [7], the authors opt
to find the best approximation [X 0 $ � \]"^\]A^`_ \]"a by minimizing the
Kullback-Leibler distance between X 0 $ and [X 0 $b � �� � � � Z 0dc%e$gf 0 $ih X 0 $ FIHKJ X 0 $[X 0 $ � � * � X 0 $ � FIHKJ * � X 0 $* � [X 0 $kj (7)

where f 0 $ is the sum of the number of training points in class and ) . They also suggest an iterative scheme to minimize
this distance:

start with and initial guess for the [� 0 , and calculating [X 0 $
repeat until convergence

loop over  �+*-, ���A� , R[� 0�l [� 0nm a&op ^�q ^ra&sE^ram a&op ^ q ^ra \s ^ra
normalize � 0 , and calculate [X 0 $[�� l \ t]m \]A^

For this algorithm Hastie and Tibshirani proved that the
distance between X 0 $ and [X 0 $ decreases at each step, and since
the distance is bound above zero, the procedure converges.
This procedure is repeated for all points in the test set. Now,
classification is obtain by selecting the class with maximum
posterior probability.

IV. SPATIAL CLASSIFICATION SMOOTHING

Up to now we have considered the pixels as spatially
independent. No contextual information has been used to make



a decision on the class label. Building a classification image
based only on the spectral information often results in poorer
classification performance [8] and in class images with a noisy
appearance, containing many single pixel classes. We propose
a simple post-processing technique for spatial classification
smoothing, requiring little extra computational effort.

As shown in in section III-B.4, we can calculate the pos-
terior probability for a pixel. We call � 0 � W , b � , the posterior
probability for class  calculated for the pixel at location� W , b � in the image. Normally, to assign a label to the pixel,
the label of the class with maximum posterior probability is
taken. Define u � W , b � as the class with the maximum posterior
probability at location

� W , b � :u � W , b � �Nviw 4xzy`{ 0 � 0 � W , b � � (8)

One can assume neighboring pixels to have similar posterior
probabilities. This information can be used as prior knowledge
for defining a new prior probability for a pixel, based on the
posterior probability from classification in the neighborhood
of the pixel. Define this new prior probability of a pixel as the
average over the posterior probabilities of neighborhood |� prior0 � W , b � � *} ZTL~ ' ��VO�-� � 0E��� ,�� � (9)

where
}

is the number of points in | . When looking at � 0E� W , b �
as an image, the new prior � prior0 � W , b � is in fact a smoothed
version of this image. A new posterior probability is obtained
by using Bayes’ rule:� post0 � W , b � � � prior0 � W , b � � 0 � W , b �#�$ � prior$ � W , b � � $ � W , b � (10)

Classifying using these � post0 will result in smoother classifica-
tion image maps containing less single pixel classes.

V. EXPERIMENTS AND DISCUSSION

A. Data

A test area at the west coast of Belgium has been selected
for which data cubes are obtained from the Compact Airborne
Spectrographic Imager (CASI-2) sensor (see Fig. 1). The data
has been acquired in October 2002 with 48 spectral bands and
a spatial resolution of 1.3 meters. Ground truth is available
through field work in 148 regions. Using a differential GPS
in the field, the ground truth is mapped on the geocorrected
image, obtaining over 2000 pixels to train and validate the
presented classification procedure.

The vegetation classes to be discriminated are listed in ta-
ble I. Some of the classes consist of different vegetation types
(4) and even combinations of other classes (11 combines 8 and
10). They correspond to patches that occur as homogeneous
mixtures and cannot be distinguished by the available sensor
resolution. Another observation is that the number of samples
(second column) is diverse. They correspond to the availability
of the species in the field. However, they are not representative
for the occurrence at the entire coastline and thus can not be
used as prior probabilities as such.

Fig. 1. Image showing part of coastline. Extracted area was used for
demonstrating the spatial classification in fig. 2

B. Classification

We will now classify the image for all classes defined in
Table I. The regions of interests are randomly split in equally
sized sets for training and testing. In the first column, classi-
fication results are shown using the multiclass approach. The
remaining columns correspond to the 4 different combinations
of binary classifiers.

One can observe that all binary classifiers outperform the
multiclass approach, which justifies our motivation of choosing
for a less complex classifier.

Obviously, all classifiers have difficulties classifying the
mixed class “Creeping Willow / Dewberry”. Codewords per-
form best for the large Sea Buckthorn class. However, com-
bined with Wood small-reed, codewords perform worst. The
combined “Sea Buckthorn / Wood small-reed” class was
observed to be misclassified as Sea Buckthorn. This reveals
one of the flaws of this method. In general, codewords are
expected to have large Hamming distances between classes.
However, a single badly oriented codeword in a large class
can jeopardize the entire classifier. A single misjudgment in
assigning the labels during fieldwork can be disastrous for the
codeword approach but will be of little harm for the other
methods.

In Fig. 2, we show part of the color coded classification
result. The left image shows the result of the standard maxi-
mum posterior classification. The right image shows the results
after including the extra prior probability step with X ���

. One
can immediately see that many single pixel classes and other
small structures have vanished. This smoothing property is of
importance when interpreting the classification image, when
the user is not interested in finely detailed class information.
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TABLE I
CLASSIFICATION RESULTS

Class N Samples Multiclass Max. Voting Hier. tree Codewords Coupling p
European Alder 26 85 62 49 77 56
European Beachgrass 185 80 94 91 79 90
Silver Berch 40 79 87 79 89 88
Sea Buckthorn / Wood small-reed 191 67 79 74 46 77
Sea Buckthorn 705 54 69 70 81 65
European Privet 381 72 91 89 87 90
Maigold 44 90 90 78 72 91
Dewberry 43 64 59 58 78 67
Grey Willow 42 63 51 43 51 62
Creeping Willow 219 62 77 77 69 78
Creeping Willow / Dewberry 46 36 27 28 34 35
Blue Elderberry 89 75 64 69 58 69
Wall Moss 87 79 76 78 79 83
Total average (weighted) 2098 59 76 75 75 75

Fig. 2. Classification images from fig. 1. The left image shows the result of maximum posterior classification obtain by coupling probabilities. The right
image shows the improvement using the proposed spatial classification smoothing.
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