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Notation 
 

The following general notation is used: scalars are represented by italic 

symbols, vectors by bold lowercase symbols and matrices by bold 

uppercase symbols. Only recurring symbols are included in this list. 

 

List of symbols 
⊗ Kronecker product, see Appendix  

0(…) matrix composed by zeros, with dimensions specified between 

brackets  

1(…) matrix composed by ones, with dimensions specified between 

brackets  

θθθθ model parameter vector, length nθ  

θ̂θθθ  estimated value of model parameter vector, length nθ  

Θ potential temperature, i.e. temperature corrected for density 

effects, °C  
2ˆ
h

σ  estimated noise variance of subset h 
2σ̂σσσ  estimated noise variance vector 

æ atom% excess, expressing the excess of heavy isotope in a 

sample (Eq. 3.1) 

B spline matrix in water mixing application, size N×nB 
C spline coefficients matrix, size nS×nB 
D dissolved phase or concentration of this phase (simplified from 

[D]) 
e general noise vector, length nd 
h index representing subset number, h ∈ {1,…, nh} (Chapter 9) 

aI  a×a identity matrix 
J Jacobian matrix (Eq. 2.16), size nd×nθ  

Jc Jacobian matrix corrected for the presence of equality 

constraints, as defined in Eq. (9.17) 

Jh Jacobian matrix of subset h, size Nh×nθ (univariate case) or 

Nhnv×nθ  (multivariate case) 
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Jw Jacobian matrix weighted with the measurement uncertainties, 

as defined in Eq. (9.15) 

Jwc weighted Jacobian matrix corrected for the presence of equality 

constraints  

nθ number of unknown parameters θθθθ 
nB number of splines in the water mixing application, nB = nlnz 
nd number of observations, equals N in the univariate case, 

otherwise equals Nnv 
nh number of subsets (Chapter 9) 

nl number of B-splines in the latitude direction 

nS number of sources in the water mixing application 

nv number of variables 

nz number of B-splines in the depth direction 

N number of samples 

Nh number of samples in subset h 
N(µ,σ) normal distribution with mean µ and standard deviation σ 
P particulate phase or concentration of this phase (short for [P]) 
qi unlabelled species concentration in tracer experiment (natural 

analogue of the tracer), measured in compartment i 
Qi labelled species (tracer) concentration in tracer experiment, 

measured in compartment i  
r residuals vector, defined as y – fmodel(u, θ), length nd 
rh residuals of subset h, vector of length Nh (univariate case) or 

Nhnv (multivariate case) 
R regeneration rate (to dissolved phase) 

S sources matrix in water mixing application, size nv×nS 
u input variable vector 

U uptake rate (from dissolved to particulate phase) 

v vector containing the residual subset variances, length nh 
(univariate case) or nhnv (multivariate case) 

xi(k) mixing fraction of source i at position k 
X  mixing fractions matrix in the water mixing application, size 

nS×N 
y output data vector, length nd  
yh output data in subset h, vector of length Nh (univariate case) or 

Nhnv (multivariate case) 
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y-h all data in y which are not element of subset h, vector of length 
N – Nh  (univariate case) or (N – Nh )nv (multivariate case) 

Y multivariate measurement matrix, size nv×N   
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AAIW Antarctic Intermediate Water 

AIC  Akaike Information Criterion 

CSW  Circumpolar Surface Water 

CTD  Conductivity – Temperature – Depth  

IOWLS Input Output Weighted Least Squares 

LCM  Linearised Covariance Matrix 

LS  Least Squares 

MDL  Minimum Description Length 

OMP  Optimum MultiParameter  

OWLS Output Weighted Least Squares 

POMP Parametric Optimum MultiParameter 

SAMW Subantarctic Mode Water 

STSW Subtropical Surface Water 

SWT  Source Water Type 

UCDW Upper Circumpolar Deep Water 

WLS  Weighted Least Squares 
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Samenvatting 
 

De algemene doelstelling van deze studie is het aanpassen en verbeteren 

van bestaande modelleringsprocedures, met de bedoeling om meer en 

meer betrouwbare informatie te extraheren uit de beschikbare 

waarnemingen. Concreet betekent dit dat veel aandacht besteed is aan 

het kwantificeren van onzekerheden, gezien deze nodig zijn om een lijn 

te trekken tussen wat significant is in de metingen en het deel dat niet 

moet geïnterpreteerd worden. Twee toepassingen werden nader bekeken: 

tracerexperimenten gemodelleerd door compartimentele modellen (Deel 

A) en een multivariaat model voor het beschrijven van mengende 

watermassa’s (Deel B). De nadruk van deze studie ligt echter op de 

gebruikte en ontwikkelde methoden. Zijn bijdrage is niet zo zeer om 

uitwisselingssnelheden of mengingsfracties te hebben geschat, maar 

eerder om hun accurate schatting te hebben verwezenlijkt, tegelijk met 
een schatting van de gekoppelde onzekerheid. De voornaamste 

verwezenlijkingen van deze doctoraatsstudie kunnen in het heel kort 

samengevat worden als volgt: 

(i)  In rekening brengen van inputonzekerheden bij het schatten van 

modelparameters en hun onzekerheden. 

(ii) Modelselectie gebaseerd op de statistische interpretatie van de 

residuele Gewogen Kleinste Kwadraten kostfunctie. 

(iii)  Verfijning van de Optimum Multiparameter analysis voor de 

grootschalige reconstructie van spatiale verdeling van mengende 

watermassa’s. 

(iv)  Opstellen van algoritme om heteroscedastische ruisvarianties te 

schatten uit de residuen, met een correctie voor eventuele 

modelfouten. 

(v)  Nagaan van identificeerbaarheid van gegeven experiment-model 

combinaties. 
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Summary 
 

The general aim of this study is to modify or improve existing modelling 

procedures in order to extract more or more reliable information from 

observations at hand. In practice, this means that much attention is 

directed to quantifying uncertainties, since these enable to draw a line 

between what is significant and what should not be interpreted. Two 

applications were considered: tracer experiments modelled by 

compartmental models (Part A) and a multivariate water mass mixing 

model (Part B). However, the focus lies on the methods used and 

developed to improve the models and their inferences. Indeed, the merit 

of this work is not to have enabled the estimation of flux rates and 

mixing fractions, but to have enabled their accurate estimation, together 

with an estimate of the associated uncertainty. Very briefly, these are 

the main achievements: 

(i)  Inclusion of the input uncertainties in the estimation of model 

parameters and their uncertainties.  

(ii) Model selection method based on the statistical interpretation of 

the residual Weighted Least Squares cost function. 

(iii)  Improvement of Optimum Multiparameter analysis for large-scale 

reconstruction of mixing water mass distributions. 

(iv)  Construction of an algorithm to estimate heteroscedastic noise 

variances, from residuals but corrected for model errors. 

(v)  Verification of identifiability of given experiment-model 

combinations. 
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Chapter 1: 
 

General introduction 
 

 

 

 

 

“It is probably true quite generally that in the history of human thinking 
the most fruitful developments take place at those points where two 
different lines of thought meet. These lines may have roots in quite 
different parts of human culture, in different times or different cultural 
environments or different religious traditions: hence if they actually 
meet, that is, if they are at least so much related to each other that a 
real interaction can take place, then one may hope that new and 
interesting developments may follow.” 

 

Werner Heisenberg, in: "Physics and Philosophy", Allen & Unwin, 1963. 
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Studying natural systems often involves the determination of physical 

parameters which are not directly experimentally accessible, e.g. rate 

constants, fractionation factors, characteristic scales of certain processes, 

etc. In order to quantify these parameters, generally some other, more 

easily reachable system variables are measured instead. Then, using a 

chosen formal relation between these measurable quantities and the 

unknown parameters (a so-called model), the latter can finally be 

extracted from the measurements. System identification offers a 

systematic and formal framework for these steps. The basic steps of this 

system identification ladder are introduced in more detail in Chapter 2, 

and will return throughout this thesis. In brief they consist of  

(1) collecting data,  

(2) selecting a model or model class to describe these data,  

(3) match the model to the data,  

(4) evaluate the quality of the results.  

 

However, these well-established steps may not always be sufficient. 

Depending on the specific question, refinements or additional steps may 

be necessary. Most chapters of this thesis consist of a methodological 

development that can be seen as one of these additional steps. 

 

The study of natural systems is impeded by a number of aspects. 

Firstly, these systems are in general vastly more complex than the 

models that are built to describe them. In other words, a perfect model 

is an illusion and therefore it is necessary to assess the performance of 

each model in describing those processes which are of interest. The only 

information possibly useful for this purpose are the data at hand. But 

these data are not perfect either: they are associated with an 

uncertainty which is more complicated than the mere analytical 

precision. Field data are not only subject to variations due to sampling, 

handling and analysis, but also to all variations acting on the system, 

i.e. environmental variability. These variations are not straightforward 

to quantify, especially because field measurements are often too difficult 

or expensive to repeat. Each environmental modelling exercise has to 

take into account these specific difficulties. This often comes down to 
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making a compromise between a number of aspects like optimal 

accuracy, optimal precision and lowest cost. With the help of techniques 

from the system identification theory these criteria can be quantified 

and a trade-off can be made in an objective way.  

 

This brings us to a formulation of the objective of this study. The 

general aim is to modify, improve or extend existing modelling 

procedures in order to extract more or more reliable information from 

the observations at hand. In practice, this means that much attention is 

directed to quantifying uncertainties and model errors, since these 

enable to draw a line between what is significant and what should not 

be interpreted. No new modelling work is done, at least not in the sense 

of building a model by translating physical processes to equations. The 

starting point is always an existing model, which is critically evaluated 

against the available data, keeping in mind their reliability and 

uncertainty. Only if it turns out that a modification significantly 

improves the description of reality or reduces the uncertainty associated 

with the inferences, it is retained.  

 

In this way, this thesis is primarily theoretically-methodologically 

directed (indeed no measurements were performed), but every step is 

tightly linked to a real problem encountered “in the field”. Someone 

may argue that this work is not fully independent since it needed data 

from other investigators. But this remark ignores the attempt of this 

study to be generic; including an experimental part would narrow the 

focus to one particular system’s problem. Furthermore, these are times 

of data wealth; it is difficult to hold pace with the speed at which new 

observations fill databases. Observations from expensive and time-

consuming measurements are plenty. Nevertheless, in many cases not all 

information hidden in these data is extracted, which is a waste of money 

and time. For that reason, scientists should be encouraged to take some 

time to thoroughly analyse these available data. These analyses could 

indeed provide useful insights, e.g. helping to improve the design of 

future expensive and time-consuming experiments.  
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Structure 
This manuscript is an approximately chronological report of the 

research conducted during my PhD. This structure has the advantage to 

naturally bisect the whole in two parts based on the application problem 

considered. In Part A the application of interest is tracer experiments 

modelled by a particular class of compartmental models. Chapter 3 

introduces this topic, while the subsequent chapters of this first part are 

primarily concerned with the development or application of system 

identification tools. Similarly, Part B also contains a number of 

methodological developments but this time in the context of modelling 

the mixing of water masses in the ocean. The methods presented may 

sometimes seem completely dedicated to the system under study, but we 

would like to emphasize that they are more generic and thus are a 

contribution to the system identification ladder. Hence, all chapters 

contribute to the same final goal: obtaining reliable, interpretable, 

quantitative answers to the posed question. 

 

The manuscript is structured as follows: 

 

Chapter 2 gives a general introduction of the basic concepts of the 

system identification theory. No new information is given here. Instead, 

the purpose of this chapter is to familiarise the non-expert reader with 

the concepts that will be used throughout this manuscript. 

 

Part A: Compartmental models for tracer experiments. 

It seems appropriate to first reserve a special chapter to sketch the 

fundamental ideas of tracer studies and introduce the models used 

(Chapter 3). Again no new research is presented here. Alternatively, 

this chapter is meant to initiate the amateur reader in this special topic 

that will be the recurring application in this first thesis part. After this 

introduction, three subsequent chapters discuss three different steps on 

the system identification ladder: estimation of the model parameters and 

their uncertainty (Chapter 4), identifiability (Chapter 5) and model 
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selection (Chapter 6). In every chapter the tracer experiment is the 

application of interest, but the issues raised are general. 

 

Part B: Ocean mixing model. 

The topic of interest in this second part is the empirical modelling of 

mixing water masses in the ocean. The reference method to do this is 

called Optimum Multiparameter (OMP) analysis, which is introduced in 

Chapter 7. This chapter ends with a summary of imperfections 

associated with this approach. The following chapters are an attempt to 

address these imperfections. In Chapter 8 a refinement of the OMP 

analysis is presented, in which the original unknown parameters are 

parameterised in order to obtain more robust estimates. It appears that 

the available uncertainty information is insufficient to perform a 

thorough quality assessment of the modelling results. Therefore, a new 

method to estimate the noise variances is developed in Chapter 9. 

Finally, in Chapter 10, the possibility to independently estimate the 

source characteristics is investigated, since they are difficult to 

objectively define a priori. Chapters 8 – 10 present methodological 

developments in the framework of OMP analysis. To illustrate the 

consequences on the analysis results one dataset is consistently used as 

an example. Oceanographical interpretations fall beyond the scope of 

this study and hence are reduced to a minimum.   

 

The major new contributions developed in this study are summarised in 

the General Conclusions (Chapter 11).  

 

Finally, as research never ends, a special chapter is dedicated to a 

discussion of future research paths flowing out of this study (Chapter 

12). 
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Chapter 2: 
 

Basic concepts 
 

 

 

 

 

“A model is a more or less complex assembly of constituent hypotheses. 
The purpose of system identification is therefore that of reconciling this 
set of concepts with the given field data.”  

Stigter and Beck [1994]. 

 

 

“System identification is not ‘merely curve fitting’ if that is the end in 
itself; it is, if anything, curve fitting as a means to an end, where the end 
is the rigorous, scientific interpretation of field data. (…) without system 
identification, in its broadest sense, the process of model development 
and evaluation should not be accorded the label of ‘scientific’.”  

Beck [1987]. 
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2.1. Introduction 
This chapter introduces the basic concepts of system identification, or 

statistical modelling, which are used throughout this thesis. The aim is 

to make the reader familiar with the logical sequence of steps to be 

taken leading to a quantitative answer to a scientific question. In short, 

the basic scheme is based on four steps (Figure 2.1): 

(1) collecting data,  

(2) selecting a model or model class to describe these data,  

(3) match the model to the data,  

(4) evaluate the quality of the results.  

 

Note that the sequence given in this chapter may not be complete. 

Indeed, depending on the specific question, additional or modified steps 

may be necessary. Most chapters of this thesis consist of a 

methodological development that can be seen as one of these additional 

steps completing the system identification ladder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic representation of the scientific method or system 

identification ladder (Adapted from Soetaert and Herman, 2001). 

Real world Conceptual world 

minimise difference 

Phenomena 

Observations 

(+ noise) 

Model 

(+ model errors) 

Model parameters 

(+ uncertainty) 
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2.2. The system 
According to Nihoul [1975], to model a (marine) system it is first 
required to define the system without ambiguity, separate it from the 

outside world and identify the exchanges between the system and the 

exterior. The system can consist of internal processes as well as 

interactions with the environment, and as a result some measurable 

variables fluctuate dependently. This means that if one or several input 

variables, u0, are varied, one or several output variables, y0, seem to 

change as a result: 

 

y0 = system(u0).         (2.1) 

 

This situation is schematically represented in Figure 2.2a. The question 

usually is to identify and quantify the processes that cause this relation. 

Note that it may not always be straightforward to split variables into 

“input” and “output”. Within the scope of our study, this is not a 

problem and we will always be concerned with systems in the form of 

Eq. (2.1). 

 

2.3. The measurements 
In order to characterize the system, it is necessary to collect information 

about it. From the previous paragraph, it follows logically that this is 

done by measuring the input and output variables. Due to all kinds of 

fluctuations, the measured values u and y are generally not equal to the 

true values u0 and y0 (note that a subscript “0” will consistently be used 

to refer to true values). Consider the following additive noise model, 

 

u = u0 + eu  and y = y0 + ey       (2.2) 

 

where eu and ye  represent the input and output noise vectors.  

 

In many applications, it is explicitly assumed that eu is zero or small 

with respect to ye  (see Mandel [1984] for a meticulous formulation) and 
as a consequence the input noise contribution can be neglected (Figure 
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2.2b). In some situations the more general situation is considered: input 

noise cannot be neglected (Figure 2.2c).  

 

Assumptions 2.1 (noise assumptions) 

Throughout this thesis, the noise elements ex,i and ey,i (forming vectors 
eu and ye ) are assumed to be N(0,σu,i) and N(0,σy,i ) distributed random 
variables (i = 1, …, nd), whose values are uncorrelated (pointwise 
independent).  

The variances σ 2
u,i  and σ 2

y,i  are known or priorly estimated, and stored 

in the vectors 2
uσσσσ  and 2

yσσσσ . 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 
Figure 2.2. Schematic representations of the system, model, measurements and 
noise concepts. The rounded boxes ( � ) stand for transformations, the others are 
variables. The grey boxes are the measured variables. (a) Illustration of the system 
concept. (b) The measurements, in the situation of only output noise, or negligible 
input noise. (c) The measurements, in the situation of non-negligible noise on input 
and output. (d) Illustration of the “model” concept. The difference with (a) is that 
the model is a mathematical expression, whereas the system is not (necessarily).  
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The assumption of normally distributed noise is based on the Central 

Limit Theorem, which in general terms states that the distribution of an 

average tends to be Normal as the sample size increases, even when the 

distribution from which the average is computed is decidedly non-

Normal. Therefore, it seems reasonable to assume that most data, which 

are the result of a sequence of processes, will be normally distributed. 

However, the normality assumption is in many real life cases only 

approximate since it would imply that once in while e.g. negative 

concentrations, population abundances, etc. would be measured, which 

is obviously not the case. Therefore, some suggest to use the log-normal 

distribution as a better approximation [e.g. Limpert et al., 2001]. This 
distribution is skewed and strictly nonnegative, and can be seen as the 

multiplicative (instead of additive) version of the Central Limit 

Theorem. Nevertheless, we believe that in most cases the possible error 

by assuming normally instead of log-normally distributed noise is 

negligible. Especially as long as close-to-average behaviour is 

investigated, both distributions are quite similar. Moreover, it must be 

considered that throughout this thesis secondary data (i.e. not collected 

and thus controlled by myself) are used. Therefore, the normality 

assumption seems the best hypothesis. 

 

The assumption of zero mean is an essential feature of noise, because it 

implies that when enough measurements are considered, the noise terms 

in (2.2) cancel out, leaving only the true values. The assumption of 

pointwise independent noise elements stems from the way the 

measurements are made. Indeed, in the applications that will be 

considered, every measurement is the result of a separate experiment or 

analysis.  

 

Remark that the noise terms do not only originate from instrumental 

errors, but also from all other sources of variability acting on the 

measurement (e.g. sampling errors) and influencing the interpretation of 

the measurement in the framework of the model (e.g. environmental 

variability). An example of the latter occurs when the measurements are 

made at different scales than those represented in the model 

(representation error). This aspect of the noise will be important in Part 

B and will therefore be further discussed then (cf. section 9.5). 
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2.4. The model 
The next step in the identification procedure is to select a mathematical 

model for the system. Whereas the system is merely a conceptual, 

qualitative idea, the model is a formal, mathematical description of the 

system processes under study (Figure 2.2d). Only parametric models 

will be considered in this thesis. This kind of model relates the true 

input and output measurements via the mathematical expression fmodel 
and the true model parameters θθθθ0: 
 

 y0 = fmodel(u0, θθθθ0).        (2.3) 

 

From expression (2.3) it is clear that the model enables to predict the 

output measurements, given the input measurements and the model 

parameters. Or, alternatively, if input and output measurements are 

known, the model parameter can be computed. It is exactly the 

quantification of the model parameters that is supposed to answer the 

original question about the system. Depending on the actual question 

the model equations can have a different structure, such that the model 

parameters provide the needed information. Therefore, the choice of the 

model is a fundamental step, which deserves some elaboration.  

 

Many types of models exist. A fundamental distinction exists between 

“models which try to give an efficient description of the input-output 
behavior of a system without relying on hypotheses about how the system 
works internally, and models which try to give an internal description of 
the system. Models of the first class are called black box models. They 
are usually relatively simple, parsimonious and identifiable from the 
observations available. A modeling approach using this type of model is 
generally preferred by statisticians and control engineers. (…) Models of 
the second class are called mechanistic. They are usually more complex 
and poorly identifiable. A modeling approach relying on this model class 
is usually preferred by natural scientists. It is characterized by an 
extensive use of causal hypotheses based on current understanding on 
how processes work and it is closely linked to a reductionistic world 
view.” [Brun et al., 2001].  
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Which kind of model to choose is usually dictated by the question to be 

answered. Black box models are the preferred vehicles when it comes 

down to exhaustively analysing and interpreting data. These models are 

really meant to extract information from the observations at hand under 

the form of model parameters. Throughout this thesis, the starting point 

is always the available data and the general question is to extract as 

much quantitative information from them as possible. Therefore, all 

models used in this thesis are essentially black box models.  

 

However, my experience is that nowadays in environmental sciences 

mechanistic (or white box) models are much more popular than black 

box models. Both in ecology and oceanography, much effort and 

attention goes to the development of large, physical models, containing 

the latest hypotheses regarding possibly relevant processes [e.g. Lancelot 
et al., 2000; Maltrud et al., 1998]. This can probably be appreciated in 
the context of ever increasing computing power. Of course, these models 

present a great step in the understanding of internal processes which are 

not accessible otherwise. Nevertheless, it is rarely admitted that these 

models essentially are “formalized archives of hypotheses” [Beck, 1987] 
which cannot be validated against observations because they have 

become so enormously more complex than the available data. As in all 

models these models contain parameters which must be adjusted to 

reasonably describe the observations. Contrary to black box models, it is 

usually impossible to quantify the large number of model parameters 

from the data at hand. Instead, the model parameters are usually set a 

priori (e.g. based on literature values) and the model serves to simulate 
reality. 

 

A reconciling view on the black box versus white box discussion is that 

both can also be combined. For instance, in engineering applications, 

black box models are often used in an preprocessing step to “clean up” 

the data by removing most of the non-significant noise. In a subsequent 

step, physical models may be used to further model the preprocessed 

data, without any loss of significant information. Alternatively, simple 

black box models can be used to “postprocess” the the output of large, 

sophisticated models, enabling a more straightforward understanding 

and interpretation of this output. The output files produced nowadays 
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by complex dynamical models are so huge that interpretation of these 

results becomes increasingly difficult. In this context, simple black box 

models can be useful to extract the wanted information. Examples of the 

usefulness of simple box models for interpreting the results of 

sophisticated three-dimensional hydrodynamical models are given in 

Deleersnijder et al. [1997, 1998].  
 

Once this first choice concerning the purpose of the model is made, still 

many model structures are possible. A model is said to be linear-in-the-
parameters (or simply linear), if it is a linear function of the model 
parameters 

 

fmodel(u, θθθθ) = K(u)θθθθ.        (2.4) 

 

For instance a model fmodel(u, θθθθ) = θ1u + θ2u
2 is linear (in the 

parameters), whereas a model fmodel(u, θθθθ) = (θ1 + θ2u)/(θ3 + θ4u
2) is not.  

 

Even when the model structure is fixed, often some freedom of choice 

remains with respect to the model complexity or order. For instance, 

which order of a polynomial model should be used? Once all these 

choices about the model are made, i.e. fmodel is fixed, the problem of 
determining the system processes can be reformulated as quantifying the 

set of unknown model parameters θθθθ.  

 

2.5. The parameter estimator 
After defining the system, carrying out the measurements, and choosing 

the model, the remaining step is to combine the model and the 

measurements in order to estimate the value of the model parameters. 

This is usually done by varying the values of the model parameters until 

some measure of the distance between the model and the data is 

minimised. Many “measures of distance” exist and we will call them a 

cost function. The choice of the cost function is important because it 
will fix all statistical properties of the estimated parameter values. In 

this section, only a few cost functions will be discussed, all based on the 

idea of “least squares”, i.e. on minimising the squared difference between 
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model and measurements. This class of cost functions has the advantage 

of having well known properties, especially under the noise assumptions 

made above (cf. Assumptions 2.1).  

 

2.5.1. Least squares estimator 
If no noise information is available, often the Least Squares (LS) 

estimator is used. The LS estimator of θθθθ is the parameter value, denoted 
by ˆLSθθθθ , that minimizes the LS cost function VLS: 

 

=ˆ argminLS LSV
θθθθ

θθθθ         (2.5) 

 

with 

 

( )model, i
= =

= − = =∑ ∑
2 2

1 1

( , )
d dn n

T
i iLS

i i

V y f ru r rθθθθ .     (2.6) 

 

nd is the number of (output) observations, r stands for the difference, or 
residual, between the output measurements y and the model prediction 

fmodel(u, θθθθ). Recalling Eqs. (2.2) and (2.3), it is clear that the residual r is 
nothing but noise (e) if the model prediction is perfect. It is a subtle 

distinction, but the symbol r will always be used to denote the 

difference between output observations and model, whereas e is only 

used to explicitly indicate that is concerns only stochastic, random 

noise. In words, equations (2.5) - (2.6) express that the optimal 

parameter values correspond to a minimal squared difference between 

the observations and the model. Obviously, this estimator is only 

accurate if the model is a close approximation of the observed processes, 

i.e. if the residuals can be equated with noise.  

 

If the model is linear-in-the-parameters (see Eq. (2.4)), the minimum of 

VLS can exactly be found by derivation of Eq. (2.6), giving an explicit 

expression for the associated optimal parameter values: 
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( )−
=

1ˆ T T
LS K K K yθθθθ .        (2.7)‡ 

 

If the model is nonlinear-in-the-parameters, typically iterative 

optimisation procedures are necessary to find the parameter values 

corresponding to a minimal cost function.  

 

A number of interesting properties have been proven for this LS 

estimator, mostly valid only under the assumption that the model is 

correct, that input noise is negligible and that the output noise variance 

is identical for all data [Pintelon and Schoukens, 2001]. 
 

2.5.2. Weighted Least Squares estimator 
If some observations are measured with higher precision than others, it 

may be useful to emphasize their importance during the estimation of 

the unknown parameters. This is generally done by attributing to every 

variable a different weight, inversely proportional with the uncertainty 

associated with it. In the resulting Weighted Least Squares cost function 

each term is thus scaled by its associated variance, which should 

obviously be known in advance 

 

( )model,i

σ σ= =

−
= = =∑ ∑

2
2

2 2
1 1

( , )

ˆ ˆ

d d
n n

i Ti
WLS

i ii i

y f r
V

u
r Wr

θθθθ
.    (2.8) 

 

W represents a diagonal weighting matrix containing the inverses of the 

variances σ 2î ,  

 

                                      
‡
  Note that this expression is only valid if the columns of K are independent because 
otherwise KTK is not invertible.  
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The fact that W is diagonal follows from the assumption that the noise 

elements are uncorrelated (cf. Assumptions 2.1). The exact meaning of 

the variances σ 2î  depends on the assumptions made concerning the 

relative uncertainties of the different observations. Two special cases 

will be discussed in the next sections (2.5.3 – 2.5.4). Note that if all 

variances are one, the WLS cost function simplifies to the LS expression. 

Also if the variances are not one but all equal, the WLS estimator 

reduces to the LS case, since the cost function is only rescaled by the 

constant variance and hence it will still reach its minimum for the same 

θ̂θθθ . 
 

In analogy with the LS case, the optimal parameter values are defined 

by 

 

=ˆ argminWLS WLSV
θθθθ

θθθθ ,        (2.10) 

 

and an explicit expression for the WLS estimator can be derived if the 

model is linear (and if KTWK is invertible) 

 

( )−
=

1ˆ T T
WLS K WK K Wyθθθθ .       (2.11) 
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2.5.3. Output Weighted Least Squares 
If input noise is negligible and the magnitude of the output noise 

variances is known, the Output Weighted Least Squares (OWLS) 

estimator is commonly used [Bard, 1974; Valsami et al., 2000]. This is 
the WLS estimator with σ σ=2 2

,ˆ ˆi y i . So, in the WLS cost function (2.8), 

the squared error is “weighted” by the corresponding output variance. 
However, by only considering the output variances it is presumed that 

σ 2
,ŷ i  is a good estimate of the variance of the error, i.e. yi - fmodel,i(u, θθθθ), 

in (2.8) and hence that the input variations are negligible compared 

with the noise on the output. If this assumption is violated, this can 

lead to a bias in ŴLSθθθθ  [Powell and Macdonald, 1972]. In the next 
section, a refinement is suggested that better adapts the WLS estimator 

for those cases. 

 

2.5.4. Input Output Weighted Least Squares estimator 
This section presents a refinement of the OWLS estimator in order to 

include the input noise effect as well. W should express the total 

variance of the error (y - fmodel(u, θθθθ)). In the OWLS approach, as only 
the output is supposed to be noisy, fmodel(u, θθθθ) is noise-free and the total 
variance equals the variance of y. In that case, W is indeed composed by 

the inverse variances of the individual output measurements σ 2
,ŷ i .  

 

Now, the aim is to take into account the input variances as well. For 

that, their effect on the fmodel(u, θθθθ) term should be known or estimated. 
This is achieved by linearisation of the input noise contribution, as was 

already described by Clutton-Brock [1967] in the framework of likelihood 
functions. Chandler [1972] has reformulated the problem in terms of 
Weighted Least Squares. Figure 2.3 schematically represents this 

adjusted noise conceptualization. In fact, the input noise is transformed 

into output noise via a linearised approximation, and added to the 

original output noise, by that way delivering an improved estimation of 

the total variation. Now the refined weighting matrix is still a diagonal 

matrix, but composed by inverse variances σ 2
î , which are first order 

corrections of σ 2
,ŷ i : 
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( )σ σ σ −

=

∂
= + ⋅ =

∂∑
2

12 2 2
, ,

1

ˆ ˆ ˆ [ ]
d
n

i
i y i u j

j j

y
i

u
W .     (2.12) 

 

Note that in the special case where input variations appear to be 

negligible compared to output variations, the refined weighting matrix 

simplifies to the WLS W, as the correction term in (2.12) tends to zero. 

Therefore, (2.12) is generally applicable, and it is not necessary to make 

a priori checks about whether or not the input noise is negligible. 

Substituting this expression for W in the equation of the WLS cost 

function (2.8), creates a refined cost function which finally takes the 

input variations into account. The resulting Input Output Weighted 

Least Squares (IOWLS) cost function and estimator, are easily derived 

in analogy with the OWLS situation, only adapting the content of the 

weighting matrix W.  

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2.3. Scheme of the noise transformation underlying the refined total noise 

estimation. It is as if there were no input noise added to the input variables, instead 

the input noise is transformed into output noise and added to the original output 

noise. The resulting total noise is treated as if it were merely output noise, but 

actually it represents an estimation of the total variation. Meaning of boxes is as in 

Figure 2.2. 
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Summary 

Assumptions 

LS:   

σu,i
2 = 0 and σy,i

2 = σy
2 (∀i). 

WLS:   

σy,i
2 are known or priorly estimated (∀i),  

 and σu,i
2 = 0 (∀i) (OWLS) 

 or σu,i
2 are known or priorly estimated (∀i) (IOWLS) 

 

=ˆ argminV
θθθθ

θθθθ  with 

LS:  

( )model,i
= =

= − = =∑ ∑
2 2

1 1

( , )
d dn n

T
i iLS

i i

V y f ru r rθθθθ . 

WLS:  

( )model, i

σ σ= =

−
= = =∑ ∑

2
2

2 2
1 1

( , )

ˆ ˆ

d d
n n

i Ti
WLS

i ii i

y f r
V

u
r Wr

θθθθ
. 

 with ( )σ σ −= = 12 2
,

ˆ ˆ [ ]i y i iW  (OWLS) 

or ( )σ σ σ −

=

∂
= + ⋅ =

∂∑
2

12 2 2
, ,

1

ˆ ˆ ˆ [ ]
d
n

i
i y i u j

j j

y
i

u
W  (IOWLS) 
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2.6. A note on the residual cost function 
value 

At this point a value can be found for the unknown parameter, i.e. the 

original question can be answered. However, the system identification 

ladder does not stop here, since nothing is known about the quality of 

this value. How much can this estimated value be trusted? Indeed, the 

observations and the model used to come to this value are generally not 

perfect, and some quantification of this imperfection could help to 

evaluate the reliability of the whole procedure. An overall figure of merit 

is the residual cost function value. 

 

We saw that ŴLSθθθθ  corresponds to that parameter value for which the 

WLS cost function (2.8) is minimal. Due to measurement noise, even for 

the optimal parameters there will be a residual difference between the 

measurements y and the optimal model values fmodel(u, ŴLSθθθθ ). Therefore, 

the minimal value of the WLS cost function VWLS(ˆWLSθθθθ ) will not be 

zero, but equal to a residual value. If the σ 2
î  used in the cost function 

are a good approximation of the true σi
2, and under the previously 

stated noise assumptions (cf. Assumptions 2.1), this residual value has 

the interesting feature of being a sample from a χ2 distribution with nd - 
nθ degrees of freedom [Box, 1970; Rod and Hancil, 1980], where nd 
stands for the number of measurements and nθ for the number of free 

parameters in the model. Formally, 

 

θ
χ −∼ 2ˆ( )

d
n nWLS WLSV θθθθ

.        (2.13) 

 

Using this information, it is possible to assess the “probability” of a 

residual cost function value. If the residual value falls beyond a chosen 

confidence limit, the results should be rejected for being “unlikely”. For 

instance, if the residual value is significantly higher than expected, the 

remaining difference between model and measurements is too high to be 

explained only by stochastic measurement noise. This significant 

difference between the expected and observed residual cost function is 

an indicator of systematic errors. These can be due to  

(i)  model errors,  
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(ii)  artefacts in the measurements,  

(iii)  ill estimation of the experimental uncertainties, or 

(iv)  numerical issues like a non-global (i.e. local) cost function 

minimum.  

 

In order to determine exactly which one or combination of these four 

possibilities is the cause of the unexpected residual cost function, it is 

necessary to analyze replicate datasets or to use external information. 

 

To summarize, using a WLS cost function has the additional benefit of 

providing an internal quality control of the modelling results, via 

interpretation of its residual value. Yet, note that this property is only 

valid as long as the noise assumptions hold. For more detailed 

information, the individual residual terms can be inspected, possibly 

giving more insight in the quality of the observation versus that of the 

model. Another way to quantify the modelling reliability is by 

estimating the uncertainties associated with the parameter values found. 

This will be the subject of next section. 

 

2.7. The parameter uncertainty 
In order to interpret the estimated parameter values, it is necessary to 

assess the uncertainty associated with them. Due to the noise on the 

data used to estimate the parameters, the parameter values will 

generally not equal the hypothetical true values. This difference or error 

resulting from stochastic variations is referred to as precision. Accuracy 
described the closeness of a result to its true or accepted value, i.e. 

whether systematic errors are present or not [e.g. Skoog et al, 2000]. 
 

2.7.1. Linearised Covariance Matrix (LCM) 
For linear models, straightforward “error propagation” calculations are 

easily performed since an explicit expression for the parameters as a 

function of the measurements exists (see Eqs. (2.7) and (2.11)). The 

parameter covariance matrix (Cov) can then be estimated by 
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( )−
=

1ˆ( ) TCov K WKθθθθ ,        (2.14) 

 

with W the weighting matrix. Obviously, it is important to use that W 
that takes into account all significant variances, i.e. both input and 

output variances if necessary. The diagonal elements of ˆ( )Cov θθθθ  are the 

parameter variances, the off-diagonal elements present the covariances. 

 

For nonlinear models, such an exact expression does not exist. 

Alternatively, approximations for Cov are often used, usually providing 
reasonable parameter uncertainty estimates. We consider the following 

first order approximation of Cov, assuming that the model can be 
linearised with respect to the parameters near the optimal values: 

 

( )−
=

1ˆ ˆ ˆ( ) ( ) ( )TCov J WJθ θ θθ θ θθ θ θθ θ θ
,        (2.15) 

 

where ˆ( )J θθθθ  stands for the (nd × nθ) Jacobian matrix of the model 
function fmodel(u, θθθθ) at θ̂θθθ , 
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If the model is linear-in-the-parameters (cf. Eq. (2.4)), the Jacobian 

matrix (2.16) equals the linear model matrix K, and Eq. (2.15) will 

indeed simplify to Eq. (2.14). Using the Linearised Covariance Matrix 

(LCM) expression (2.15) to estimate the parameter uncertainty has the 

benefit of being very easy and fast to compute [Donaldson and Schnabel, 
1987], e.g. it can usually be integrated in the parameter optimization 

algorithm as a final one-step calculation. The main disadvantage is that 
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in case of nonlinear models, the calculated parameter variances are only 

approximations. However, expression (2.15) has been proven to be 

asymptotically exact [e.g. Pintelon and Schoukens, 2001], i.e. for 
increasing number of measurements (2.15) approaches the true 

covariance matrix, even if the model is nonlinear. If the number of data 

is small, the accuracy of the approximation varies for each dataset and 

each model, depending on the “degree of nonlinearity” and the signal-to-

noise ratio of the model-measurement combination. In some cases it can 

become very poor. 

 

Finally, other approximations for Cov exist, e.g. using the Hessian 
matrix (second derivative) instead of the Jacobian. However, it has been 

shown that these computationally more expensive and numerically less 

stable alternative procedures do not improve the uncertainty estimation 

significantly [Donaldson and Schnabel, 1987; Varah, 1990].  
 

2.7.2. Monte-Carlo and other resampling methods 
“The term ‘Monte Carlo’ was coined by Nicholas Metropolis during the 

Manhattan Project of World War II, because of the similarity of 

statistical simulation to games of chance, and the allusion to the capital 

of Monaco.” [Minasny and McBratney, 2002]. 
 

We already mentioned that for nonlinear models no explicit expression 

for the optimal parameters exists and therefore no analytical “error 

propagation” expression can be derived. Instead, Monte-Carlo, bootstrap 

or jackknife simulations are often used to estimate the parameter 

uncertainty [Meinrath et al., 2000 and references therein]. These 
procedures consist of simulating a large number of datasets, based on 

the true measurements, but either with a different simulated random 

noise realization (Monte-Carlo) or with a different subsampling from the 

original dataset (bootstrap and jackknife). For each such “synthetic 

dataset” the optimal parameters are estimated. This results in a 

distribution of best-fit parameter values from which the statistical 

properties can be examined.  
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Usually these methods are said to deliver accurate results as long as 

enough simulations are performed [e.g. Massart et al., 1997]. However, it 
is often not mentioned that an additional condition for reliable results is 

the use of an accurate parameter estimator. Indeed, these simulation 

methods use perturbations around the optimised parameter values. 

Therefore, it is implicitly assumed that these parameter values are 

unbiased. For instance, if input noise is negligible, the OWLS estimator 

(cf. 2.5.2) is unbiased and can be used. However, if input noise is not 

negligible, this is not true anymore and another, unbiased estimator 

should be chosen. In short, these simulation methods are useful tools to 

assess parameter uncertainties, as long as some conditions are met. 

Their main disadvantages are that they are (i) time-consuming, due to 

the large number of simulations to be processed, and (ii) more 

troublesome to incorporate in an automated routine calculation, because 

e.g. optimisation problems may occur for particular noise realizations or 

resamplings.  
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Part A: 
Compartmental models 

 

 

 

 

Although this Part A groups a number of quite diverse modelling issues, 

all are applied to one common application, namely compartmental 

models for tracer experiments. Therefore, it seems appropriate to first 

reserve a special chapter to sketch the fundamental ideas of tracer 

studies and introduce the models used (Chapter 3). This chapter should 

familiarise the reader with the kind of data and the  model class that 

will be considered in this first thesis part. After this introduction, three 

subsequent chapters discuss three different steps on the system 

identification ladder: estimation of the model parameters and their 

uncertainty (Chapter 4), identifiability (Chapter 5) and model selection 

(Chapter 6). In every chapter the tracer experiment is the application of 

interest, but the issues raised here are general. Note that the order of 

the chapters does not reflect the logical sequence of steps, but are rather 

an expression of the chronology of the work.  
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Chapter 3: 
 

Tracer experiments 
and models 
 

 

 

“An isotopic tracer, (also "isotopic marker" or "isotopic label"), is used 
in chemistry and biochemistry to help understand chemical reactions and 
interactions. In this technique, one or more of the atoms of the molecule 
of interest is substituted for an atom of the same chemical element, but 
of a different (…) isotope. Because the atom has the same number of 
protons, it will behave in almost exactly the same way chemically as 
other atoms in the compound, and with few exceptions will not interfere 
with the reaction under investigation. The difference in the number of 
neutrons, however, means that it can be detected separately from the 
other atoms of the same element.  
 
(…) 
 
Isotopic labeling is a technique for tracking the passage of a sample of 
substance through a system. The substance is 'labeled' by including 
unusual isotopes in its chemical composition. If these unusual isotopes 
are later detected in a certain part of the system, they must have come 
from the labeled substance.” 
 

From Wikipedia, the free encyclopedia. 
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3.1. Introduction 
The purpose of tracer experiments is to follow the path of a specific 

compound through a natural system in order to retrieve information 

about internal processes, and more in particular about the rates of these 

processes. In this chapter an introduction is given both on the 

experimental setup and on the model class chosen in this thesis to 

describe this kind of datasets. 

   

3.2. Tracer experiments 

3.2.1. Necessity 
Tracer experiments originate from the need (or the will) to quantify the 

different processes transforming and transporting nutrients between 

various reservoirs. How fast are nutrients taken up by e.g. 

phytoplankton? And at what rate are they released again to the aquatic 

environment? There are two main reasons why changes in total nutrient 
concentration do not deliver satisfactory answers, and thus why tracers 

are needed.  

 

“Most importantly, although changes in the concentration of a particular 
nutrient with time can provide information on the net balance of 
production or use of that nutrient, such changes are often the result of 
multiple metabolic reactions. Tracer procedures allow us to dissect the 
individual processes contributing to the net flux.” [Glibert and Capone, 
1993].  

 

Besides the more specific information tracers provide, isotopic tracers 

were also introduced because they can be measured with superior 

analytical precision [Harrison, 1983], enabling the measurement of fluxes 
in field conditions where rates of exchange are small or in close balance 

(small net change). 

 

A tracer should satisfy a number of properties to be useful. The 

necessary properties for an isotopic tracer are summarised below 

(Assumptions 3.1). 
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Assumptions 3.1 (behaviour of isotopic tracer) 

(i) The tracer undergoes the same transformations as the unlabelled 

substrate. This implies e.g. that isotopic fractionation is negligible 

during the exchange processes. 

(ii) There is no exchange of the isotope between the labelled compound 

and other compounds in the system.  

(iii) The tracer is initially not in isotopic equilibrium with the system 

under study, otherwise only net fluxes can be detected. 

(iv) The tracer addition does not perturb the state of the system as a 

whole, i.e. the compartments nor the transformation processes are 

significantly perturbed. 

(v) The change of the tracer over time is quantifiable. 

 

 

The validity of these assumptions in real applications is not always 

straightforward to check. In some cases they have been verified. For 

silicon, for instance, assumptions (i) and (ii) are not seriously violated 

[De La Rocha et al., 1997]. For nitrogen, a numerical test has shown 
that fractionation effects are negligible compared to the elevated level of 

isotopic tracer present in a tracer experiment (in natural abundances 

fractionation may be significant) [Elskens et al., 2005]. If incubation 
times are too long, assumption (iii) may eventually be violated. To 

satisfy assumption (v), tracer additions < 10% of the ambient 

concentration are used, if possible. 

 

 

3.2.2. Experimental design 
Usually the experimental procedure proceeds as follows: 

(i) sampling of water, 

(ii) determination of initial conditions (concentrations), 

(iii) addition of tracer as an isotopically labelled compound, 



Part A 

34 

(iv) incubation under appropriate conditions, 

(v) filtration of the water to separate particulate fraction (plankton), 

(vi) analysis of the phases of interest. 

 

Note that the composition of the phases are only determined at the 

beginning and at the end of the experiment. This kind of endpoint 
method (versus a kinetic experiment) is used for reasons of experimental 
feasibility. Through history, the protocol has been adapted mostly 

concerning when and in which phases the isotopic composition and/or 

total nutrient concentration should be measured. These decisions depend 

on the processes assumed (not) to occur during incubation, and hence 

are tightly related to the model proposed to represent these 

transformations. 

 

3.2.3. Elements 
Especially in the early days of tracer studies, the focus was mainly on 

nitrogen compounds. This interest originates from the need to better 

understand the role of the oceans in the sequestration of atmospheric 

carbon dioxide.  

 

“In order to quantify the carbon dioxide fluxes exchanged at the air-sea 
interface, there is nowadays a general consensus to integrate physical 
processes (hydrodynamics), chemical processes (thermodynamic pump) 
and biological activities (biological pump). The latter are responsible for 
the photosynthetic carbon fixation (primary production) and carbon 
dioxide release through respiration and remineralisation of organic 
matter. On a global scale, the main part of the particulate organic 
matter (POM) is recycled within the euphotic zone (…). Carbon dioxide 
returns to the atmosphere within relatively short times scales ranging 
from days to months.” [Elskens, 1999]. 
 

The remaining carbon can escape the photic zone. Quantification of this 

biologically mediated export of organic matter is crucial because it 

represents a potential long term sink for atmospheric carbon dioxide. 

The biological pump, which is principally driven by photosynthesis by 
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phytoplankton, is usually not limited by the availability of carbon, but 

by other nutrients. Biological oceanographers have historically tended to 

think of nitrogen to limit photosynthesis, which is the first reason why 

to study the nitrogen cycle. Now it is known that other elements can 

also be limiting, depending on the system under study, e.g. phosphorus, 

iron, … 

 

An additional reason to study the nitrogen flow through the ecosystem 

is that it seemed to hold the key to assess the exportable proportion of 

primary production. Dugdale and Goering [1967] argued that the rate of 
export of organic nitrogen from the upper ocean is determined by which 

nitrogen source the phytoplankton community uses (Figure 3.1).  

 

 
Figure 3.1. This diagram shows the origins of the terms new and regenerated 

production. To put it simply, new production is that derived from nitrate (NO3), 

while regenerated production is derived from ammonium (NH4). Since nitrate is 

believed to only be produced at depth (via nitrification), knowing the ratio between 

new and regenerated production (the so-called f-ratio) allows one to infer the flux of 

organic nitrogen from the photic zone to the aphotic zone. 
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Ammonia is the so-called “regenerated nitrogen”, because it is formed 
by recycling within the system. Therefore, if the system is in steady 

state all primary production associated with ammonia should remain in 

the system. Only “new production” from “new nitrogen” like nitrate 
(and N2) can be exported to the deep ocean, because the new nitrogen 

sources are supplied from outside the upper ocean system and can 

replenish the lost phytoplankton. Although this paradigm is still today 

the basis of many studies on export production, it should be pointed out 

that the strict distinction between ammonia uptake representing 

regenerated production and new production being supplied by nitrate 

does not always hold.  

 

Finally, nitrogen occurs in a relatively constant ratio to carbon and 

phosphorus, such that inferences about these latter elements can still be 

made.  

 

This being said to motivate the study of nitrogen, also silicon tracer 

experiments will be considered in the chapters of Part A. Why study 
silicon? A special phytoplankton species, called diatoms, need silicic acid 

for the formation of their frustules (Figure 3.2), so studying silicon 

dynamics can be used as a clue to better understand the behaviour of 

diatoms in the oceans. Diatoms are said to make up about a quarter of 

the world’s plant life’s weight. So it is not surprising that in many 

regions they are important members of the phytoplankton community 

and major primary producers [e.g. the Southern Ocean, Brzezinski et al., 
2001]. Due to their siliceous skeleton, they are heavier than many other 

phytoplankton species, and hence are more likely to sink to the deep 

ocean after dying. This sinking is a key process in the framework of 

export production or the quantification of the amount of CO2 that can 

be sequestered in the deep ocean.  
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Figure 3.2. Part of a large group of cleaned diatom 

frustules arranged by the hand of some anonymous 

Victorian microscopist indulging one of the 

microscopical pastimes of the day. Most diatoms are 

much less than half a millimetre in size. This picture 

illustrates the enormous variety of (beautiful) shapes 

exhibited by diatoms. Charles Darwin would have said 

in 1872: “Few objects are more beautiful than the 

minute siliceous cases of the diatomacaea”.  

 

from: 

http://www.micrographia.com/specbiol/alg/diato/diat

0100.htm, last viewed on 6 December 2006. 

 

 

 

3.3. Models for tracer experiments 
Tracer experiments are generally modelled by a compartmental model 

scheme. In this scheme every environmental reservoir is symbolised by a 

compartment, and connecting arrows represent the exchanges between 

compartments or between compartments and the exterior. The aim of a 

tracer experiment (and modelling) is to quantify the rates at which 

these exchanges occur.  

 

 

 

 
Figure 3.3. Schematic representation of an elemental process. The box or 

compartment represents an environmental reservoir, characterised by the 

concentration of the studied compound C ([C]) and its isotopic composition 

(expressed by the atom% excess æ). The arrows represent the incoming and 

outgoing fluxes of material. The flowing material has its own isotopic composition 

(æin and æout) and is associated with a flux rate (Φin and Φout).  
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æout 

Φout 
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3.3.1. The elemental process 
Every compartmental model, regardless of its complexity, can be 

decomposed in one or several elementary processes, as the one shown in 
Figure 3.3. 

 

Any compartment is characterised by the concentration and by the 

isotopic composition for the studied compound. The concentration, 

usually expressed in µM (= µmol/l), is symbolised by rectangular 

brackets in Figure 3.3, but to avoid unnecessary heavy notation these 

brackets will usually be dropped. The isotopic composition is expressed 

in terms of atom% excess æ, defined by  

 

    
  ⋅        sample natural

[special isotope] [special isotope]
æ = - 100% 

[sum of all isotopes] [sum of all isotopes]
,

           (3.1) 

 

where all the isotopes of the element of interest are considered and the 

“special isotope” is in most cases the heaviest isotope. 

 

The in- and outflowing material can have a different isotopic 

composition (æin and æout). The flux rates Φin and Φout (usually 

expressed in µM/h) are the unknowns to be quantified. 

 

3.3.2. Assumptions and elemental equations 
To translate the compartmental scheme to real model equations, a 

number of assumptions are to be made. The assumptions associated 

with the elemental process are given below (Assumptions 3.2) and will 

be the basis for the compartmental models further considered in this 

study. Note that they are distinct from the hypotheses made regarding 

the nature of the tracer (Assumptions 3.1). However, they are tightly 

linked to the experimental design since this delivers the available data 

to be modelled. 
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Assumptions 3.2 (elemental process and equations) 

(i) At the beginning, only the one spiked pool and the fluxes directly 

flowing out of this compartment are isotopically enriched. 

(ii) The enrichment of a flow at any time is equal to the abundance of 

the originating compartment at the moment of leaving this 

compartment. 

(iii) The flux rates Φin and Φout are constant, because with the endpoint 

experimental design only the average rate over the incubation can 

be determined. If real kinetic data were available, a mechanism 

could be postulated and time-varying flux rates could be assumed. 

 

Note that the only exception to assumption (iii) is Chapter 5, where flux 

rates proportional to the source compartment concentration (first order 

reaction) will be considered. But for consistency reasons, only the 

pseudo-zero order rates are further assumed here. 

 

With these assumptions in mind, the elemental process of Figure 3.3 can 

formally be transformed in mass balance equations, stating the change 

of concentration and atom% excess over time: 

 

( ) ( )

∂ = Φ − Φ ∂
∂ Φ Φ
 = − − −

∂

C
æ

æ ( ) æ ( ) æ ( ) æ ( )
( ) ( )

outin

in out
outin C C

C

t

t t t t
t C t C t

.   (3.2) 

 

 

With these equations the basic building block of the compartmental 

tracer model is fully defined.  
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3.3.3. Generalised Elskens et al. [2002] model 
During the last four decades, several models have been proposed in 

literature, each combining a number of these elemental processes in a 

different way. It would lead us too far to sum them all up; interesting 

overviews can be found in Glibert et al. [1982], Harrison [1983], Glibert 
and Capone [1993] and Elskens et al. [2005]. The exact number of 
compartments and fluxes considered reflect both the experimentally 

available data and the presumed biological processes active.  

 

All the tracer models (even the small silicon model in Chapter 4) used 

in this doctoral study are special cases of the generalised model designed 

by Elskens et al. [2002] to model the transfer of 15N into different 
particulate and dissolved nitrogen pools during a 15N tracer experiment. 

Many of the models previously proposed in literature can also be 

interpreted as simplified cases (valid under some additional 

assumptions) of this generalised model. Therefore, it seems relevant to 

present this model in some more detail, although it is extensively 

described and validated in Elskens et al. [2002, 2005]. 
 

Figure 3.4 shows a schematic outline of the Elskens et al. [2002] model. 
It consists of a number of dissolved nitrogen pools (Di, with i = 1, …, n 
the nitrogen substrate) and one particulate nitrogen reservoir (P). The 
associated experimental setup is such that every Di has been enriched in 

a separate tracer experiment, such that the influence of each Di on P 
has been assessed by measuring the respective resulting isotopic 

enrichment in P. So for every experiment the following quantities are 
measured: concentration and isotopic enrichment of the spiked dissolved 

pool (Di and æ iD ), and concentration and isotopic enrichment of the 

particulate pool (P and æP ). Note that no subscript i is used for P, 
because the particulate concentration change is supposed to be the same 

for all experiments (in practice the average is usually taken.  

 

The compartments are interconnected and related to the exterior 

(symbolised by the source and the sink) by a number of arrows. The 

source term represents all processes giving rise to a regeneration of 

dissolved nitrogen, such as excretion by the plankton communities, 

bacterial transformation from one nitrogen compound to another (e.g.  
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Figure 3.4. Schematic outline of the Elskens et al. [2002] model. See text for 

explanation and meaning of the symbols. 

 

 

 

 

 

 

Assumptions 3.3 (Elskens et al., 2002 model) 

(i) Experimental setup: every dissolved pool is enriched in a separate 
experiment (n experiments), such that in each experiment only one 
pool is enriched at a time. 

(ii) At the beginning of each experiment, only the one spiked pool and 

the fluxes directly flowing out of this compartment are isotopically 

enriched. 

(iii) The enrichment of a flow at any time is equal to abundance of the 

originating compartment at the moment of leaving this 

compartment. Summarised, = =æ æ æ ( )
i i i

U LD D t , æ 0
i
R =  and 

=æ æ ( )
i i

LP P t , with i being the enriched pool. 

(iv) The flux rates are constant (see Assumptions 3.2 for motivation).  

 

P, æP  

D1, æ
1
D  

Dn, æ
nD  

�  
Ui LP 

sink source . 
Ri 

LDi 
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nitrification), etc. The magnitude of these regeneration flows to each 

dissolved pool is given by the flux rates Ri. The particulate phase can 
take up dissolved nutrients from the different Di -pools. The associated 

uptake flux rates are symbolised by Ui. The sink term accounts for all 
processes responsible for missing nitrogen within the time span of the 

incubation, such as adsorption of nitrogen on container walls, lysis of 

cells, etc. The material flowing to this sink can either come from the 

dissolved pools (loss rates LDi) or the particulate compartment (loss 

rate LP). The assumptions relevant for this model are almost identical 
to those for the elemental processes (Assumptions 3.2). 

 

Combining these assumptions, a set of 3n + 1 differential equations can 
be attached to the model:  

 

( )

( )

∂
= − − ∂


∂

= − ∂
∂ = −
 ∂
∂
 = − − ∂

∑

∑

æ
æ æ ( )

( )

æ
æ ( ) æ ( ) æ ( )

( ) ( )

i

i i

i

i i i

i
i i i

D i
R D

i

i
i

P i
D P P

i

D
R LD U

t

R
t

t D t

P
U LP

t

U LP
t t t

t P t P t

,    (3.3) 

 

three for every tracer experiment (mass balance of Di, æ iD and æP ), and 

one for the concentration in the particulate pool, whose change should 

be the same for any incubation of equal duration, since it is independent 

of isotopic composition (so usually the average is taken). In its most 

complete form, there are 3n + 1 unknown flux rates to be estimated: R1, 
…, Rn, U1, …, Un, LD1, …, LDn and LP. How these can be estimated, as 
well as their uncertainty is the subject of the next chapter.  

 

In some situations one may have prior knowledge about the system 

allowing to discard one or more of these flux rates. For instance, one 

may argue that in some conditions denitrification is unlikely and thus 

loss from the nitrate pool can be neglected (or set to zero). If no such 
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prior knowledge is at hand, it would be useful to find a way to 

objectively determine from the data whether such conditions are present, 
i.e. whether some of the theoretically possible exchanges are not really 

occurring. This aspect will be discussed in Chapter 6. Note that in all 

the above statements, we simply take for granted that this set of 3n + 1 
equations contains enough information to estimate all 3n + 1 unknown 
flux rates, which is not obvious at first sight. Chapter 5 discusses how 

this can be verified. In each of these chapters, a different specific model 

(class) is taken as a case study to illustrate the introduced techniques, 

mostly chosen based on external reasons, like temporary collaborations.  

 

3.4. Conclusions 
In this introductory chapter the basic ideas and assumptions underlying 

tracer studies were presented. The Elskens et al. [2002] model describes 
how total concentration and isotopic composition change with time, and 

enables the estimation of the relevant flux rates. The quality of the 

these estimates will obviously depend on the quality of the 

measurements, but also on the assumptions not being violated. If this 

happens, a systematic error could be introduced, thus compromising the 

reliability of the outcome.  

 

To conclude this chapter, it may be interesting to take a closer look at 

some of these possible limitations of the Elskens et al. [2002] model. 
 

1. To construct the model equation æ iR  must be known. The 

assumption of æ iR = 0 is made, because in most cases it seems 

reasonable that it will take some time before enriched incorporated 

compounds are released back into solution. However, the risk of 

violating this assumption increases with increasing incubation time, 

implying that the incubation duration should be minimised. 

However, the smaller the incubation time, the smaller the changes in 

concentration and isotopic composition will be, converging to no 

detectable change at all. The flux rates are based on these changes, 

so with short incubations, the estimation of the flux rates will also 

become less reliable. In short, increasing the incubation times 
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possibly introduces a systematic error, thus reducing the accuracy of 

the flux rate estimates, while reducing the incubation times degrades 

their precision. Clearly no perfect solution exists and a compromise 

has to be struck. 

 

2. A similar situation is encountered for æ iLP . Here the assumption is 

made that =æ æ ( )iLP P t , which is reasonable if the particulate 
compartment is homogeneous. However, in reality the particulate 

phase is defined as that fraction of the sample that is collected on a 

filter, and hence can be composed by many constituents. For 

instance, if dead material is present in the particulate phase, it 

cannot take up any nutrients and therefore cannot be isotopically 

enriched. To solve this problem, the relative composition of the 

particulate compartment should be known, along with the isotopic 

signature of each constituent. This is experimentally impossible.  

 

3. In the model structure (Figure 3.4), no exchanges between the 

dissolved compartments are assumed. This means that the 

particulate compartment can only take up enriched compounds from 

the spiked compartment. However, in some conditions it may be 

necessary to include the possibility that one dissolved compound is 

transformed into another dissolved compound before being taken up 

by the phytoplankton. For instance, in the Scheldt the conditions are 

such that nitrification (transformation of ammonia into nitrate) is a 

significant process. This additional flux can be added to the model 

structure and equations, but to estimate it, an additional 

measurement has to be included in the experimental design as well. 

Instead of only measuring the spiked dissolved compound 

(concentration and æ), the connected dissolved compound also has 

to be measured. In the case of nitrification, this has now been 

implemented in our department, but this setup will not be further 

considered in this thesis. 
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Chapter 4: 
 

Estimation  
of flux rates  
and their uncertainty 
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4.1. Introduction 
The goal of this chapter is to estimate the parameters of a simple 

compartmental model and their uncertainties. In other words, some of 

the estimation concepts introduced in Chapter 2 are applied to one 

particular model of the class of compartmental models presented in 

Chapter 3. For the first time when modelling a tracer experiment, both 

the input and the output variances are taken into account, and the 

effect of doing this is assessed. This chapter is a transcription of my first 

article (but published as second) [de Brauwere et al., 2005b].  

 

4.2. Problem statement 

4.2.1. The system 
The system under study consists of the consumption and regeneration of 

silicic acid by phytoplankton (diatoms). When taking up silicic acid, 

diatoms transform the silicon into biosilica to form their frustules. After 

dying, the diatom’s skeleton can dissolve such that silicic acid is released 

back into solution. The question is to determine the rate at which these 

processes occur. A general motivation to study silicon in the oceans, and 

in particular to better characterise the production and dissolution of 

biosilica, was given in section 3.2.3.  

 

4.2.2. The measurements 
To answer this question, the samples are spiked with 30Si-enriched silicic 

acid [Beucher et al., 2004a]. Due to the spike, the system is not in 
isotopic equilibrium anymore. The exchange of silicon is followed by 

sampling the dissolved pool (silicic acid) and the particulate phase (Si 

incorporated in phytoplankton under the form of biosilica), just after 

the spike (t = 0) and after a certain incubation period (t=tinc). In those 
samples both total silicon concentration and silicon atom% excess is 

measured. Recall that atom% excess is a way to express the isotopic 

composition of the silicon pool. For Si it is defined as 
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  ⋅        

30 30

28 29 30 28 29 30
sample natural

[ Si] [ Si]
æ = - 100% 

[ Si]+[ Si]+[ Si] [ Si]+[ Si]+[ Si]
 

           (4.1) 

 

 

4.2.3. The model 
In order to extract the unknown uptake and regeneration rates from 

these measurements a two-compartmental model is used, which is 

depicted in Figure 4.1.  

 

To translate this conceptual structure into useful model equations, a 

number of assumptions are necessary, based on the rationale presented 

in sections 3.3.2 and 3.3.3. The specific assumptions for this simple 

silicon model are given below.  

 

The rationale behind assumption (iii) is based on the general 

assumption that only dead diatoms can dissolve, and thus regenerate 

silicon. Moreover, Beucher et al. [2004b] showed that the dissolution 
(regeneration) rate correlates with the percentage of dead diatoms. It is, 

therefore, reasonable that a finite period of time is required before any 

of the tracer will appear in the regenerated material [Elskens et al, in 
press]. The risk of violating this assumption (and introducing a 

systematic error) increases with increasing incubation time. However, 

reducing the incubation time also lowers the observed changes in 

concentration and isotopic abundance, and hence deteriorates the 

precision of the final flux estimates, based on these differences. The 

choice of the incubation time should indeed be made with care, in order 

to find an acceptable compromise between accuracy and precision [see 

Elskens et al, 2005]. 
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Figure 4.1. The compartmental model used for estimating the uptake and 

regeneration rates of silicic acid. Compartments represent the pools of silicic acid 

(dissolved phase, D) and biosilica (particulate phase, P). The arrows symbolize the 

rates of silicic acid uptake (U) and regeneration (R). 

 

 

 

 

 

 

Assumptions 4.1 (Silicon model) 

(i) Model structure: all the Si that leaves the dissolved pool appears as 
particulate biosilica and Si recycling is regarded as a process that 

transfers Si from the particulate to the dissolved pool. 

(ii) Experimental setup: at t = 0 only the dissolved pool is enriched 
with a spike of heavy Si. 

(iii) The regeneration of substrate consists of non-enriched compounds, 

i.e. the abundance of regenerated species equals the natural 

abundance (æR = 0%). 

(iv) The compounds flowing out of the dissolved pool are enriched with 

the same isotopic abundance as this pool at the moment of leaving 

the compartment (æU(t) = æD(t)).  

(v) The flux rates R and U are constant because they represent average 
values over the incubation experiment duration.  
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Assuming this, the following differential equations can be written 

 
∂ = − ∂
∂ = − ⋅
 ∂
∂ = −

∂
∂ −
 = ⋅ + ⋅

∂

æ æ

æ æ æ æ

D D

P P D P

D
R U

t

R
t D
P

U R
t

R U
t P P

.      (4.2) 

 

When the equations (4.2) are integrated, the actual model equations, i.e. 

of the form y = fmodel(u, θθθθ) (cf. Eq. (2.3)), are obtained: 
 

( )

( )

−

−

= + − ⋅



 − = − ⋅ + ⋅   
 = + − ⋅

  

− ⋅   − = ⋅ − + ⋅   + − ⋅     

( ) (0) ( )

æ ( ) æ (0) æ (0) 1
(0)

( ) (0) ( )

æ (0) æ (0) (0)
æ 1 1

(0) ( ) (0)

R
U R

D D P

R
U RD P

P

D t D R U t

R U
t t

D

P t P U R t

D R U
t

P U R t D

   (4.3) 

 

The unknown parameters are the flux rates R (regeneration rate) and U 
(uptake rate). From the above equations we can also see that the input 

variables are the measurements at the beginning of the experiment 

(t=0) or initial conditions: D(0), æD(0), P(0) and æP(0). The output 
variables are measurements of the same quantities but performed after 

the incubation (t= tinc): D(tinc), æD(tinc), P(tinc) and æP(tinc). Due to the 
second and the fourth equations, this model is nonlinear in the 

parameters R and U and in the input variables. With four output 
measurements and two parameters to be estimated, the system has two 

degrees of freedom. 
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This model is a special (simplified) form of the Elskens et al. [2002] 
compartmental model, extensively discussed in Chapter 3. It was used 

only once before this study [Beucher et al., 2004a], but then all analyses 
were performed assuming negligible input noise.  

 

4.2.4. Noise assumptions 
Clearly, input and output measurements are equivalent and thus it is 

not justified to assume that the input variations are negligible. Also, it 

should be noted that the input, respectively the output variables are 

composed of four different quantities, which are each measured in a 

different experiment. Consequently, the noise variance of one 

observation is, in general, independent and different from that of 

another observation (heteroscedastic data). In other words, the 

weighting matrix is diagonal but each element should have a different 

value, expressing the combined input-output uncertainty associated with 

the respective model equation – as defined in Eq. (2.12). 

 

4.2.5. Aims 
The first aim of this chapter is to apply the IOWLS formalism to the 

estimation of the Si flux rates and their uncertainties and to assess the 

effect of doing this. The Si model is not new (although only used once 

before), nor is the IOWLS formalism, but it is the first time that both 

are combined to achieve a more accurate estimation. For the 

uncertainty estimation, Monte-Carlo simulations can be performed but 

these can be troublesome due to long calculation times and local 

minima. Therefore, in this chapter it is suggested to use the Linearised 

Covariance Matrix (cf. section 2.7.1). This approach has the advantage 

of being much faster, but as the model is nonlinear, it will only provide 

approximate estimates of the parameter uncertainties. So, besides 

assessing the added value of the IOWLS formalism, this chapter is also 

concerned with evaluating the LCM approach for the parameter 

uncertainty estimation in this particular case.  

 

The next sections are structured as follows: assessment of the use of an 

input-output weighting scheme for the parameter estimation (4.3.1), the 
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interpretation of the residual WLS cost function (4.3.2) and the 

parameter uncertainty estimation (4.3.3). 

 

4.3. Results 

4.3.1. IOWLS parameter estimator consistency 
In this section the added value of using the IOWLS estimator versus the 

more classical WLS estimator is verified. We want to perform this test 

for one arbitrary silicon tracer experiment, thus estimating the R 
(regeneration rate) and U (uptake rate) for that experiment. Note that 
it is not possible to directly assess the accuracy of one estimation, 

because in real life situations the true values of R and U are unknown. 
Moreover, the optimised parameter values depend on the specific noise 

realization of the data. Indeed for replicate experiments different 

estimated parameter values will be found, while actually the same true 

processes are occurring and only the noise term added to the data 

differs.  

 

Instead, simulations can be used to evaluate the consistency of the 
estimation. Simulations are synthetic data created by the user, so they 

provide the advantage of knowing the true parameter values. Studying 

the estimation’s consistency serves to remove the effect of one noise 

realisation. This is achieved by taking into account an increasing 

number of data, such that the influence of noise is progressively 

cancelled out. Estimation consistency describes whether or not the 

estimated parameters converge in probability to the true values when 

the number of data tends to infinity. Formally, an estimator ˆ( )dnθθθθ  is 

consistent if 

 

( )ε
→∞

− > > =
0

ˆlim ( ) 0 0
d

dn
P nθ θθ θθ θθ θ ,      (4.4) 

 

with ε an arbitrary small number.  
 

When both input and output variables are disturbed by noise, the 

OWLS estimator, ˆOWLSθθθθ  as defined in Eqs. (2.8) - (2.10) is inconsistent 
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[e.g. Powell and Macdonald, 1972]. Even with an infinite number of data 
the exact values will not be retrieved. Using simulations, this 

inconsistency can be empirically confirmed, and the behaviour of 
ˆ
IOWLSθθθθ  can be checked. In practice, an increasing number of replicate 

experiments were simulated (same true R and U values, but different 
noise realisations on the input and output data), with 12% random noise 

added to both the input and the output measurements.  

 

Figure 4.2 shows the estimation results using the OWLS and IOWLS 

cost functions. The following observations can be made: 

(i) The OWLS estimator gives inconsistent results for both parameters 

R and U: indeed, in Figure 4.2a and 4.2c the mean of estimated 
parameter values (grey dashed line) does not converge to the true 

value (solid black line), but to a lower value. 

(ii) When the refined IOWLS estimator is used, this inconsistency is 

decreased (Figure 4.2b and 4.2d). This illustrates that the proposed 

refinement represents an improvement of the classical OWLS 

procedure.  

(iii) The ÎOWLSR  values still exhibit a certain bias (Figure 4.2b). This is 

due to the fact that the proposed refinement takes the input 

variations into account via a linearization, which is only a first 

order approximation when the model is nonlinear in the input 

variables.  

(iv) The observed inconsistency is (for both estimators) larger for 

parameter R than for U.  

 

Summarising, the simulation test illustrates that the OWLS estimator is 

inconsistent and that the refinement decreases the inconsistency.  

Finally, most will agree that this estimator property is mostly of 

theoretical importance, since in practice this asymptotical limit is never 

reached. Nevertheless, we have included this section to show that the 

input-output refinement also influences the parameter estimation itself.  
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Figure 4.2. Assessment of estimation consistency. The estimated parameter values 

(in µM/h) are shown as a function of the number of simulated experiments used for 

the estimation. 12% random noise is added to both the input and the output 

measurements. Meaning of the symbols: the light grey solid line represents the 

estimated parameter value, the dashed grey line shows the mean of the estimated 

parameter values, the bold black line shows the true parameter value and the dotted 

lines indicate the estimated 95% confidence interval, estimated using the LCM 

expression. (a) and (b) Consistency of original WLS estimation. The estimation 

shows a small bias: the estimation converges to a value lower than the true value. 

(c) and (d) Consistency of refined WLS estimation. The estimation shows a smaller 

bias. 
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Figure 4.3. Residual cost function values shown in a normalised histogram. The 

normalized histogram of simulated residual cost function values (  ) is 

compared to the expected probability density function with two degrees of freedom 

( ). (a) OWLS cost functions: the histogram does not correspond to the expected 

distribution. (b) IOWLS cost functions: the histogram matches the expected 

function. 

 

 

4.3.2. Residual cost function distribution 
In the situation where input noise is not negligible, the residual VIOWLS 

value is expected to be a sample from a χ2 distribution with nd – nθ 

degrees of freedom, while the residual VOWLS is expected not to be 

(section 2.6). These expectations are verified by Monte-Carlo 

simulations in this section. 1000 different noise realizations were 

generated for the same dataset. These 1000 artificial datasets were 

optimized minimizing (i) the OWLS cost function and (ii) the IOWLS 

cost function. Next, the distributions of the resulting 1000 residual VWLS 
and VIOWLS values were compared to the theoretically expected χ2 
distribution. The results are displayed in Figure 4.3. The cost function 

values are shown in normalised histograms, meaning that their values 
are divided by the number and the width of each histogram bin, to 

enable a quantitative comparison with the theoretical χ2 distribution.  
 

Whereas the IOWLS cost function distribution seems to closely resemble 

the theoretical curve, the OWLS cost function does not. Rather, it 
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exhibits too few low values and too many high values, which is the 

expected pattern for an underestimation of the total variance. So, even 

if, perhaps, the classical OWLS procedure produces quite reliable 

estimated parameter values (cf. previous section), it is not possible to 

interpret its residual cost function in order to get information about the 

“acceptability” of the whole. Moreover, these results confirm that the 

refined weighting matrix taking into account both input and output 

variances is an acceptable approximation of the total variation, and 

clearly better than the output W.  

 

4.3.3. Parameter uncertainty estimation using the LCM 
Two different tests were performed to assess the uncertainty estimation. 

First, a collection of 42 datasets representing real field experiments were 

considered, to compare the parameter uncertainty evaluation for a whole 

range of experimental conditions. Secondly, a simulation test was 

executed with increasing input noise, to assess the sensitivity of the 

LCM method to the input linearisation. 

 

Test 1: field data.  

The 42 experiments were performed by Charlotte Beucher in 2001-2002 

in the Bay of Brest (France), following the tracer experimental setup 

described above. For full technical details we refer to Beucher et al. 
[2004a]. The experiments were executed over a period of a complete year 
(approximately one per week), so a natural array of conditions is 

considered. The dissolved Si concentrations range from 0.85 µM to 10.5 

µM, whereas the particulate Si (biosilica) varies between 0.24 µM and 

4,0 µM. The experimental relative standard deviations, derived from 

replicates, range from 2% to 20%. For each dataset, the parameter 

standard deviations were calculated via  

(i)  the LCM using the output W; 

(ii)  the LCM using the input-output W; and 

(iii) 1000 Monte-Carlo simulations, taken as the reference value 

(associated with an uncertainty of ± 4%). 
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The parameter standard deviations estimated with (i) discard the 

presence of input noise and thus are expected to be lower than those 

found with (ii). But how different are they, and how different from the 

reference estimate derived from Monte-Carlo simulations? These 

questions will be answered in this comparison test.  

 

The results are shown in Figure 4.4. Because the standard deviations are 

of different magnitude, the results are shown as normalised values or 

recoveries, i.e. the estimated standard deviation is divided by the true 
one (derived from Monte-Carlo simulations). In other words, the 

recoveries represent the estimated values, normalised with respect to the 

accepted true value. Clearly and as expected, the uncertainty estimation 

using the output weighting matrix systematically underestimates the 

true parameter variation (the recoveries are systematically below 1). 

The average recoveries are 65% for parameter R and 62% for parameter 
U. On the contrary, the refined estimation is mostly a good 
approximation of the true variation. Sometimes it under- or 

overestimates the true standard deviation, but no systematic deviation 

is apparent. This is illustrated by the much better average recoveries: 

94% and 92% for R and U respectively. This confirms that the refined 
uncertainty estimation is, on the whole, a good approximation of the 

true parameter variation. Nevertheless, it should be kept in mind that 

the LCM remains a linear approximation. Consequently, the recovery of 

the estimated standard deviations depends on the experimental 

conditions, but in an unpredictable way. 

 

Actually, the LCM expression with the input-output W (2.12) contains 

two linearisations. The first is with respect to the parameters, which is 

why it delivers only approximated parameter uncertainties when the 

model is nonlinear and the number of measurements is small. The other 

linearization is with respect to the input variables and originates from 

the input-output W. If the model is linear in the input variables, this 

linearization is exact. Otherwise, as is the case with the Si cycling 

system under study, it is an approximation. The approximation could be 

improved by taking into account higher order terms. But this would 

demand more computational time. Another drawback is that higher 
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order moments should be accurately known, which is not obvious in 

general. 

 

 

 

Figure 4.4. Assessment of the uncertainty estimation applied to 42 real data. The 

recovery achieved by the estimation using the output W (�) and using the input-

output W (�) are compared to the ideal recovery of one. By recovery is meant: the 

estimated standard deviation divided by the true standard deviation (as determined 

by Monte-Carlo simulations). The grey lines represent the approximate 95%  
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Test 2: simulation with increasing input noise. 

In the second test, the performance of the LCM method using both Ws 

was assessed for one experimental condition (simulated), but with 

increasing input to output noise ratio. This exercise can help evaluate 

the sensitivity of the method to the linearization with respect to the 

input. The results are displayed in Figure 4.5. The output noise 

amplitude was always 5% of the output, this means that each noise 

realization was a sample from a N(0, 0.05⋅y) distribution. While the 
output noise amplitude was fixed, the relative input noise amplitude was 

varied from 0.05% to 10% of the input.  

 

Figure 4.5 nicely illustrates that for increasing relative input noise 

(i) the true (from Monte-Carlo simulations) parameter standard 

deviations increase too. This is understandable, because when the 

measurements used to estimate the parameters are increasingly 

variable, the parameter estimation itself will also be subject to an 

enhanced uncertainty.  

(ii) the LCM estimates neglecting input noise remain approximately 

constant and thus are increasingly inaccurate, as expected.  

(iii) the refined standard deviation estimations do show an increasing 

trend, which follows relatively well the true standard deviation. 

Apparently, the refined method produces satisfactory estimations of 

the parameter standard deviations, even when the input noise level 

is of the same or higher magnitude as the output noise (i.e. 5 – 10% 

of the signal). The U uncertainty estimates again appear to be more 
variable and this time also slightly underestimate the true 

uncertainty when the input noise level increases. This is possibly a 

consequence of the linearisations contained in LCM, as discussed 

above.  

 

Finally, note that when the input noise becomes small with respect to 

the output noise, the figures confirm that the refined estimation 

converges to the original estimation. This is expected since the refined 

weighting matrix converges to the original one as the input noise 

variance tends to zero. 
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Figure 4.5. Assessment of the parameter uncertainty estimation for increasing 

input noise. The estimated standard deviation for U and R estimated using the 

output W (�) and using the input-output W (�) are compared to the standard 

deviation derived from 1000 Monte-Carlo simulations ( ). The error bars 

represent the approximate 95% confidence intervals of the standard deviation 

estimates. The relative output noise amplitude is always 5% of the output. So, the 

relative input noise amplitude varies from 0.05% to 10% of the input. 
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4.4. Summary 
The model studied in this chapter is designed to describe the uptake and 

regeneration of Si in pelagic waters. When such a nonlinear model is 

used for describing measurements which are all disturbed by noise, it is 

not so obvious to accurately estimate the model parameters and, even 

less obvious, the parameter uncertainties.  This problem was tackled 

using the IOWLS approach (cf. section 2.5.4), combined with the LCM 

(cf. 2.7.1). However, both contain linearisations which are 

approximations in the case of the Si model, because this is nonlinear 

both with respect to the parameters and with respect to the input 

variables. The aim of this chapter was to assess the improvement 

achieved by taking into account the input variances thanks to the 

IOWLS formulation, and at the same time evaluate the error introduced 

by the linear approximations made.  

 

As a first result, a comparison between the OWLS and IOWLS 

estimator on a hypothetical data set confirmed that the latter exhibits a 

smaller bias. Secondly, the analysis of the residual cost function values 

of both estimators showed that only the IOWLS cost function is nicely 

χ2 distributed, corroborating that the input-output weighting matrix is a 
good reflection of the total variance, and certainly better than the 

weighting matrix only considering output variances. Using this 

statistical feature of the IOWLS cost function, it is possible to identify 

systematic errors in individual measurement-model results. This 

property is important because it allows an internal quality control of the 

results and it can be used to select the most appropriate model from a 

set of models for a given dataset (cf. Chapter 6). 

 

Further, the estimation of the parameter uncertainty using the LCM 

expression was tested on field data of dissolved and particulate Si in the 

Bay of Brest (France) from Beucher et al. [2004a]. The estimated 
standard deviations were compared to values derived from Monte-Carlo 

simulations taken to be the “true” standard deviations. Overall, the 

recovery was good for the input-output method (average recoveries of 

94% and 92% for R and U respectively), whereas with the output W the 



4. Estimation of flux rates and their uncertainty 

61 

estimations systematically and significantly underestimated the 

parameter variations (average recoveries of 65% and 62%).  

 

It can be concluded that the use of an IOWLS cost function improves 

the consistency of the estimation and enables the statistical 

interpretation of the residual cost function. The first property may not 

be of much practical importance, the second certainly is. In addition, 

parameter uncertainty estimates derived from the LCM combined with 

the input-output weighting matrix appear to be reasonably reliable. 

Although these estimates are probably still less accurate than those 

derived from extensive Monte-Carlo simulations, the LCM estimation is 

attractively fast and easy to automate. Therefore, the IOWLS – LCM 

combination seems to be a satisfactory approach for the estimation of 

parameters and their uncertainties in the case of this biogeochemical 

model.  
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Chapter 5: 
 

Identifiability  
of two-compartments 
models 
 

 

 

 

 

 

“It is a capital mistake to theorize before one has data.”  
 

Sir Arthur Conan Doyle, in: ‘The adventures of Sherlock Holmes’. 
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5.1. Introduction 
Before executing any experiment or parameter estimation, it should 

always be checked whether the model parameters are fully identifiable 

with the intended measurements. This issue is called a priori 
identifiability and “deals with the problem of determining whether a 
planned input-output identification experiment is able to supply the 
desired information about the unknown parameters of the (…) model” 
[Cobelli et al., 1979]. For a more rigorous definition we refer to Cobelli et 
al. [1979]. This is valuable knowledge because, if known in advance, it 
avoids that any worthless experiments are performed. A priori 

identifiability depends only on the assumed model structure and the 

chosen experimental setup. Therefore, it is a structural property and it 
is often referred to as structural identifiability. In the logical steps of 
identification (cf. Chapter 2), the analysis of a priori identifiability 

comes after (i) the necessary measurements are decided but not made 
and (ii) the model structure is chosen. In other words, it is set in the 

context of ideal perfection by considering noiseless observations and an 

error-free model. If the test concludes that the intended combination is 

unidentifiable, either the model structure or the experimental design has 

to be modified (or both). Alternatively, if the result of the test confirms 

a priori identifiability, the experiment can be executed and the model 

parameters can be estimated.  
 

Besides a priori identifiability, one can also define an a posteriori 
identifiability, to be determined after the data are collected and the 
model parameters are estimated. Due to particular data values and/or 

measurement noise, some parameters may in practice be associated with 

such a large uncertainty that they can be said to be a posteriori 
unidentifiable – although they were checked to be a priori identifiable. 
The following example from bivariate regression illustrates both 

concepts: fitting a line through two distinct points is perfectly a priori 
identifiable, but will be poorly a posteriori identifiable if the points are 
associated with high uncertainty and lie close to each other.  

 

In this chapter, we are interested in the a priori identifiability of a class 
of compartmental models, relevant in the framework of modelling tracer 
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experiments. For the ease of formulation, we will from now on simply 

speak of identifiability, implying a priori identifiability. For simple 

model structures its analysis may be trivial, but in the case of nonlinear 

model structures it is not always straightforward to determine 

identifiability simply from looking at the model equations. The family of 

compartmental models is a special case of nonlinear models where 

identifiability is a recognised issue. Especially in the domains of 

pharmacology and ecology a number of studies on this topic have been 

published [e.g. Cobelli and Caumo, 1998; Brun et al., 2001]. However, it 
appeared difficult to directly use the results from these studies for the 

environmental tracer models, due to a number of reasons. 

(i) The experimental design in pharmacological and ecological 

applications is usually different from the one used for environmental 

tracer studies. For instance, often real kinetic experiments are 

performed, i.e. the pools are sampled at many time instances 

between the start and the end of the experiment (versus only two 

measurements in time in the environmental tracer studies). Also, in 

pharmacological applications rarely more than one tracer is 

considered (versus two natural isotopes in environmental 

applications). In ecological studies usually no tracer is added at the 

beginning of the experiment, so actually the experiment is just a 

monitoring of the ecological system starting at an arbitrary time. 

(ii) Only a few specific (widely used) model structures are analysed in 

the pharmacological identifiability literature.  

(iii) The major problem in ecological studies is that the models are 

overparameterised compared to the number of observations 

available. No elaborate analysis is necessary to see that this 

situation is highly unidentifiable. However, these models are often 

intended for prediction, requiring an extrapolation outside the 

observed domain. Poorly identifiable parameters may be relevant to 

processes that become important in the extrapolation domain but 

are of less significance in the observed domain. “Discarding such 
processes so that only models with identifiable parameters are 
considered can lead to a significant underestimation of the 
prediction uncertainty” [Reichert and Omlin, 1997]. Therefore, the 
identifiability issue in ecological modelling is rather to optimally 
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select subsets of identifiable parameters, while fixing the other 

parameters at a priori values [Reichert and Omlin, 1997; Brun et 
al., 2001; Andersson et al., 2006]. 

 

Consequently, it seemed useful to perform our “own” general 

identifiability study. We decided to focus on the class of two-

compartments models, because it is still manageable to consider all (63) 

of them. We combined these 63 models with 12 different experimental 

set-ups, containing the ones used in pharmacology as well as in 

environmental studies. The result is a “catalogue” with identifiability 

information for all models consisting of two compartments. In the 

future, it can now easily be checked whether the intended experiment-

model combination delivers an identifiable entity. Below is explained 

how this identifiability study was achieved and the resulting “catalogue” 

is shown. 

 

5.2. Methods 

5.2.1. Testing identifiability  
“A necessary and sufficient condition for structural identifiability is that 
the number of unknown parameters (nθ) equals the number of 
independent equations (…) among them” [Cobelli et al., 1980].  
 

The number of independent equations can be quantified as the rank of 

the Jacobian matrix (cf. Eq. 2.16). Therefore, this identifiability study 

will be based on a comparison of the Jacobian rank with the number of 

unknown parameters. The minimalism of this procedure is its main 

advantage. Indeed, it is easy to automate such that the large number of 

tests necessary for our catalogue can be executed (almost) 

automatically. However, a number of additional remarks are useful. 

(i) For complicated models, this matrix may be cumbersome to 

evaluate. Therefore, some necessary conditions for structural 

identifiability have been proposed in compartmental analysis which 

are based on the topology of the compartmental diagram [Cobelli et 
al., 1980; Saccomani et al., 1994]. If the necessary conditions are 
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not satisfied, the investigator knows that the system is not 

identifiable and is spared from the more elaborate matrix 

evaluation. Other methods proposed in literature to determine 

identifiability of compartmental models include the analysis of the 

Laplace transforms of the observed variables in terms of the 

unknowns of the model [Cobelli and DiStefano, 1980] and 
investigation of the Jacobian matrix of the Markov parameter 

matrix [Bellman and Åström, 1970].   

(ii) Even if all model parameters are identifiable, note that their 

uniqueness is not assured. Indeed, only the local identifiability is 
assessed by the Jacobian rank. This means that in the 

“neighbourhood” of the parameter values used to evaluate the 

Jacobian matrix (cf. Eq. 2.16) there is no other set of parameter 

values that describes the output observations equally well. Hence, it 

is still possible that a finite number of equally good solutions exists 

in parameter space, for instance as a result of internal symmetry in 

the model. This “uniqueness” of the solution, or the global 
identifiability of the system is important to assess, especially when 

the parameters are analogues of physical attributes and the model 

is meant to quantify and eventually interpret them. For black box 

models, whose role is rather to optimally describe observations, this 

issue may be of less importance.     

(iii) If the rank of the Jacobian matrix is lower than the number of 

unknown parameters, some structural relation exists between the 

parameters and they cannot all be uniquely identified, not even 

locally. The disadvantage of the Jacobian rank approach is that this 

is the only information directly available. To characterise the 

existing parameter interrelations, further analysis is needed. When 

analysing a particular system, this is certainly important, but not 

within the scope of this study. Instead, the aim is to provide a first 

identifiability diagnosis for a class of model-experiment setups, 

returning only the number of solutions: infinite (unidentifiable), 

one, two, etc.  
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5.2.2. Investigated models and experimental setups 
The aim is to investigate all two-compartments model structures, only 

differing in the number and position of the connecting fluxes (see Figure 

5.1 and Tables 5.3 and 5.4).  

 

In addition, twelve different experimental setups are considered (Table 

5.1), comprising the situations often encountered in pharmacological 

studies, as well as in  

“our” environmental tracer study. In all studies it is assumed that at t 
= 0 compartment 1 (Figure 5.1) is spiked with a tracer, which can 

either be a radioactive or stable isotopic analogue of the species of 

interest (e.g. glucose or ammonium). In pharmacological applications, 

often only the labelled species is measured (i.e. not the natural, 

unlabeled species), either in one or both of the compartments. At the 

same time, it is customary to perform real kinetic experiments, i.e. 

sampling the tracer at several time instances. In contrast, in the 

environmental tracer studies, both the labelled and the unlabelled 

species are measured, but only once, at the end of the incubation 

experiment (cf. Chapter 3). As a reflection of this diversity of existing 

experimental schemes, different combination of sampling frequencies, 

sampled compartments and measured species are considered (cf. Table 

5.1). A total incubation time of 24 (hours) is chosen, which is realistic in 

environmental tracer studies. As a result, the endpoint (environmental) 

design only considers one sampling after this time period, while in the 

kinetic (pharmacological) setup, samples are supposed to be taken once 

every hour – explaining why the a priori strange choice of 24 sampling 

times was used (cf. Table 5.1). An additional sampling frequency is 

considered of two samplings during the experiment (resp. after 12 and 

24 (hours)). This setup was added, because for the more complex models 

performing only one final measurement simply does not provide enough 

observations to identify all rate constants. This result of 

unidentifiability due to fewer observations than unknowns is rather 

trivial; indeed it is more interesting to investigate the effects of model 

structure on the system identifiability. 
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Figure 5.1. Diagram of the full two-compartments model. The two compartments 

(circles) are not interchangeable, because only compartment 1 is spiked at t = 0 

(represented by the open arrow). The six grey arrows symbolize all possible 

exchanges between the compartments or between a compartment and the exterior. 

The exchanges are assumed to be first order processes (characterised by the rate 

constants k), except for those coming from the exterior which are constant 

(characterised by the flux rates Φ). 

 

 

 

 

Table 5.1. Overview of the twelve experimental setups considered. Q stands for the 

labelled species concentration and q for the unlabeled species concentration, with the 

subscript indicating which compartment was measured. 

# species 

measured 

Sampled 

compartments 

Sampling times 

(excl. initial spike) 

Measurements 

1 Comp. 1 1 Q1(t1) 
  2 Q1(t1), Q1(t2) 
  24 Q1(t1), …, Q1(t24) 

 Comp. 2 1 Q2(t1) 
  2 Q2(t1), Q2(t2) 
  24 Q2(t1), …, Q2(t24) 

 Comp. 1 & 2 1 Q1(t1), Q2(t1) 
  2 Q1(t1), Q2(t1), Q1(t2), Q2(t2) 
  24 Q1(t1), Q2(t1), …, Q1(t24), 

Q2(t24) 

2 Comp. 1 & 2 1 Q1(t1), q1(t1), Q2(t1), q2(t1) 
  2 Q1(t1), q1(t1), Q2(t1), q2(t1), 

Q1(t2), q1(t2), Q2(t2), q2(t2), 
  24 Q1(t1), q1(t1), Q2(t1), q2(t1), 

…, Q1(t24), q1(t24), Q2(t24), 
q2(t24) 

1 2 
Φ10 

k01 

k21 

k12 

k02 

Φ20 
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Combining the model structure (Figure 5.1) and the most complete 

experimental setup (last row of Table 5.1), one can formalise the 

problem in the following differential equations 

 

1
01 21 1 12 2 10

1
01 21 1 12 2 10

2
12 02 1 21 2 20

2
12 02 1 21 2 20

( )

( ) (1 )

( )

( ) (1 )

nat

nat

nat

nat

Q
k k Q k Q

t

q
k k q k q

t

Q
k k Q k Q

t

q
k k q k q

t

α

α

α

α

∂ = − + + + Φ ∂


∂ = − + + + − Φ
 ∂


∂ = − + + + Φ
 ∂
∂
 = − + + + − Φ

∂

 .   (5.1) 

 

These equations express how the concentrations of two species (Q and 
q) change with time in both compartments, after compartment 1 has 
been spiked with a certain amount of labelled species (Q) at t = 0. The 
incoming (constant) flux rates Φ10 and Φ20 have the isotopic composition 

of the natural species. Therefore, they are multiplied by αnat, which is 
the natural isotopic abundance. Taking the example of environmental 

nitrogen studies, where 15N analogues of the nutrients are used as tracer, 

αnat is 0.365%, meaning that in nature 0.365% of the nitrogen atoms are 
15N rather than 14N. 

 

The differential equations (5.1) can be summarised in matrices 

 

= +y Ay b� ,          (5.2) 

 

with 

 

1

1

2

2

Q

q

Q

q

 
 
 =
 
  
 

y , 

01 21 12

01 21 12

12 12 02

12 12 02

0 0

0 0

0 0

0 0

k k k

k k k

k k k

k k k

− − 
 − − =
 − −
 

− − 
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10
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20
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(1 )

nat

nat

nat

nat

α

α

α

α

Φ 
 − Φ =
 Φ
  − Φ 

b          (5.3) 

         

and y�  symbolises the time-derivative of y.  

 

To estimate the unknown parameters (Φ10, k01, k21, k12, k02, Φ20), these 

equations must be integrated to the time instances at which the species 

are measured, delivering the model values for the measured 

concentrations. For the most complete experimental setup this means 

that model values for yt = [Q1(t1) q1(t1) Q2(t1) q2(t1) … Q1(t24) q1(t24) 
Q2(t24) q2(t24)]

T are computed. The integrated model is not linear in the 

parameters, i.e. it cannot be written as Eq. (2.4). Therefore, a nonlinear 

optimisation procedure is needed to find the optimal parameter values. 

This requires the construction of the Jacobian matrix (cf. Eq. (2.16)), 

whose rank also gives information about identifiability. 

 

5.2.3. Procedure 
Briefly, these were the different steps of the procedure: 

 

1. Choose arbitrary initial conditions for y, i.e. y0 = [Q1(t = 0) q1(t = 0) 
Q2(t = 0) q2(t = 0)]. Two initial situations were considered: 

 1a.  The modelled species is not naturally present in the system, or 

at least not present in compartment 2 at the beginning of the 

experiment: Q2(t = 0) = q2(t = 0) = 0. 
 1b.  Q2(t = 0) and q2(t = 0) ≠ 0. 
 

2. Define all models in terms of parameters, and assign arbitrary test 

values to each model parameter set. 

 

3. Repeat the following for each of the 63 model structures. 

 

4. Repeat the following for each of the 12 experimental setups. 
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5. Compute the Jacobian matrix J. This is done by numerically 

integrating equations (5.1), which are first analytically differentiated 

with respect to the parameters: 

 

 
= = =

= = =

∂ ∂ ∂ ∂   = = = =   
∂ ∂ ∂ ∂   

∫ ∫ ∫
�

0 0 0

inc inc inct t t t t t

t t t

d d
dt dt dt

dt dt

y y y y
J

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
.  (5.4) 

 

 The numerical integration is performed for the chosen initial 

conditions and parameter values, and simultaneously with the 

integration of the model equations (5.1).  

 

6. Identifiability test: if the rank(J) < number of model parameters or 
if the cond(J) > 109(**), then the model-experiment is classified as 
unidentifiable. Otherwise it is identifiable, but maybe not uniquely. 

 

7. For every identifiable design, a crude test was performed to evaluate 

for the presence of multiple identifiable parameter solutions. 100 

simulations were performed in which the parameter values were 

really optimised, in each simulation starting from a different 

(random) initial guess for the parameters. If in each of the 100 

simulations, the final optimised parameter values approximate the 

true values, it is concluded that the model-experiment combination 

is uniquely identifiable. Otherwise, there are multiple parameter sets 

that satisfy the data equally well. From the 100 simulations, a first 

estimate can be made concerning the number of optimal parameter 

sets, but clearly the test is too crude to guarantee these results. For 

all the results it should be noted that they remain only local, because 

the initial parameter values were generated as perturbations around 

the true values (and not from -∞ to ∞). 

                                      
(**)

 The reference value to determine a well-conditioned Jacobian is chosen here in 
relation with the precision of the numerical integration of the equations. A relative 
precision (option “RelTol” for the ode45 MATLAB integration function) of 10-9 is 
used, so the elements of the Jacobian matrix will be computed within this precision. 
If the matrix is badly conditioned this will also be seen within this tolerance.  
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5.3. Results 
The results of this identifiability study of two-compartments models are 

summarised in Tables 5.3 and 5.4, one table for each initial condition 

considered (cf. 1a and 1b of the procedure in the previous section). The 

simulation conditions are summarised in Table 5.2. The results in 

Tables 5.3 and 5.4 were validated by cross-checking with the results 

available in the literature (only 7 designs).  

 

The first large-scale observation is that no pattern is apparent. 

Secondly, even when neglecting the model-experiment combinations 

which are unidentifiable simply due to fewer observations than 

unknowns, still a considerable number of designs appears to be 

unidentifiable. This is real structural unidentifiability, and may not 

always be obvious at first glance. It is also worth noting that the 

identifiability results are not identical for the two initial conditions, 

which was not really expected at first. Obviously, this is why the two 

initial conditions are considered and their results are presented 

separately. Considerably more structures are identifiable if initially 

compartment 2 is not empty. 

 

Tables 5.3 and 5.4 form the “catalogue” mentioned in the introduction. 

Now it is possible to check any intended model-experimental setup 

before executing any expensive action. Unfortunately, there hasn’t been 

an opportunity to take this last step to the real application. The main 

reason is that it was not relevant for the compartmental models used in 

the framework of environmental tracer studies in our research group 

ANCH. First of all because at the time of this work the models assumed 

“zero order” processes (cf. section 3.3.2), instead of first order exchanges 

assumed here (cf. section 5.5.2). Moreover, thanks to experimental 

advances the models are progressively enlarged to contain more than 

two compartments. Only a few models still contain as little as two 

compartments, and the existing two-compartments models (e.g. the Si 

model in Chapter 4) were already tested individually.   
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Table 5.2. Overview of numerical values used. Initial conditions represent 

concentrations, so they could be expressed in µM. The parameters flux rates and 

rate constants, so their dimension could be respectively µM.h-1 and h-1, if the 

incubation times are expressed in hours (see section 5.2.2). Results for situation (1a) 

are shown in Table 5.3; those for situation (1b) are given in Table 5.4. 

 Initial conditions 

(µM) 

Parameter values (if flux is 

present)  Q1(0) q1(0) Q2(0) q2(0) ΦΦΦΦ10 k01 k21 k12 k02 ΦΦΦΦ20 

(1a) 19 37 0 0 

(1b) 43 11 37 7 
0.5 0.01 0.02 0.03 0.04 0.5 
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Table 5.3. Overview of identifiability results for all 63 two-compartments models 

and 12 experimental setups, with initial conditions 1a (compartment 2 is empty at 

the beginning). On the second row, the measured species are given; on the third row 

the sampling time instances: [24] = only once after 24h, [12 24] = two samplings, 

resp. after 12h and after 24h, [1:24] = 24 samplings, after 1h, …, 24h. Time units 

are arbitrary since only simulations are considered. The symbols in the table 

represent the number of parameter solutions for the model-experiment combination 

of interest: ∞ means infinite number of possible parameter solutions, i.e. 

unidentifiable design; 1 means one parameter solution, i.e. a (locally) uniquely 

identifiable design; 2 or more counts the number of parameter solutions. The 

unidentifiable combinations are shaded: light grey background if the unidentifiability 

is due to a too low number of observations (lower than the number of unknown 

parameters), dark grey if the unidentifiability is caused by structural features. 

 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

6.01  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.01  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.02  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.03  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.04  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.05  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.06  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.01  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

4.02  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.03  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 2 

4.04  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

4.05  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.06  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.07  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 
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Table 5.3 continued. 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

4.08  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.09  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 3 

4.10  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.11  ∞ 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

4.12  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

4.13  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.14  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 2 

4.15  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

3.01  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.02  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

3.03  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

3.04  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.05  1 1 1 ∞ 1 1 ∞ ∞ 2 ∞ ∞ 1 

3.06  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.07  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.08  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

3.09  ∞ 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.10  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.11  ∞ 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

3.12  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 2 

3.13  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.14  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

3.15  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.16  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 
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Table 5.3 continued. 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

3.17  ∞ 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 

3.18  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

3.19  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.20  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.01  1 1 1 ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ 

2.02  1 1 1 1 1 1 ∞ 1 1 ∞ 1 1 

2.03  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2.04  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2.05  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.06  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.07  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2.08  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2.09  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.10  ∞ 1 1 ∞ 1 1 ∞ 1 1 ∞ 1 1 

2.11  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.12  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.13  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

2.14  1 1 1 1 1 1 ∞ 1 1 ∞ 1 1 

2.15  ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ 1 1 

1.01  1 1 1 1 1 1 1 1 1 ∞ ∞ ∞ 

1.02  1 1 1 1 1 1 1 1 1 ∞ ∞ ∞ 

1.03  1 1 1 1 1 1 1 1 1 1 1 1 

1.04  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

1.05  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

1.06  1 1 1 1 1 1 ∞ ∞ ∞ 1 1 1 
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Table 5.4. Same as Table 5.3, but with initial conditions 1b (compartment 2 is not 

empty at t = 0). Identifiability results are slightly different than in Table 5.3. 

 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

6.01  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.01  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.02  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.03  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.04  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.05  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

5.06  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.01  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 

4.02  1 1 1 ∞ 1 1 ∞ ∞ 2 ∞ ∞ ∞ 

4.03  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 2 

4.04  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

4.05  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.06  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.07  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

4.08  ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.09  2 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 

4.10  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.11  1 1 1 ∞ 1 1 ∞ ∞ 2 ∞ ∞ ∞ 

4.12  ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 ∞ ∞ ∞ 

4.13  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

4.14  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 2 

4.15  2 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 
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Table 5.4 continued. 

 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

3.01  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.02  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.03  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.04  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.05  2 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 1 

3.06  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.07  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.08  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.09  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.10  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.11  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

3.12  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 2 

3.13  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.14  1 1 1 ∞ 1 1 ∞ ∞ 2 ∞ ∞ ∞ 

3.15  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

3.16  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

3.17  1 1 1 ∞ 1 1 ∞ ∞ 2 ∞ ∞ 1 

3.18  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ 2 

3.19  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ ∞ 1 

3.20  1 1 1 ∞ 1 1 ∞ ∞ 1 ∞ ∞ ∞ 

2.01  1 1 1 ∞ 1 1 ∞ 1 1 ∞ ∞ ∞ 

2.02  1 1 1 1 1 1 ∞ 1 1 ∞ 1 1 

2.03  1 1 1 1 1 1 ∞ 1 1 ∞ ∞ ∞ 
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Table 5.4 continued. 

 

identifiability 

Q1 q1 Q2 q2 Q1 Q2 Q1 Q2 No. diagram 

[24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] [24] [12 24] [1:24] 

2.04  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.05  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.06  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.07  1 1 1 1 1 1 ∞ 1 1 ∞ ∞ ∞ 

2.08  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.09  1 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ 

2.10  1 1 1 ∞ 1 1 ∞ 1 1 ∞ 1 1 

2.11  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.12  1 1 1 1 1 1 ∞ ∞ ∞ ∞ 1 1 

2.13  1 1 1 1 1 1 ∞ 1 1 ∞ ∞ ∞ 

2.14  1 1 1 1 1 1 ∞ 1 1 ∞ 1 1 

2.15  1 1 1 ∞ 1 1 ∞ ∞ ∞ ∞ 1 1 

1.01  1 1 1 1 1 1 1 1 1 ∞ ∞ ∞ 

1.02  1 1 1 1 1 1 1 1 1 ∞ ∞ ∞ 

1.03  1 1 1 1 1 1 1 1 1 1 1 1 

1.04  1 1 1 1 1 1 1 1 1 1 1 1 

1.05  1 1 1 1 1 1 ∞ ∞ ∞ 1 1 1 

1.06  1 1 1 1 1 1 ∞ ∞ ∞ 1 1 1 
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5.4. Conclusions 
Although it hasn’t been possible to take this chapter to the final step of 

application to a real world problem, I absolutely wanted to include it. 

Identifiability is an important and interesting issue, not yet recognised 

in all communities. It is an essential step in the identification process, 

especially considering that it can avoid useless but expensive data 

gathering. Furthermore, in the second part of this thesis, the issue of 

identifiability will recur (Chapter 10), showing its generic importance. 

 

So far for the relevance of investigation identifiability. Now some final 

remarks can be made regarding the method used. First, it could be 

argued that the Jacobian rank is an “ugly”, numerical method, in 

contrast to more appealing theoretical or a priori methods only based on 

the model structure. This kind of methods exists for some types of 

model structure but their drawback is exactly that they are only 

practical for that particular model class. The Jacobian rank approach, 

on the contrary, is very general and therefore easy to automate. For 

instance, it will be used again in Chapter 10 in the context of the very 

different water mass mixing model. Also, the Jacobian matrix can be 

used to rank the importance of the model parameters measured as their 

impact on the model output (i.e. sensitivity). Some formulas have been 

suggested to enable such rankings in the framework of large, 

overparameterised models [Brun et al., 2001], but this kind of parameter 
ordering can be interesting in any work on experimental design.  

 

Finally, the Jacobian matrix delivers information only about the local 
identifiability of individual parameters. For global analyses and to make 
statements about the joint influence of groups of parameters a more 

sophisticated analysis is needed [Turányi, 1990].  
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Chapter 6: 
 

Model selection 
 

 

 

 

 

 

 

 

“All models are wrong but some are useful.” 
 

Chatfield [1995]. 
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6.1. Introduction 
The ultimate question in applied modelling is to determine which is the 

true mechanism that generated a given dataset. Unfortunately, 

answering this question for real life applications is illusional. Instead, the 

question is often reformulated as choosing that model from a set of 

available models that, according to the available data, seems most 

suitable to describe the processes. This is the central question to be 

answered in this chapter and it will be referred to as the issue of model 
selection. 
 

The difficulty of model selection is that no straightforward and universal 

criterion exists that defines which model is most suitable. Goodness-of-

fit of a model is one aspect that should be considered, but it has to be 

balanced with the model parameters’ variability. Indeed, if attention is 

only concentrated on the models’ ability to fit the data, one will tend to 

select too complex (i.e. over-parameterised) models. These models have 

the attractive feature to fit the given observations very well. But the 

price paid is a high sensitivity to small changes in the data, because 

they misinterpreted at least a part of the coincidental noise as relevant 

underlying mechanism. In the limit, the model would simply store the 

data values, and be nothing more than a data replicator [Pitt et al., 
2003]. Consequently, overparameterised models will fail to account for 

new data. In this view, the problem of model selection can be 

reformulated as determining what part of the measurements is due to 

stochastic variations, which should be ignored, in order to capture only 

those variations caused by the processes of interest. The model that 

disentangles signal from noise most effectively is then, based on the 

information at hand, closest to the true model and should be selected as 

the best model. As a consequence, even for a given process, the model 

selected as the best one depends on the available data and the 

knowledge about their uncertainty.  

 

If the quality and quantity of the data was sufficient, the selected model 

will be able to accurately predict future data. Model selection is indeed 
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tightly related to prediction**. For instance, M. R. Forster states that 

“the goal of model selection is to maximize the predictive accuracy of 
(…) rival models” [Forster, 2001]. However, model selection only has a 
predictive power as far as the processes under study are stationary, and 

the selected model will thus accurately predict new data as far as they 

are either replicates or interpolations. 

 

Model selection is performed intrinsically in every parameter estimation 

problem, since unavoidably a model has been chosen to represent the 

data. Yet, this is often done in a subjective way: based on experience or 

subjective judgement. Clearly, there is a need for a well-defined, 

objective model selection strategy. Several such schemes are described in 

literature, depending on the available noise information [Schoukens et 
al., 2002], sample size [De Ridder et al., 2005] and prior knowledge 
about the true underlying data generating mechanism [de Luna and 
Skouras, 2003].  
 

In this chapter, we consider the situation where the noise variances 

associated with the data are known or estimated in a pre-processing 

step. Furthermore, we are especially interested in the performance of 

model selection strategies in the case of small sample sizes. First, a 

review of existing methods is given (section 6.2), followed by the 

presentation of a new method (section 6.3). This method will be tested 

on simulations, and compared to some of the existing methods in section 

6.4. Finally, the new method is applied to a set of field data revealing 

some interesting patterns (section 6.5). 

 

The contents of this chapter, in particular the method description and 

the results, are based on my second publication, de Brauwere et al. 
[2005a]. 

                                      

** Note that here we use the term “prediction” in the common and somewhat vague 
meaning of “saying something about new data”. Nothing is implied about the 
method of deriving these new data. 
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6.2. Existing methods 

6.2.1. AIC and MDL 
Intuitively, a good model fits the data well. Hence, it will be associated 

with low residuals or, expressed in one number, with a low residual cost 

function (sum of squared residuals) 

 

=ˆ ˆ ˆ( ) ( ) ( )T
LSV e eθ θ θθ θ θθ θ θθ θ θ .        (6.1) 

 

θθθθ̂  represents the estimated model parameters, found by minimizing the 

cost function (6.1) 

 

θ
=ˆ arg min ( )LSVθ θθ θθ θθ θ ,         (6.2)  

 

and e( θ̂θθθ ) is the vector of associated minimal residuals. One model 
selection strategy considers the minimization of a criterion of the general 

form: 

 

θ⋅ˆ( ) ( , )dV p n nθθθθ ,         (6.3) 

 

with ˆ( )V θθθθ  the minimal value of the cost function as defined in Eq. (6.1)-
(6.2), nd is the number of observations and nθ the number of free model 

parameters. The penalty factor p(nd,nθ) corrects ˆ( )V θθθθ  for overfitting, 
therefore a more complicated model will only be accepted if its 

improvement in goodness-of-fit is large enough, i.e. balances the penalty 

factor. To put it simply, expression (6.3) articulates in a formal way 

that the best model should be the best compromise between goodness-of-

fit ( ˆ( )V θθθθ , decreasing with nθ) and model variability (p(nd,nθ), increasing 

with nθ). Or, recalling the previous chapter, the penalty factor ensures 

that the selected model is a posteriori identifiable. 

 

The criteria of the form of (6.3) considered in this chapter are listed in 

Table 6.1. AIC is usually referred to as being the abbreviation of 

“Akaike information criterion”, although its original author Hirotugu 

Akaike explains it differently: “IC stands for information criterion and 
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A is added so that similar statistics, BIC, DIC etc., may follow” [Akaike, 
1974].  

 

MDL is based on the minimum description length principle, from which 

it received its name. Grünwald [2000] explains the fundamental idea 
behind this principle: “any regularity in the data can be used to 
compress the data, i.e. to describe it using less symbols than the number 
of symbols needed to describe the data literally.” The MDL criterion was 
derived by Jorma Rissanen in 1978 [Rissanen, 1978] in the framework of 
coding theory. In the same year, Gideon Schwarz published an 

(asymptotically) equivalent model selection criterion [Schwarz, 1978]. 
This criterion is often referred to as Bayesian information criterion, BIC, 

because it follows from a Bayesian approach, selecting the model 

associated with the highest a posteriori probability. Historically, MDL is 

more commonly used in applied and computer sciences, whereas 

statistical circles usually refer to BIC. 

 

Initially, the AIC and MDL rules were presented for cases where no 

noise information is available [Akaike, 1974; Rissanen, 1978; Schwarz, 
1978]. Although the actual aims of the methods are different [Forster, 
2001; Kieseppä, 2003], they were all constructed with the goal to 
perform well in the limit of large samples (nd → ∞). Later, these criteria 
were adapted for situations where noise variances are known [Schoukens 
et al., 2002], which are the AIC and MDL criteria used here (Table 6.1). 
In this case, ˆ( )LSV θθθθ  is replaced by ˆ( )WLSV θθθθ , the minimal value of the 

Weighted Least Squares (WLS) cost function, defined by Eq. (2.8). 

 

De Ridder et al. [2005] have further modified these model selection 
criteria in order to improve their performance for short data records (nd 
→ nθ). Since this is also our concern, we will consider these criteria as 

well, and will compare their performance to that of the cost function 

approach presented in section 6.3 (see AICS and MDLS in Table 6.1). 

 

 

 

 



Part A 

88 

Table 6.1. AIC and MDL criteria considered in this chapter. All are designed for 

the situation that the noise variances are known or priorly estimated. 

Name Expression 

θ⋅ˆ( ) ( , )WLS dV p n nθθθθ  

Applicability Reference 

AIC θ
 

⋅ +  
 

ˆ 2( )
1WLS

d d

nV

n n

θθθθ
 nd → ∞ Schoukens et al. [2002] 

MDL θ
 ⋅

⋅ +  
 

ˆ ln( )( )
1 dWLS

d d

n nV

n n

θθθθ  nd → ∞ Schoukens et al. [2002] 

AICS 
θ

θ θ

 
⋅ +  − − 

ˆ 2( )
1WLS

d d

nV

n n n n

θθθθ
 nd → nθ De Ridder et al. [2005] 

MDLS 
θ

θ θ

 ⋅
⋅ +  − − 

ˆ ln( )( )
1 dWLS

d d

n nV

n n n n

θθθθ  nd → nθ De Ridder et al. [2005] 

 

 

 

 

Note that AIC and MDL serve to rank models, such that the “best” 
model simply is the one with the lowest AIC or MDL value. However, 

this ranking merely states something about the relative quality of a 

number of models. Nothing is implied regarding the absolute suitability 

of any model, nor is a given difference in AIC or MDL value directly 

related to a difference in probability of being the best model. To address 

this last aspect, Wagenmakers and Farrell [2004] demonstrated how AIC 
values can be transformed in so-called Akaike weights which can be 

directly interpreted as probabilities for each model. 

 

6.2.2. Other model selection criteria 
In the statistical literature, a number of alternative criteria exist which 

can be used in the same way as AIC and MDL, i.e. as a ranking 

criterion for alternative models. Without going into detail, it may be of 

interest to briefly present some of them. 
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A criterion that was originally proposed to select which variables should 

be included in a linear regression is called CP [Mallows, 1973]. The best 
variable subset should minimise  

 

2

1 ˆ( ) 2
ˆ

P LS dC V n nθ
σ

= − +θ .       (6.4) 

 

In this expression 2σ̂  is an estimate of the experimental error σ2, 
assumed constant, such that the CP’s expected value is nθ. 
 

The root mean squared deviation (RMSD) is yet another corrected cost 

function criterion 

 

RMSD = 
θ−

ˆ( )

d

V

n n

θθθθ
.        (6.5) 

 

Although the RMSD has been repeatedly used a heuristic criterion to 

select among mathematical models [e.g. Friedman et al., 1995], “no 
statistical justification exists as to what the criterion attempts to 
estimate” [Myung, 2000]. 
 

Hamparsum Bozdogan recently developed a new measure of complexity, 

called ICOMP (Information COMPlexity) [e.g. Bozdogan and Haughton, 
1998]. It is given by  

 

ICOMP = -2logL( θ̂θθθ ) + 2C(Cov( θ̂θθθ )),     (6.6) 

 

with L( θ̂θθθ ) the likelihood function associated with the parameters θ̂θθθ , C is 
a measure for complexity. As for AIC and MDL, ICOMP includes a 

second term which penalises for the model complexity. However, instead 

of penalizing the number of free parameters directly, ICOMP estimates 

the model complexity from the covariance of the parameter vector. This 

setup appears to be especially suited for Principal Components 

Regression (PCR) models, because the covariance matrix of the 

regression vector is well defined for these models [e.g. Capron et al., 
2005].  
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6.2.3. Cross-validation 
A different strategy for selecting the most appropriate model more 

directly assesses the prediction capacity of the models. These methods 

are based on the idea of cross-validation [Stone, 1974], which consists of 
calibrating the models on a part of the data and next evaluating their 

(predictive) performance on the remaining part of the observations. The 

primary advantage of cross-validation is that it does not involve 

distributional assumptions about the data [Browne, 2000]. Different 
resampling strategies and performance criteria have been discussed in 

literature [Shao, 1993; Browne, 2000; Li et al., 2002]. Robust 
alternatives have been proposed, considering that in the unaccounted 

presence of outliers overly complex models are selected [e.g. Wisnowski 
et al., 2003]. It has been shown that cross-validation is under some 
specific assumptions asymptotically equivalent to AIC [Stone, 1977]. 
One major disadvantage of these methods is that they need a 

considerable amount of data. Therefore, we will not further consider this 

kind of model selection methods.  

 

6.2.4. Note on the choice of the model set 
The relevance of the model selection decision depends on the 

representativeness of the considered model set. Ideally, all possible 

models should be tested, their complexity only being constrained by the 

available number of data. Obviously, this rapidly becomes an unfeasible 

task and other procedures must be used. Usually, first a model class is 
chosen, on more or less subjective basis. Little has been written about 

how to objectively or systematically choose the models to consider 

[Chatfield, 1995].  
 

Once a model class has been defined (typically forming nested models), 

all models of this class can be tested, but even this restricted model set 

can become too extensive. In this case, forward or backward procedures 

can be useful. These are stepwise procedures where in every step it is 

investigated which model parameter can best be added/removed [e.g. 

Massart et al., 1997, p. 280; Kadane and Lazar, 2004] without starting 
to over/undermodel. The forward and backward procedures do not 

necessarily lead to the same optimal model, nor to same model that 
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would have been selected if all models had been considered. In particular 

when model parameters are correlated, an optimal model may be 

overlooked using these stepwise procedures.  

 

6.3. Model selection based on the statistical 
interpretation of the minimal WLS cost 
function 

6.3.1. No model errors 
The proposed model selection strategy is based on the property of the 

minimum of the WLS cost function (2.8) to be a sample from a χ2 
distribution with nd – nθ degrees of freedom [Box, 1970; Rod and Hancil, 
1980]: 

 

θ−χ∼ 2ˆ( )
dn nWLS WLSV θθθθ .        (2.13) 

 

The assumptions necessary for this property to be valid are listed below. 

 

Assumptions 6.1 (statistical interpretation of minimal WLS cost 
function) 

A. The measurements are disturbed by random zero mean normally 

distributed noise with known (or priorly estimated) variance, and are 

not subject to systematic errors. The noise information is accurately 

taken into account by the weighting matrix in the expression of the 

WLS cost function. 

B. No model errors are present. 

 

 

If assumption A is valid and assumption B is not, this will appear in the 

value of the residual cost function ˆ( )V θθθθ , which will be significantly too 
large compared with the expected value of the appropriate 

θ−χ2dn n distribution. Summarised, the analysis of the residual WLS cost 

function enables the detection of model errors.  
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In the framework of selecting the best model out of a given set, this 

assessment can be repeated for each of the models, eliminating those 

models that give too high a residual cost function. After that, a set of 

models (possibly only one or even none) remain, which are all validated 

not to “undermodel” the data (within some confidence level). From 

those models, the simplest one should be preferred.  

 

The latter rule is nothing but the application of the “principle of 

parsimony” to model selection. If a simpler model fits the observations, 

why should parameters be added? Isaac Newton already stated as First 

Rule of Reasoning in Principia: “We are to admit no more causes of 
natural things than such as are both true and sufficient to explain their 
appearances.” And since the model selection procedure explicitly tests 
for undermodelling, we could say this quote from an unknown author 

describes the method quite well: “Everything should be made as simple 
as possible but not simpler”.  
 

The cost function (CF) procedure shows some similarities with AIC and 

MDL strategies:  

(i) it can be run fully automatically, without interference from the 

user: it lets the data talk.  

(ii) It is supposed that the global minimum of the cost function has 
been reached. 

(iii) The same assumptions about the noise are made. 

(iv) Obviously, in order to deliver satisfactory results, at least one 

model in the model set should be a good approximation of the true 

mechanisms. (If this is not the case, the CF procedure will reject all 

models, and this aspect is therefore explicitly included in the 

method.)  

 

The main “theoretical” differences are: 

(i) the CF method needs the subjective choice of the confidence limit, 

i.e. the θ−χ2dn n percentile, to which the minimal cost function θθθθ̂( )V  

has to be compared.  
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(ii) To use the CF strategy, it is necessary to know the noise variances. 

Instead, expressions exist for AIC and MDL when this noise 

information is not available. 

(iii) In contrast with the classical AIC and MDL rules, the CF approach 

is not based on the assumption that the sample size is large.  

(iv) The CF procedure delivers not only the best model from the tested 

model set, it also provides the guarantee that the selected model is 

in itself appropriate to describe the data (within the desired level of 

confidence). Criteria like AIC and MDL only make statements 

about the models in relative terms (is a model better than another 

model?), and do not assess their absolute quality. 

 

The CF method as just described will be tested and compared to the 

criteria listed in Table 6.1, by applying them to three different 

simulations (section 6.4) and to field data (section 6.5).  

 

The performance of this CF model selection approach obviously depends 

on the validity of the two major assumptions (A and B, cf. 

Assumptions 6.1). Some remarks can be made regarding possible 

violations of these assumptions. 

 

Violation of assumption A. The noise assumptions can be violated 

in several ways. If the noise distribution is known but not normal, the 

WLS cost function will not be θ−χ2dn n distributed anymore. But in this 

case, the actual cost function distribution can still be determined 

empirically, i.e. by simulations. For the model selection application, not 

all properties of the distribution must be known, it is enough to identify 

the main percentiles. Another possible violation of the noise assumptions 

is that the variances are not well known. A strategy to estimate them in 

a preprocessing step is presented in Chapter 9, such that the presented 

CF method is still usable. 

 

Violation of assumption B. If model errors are present, i.e. if none 

of the models tested can describe the data adequately, no model will be 

selected as “best model”. In that case, either the model set has to be 

extended as to include at least one “good model”, or another model 



Part A 

94 

selection strategy has to be used. For instance methods using ranking 

criteria (cf. 6.2.1 – 6.2.2) can be used since they rank models according 

to their relative suitability and do not require that a good model is 
comprised in the tested set. However, the performance of e.g. AIC also 

depends on the assumption that the true model belongs to the study set. 
Another possible strategy, still based on the residual cost function value, 

is outlined below. 

 

6.3.2. Model errors present 
Although one always strives to achieve the perfect model, the presence 

of model errors cannot always be avoided. This results in residuals that 

contain a systematic component besides the stochastic noise. Hence, the 

residual cost function does not satisfy the assumptions anymore to 

enable the above statistical interpretation. However, this does not mean 

that any model selection is impossible. In real applications, it is often 

observed that when increasing the model complexity (in terms of 

number of model parameters), the cost function value declines slowly 

until it suddenly decreases considerably (see Figure 6.1). The gradual 

decrease symbolises how the model fit increases simply by better 

modelling the noise in the data. By contrast, the abrupt jump often 

indicates an optimal model complexity, since a small increase in 

complexity allows to describe the data considerably better. Sometimes, 

multiple of these jumps occur, signifying distinct structures in the data 

are subsequently captured by the model.  

 

In practice, this intuitive approach remains rather subjective or at least 

qualitative when it comes down to determine which cost function 

decrease is really significant. It has been suggested to accept a cost 

function change as significant if it is larger than a certain percentage of 

the simplest model’s cost function [Wisnowski et al., 2003]. If the 
stochastic noise component is well known, the variance associated with 

the WLS cost function can be estimated [Pintelon et al., 1997]. 
Comparing cost function changes with this variance allows to identify 

which decrease in cost function is significant for a given increase in 

model complexity.  
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Figure 6.1. Two plots showing the evolution of the observed cost function values 

(black dots) with errorbars representing ± 1σ, compared to the expected values 

(dotted line). The model to be selected is indicated by the arrow. (a) Situation 

without model errors, i.e. the true model with complexity 4 belongs to model set. 

The true model is selected either by comparison with the expected value or by 

identifying the significant jump. (b) Situation with model errors, i.e. the observed 

cost function never reach the expected value. In this case a comparison with the 

expected value is of little use, but the sudden jump indicates the optimal model. 

[after Pintelon et al., 1997] 
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6.4. Simulation tests 
In order to test the performance of the proposed cost function (CF) 

approach and compare it with the other model selection strategies, we 

have applied them to three distinct simulation examples. Using 

simulations it is possible to check the results of the outcome (i.e. the 

selected model) since the “true” model is known, which is never the case 

for real measurements. On the other hand, a simulation can often be 

manipulated in order to display (or not) the weakness of a given 

method. To avoid this criticism, two of the simulations are performed on 

models previously used in literature about model selection: the FIR 

model taken from De Ridder et al. [2004] in 6.4.1 and the polynomial 
model from de Luna and Skouras [2003] in 6.4.3. In the third simulation 
test (6.4.2) a biogeochemical compartmental model (cf. Chapter 3) is 

considered, since this is our special interest, and it is used to model the 

field data in 6.5.. In all simulations, no model errors are present, i.e. the 

true model belongs to the tested model set. 

 

6.4.1. FIR model 
As a first case study, an electrical engineering example from De Ridder 
et al. [2005] is repeated, in order to have an objective comparison 
between the CF strategy and their AICs and MDLs criteria. It concerns 

the identification of a discrete-time, finite impulse response (FIR) 

system (using their notation in the whole section) 

 

−
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= ∑1

0
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r
r

r
G z g zθθθθ with θθθθ = [g0, g1,…, gR]

T    (6.7) 

 

from noisy measurements of the input/output discrete Fourier transform 

spectra U(k) and Y(k). For a given order R, the model parameters are 
estimated by minimizing the maximum likelihood cost function 
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with σ 2 ( )Y n  and σ
2 ( )U n  the known noise variances (the covariances were 

set to zero in the simulation). Expression (6.8) represents a WLS cost 

function as in expression (2.9), where the weighting matrix W takes into 

account noise on both the input and output data. The true FIR model 

G0(z
-1) used in the simulations is of order 19 (R = 19 in (6.7)); i.e. the 

true number of parameters is 20. The values of the parameters in θ are 

[1.2101e-004, 1.2603e-003, 6.3357e-003, 2.0665e-002, 4.9573e-002, 

9.3808e-002, 1.4610e-001, 1.9189e-001, 2.1454e-001, 2.0249e-001, 1.5490e-

001, 8.2985e-002, 6.3557e-003, -5.4093e-002, -8.3676e-002, -7.8804e-002, -

4.7431e-002, -5.2004e-003, 3.0909e-002, 4.8779e-002]T. 

 

One thousand runs of a Monte-Carlo simulation were performed with N 
= 80. For each independent run, circular complex normally distributed 

errors were added to the true input and output spectra U0(k) and Y0(k), 
and the model parameters θθθθ are estimated for model orders R = 14, 
15,…, 24. 

 

Table 6.2 shows how many times a model of order R has been selected 
by the different model selection methods. Columns one to four are 

similar to the results reported in Table 6.2 of De Ridder et al. [2005]; 
the slight differences are due to different random noise realizations in 

the two simulation tests. The classical AIC and MDL rules perform 

(much) worse than the modified AICs and MDLs criteria. The first 

significantly overestimate the model order, the latter do so to a much 

lesser extent. Further, De Ridder et al. [2005] noted that it is expected 
that AIC selects higher orders than MDL, which is indeed observed 

here, both for the classical and the modified criteria. Their conclusion on 

this example is that MDLs outperforms the other criteria.  

 

On the other hand, the CF approach was tested for different significance 

levels (75%, 90%, 95% and 99%). It appears that each significance level 

picks out the true model approximately with a probability as expected 

(74.8%, 89.2%, 94.1% and 97.2, respectively). For that reason and to 

enable a comparison with the information criteria, we suggest using the 

99th percentiles as confidence limits. Doing so, the CF approach 

performs even better than MDLs (see Table 6.2):  
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(i) the true model order was selected more often (972 times versus 911 

times by MDLs),  

(ii) the mean value of selected orders is a little closer to the true value, 

and 

(iii) the dispersion of selected model orders is smaller and more symmetric around 

the true order. 

 

 

 

 

Table 6.2. Number of times a FIR model (6.7) of order n has been selected over 

1000 simulations. The true model order = 19.  

Model selection strategy 
Model order 

AIC MDL AICs MDLs CF 

     75% 90% 95% 99% 

14 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 1 

18 0 0 0 0 0 1 2 17 

19 351 606 830 911 748 892 941 972 

20 104 123 86 59 14 12 7 3 

21 103 74 43 21 7 9 3 1 

22 99 67 24 5 9 3 7 0 

23 138 60 10 2 8 7 5 0 

24 205 70 7 2 2 3 1 0 

Count 1000 1000 1000 1000 788 927 966 994 

Mean value 21.1 20.1 19.3 19.1 19.1 19.1 19.1 19.0 

Standard deviation 2.0 1.6 0.84 0.50 0.61 0.53 0.44 0.17 
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Finally, remark that 6 times no model order was selected at all by the 

CF approach, because none of the proposed ones provided an acceptable 

fit (at 99% significance level). For these noise realizations, the other 

criteria did choose a best model. They will always choose a model from 

a model set, even if all models are inappropriate, because they do not 

assess the absolute quality of the selected model (is it a good model?), 

only the relative superiority compared to the other models (is it better 

than the other models?).  

 

The fact that sometimes none of the tested models is selected by the CF 

method, should not be seen as a disadvantage. In practice, this is rather 

an indication to the user that “something is wrong”, either due to  

(i) a spurious or systematic error in the measurements,  

(ii) an error in the inclusion of the measurement noise (i.e. assumption 

A in section 6.2.2 is violated), or  

(iii) the model set does not contain the true model (or a good 

approximation).  

By closer examination of the experiment-model design, it should 

generally be possible to determine which of these possibilities is the 

cause of the problem, and next to remediate the identified deficiencies.  

 

From these results, we conclude that in this example the CF approach 

outperforms the other tested model selection criteria. 

 

6.4.2. Compartmental model 
The second example concerns a biogeochemical compartmental model 

used to estimate the exchange rates between different dissolved nitrogen 

pools, phytoplankton and the environment [Elskens et al., 2002]. The 
schematic representation of the complete model is given in Figure 6.2. It 

consists of a special case of the general model presented in Chapter 3 

with two dissolved nitrogen pools and seven potentially physically 

significant exchanges. They are estimated using measurements from 

time-consuming and expensive isotopic enrichment experiments, which 

deliver (only) seven observations. This means nd = nθ,max = 7, hence this  
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Figure 6.2. Schematic representation of a biogeochemical compartmental model 

used to describe the exchange between dissolved nitrogen nutrients (ammonium 

NH4
+ and nitrate NO3

-) and phytoplankton (P) in aquatic environments. The 

compartments are specified by two measurable quantities: total concentration and 

isotopic composition (atom% excess æ). The arrows represent the exchange rates, 

which are the parameters to be estimated. R’s stand for regeneration rates, U’s for 

uptake rates and L’s for loss rates. For more information, we refer to Elskens et al. 

[2002]. 

 

 

 

 

 

is a situation really on the edge of statistical significance and methods 

designed to have good asymptotic properties as the classical AIC and 

MDL rules, are doomed to fail. Since all measurements of such an 

experiment are subject to errors, the flux rates are estimated using a 

WLS cost function, adapted to take the input and output noise into 

account (similar to (6.7), cf. Chapter 4). Although the input noise is 

included via linearisation, the residual WLS cost function still is well 

approximated by a 
θ−χ2

dn n distributed variable (cf. section 4.3.2 and de 
Brauwere et al. [2005b]). 
 

The question to be answered here is whether or not all the processes are 

necessary to account for the observations. Can any of the parameters be 

cancelled without losing the essence hidden in the measurements? 
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To answer this, we used a backward procedure of model selection. 

Optimising all possible parameter combinations (127) and then selecting 

the best model (as was done in the FIR model example) involves too 

long calculation times. Instead, an iterative backward elimination 
procedure is followed: starting from the complete model (nθ = nθ,max), 

the complexity is decreased step by step until no simpler model is 

acceptable anymore: 

 

1. nθ = nθ,max. Optimise θθθθ for the most complex (here even saturated) 
model. The system has no degrees of freedom, hence the value of 
ˆ( )V θθθθ  carries no statistically interpretable information (it is 

approximately zero regardless of true processes and data), but θ̂θθθ  can 
be useful as starting value in the next optimisations. 

2. nθ := nθ – 1. Optimise all models of complexity nθ. Keep only that 

model with the lowest ˆ( )V θθθθ . This is the best model of complexity nθ. 

3. Compare this ˆ( )V θθθθ  to the chosen θ−χ2dn n percentile.  

 3a. If the model fit is acceptable, go to 2.  

 3b. If not, select the best model of complexity nθ + 1.  

 

Using this procedure, the saturated model is selected if none of the 

models with one degree of freedom is acceptable. Although the risk 

exists to overlook the optimal model by this kind of partial procedure, 

the backward procedure has been reported to be more reliable than the 

forward alternative [Mantel, 1970]. 
 

For the AIC and MDL criteria, the procedure differs only in that the 

calculated AIC or MDL values are compared to those from the best 

model from the previous loop (lowest AIC or MDL value). The AICs 

and MDLs criteria cannot assess the saturated model (zero degrees of 

freedom), for this would require a division by zero (see Table 6.1). 

Therefore, for them the backward procedure is adapted to start with the 

6 parameter model with the smallest residual cost function. Finally, note 

that performing a cross-validation strategy (cf. 6.2.3) to select the best 

model is quite impossible in this example. There are too few data (7!) 

and they are not interchangeable, because they represent measurements 
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of different properties (concentrations and atom% excesses of different 

compounds, cf. Table 6.3). 

 

A series of true models were simulated, with nθ = 2,…, 7. The 

simulation conditions are summarised in Table 6.3 . For each model, 100 

Monte-Carlo simulations were performed. The number of times each 

method selected the right model is shown in Table 6.4.  

 

 

 

Table 6.3. Summary of the simulation conditions. 

  
Simulated model (number of nonzero 

parameters) 

  7 6 5 4 3 2 

[NH4] 0.55 µM 

æNH4 8.9668 % 

[NO3] 0.55 µM 

æNO3 8.9668 % 

[P] 1 µM 

æP,NH4 exp 0 

In
it
ia
l 
c
o
n
d
it
io
n
s 

 (
t 
=
0
) 

æP,NO3 exp 0 

 tinc 24 h 

4NHR  0.01 0.01 0.01 0.01 0.01 - 

3NOR  0.008 0.008 0.008 0.008 - - 

4NHU  0.02 0.02 0.02 0.02 0.02 0.02 

3NOU  0.01 0.01 0.01 0.01 0.01 0.01 

LP 0.02 - 0.02 - - - 

4NHL  0.008 0.008 - - - - P
a
r
a
m
e
te
r
 v
a
lu
e
s 

(µ
M
/
h
) 

3NOL  0.007 0.007 - - - - 
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Table 6.4. Number of times the true compartmental model (i.e. only containing the 

parameters also present in the true model) has been selected over 100 simulations. 

Between brackets, the parameters that are equal to zero are given for each true 

model. 

Model selection strategy 

AIC MDL AICs MDLs CF 

True model 

(number of nonzero 

parameters) 
    75% 90% 95% 99% 

7 100 100 imposs. imposs. 89 83 70 49 

6 0 0 77 79 65 80 70 55 

5 0 0 31 30 67 86 94 99 

4 0 0 12 11 64 81 93 95 

3 0 0 5 14 73 90 94 96 

2 0 0 4 4 77 91 95 99 

 

 

 

 

The following observations and remarks can be made: 

(i) The classical AIC and MDL rules are absolutely unreliable in this 

example. This is not specified in the table, but they always select 

the saturated model with no degrees of freedom, obviously including 

the case where this was indeed the true model. Actually, this is a 

trivial result since a model with nθ = nd gives ˆ( )V θθθθ  = 0, and both 
AIC and MDL will also be zero (see Table 6.1). Hence, AIC and 

MDL are always minimized by the saturated model, independently 

of the true model. 

(ii) AICs and MDLs also tend to select too complex models. In fact, for 

each of the true models simulated, AICs and MDLs selected a 6 

parameter model most often (detailed results not shown). So, even 

if they are designed to perform well in case of small sample sizes, in 

this border case they do not exhibit satisfactory results.  



Part A 

104 

(iii) The performance of CF has again been tested for different levels of 

confidence: 75%, 90%, 95% and 99%. When the saturated model is 

the true one, the true model is selected most often using the smaller 

significance levels. This can be explained remembering that the 

saturated model is only accepted if all simpler models are rejected. 

Consequently, using larger limits of acceptance (as for the 99% 

confidence level), it is more probable that a simpler model is 

accepted and hence the saturated (true) model is selected at less 

occasions. For models with more than one degree of freedom, the 

trend is opposite: with the 99% significance level, the true model is 

selected most often, just as for the FIR model (see 3.1.1). Moreover, 

it seems that as the degrees of freedom of the system increase, the 

different levels of significance tend to select the true model with 

their expected probabilities. Overall, using the 95th percentiles 

provides the highest probability of selecting the true model. This 

information will be useful when the CF model selection is applied to 

field data, as we will do in section 6.5.  

(iv) Due to fact that not all models are compared, the backward model 

selection procedure potentially selects a suboptimal model. Indeed, 

a more optimal parameter combination can remain undetected 

depending on the order in which parameters are removed. To 

address this caveat a combined forward-backward procedure could 

be used. Starting from the simplest model, at each step the cost 

function values for all parameters not yet in the model are checked 

and the parameter giving the best model fit is entered. After each 

step, the cost functions if any one parameter is removed from the 

model are tested. If a parameter is detected that does no longer 

significantly contribute to explain the data (i.e. the associated cost 

function is acceptable), it is rejected [after Massart et al., 1997, p. 
280]. The procedure is continued until no new parameter can be 

added without being removed afterwards. However, this more 

complicated scheme was not applied or tested because the 

backward procedure seems to provide satisfactory results. 

 

This simulation example shows that even when the degrees of freedom 

approach zero, or even become zero, the CF approach can offer a 
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reliable way to select a model (provided that the level of confidence is 

chosen with care). This is in contrast with the AIC and MDL criteria, 

including the ones specifically adapted for small sample sizes.  

 

6.5. Results on field data 
The above simulation tests provided some confidence in the proposed 

CF model selection method. Now the final step to the real data is taken. 

Model selection is performed for a set of field experiments fitted to the 

compartmental model as described in section 6.4.2. The field data 

consist of 15 sets of nitrogen measurements made from May 1993 to 

April 1994 in the surface waters at several stations along the continental 

margin in the North-East Atlantic Ocean (Elskens et al. [1997] and 
personal communication).  

 

Unlike in the simulation example, the true values of the parameters are 

unknown. However, the selection results can be interpreted to a certain 

extent using prior knowledge about the system and by intercomparing 

the results for the different experiments. Based on the simulation results 

of section 6.4.2 the model selection was performed using the CF 

approach with a 95% significance level. The optimised parameter values 

obtained before and after model selection (abbreviated as MS) are 

shown in Table 6.5. Obviously, the model selection step was not 

redundant since for all datasets three to five parameters (out of seven) 

were cancelled.  

 

Several further remarks can be made:   

(i) Note that after model selection the standard deviation on the 

remaining parameters is mostly lower than before model selection. 

This is one of the rewards using model selection: by reducing the 

number of parameters, the uncertainty on the remaining parameters 

decreases. 

(ii) In section 6.4.2, we suggested to use a significance level of 95%, 

since on the whole it gave the highest probability to select the true 

model. In other words, what we could call type I errors (rejecting 
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the true model) are minimized. In order to check on type II errors 

(accepting a wrong model), we have compared the models selected 

for the field data (i.e. with two, three or four parameters) with the 

detailed results of simulations with a 95% significance level. This 

means we have verified how large the chance is (based on 

simulations) that the model complexities selected here were selected 

while actually the true model had another complexity. This 

probability appears to be small: at most 6%. 

(iii) The following trend can be noted: if before applying model 

selection, a given parameter value was not higher than its standard 

deviation, that parameter would be cancelled after model selection. 

This observed trend provides some confidence in the model 

selection results. Indeed, if by optimising the complete model, some 

parameters appear not to be significantly different from zero, we 

could expect that simply omitting them would equally well explain 

the data.  

(iv) The exceptions to this trend in Table 6.5 are underlined. 

Apparently, both kinds of error occur: (a) expected, but not 

cancelled by model selection (4 times, see underlined parameter 

values in Table 6.5) and (b) not expected, but cancelled by model 

selection (5 times, see × in Table 6.5).(††) This means that simply 

replacing the model selection procedure by cancelling the 

parameters that appear to be approximately zero after total 

optimisation is not allowed. One reason for this is that cancelling 

all parameters that are not significantly different from zero at once, 

ignores “synergetic” effects between the different parameters: e.g. 

cancelling one may affect another parameter making it significant. 

Elskens et al. [2005] already made the more general observation 
that a parameter not being significantly different from zero does 

                                      
(††)

 Here, we have chosen to compare the parameter values with (one time) the 
estimated standard deviation. Comparing them to two or three times the standard 
deviation would be equally defendable. For the sake of curiosity, we have checked 
the results when the parameter values are compared to those limits. More differences 
compared to model selection results are noticed (resp. 10 and 11 exceptions, versus 9 
when one time the standard deviation was used), yet they are all of the type 
“expected, but not cancelled by model selection”. 
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not necessarily imply that this parameter is not significant for 

modelling the data.  

(v) Another consistent trend through Table 6.5 is that the loss rates 

4NHL and LP are systematically deleted after model selection. This 
also gives faith in the results, because in fact the loss rates do not 

have a univocal physical meaning but are rather fitting parameters 

representing all possible loss processes, used to constrain the model. 

If they are cancelled by model selection, it means that only 

considering the physically (biologically) meaningful parameters 

(regeneration and uptake rates) is sufficient, which is at least 

encouraging. 

(vi) It is striking that the only times that loss rate 3NOL is not cancelled 

(cases are marked with an asterisk*), their optimised values are 

negative. Clearly, negative rates are impossible and these values 

point out that for these datasets something is wrong. The 

explanation was found with the experimenters. During the 

experimental work it was assumed that there was no nitrate 

regeneration (i.e. 3NOR = 0), which enabled them to omit some 

measurements ( 3æ ( )NO t  was set = 3æ (0)NO ). Indeed, 3NOR is 

consistently left out by model selection. But the negative values for 

3NOL  indicate that the assumption of no nitrate regeneration was 

not always valid, especially for the September measurements. In 

these cases, the only way to fit the measurements is to let 

parameter 3NOL  compensate by becoming negative.  

 

These observations linked to knowledge about the system and 

experiment give some faith in the results, even though it is impossible to 

verify whether or how well the selected models correspond to the true 

mechanisms that generated the data. 
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Table 6.5. Results before and after applying the CF model selection (MS) to 15 

field datasets, modelled by the compartmental model depicted in Figure 6.2. The 

values represent the estimated parameter values ± 1 standard deviation. The 

underlined results after model selection are exceptions to the “rule” that a 

parameter whose value is smaller than its standard deviation can be neglected. 

Those parameters that remain negative after model selection are marked with an 

asterisk*. 

Estimated rates (parameters) in nM/h Exp. 

No 

Sampling 

date 

 

4NHR  3NOR  4NHU  3NOU  4NHL  3NOL  PL  

1 03/05/93 Before MS: 8.0 ± 6 0 ± 10 10.3 ± 3 23.0 ± 4 -0.6 ± 6 -6.4 ± 10 8.3 ± 10 

  After MS: 7.1 ± 3 × 8.9 ± 3 20.4 ± 3 × × × 

2 24/09/93 Before MS: 3.8 ± 4 0 ± 6 5.7 ± 2 2.2 ± 0.3 1.9 ± 3 -1.4 ± 6 7.9 ± 5 

  After MS: 3.8 ± 2 × 6.2 ± 1 2.2 ± 0.5 × × × 

3 25/09/93 Before MS: 8.3 ± 5 0 ± 5 9.6 ± 2 7.3 ± 1 3.2 ± 4 -4.4 ± 5 4.5 ± 6 

  After MS: 7.9 ± 2 × 11.4 ± 3 7.7 ± 1 × -4.4 ± 5* × 

4 26/09/93 Before MS: 9.8 ± 4 0 ± 5 11.0 ± 2 7.2 ± 1 2.2 ± 4 -5.1 ± 4 5.7 ± 6 

  After MS: 9.1 ± 2 × 11.8 ± 3 7.4 ± 1 × -5.4 ± 4* × 

5 27/09/93 Before MS: 3.8 ± 2 0 ± 7 6.9 ± 1 10.3 ± 2 -1.4 ± 2 -6.9 ± 6 4.6 ± 6 

  After MS: 3.5 ± 1 × 6.4 ± 1 10.2 ± 2 × -6.9 ± 6* × 

6 27/09/93 Before MS: 3.1 ± 2 0 ± 6 4.7 ± 1 9.9 ± 1 0.5 ± 3 -5.8 ± 6 2.1 ± 8 

  After MS: 3.2 ± 2 × 4.9 ± 1 10.0 ± 2 × -5.9 ± 6* × 

7 28/09/93 Before MS: 2.9 ± 3 0 ± 8 3.8 ± 1 5.6 ± 1 1.6 ± 3 1.0 ± 8 5.3 ± 6 

  After MS: 3.1 ± 2 × 4.2 ± 1 6.0 ± 1 × × × 

8 21/04/94 Before MS: 52.2 ± 16 0.2 ± 160 8.6 ± 1 10.9 ± 2 7.2 ± 17 0.3 ± 164 37.7 ± 53

  After MS: 46.6 ± 15 × 8.7 ± 1 11.3 ± 3 × × × 

9 22/04/94 Before MS: 42.0 ± 12 0 ± 120 13.4 ± 2 14.2 ± 2 1.5 ± 13 0.1 ± 122 -4.1 ± 51 

  After MS: 40.8 ± 10 × 13.3 ± 2 14.2 ± 2 × × × 

10 22/04/94 Before MS: 4.1 ± 4 0.9 ± 235 4.9 ± 1 6.5 ± 1 2.5 ± 8 4.4 ± 242 28.0 ± 22 

  After MS: × × 4.8 ± 1 6.9 ± 1 × × × 

11 22/04/94 Before MS: 5.0 ± 4 0.4 ± 180 6.0 ± 1 9.7 ± 1 5.7 ± 8 0.7 ± 184 15.7 ± 23 

  After MS: × × 4.2 ± 1 6.0 ± 1 × × × 

12 24/04/94 Before MS: 22.0 ± 7 0.7 ± 145 9.4 ± 1 9.7 ± 1 6.9 ± 8 0.2 ± 150 7.6 ± 14 

  After MS: 17.9 ± 6 × 9.3 ± 2 9.9 ± 2 × × × 

13 24/04/94 Before MS: 46.1 ± 14 0.6 ± 168 11.8 ± 2 11.1 ± 2 3.3 ± 15 1.6 ± 172 5.6 ± 32 

  After MS: 43.6 ± 13 × 11.7 ± 2 11.1 ± 2 × × × 

14 27/04/94 Before MS: 28.0 ± 8 0 ± 57 22.1 ± 3 62.3 ± 9 9.2 ± 8 -7.9 ± 55 6.6 ± 56 

  After MS: 25.6 ± 5 × 24.4 ± 4 61.5 ± 9 × × × 

15 27/04/94 Before MS: 15.9 ± 5 0 ± 63 11.5 ± 2 52.0 ± 7 6.6 ± 6 -2.0 ± 62 19.1 ± 53 

  After MS: 13.6 ± 4 × 11.7 ± 2 52.5 ± 8 × × × 
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6.6. Conclusions 
Combining a statistical interpretation of the minimum of a Weighted 

Least Squares cost function and the principle of parsimony, a method to 

select the “simplest good” model was proposed. Different simulation 

tests suggest that the CF method outperforms the AIC and MDL-like 

criteria, especially when the number of data is very close to the number 

of parameters to be estimated. We hope that these results may give 

some confidence in the usefulness of this model selection method.  

 

We would like to emphasize that the choice of the significance level 

remains a delicate step, as for all hypothesis tests. From the simulation 

results, it becomes clear that it is not straightforward to propose one 

absolute best confidence level. Instead, we propose to interpret the 

results for different confidence limits in a more qualitative way. For 

instance, the classification as proposed by the Analytical Methods 

Committee [1992] could be used:  

- if ≤ χ2
95%

ˆ( )V θθθθ ,  then the model is “satisfactory”,  

- if χ < < χ2 2
95% 99%

ˆ( )V θθθθ , then the model is “questionable”, 

- if ≥ χ2
99%

ˆ( )V θθθθ ,  then the model is “unsatisfactory”  

(where χ295%  and χ299%  represent respectively the 95
th and 99th 

percentiles of the χ2 distribution with the appropriate (nd – nθ) degrees 

of freedom). 

This would allow an interpretation and thus a model selection with 

more nuance, since the distinction between acceptance and rejection of a 

model is less discrete. 

 

Making the link to the environmental applications, it seems appropriate 

to note how relevant but unrecognised this issue of model selection is 

today, considering that in most studies of environmental modelling the 

trend is to make ever larger models.  

 

“For if we know of something of potential relevance, and computational 
power is increasing, why should that something be left out? Those who 
use the results of such models are probably reassured by this imprematur, 
of having supposedly based their decisions on the best available scientific 



Part A 

110 

evidence. Our models, and certainly those we would label ‘state-of-the-
art’, seem destined always to get larger. ” [Beck, 1999].  
 

This effort is completely opposed to the whole rationale presented in 

this chapter. Admittedly, the purpose of these large mechanistic models 

is not the same as the black or grey box models considered here (cf. 

remark in section 2.4). Nevertheless, performance criteria such as 

identifiability and robustness of the model output are equally important 

for both applications, although they may have to be tackled in different 

ways. In a sense, the difference between the two approaches lies in the 

value attributed to the scientific experience or other subjective and 

qualitative prior knowledge. In the argumentation of some large models 

this criterion may be abused, but maybe it is too much ignored in black 

box modelling. 

 

As a final remark, a question of more philosophical nature may be 

raised, putting the whole model selection subject in a broader 

perspective. How realistic is the assumption that one true model exists 

for the observed, especially natural, phenomena? Most will agree that 

even the best model is not reflecting all true processes, but is rather a 

simplification giving an adequate approximation of the data at hand. 

Indeed, we already argued that a model should primarily be useful in 

describing the current (and future) data. But in that case, there may be 

more than one model that is “useful”, i.e. a sufficiently close 

approximation of the observations for the purpose of the study 

[Chatfield, 1995]. In other words, some uncertainty is associated with the 
selection of a best model. This uncertainty is independent of the 

selection procedure (the model may even be chosen based on prior 

knowledge), it is merely the consequence of the lack of one true model. 

This uncertainty is rarely taken into account in the further 

identification steps. The one selected model is taken as a priori known 

and its parameters (and their uncertainty) are estimated ignoring a 

possible uncertainty regarding the model structure. Several authors 

argue that this model uncertainty is likely to be one of the more 

relevant sources of model prediction uncertainty [Chatfield, 1995; Brun 
et al., 2001]. Obviously, this uncertainty is difficult to quantify and it 
would require other assumptions to find estimates. For instance, a 



6. Model selection 

111 

Bayesian model averaging approach has been suggested, combining a 

number of plausible models such that it is not necessary anymore to 

select a single best model [Chatfield, 1995; Draper, 1995; Reichert and 
Omlin, 1997]. But this approach needs the specification of prior 
probabilities for the various models, which is a tricky business. 

Furthermore, for many applications it is still important to have one 
model (e.g. if the physical interpretation of the parameters is of 

interest), and not a, possibly very large, set of models. Therefore, we 

will continue to use the classical scheme involving only one model, 

keeping in mind that no solution is perfect. 
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Part B: 
Ocean mixing model 

 

 

In Part A, the issues of parameter and uncertainty estimation, 

identifiability and model selection were introduced and solutions were 

suggested in the framework of tracer experiments modelled by 

compartmental models. In Part B, some of these issues will return, new 

ones will be launched, but all in the context of a different application. 

The common application in all following chapters is the modelling of 

water mass mixing in the ocean.  

 

Oceanic circulation and water mass mixing processes can be studied via 

complex physical models [e.g. Maltrud et al., 1998]. Such approaches 
have the advantage to be highly interpretable since every aspect can be 

traced back to fundamental physical laws. However, due to their 

dimension validation of these models using extensive datasets is not 

straightforward. On the other hand, a conceptually more simple, but 

completely data-based approach is often used: Optimum Multiparameter 

(OMP) analysis [Tomczak, 1981; Thompson and Edwards, 1981; Mackas 
et al., 1987; Tomczak and Large, 1989]. This type of model 
reconstructing distributions of mixing water masses will be the recurring 

application of Part B. The main aspects of OMP analysis will be 

introduced first (Chapter 7), followed by an extensive description, 

argumentation, validation and application of an improvement we 

propose (Chapter 8). This improvement cannot solve all problems, so in 

the next chapters two additional developments are investigated. In 

Chapter 9 a refined method to estimate the noise variances of the 

measurements is derived, in an attempt to enable a better quality check 

of the estimation results. Finally, identifiability will be further 

investigated in Chapter 10. 
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It is probably useful to allocate an additional paragraph to the 

motivation of this work. Indeed, modelling the ocean dynamics does not 

all fall within the traditional focus of the ANCH (Analytical and 

Environmental Chemistry) department and the reconstruction of the 

mixing fields wasn’t really the result of interest. The actual incentive of 

the work presented in this part was to enable the detection of non-

mixing processes involving dissolved barium. This question is relevant 

for Stéphanie Jacquet, whose PhD was concerned with a better 

understanding of barium cycling in the Southern Ocean. By accurately 

reconstructing mixing fields, we hoped that those regions in the ocean 

could be detected where barium concentrations are not behaving as 

expected if they were only influenced by mixing processes. The barium 

question will not further be raised in this thesis part, but knowing the 

reason why we wanted to go through this trouble may put some things 

into perspective. For the interested reader, a section in the chapter on 

future perspectives is entirely devoted to a more detailed discussion of 

this barium issue.  
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Chapter 7: 
 

Optimum 
MultiParameter 
analysis 
 

“Some notes on the history of water mass analysis. (…) The 
period before the First World War was dominated by the collection of 
primary data. Between the wars it was followed by a period of systematic 
study of ocean basins characterized by ocean-wide expeditions (…). The 
study of water masses formed the major tool for the discovery and 
description of core aspects of ocean dynamics during this period. (…) 
The development of the autonomous recording current meter and of 
techniques for long term deployment of oceanographic moorings shifted 
the focus of research toward dynamic phenomena (…). The discovery of 
strong time-variable ocean currents, of meso-scale eddies, fronts and 
internal waves dominated the first decades after the Second World War. 
(...) Classical water mass analysis was ill equipped to contribute to this 
phase of oceanography. (…) The last two decades have witnessed the 
reappearance of water mass analysis as a respected branch of 
oceanographic research (…). This new phase of oceanography is 
characterized by our growing awareness of the ocean’s role in climate 
variability and climate change. (…) [T]he study of water masses has 
become an important component of international programs such as 
WOCE [World Ocean Circulation Experiment] and CLIVAR [Climate 
Variability] which have produced and will continue to produce a large 
amount of high quality hydrographic data (…). The range of methods 
useful for water mass analysis has also grown notably over the last few 
decades. Numerical modeling (...). Inverse methods (...). These examples 
show that water mass analysis is on the threshold of a new era.”  

Tomczak [1999] 
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7.1. Introduction 
“Water mass visualization will of course always rely on temperature-
salinity and other property-property diagrams. Such graphical methods 
are invaluable as orientation tools, but their use in quantitative analysis 
is very limited. (…) The products most useful for climate analysis will 
eventually be maps of water mass content (…), water mass age and 
water mass formation rate” [Tomczak, 1999].  
 

Optimum MultiParameter (OMP) analysis is a data-based tool offering 

insights into especially the first of these aspects. If time can be 

introduced in the analysis, also the two other questions are reachable 

[Karstensen and Tomczak, 1998], but this will not be considered in this 
thesis.  

 

In this chapter an introduction to OMP analysis is given, emphasizing 

its valuable aspects, but also pointing out some of its imperfections, 

some of which will be addressed in the next chapters.  

 

7.2. Method  
Classical OMP analysis usually considers a water parcel sampled on a 

grid (e.g. latitude versus depth) with a total of N grid points. At every 
sampling position of the grid, nv physical and/or chemical properties are 
measured, such as temperature, salinity, dissolved oxygen concentration, 

etc. These observed fields are considered to be the result of mixing of a 

number (nS) of source water masses, whose characteristics are assumed 
to be known. Following the definition given in Tomczak [1999], a set of 
properties corresponding to such source water mass is called a source 
water type (SWT). Defining the SWTs is a delicate job and the final 
outcome of the analysis highly depends on the choices made here. Once 

the SWTs are characterized, each measured property can be written as 

a linear combination of the SWTs’ values for that hydrographic 

property. For example, potential temperature measured at location k 
can be modelled by 
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Θobs(k) = 
=
∑
1

Sn

i
xi(k) Θi  +  eΘ(k),       (7.1) 

 

where xi is the i
th SWT contribution or fraction and Θi its potential 

temperature, and eΘ(k) the disturbing noise. Only conservative 
hydrographic properties are considered in the analysis and it is assumed 

that only linear mixing occurs such that for each property a similar 

equation can be written. If enough properties are measured, the 

unknown fractions xi at position k (the same in each equation) can be 
estimated by simultaneously optimising all mixing equations of form 

(7.1). In practice this is done taking into account two constraints. First, 

the mass balance equation  

 

=
=∑

1
( ) 1

Sn

i
i
x k           (7.2) 

 

should be satisfied at any position k, and therefore this equation is 
optimised simultaneously with the mixing equations. In addition, usually 

a nonnegativity constraint is imposed on the mixing fractions, for 

obvious reasons of physical relevance. The procedure can be repeated for 

all grid points, resulting in optimal values for the mixing fractions at 

each sampling location. These are the basic ideas of the OMP approach. 

 

 

Assumptions 7.1 (OMP analysis) 

(i) Only linear mixing processes occur, i.e. all water mass properties 

undergo the same mixing processes. 

(ii) Only conservative water mass properties are considered, i.e. their 

values are not influenced by biogeochemical processes. 

(iii) All relevant source water masses are included in the analysis, such 

that at any position 
=

=∑
1

1
Sn

i
i
x  and xi ≥ 0 (∀i). 

(iv) The source water types are accurately known (but can be 

associated with a standard deviation). 
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This method has first been presented more than two decades ago by 

Tomczak [1981]. Several improvements have been proposed since then. 
The most objective way to assign a weight to each variable in order to 

reflect differences in reliability of each variable has been discussed 

[Thompson and Edwards, 1981; Mackas et al., 1987; Tomczak and 
Large, 1989]. Later, multivariate methods, like cluster analysis and 
principal components analysis, have been applied in an attempt to more 

objectively determine the source characteristics (i.e. the Θi in Eq. (7.1)) 

[You and Tomczak, 1993; de Boer and van Aken, 1995; You, 1997; 
Fogelqvist et al., 2003]. Although these methods are efficient in 
reconstructing multivariate datasets, they lack the physical 

interpretability that OMP analysis has. In particular, the “SWTs” are 

mere mathematical constructs representing the directions in 

multivariate space with maximal variation, but their characteristics 

generally do not correspond to real source water masses. Therefore, 

these methods are not further considered here. The OMP methodology 

has been widely used in oceanographic literature to investigate source 

water contributions in various regions and systems (e.g. You, 1997; 
Castro et al., 1998; Coatanoan et al., 1999; Perez et al., 2001; You et al., 
2003; Lo Monaco et al., 2005). 
 

This is probably due to its main advantage: its simplicity. It is indeed a 

very intuitive approach, not requiring many assumptions about the 

physics of the investigated system. The outcome of the computations 

(i.e. the fraction fields) is directly visualisable and interpretable. This 

does not mean that the analysis input should not be chosen carefully, 

but rather that the quality of the results can often be checked even 

visually. Yet, this OMP method exhibits a number of imperfections, 

especially from a statistical point of view. These are further discussed in 

the next section. 

 

7.3. Imperfections 
A. No position dependence. Since every grid point is optimised 

individually and independently, the position dependent variation of the 

source contributions over the grid is not taken into account. In other 
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words, it is not considered that if a source water contribution is high in 

one point it will probably be quite high in a neighbouring point too. A 

consequence of the current working scheme is that the mixing fractions 

for a given point only depend on the data associated with this point, 

and hence are highly influenced by errors in that point.  

 

B. Few or no residual degrees of freedom. To estimate all 

unknown fractions 1,..., Snx x  from the set of equations (mixing equations 

of form (7.1) and the mass balance equation (7.2)), the number of 

unknown fractions, nS, may not exceed the number of measured 
variables (nv) + 1. Otherwise the problem is degenerated, which means 
that there is an infinite number of solutions for 1,..., Snx x  which all fit 

the data equally well. In the extreme situation where nS = nv + 1, there 
is exactly one mathematically correct solution for the unknown 

fractions, but it is of little statistical significance because there are no 

residual degrees of freedom. This situation can be compared to a linear 

regression (two unknown parameters) through two data points (two 

equations): a straight line can perfectly be fitted through two points, 

but the noise contained in the data is entirely modelled as significant 

information. Consequently, the fitted line will certainly not equal the 

true line through the true data values. To summarise, to be statistically 
relevant the OMP method should be performed in overdetermination, 

i.e. with nS ≤ nv, and preferably even nS << nv. However, due to the 
reality that only a small number of conservative properties are usually 

available, it is common practice to apply OMP analysis to the extreme 

situation with nS = nv + 1. The main consequence is that the resulting 
mixing fraction values are highly influenced by stochastic errors in the 

data and thus associated with a higher uncertainty.  

 

C. Mass balance is not strictly imposed and inconsistent 

weighting. In the OMP procedure mass balance (Eq. (7.2)) is treated 

as if it were a mixing equation (cf. Eq. (7.1)). Conceptually this is not 

entirely correct since the mixing equations are actually modelling a 

measurement, whereas the mass balance equation only states a physical 

constraint that should (exactly) be obeyed. As a consequence of this 

handling, the fractions optimised by OMP analysis only approximately 

obey mass balance. An additional difficulty with this approach arises 
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when weights have to be chosen for each equation. Indeed, before 

optimising the mixing equations, each equation is multiplied by a 

weight, usually expressing the reliability of the measurement described 

in the equation. This is a healthy thing to do since it is known that 

some variables are measured with much higher precision than others. 

The values of the weights highly influence the final fractions so they 

should be chosen with care. However, as mentioned just before, it is not 

possible to attribute such a weighting factor to the mass balance 

equation, because there is no measurement involved in this equation. In 

practice, “the largest of the weights (…) is allocated to the mass 
conservation equation” [You and Tomczak, 1993]. This dilemma was 
already noted by Tomczak and Large [1989]: “More thought has to be 
given to the most suitable weights. How important in this context is 
conservation of mass?”.  
 

D. Subjectivity of source water type definition. Maybe the most 

important assumption made in the whole analysis is the choice of the 

SWTs. A few attempts have been made to make the SWT definition 

more objective, in particular by using multivariate methods such as 

Cluster Analysis and Principal Components Analysis [You and 
Tomczak, 1993; de Boer and van Aken, 1995; Fogelqvist et al., 2003], but 
these methods seem unable to provide useful definitions in general. 

Consequently, the selection and definition of SWTs is typically said to 

be based on data inspection, combined with literature values and prior 

knowledge about the local oceanographical features and processes, in 

other words the SWTs are defined in a subjective way. 

 

7.4. Concluding remarks 
In this chapter the main aspects of classical OMP analysis were 

discussed. The emphasis was on the mathematical side of the story, 

culminating with a listing of technical imperfections. The awareness of 

these imperfections was the driving force behind the developments in 

the remaining chapters. 
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However, this may be a suitable moment to look further than the maths 

and stats.  

 

“The knowledge of exact mixing fractions of water masses in the ocean is 
necessary for various applications, especially in the analysis of transient 
tracer fields or biogeochemical cycling. The distribution of tracers is 
controlled by a combination of transport processes associated with the 
oceanic circulation and mixing and by reactive processes associated with 
the major biogeochemical cycles (…). To evaluate the distribution of 
nutrients and tracers in the sea one has to resolve effects of mixing and 
of biogeochemical cycling. OMP analysis is a tool to analyse the water 
mass mixture in a water sample by calculating the contributions from the 
original water masses (so called source water masses) to the sample.” 
[Karstensen and Tomczak, 1999]. 
 

Indeed, except for potential temperature and salinity, most available 

hydrographic parameters are not strictly conservative, but possibly 

involved in biogeochemical processes. Although these processes impede 

the straightforward application of OMP analysis, these are exactly the 

processes of interest in many studies, eventually even this one (see 

section 12.5). If it is possible to extract the contribution of mixing to the 

observed profiles of tracers in the ocean, knowledge of the importance of 

biogeochemistry comes within reach.  

 

The problem of including possibly nonconservative variables, such as 

oxygen or nutrient concentrations, in an OMP analysis has been tackled 

in several ways. One way, is to convert the nutrients into “preformed” 

nutrients, like NO and PO, before the analysis. These are corrected 

nutrient concentrations, considering that nutrients and oxygen are 

utilised and formed following a predefined Redfield ratio: NO = rO/NNO3 

+ O2 and PO = rO/PPO4 + O2. Another strategy, also based on the 

Redfield ratios, is to add a “biogeochemistry term” in the mixing 

equations, introducing an additional unknown ∆P to be estimated: 
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This procedure is called “extended OMP analysis” and allows to 
simultaneously quantify the changes due to biogeochemical processes. 

However, a limitation of both strategies is that one must be sure that 

the changes occur according to fixed Redfield ratios and one must know 

the values of these ratios. Even for well-known nutrients like nitrate and 

phosphate, this is still a topic of active debate. As a result, this 

procedure can certainly not be used for other tracers whose 

biogeochemical behaviour is not well understood. The incentive of this 

second thesis part was to assess the importance of biogeochemical 

processes in controlling the observed fields of dissolved barium. How we 

used OMP analysis to address this question is discussed in section 12.5. 

But the first step seemed to tackle the imperfections listed in the 

previous section, in order to have more reliable results. The technical 

developments needed for this goal appeared to be important enough by 

themselves to form the chapters of this second thesis part. 
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Chapter 8: 
 

Parametric Optimum 
MultiParameter 
analysis 
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8.1. Introduction 
In the previous chapter, the main ideas, advantages and imperfections of 

the classical OMP analysis have been summarised. It is the aim of this 

chapter to present a modified OMP analysis which addresses some of 

the imperfections while keeping the advantages. The method we propose 

is still based on the same mixing equations, but includes a 

parameterisation of the mixing fractions as a function of position 

allowing a more accurate tuning of the model complexity. First, the 

method is presented in detail, including some technicalities and a 

schematic algorithm (section 8.2), followed by some simulation tests 

intended to validate it (section 8.3). In section 8.4 a oceanographical 

dataset from the Southern Ocean is analysed using the new method, 

demonstrating its performance on real data, but also indicating the need 

for better estimates of the measurement uncertainties. This chapter is 

largely based on de Brauwere et al. [2007a] 

 

8.2. Method 

8.2.1. Parameterisation to increase precision 
If nv hydrographic properties are considered in OMP analysis, a mixing 
equation like Eq. (7.1) can be written for each variable at position k. 
This set of mixing equations for position k can formally be combined in 
one matrix equation  

 

yk = S⋅xk + ek,         (8.1) 

 

with yk the (nv×1) measurement vector at position k, S is the (nv×nS) 
SWT definition matrix, which is independent of position, xk is the (nS×1) 
fractions vector for position k and ek stands for the error vector at 
position k. If this is repeated for all (N) positions of the grid where the 
hydrographic properties are measured, one can gather all equations in a 

similar matrix equation 

 

Y = S⋅X + E,         (8.2) 
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where Y is the (nv×N) measurement matrix, S is still the SWT definition 
matrix, X is the (nS×N) fractions matrix and E stands for the noise 
matrix. At this point X contains the unknown fractions to be estimated 

and there is still one set of fractions for every grid point as mentioned in 

imperfection A. To make the model more robust, the discrete fraction 

field of each SWT (i.e. each row of X) will from now on be described by 

a continuous function. We consider the situation where the samples lay 

on a two-dimensional (e.g. latitude-depth) grid, hence two-dimensional 

functions are used. So, instead of having values for the fractions of a 

given SWT on a discrete grid of points, we now consider a two-

dimensional fraction function, which is function of two position 
coordinates (e.g. latitude l and depth z). We propose to parameterise the 
fractions of SWT i by a number (nB) of two-dimensional spline basis 
functions B [Dierckx, 1995]. Formally, this means that the mixing 
contribution of SWT i, xi, at position (l, z) is modelled by a linear 
combination of nB basis functions evaluated in (l, z) 
 

( )
=

= ∑ ,
1

, ( , )
Bn

i i b b
b

x l z c B l z .        (8.3) 

 

In practice, the two-dimensional functions B are formed by 
combinations of two one-dimensional B-spline functions [Vanlanduit, 
2001] 

 

=
, ,

( , ) ( ) ( )
zlb i k j kB l z N l M z , with i ∈ {1, …, nl} and j ∈ {1, …, nz}. (8.4) 

 

, ( )li kN l  is the ith (out of nl) B-spline, of order kl, in the latitude direction 
evaluated in l. Similarly, , ( )zj kM z  is the jth (out of nz) B-spline, of order 
kz, in the depth direction evaluated in z. These B-splines are defined by 
knots (fixing their number) and by an order. nlnz is the total number of 
basis functions used to parameterise the mixing fractions, i.e. nlnz  = nB 
(see Eq. (8.3)). Between two consecutive knots the B-splines , ( )li kN l  and 

, ( )zj kM z  are polynomials of degree kl and kz respectively. We use the 
basic configuration where the knots defining the transition between B-

splines are ordered equidistantly over the study area, but in principle 

their position can be optimised to suit specific features of the  
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Figure 8.1. Shapes of B-splines of varying order k, illustrating that for one B-spline 

k + 2 knots are necessary. 

 

 

 

 

 

 
Figure 8.2. Construction of a spline as a weighted sum of B-splines, as a one-

dimensional analogue of the procedure proposed here (Eq. (8.3)). Dashed lines 

represent B-splines of order 3 on an arbitrary knots grid; thin black lines are the 

individual B-splines multiplied with a given factor (resp. 3, 2, 3 and 4), forming the 

bold grey line when summed. 
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Figure 8.3. Examples of two-dimensional splines, formed by multiplying and 

summing B-splines of orders kl = kz = 1 (a) and 3 (b). Surfaces shown in (a) and (b) 

are arbitrary and independent. 

 

 

 

 

investigated system. Between two consecutive knots the B-splines 

, ( )li kN l  and , ( )zj kM z  are polynomials of degree kl and kz respectively.  
 

More details about the choice of appropriate orders (kl and kz) and 
numbers of the B-splines (nl and nz) are given in the next section. 
 

Merged in matrices, Eq. (8.3) becomes 

 

X = C⋅⋅⋅⋅BT.          (8.5) 
 

Combining this with Eq. (8.2), we find the central equation in this 

chapter: 

 

Y = S⋅⋅⋅⋅C⋅⋅⋅⋅BT + E,         (8.6) 

 

with 
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the (nv×N) matrix containing the measurements of all variables (y1 may 
be potential temperature, y2 salinity, etc.) at all sampling positions; 
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the (nv×nS) SWT matrix holding the characteristics of a source in every 
column; C represents the (ns×nB) spline coefficients matrix 
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and  
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(8.10) 

 

is the (N×nB) basis function matrix (the same for every source). Now, 
the unknown parameters to be estimated are the spline coefficients 

contained in C. More details about how to optimize these coefficients is 

given in sections 8.2.3 – 8.2.5.  

 

The approach essentially consists of a parameterization of the original 

OMP equations. Therefore we propose to call it Parametric OMP 

analysis or POMP. A number of remarks can be made. 
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(i) By parameterising the source fractions, they are made explicitly 

function of position (cf. Eq. (8.3)), thus addressing imperfection A. 

In other words, truly a continuous fraction field is estimated, and 

not a discrete fraction grid. However, it is always possible to get 

the values of the mixing fractions on the sampling grid, using Eq. 

(8.3). Note also that to visualize the discrete results of classical 

OMP analysis in a contour plot, as is usually done, it is anyway 

necessary to fit a function through the fraction values in order to 

interpolate and form the contour lines. POMP performs this 

parameterization a step earlier.  

(ii) Generally the number of basis functions nB will be much smaller 
than the number of sampling positions N. Hence the number of 
unknowns (spline coefficients C) to be estimated, namely nBnS, is 
much smaller than the original number of fractions that had to be 

estimated, which was NnS. This implies there will be a certain 
“smoothing”, comparable to what happens in classical linear 

regression, which reduces the influence of individual noise 

contributions and makes the resulting mixing fraction estimates 

more robust. On the other hand, too much smoothing should be 

avoided, otherwise risking to discard significant features present in 

the data. Making this trade-off is an inclusive part of the POMP 

methodology and it will be further discussed in section 8.2.2. 

(iii) POMP possibly creates an opening to objectively optimise the SWT 

characteristics S. As a consequence of the reduction in unknowns to 

be estimated (cf. (ii)), enough residual degrees of freedom are left 

over to extract additional information from the data, possibly about 

the elements of matrix S. This topic will be the subject of Chapter 

10, so it will not be further discussed here. Let us only mention 

that recently some work on the characterization of SWTs has been 

done in the framework of OMP analysis applied to time series 

[Henry-Edwards and Tomczak, 2006], so this issue is certainly of 
current interest.   

(iv) The main assumption underlying the POMP method is that the 

mixing contributions systematically vary with position. This 

implicitly constrains the possible values of the mixing fractions and 

therefore reduces their sensitivity to individual measurement errors. 
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Pointwise variation is interpreted as insignificant random effect 

which should be removed. So, clearly POMP analysis is not suitable 

to study small-scale (grid scale) phenomena. Exactly how much 

“detail” will be provided by the POMP analysis depends on the 

particular function used to describe the mixing patterns. This issue 

is addressed in the next section. 

 

8.2.2. Model selection to ensure accuracy 
The quality of the POMP analysis outcome obviously depends on the 

choices made concerning the functions parameterising the mixing 

fractions. Spline functions were chosen to describe the fraction fields, 

because they are very flexible in shape and stable to compute [Dierckx, 
1995]. But an essential choice to be made, regardless of the type of 

functions used, concerns the complexity of the functions. Indeed, if a too 

simple function (or model) is chosen, some significant features present in 

the data will not be captured, so the results will be biased although they 

are robust. Conversely, if a too complex model is used (like OMP 

analysis in most occasions), not only the significant underlying processes 

are modelled, but a part of the stochastic noise as well. As a 

consequence, such a model will closely fit the data but is highly variable 

due to the noise’s influence. Summarizing, a model should have an 

“intermediate” complexity, such that it optimally balances accuracy and 

precision.  

 

In the case of spline functions, this boils down to carefully selecting the 

number and order of the B-splines. This is comparable to choosing the 

best order in polynomial regression, or the number of variables to 

consider in multivariate regression. All these models are purely empirical 

(i.e. they do not have a physical interpretation) and the most suitable 

model complexity only depends on the data they describe. The 

complexity of the spline functions is expressed by the numbers (nl and 
nz) and orders (kl and kz) of the underlying B-splines can be chosen by 
performing the POMP analysis for all relevant combinations (nl, nz, kl, 
kz) and inspecting the results according to statistical rules designed to 
select an optimal model complexity (see Chapter 6). The only restriction 

is that nB = nlnz ≤ N. The extreme situation when nB = N represents the 
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special case that the POMP model reduces to the original OMP 

solution, where the mixing fractions are estimated for each sampling 

position separately. Since it is not always obvious whether all 

assumptions underlying the statistical tests (e.g. normality of noise 

distributions) are satisfied with this kind of field data, we suggest to 

apply a number of these tests (see Chapter 6) and to use them together 

as a guide, in combination with common sense.  

 

The goal of the parameterization is to make the resulting mixing 

fractions more robust, by only cutting off that part of the variability 

which is due to noise. Depending on the sampling density and the noise 

level, this “filtering” will also cut away a certain portion of some 

systematic, but small-scale, processes occurring (e.g. eddies). If these 

processes are of particular interest, they can be further investigated in 

the residual plots. In this perspective, the aim of a POMP analysis 

(combined with a statistically based selection of the splines complexity) 

is to only include those features in the mixing model which are most 

likely to be significant, while all the remaining information will be in the 

residuals. With classical OMP, almost everything is packed in the 

model. 

 

The complexity of the splines functions, or the degree of smoothing, 

could also be interpreted in terms of ocean dynamics. If some processes 

are associated with specific scales, they could possibly be isolated using 

a POMP-like technique. The remaining processes could then be 

visualized by subtracting these results from those obtained with classical 

OMP analysis. This remark was first suggested by Matthias Tomczak 

during my visit to the Flinders University in summer 2006. It is 

included here as a hint for future applications, in this chapter and the 

remainder of this thesis the selection of the splines complexity is based 

on the statistical criteria. 

 

To briefly summarize the POMP developments presented so far, 

parameterization of the unknown mixing fractions, combined with an 

effective choice of the splines complexity improves imperfections A and 

B mentioned in the introduction. How to handle remark C will be 

discussed in the next sections. 
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8.2.3. Weighting scheme 
The final values for the mixing fractions can be greatly influenced by 

weighting the equations before optimisation. For instance, temperature 

and salinity measurements are usually associated with lower relative 

uncertainty than the other variables. This knowledge should be 

incorporated in the method such that these measurements are treated 

with greater importance. To achieve this every equation is multiplied 

with a weight symbolizing the reliability of the variable in question. 

Since this is not quantitatively possible for the mass conservation 

equation (uncertainty is zero?), we suggest to treat this equation as a 

constraint rather than as an equation to be optimised. This aspect is 

discussed in more detail in the next section. 

 

In analogy with the approach followed in Chapters 4 and 6 we choose to 

use a weighting scheme compatible with the statistical Weighted Least 

Squares (WLS) framework [Pintelon and Schoukens, 2001]. This implies 
that the weights are the inverses of the uncertainty (in terms of 

standard deviation) associated with each equation. In other words, 

optimal values for the unknown spline coefficients C (and hence the 

unknown mixing fractions) can be found by minimising the squared 

residuals multiplied by a weighting factor (w) which is the inverse of the 
standard deviation (std), i.e. 
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Here jS  stands for the jth row of S, Bi is the i
th row of B and ijw  

represents the weighting for the ith sampling point for the jth 
hydrographic property. In Eq. (8.11) it can also be seen that the 

weighting simultaneously serves to normalise the variables, so that they 

become dimensionless. 
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At this point we propose to consider only the measurements as source of 

uncertainty. This means that actually the mixing fractions (spline 

coefficients) are optimised in OWLS sense (cf. section 2.5). We suggest 

to assume the input, i.e. the source water types, to have negligible 

uncertainty, because of their conceptual nature. Since they are not 

really measured, but postulated, it is difficult to associate them with an 

uncertainty in terms of stochastic variance, as necessary in the WLS 

framework. An additional difficulty to include the input uncertainties, 

e.g. as proposed in Chapter 4, is that the source water types are not 

independent from sample to sample. This implies that covariances 

should be included as well, which are even more impossible to quantify. 

To put it as a paradox: in the name of objectivity, we propose to neglect 

the input uncertainty in the weighting, although it is undoubtedly 

significant. 

 

In the most general case, the weighting factor varies with the property 

considered (e.g. a different weight for temperature than for salinity) and 

the location (e.g. a different weight for measurements made at the 

surface than for the deep observations). For simplicity and conform to 

common OMP practice, in this chapter one weight per variable will be 

attributed (no location dependency).  

 

In practice, even when ignoring the SWT uncertainty, the difficulty 

remains to quantify the uncertainties to be used as weights. An accurate 

estimate of the standard deviation associated with each hydrographic 

property should be known. Ideally, this uncertainty is assessed based on 

the standard deviation of a number of replicates. However, this 

information is not always available because it is expensive and time-

consuming to repeat experiments. In section 8.4.2 more details are given 

about the strategy used in this chapter to retrieve the uncertainty 

information. However, the results obtained using these weights will 

reveal the need for a better estimation of the measurement 

uncertainties, also allowing spatial dependency. In Chapter 9 a new 

strategy to estimate these uncertainties is presented. 
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8.2.4. Constrained optimisation scheme 
If the mass balance equation (7.2) is not included in the mixing model, 

this has the advantage that the weighting can be performed following 

the same logic for all equations (cf. imperfection C in section 7.3). On 

the other hand, the optimised fractions must satisfy mass balance, 
otherwise they are not realistic. Both requirements can be assured 

simultaneously when the mass balance equation is imposed as an 

equality constraint during the optimisation. Generally in OMP analysis, 

an optimisation procedure is used that constrains the fractions to be 

positive (e.g. nonnegative least-squares algorithm “lsqnonneg” in 

MATLAB [OMP2, 2005]). The mass balance imposes an additional 
constraint that can be inserted in the optimisation algorithm (e.g. using 

the “lsqlin” MATLAB function). More details about the algorithm are 

given in section 8.2.5. The main consequences of this approach are: 

(i) Mass balance will be exactly (i.e. within computation precision) 

satisfied. In other words, only the mixing equations will have 

residuals. This is a healthy situation, because the mass balance 

equation does not represent the modelling of a measurement and is 

therefore not affected by measurement errors or environmental 

variability.  

(ii) The only equations really optimised are the mixing equations, so a 

consistent weighting scheme can be applied to all equations (see 

section 8.2.3).  

 

Apart from these positive changes, the method and results are hardly 

influenced by treating mass conservation this way. For instance, the 

condition for mathematical solution (identifiability) that ns ≤ nv + 1 still 
holds. Also, the resulting fractions will not differ much from those found 

with the original procedure, especially when the weight attributed to the 

mass balance equation was very large, as is the custom procedure. This 

confirms the observation of Tomczak and Large [1989]: “Trial runs with 
(arbitrary chosen) larger weights for mass conservation show that the 
OMP analysis converges rapidly to nearly perfect mass conservation, 
with only minor adjustments in the mixing ratios”. To summarize, 
imposing the mass conservation as a strict constraint does not influence 
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the results much. It is rather a technical issue allowing to attribute 

weights to all equations in a more consistent way.  

 

8.2.5. POMP algorithm 
Combining all suggestions made above to improve the classical OMP 

analysis, the POMP algorithm was designed. In this section a schematic 

overview of this algorithm is presented. All functions were written in 

MATLAB [MATLAB, 2005]. The goal is to estimate the spline 
coefficients using Eq. (8.6). Once these are known, the source 

contributions at each sampling point can be calculated with Eq. (8.3). 

 

1. Input 

• data matrix Y; 

• source definition matrix S; 

• weights for all variables; 

• spline parameters (order, number). 

 

 

2. Calculations 

• Construct spline matrix B. 

• Eq. (8.6) must be vectorised, because the optimisation functions are 

written for this kind of input. Using the vec operator, all columns of a 
matrix are stacked underneath each other, giving one long column 

vector (see A.4 – A.6 in Appendix). For Eq. (8.6) 

 

( ) ( )= ⋅ ⋅ ⇒ = ⊗ ⋅T vec vecY S C B Y B S C ,    (8.12) 

 

where ( )vec Y  and ( )vec C  stand for the vectorised matrices. ⊗ is the 
Kronecker product operator which multiplies each element of the first 

matrix with the second matrix [Brewer, 1978], as defined in A.5 
(Appendix).  

• The equality constraints must be specified by matrices  eqA and 

 eqb defined as  
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Aeqvec(C) = beq.         (8.13) 

 

For the mixing fractions to sum up to one in each point††:  

  

Aeq = B⊗1(1, nS) and beq = 1(N, 1),      (8.14) 

 

with 1(…) a matrix of ones of the specified dimensions. 

• The inequality constraints must be specified by matrix  ineqA and 

vector  ineqb  defined as  

 

Aineqvec(C) ≤ bineq.         (8.15) 

 

For all mixing fractions to be nonnegative:  

 

Aineq = − ⊗  
Sn

B I and bineq = 0(nSN, 1),     (8.16) 

 

with 0(…) a matrix of zeros of the specified dimensions. 

• Optimal values for vec(C) can now be found by solving the linear 
system Eq. (8.12), taking into account the mass balance and 

nonnegativity constraints. For this optimisation, we used the 

MATLAB function “lsqlin” [MATLAB, 2005] for constrained linear 
least squares optimisation.  

• This function does not have the possibility to input a weighting 

matrix. Hence, the weighting has to be done before starting the 

optimisation: each element in vec(Y)  and in ⊗B S has to be divided 

by the according standard deviation (see expression (8.11)). 

• An optional input argument for this optimisation function is a 

starting point or initial guess value for the parameters to be 

                                      
†† Note that the equality constraints are only imposed in the sampled points. 
However, from our tests it appears that if the constraints are satisfied in these 
points, they will be satisfied in any other point too. This is probably a consequence 
of the special property of splines to sum up to one in any given point in the interval 
where the splines are defined [Dierckx, 1995, p. 11]. 
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estimated. We used the basic starting point for C that is equivalent to 

all mixing fractions having the same values (all sources contribute 

equally over the domain). 

 

3. Output 

• optimal values for the spline coefficients vec(C); 

• optimal values for the source contributions at the sampling positions 

can be found by applying Eq. (8.3) or (8.5); 

• residuals can be computed. 

 

4. Spline complexity selection 

To select the optimal spline complexity, the above calculations should 

be repeated for all relevant number of splines. For each fixed number of 

splines, the analysis should also be repeated for a number of orders (we 

tested orders 1 to 3). The best order for a fixed number of splines is that 

one giving the smallest residuals (residual sum of squares is a good 

measure), since varying the order does not change the number of model 

parameters or unknowns. Now the optimal number of splines still has to 

be selected, which we suggest to do based on the criteria developed and 

presented in Chapter 6.  

 

8.3. Simulation tests 

8.3.1. Synthetic dataset 
A synthetic dataset was constructed based on the CLIVAR-SR3 data 

which will be analysed in section 8.4, such that it resembles a real 

situation. To obtain the synthetic dataset, the real data are slightly 

modified as to be perfectly modelled by 5 sources. The mixing fractions 

can exactly be parameterised by 10 splines in latitude direction and 4 in 

depth direction (this complexity will from now on be abbreviated as (10, 

4)), and strictly satisfy both the equality and inequality constraints. 
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8.3.2. Error free situation 
The trivial test of the POMP method is to apply it to the noiseless 

synthetic data and using the exact simulation model (the five true 

sources and a (10, 4) splines complexity). In that “perfect” case, the 

model should describe the data within computation precision. This is 

verified, and indeed, the residual cost function is smaller than 10-20 and 

the reconstructed mixing fractions (almost) perfectly match the 

simulated mixing fields. In short, if no errors are added, the POMP 

method works perfectly, which is the least we can expect. How does it 

behave when either systematic errors or (stochastic) noise is added? 

 

8.3.3. Noiseless situation with wrong splines 
In a second series of tests, still no noise is added to the data, but the 

mixing fractions are modelled by splines with a wrong complexity. The 

situations of both overmodelling (splines complexity of (14, 6) instead of 

(10, 4)) and undermodelling (complexity of (8, 2) instead of (10, 4)) are 

investigated.  

 

Both overmodelling and undermodelling deliver residual cost function 

values much higher than the computation precision. In the case of 

undermodelling this is expected since not all features in the mixing 

fractions can be modelled by this simpler model and thus significant 

residuals will remain. In the case of overmodelling, this result may be 

more surprising, but it can be explained by the nature of the splines. 

Because the more complex splines are defined by different knots 

(automatically generated to be equidistant over the grid), they will not 

be able to capture the specific patterns of the simulated mixing 

fractions, although these were produced by “simpler” splines. This 

illustrates that model complexity is not always simply equated with the 

number of parameters, but that the structure of the model can also be a 

significant factor. In this case, the position f the knots also play an 

important role in the fitting power of the model. However, this is an 

extreme situation because splines were simulated. In the long term it is 

expected that by adding parameters the overall trend of the cost 

function will be decreasing.  
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A final important observation from these simulation tests concerns the 

shape of the residuals. For both the overmodelling and the 

undermodelling case, the residual histograms are relatively symmetric, 

which would hide the fact that model errors are present in this analysis. 

However, when inspecting the spatial distribution of the residuals (i.e. 

the residuals plotted as a function of position), systematic patterns 

appear which do point towards a non-optimal spline complexity (or 

knots position). Concluding from these observations, it may be 

misleading to judge the residuals whiteness only from histograms. 

 

8.3.4. Noisy data and no systematic errors 
In real applications, the measurements will always be disturbed by 

noise. So, it is of interest to investigate the effect of adding a stochastic 

component to the synthetic data on the performance of the POMP 

method. To ensure that the observed effects are only due to the added 

noise, no other errors are added, i.e. the true model (sources and splines) 

is used in the analysis.  

 

It is meaningless to interpret the results of one such simulation, because 

it consists of only one noise realisation which does not infer anything 

about another realisation. The best strategy when investigating the 

behaviour of a stochastic component is to repeat the experiment a large 

number of times, each time with a different noise realisation, and to 

interpret the mean results. Accordingly, 1000 repeated simulations were 

performed, adding random, normally distributed noise to the synthetic 

data. The cost function was weighted correctly, i.e. with the inverses of 

the noise variances, such that it is expected that the average value of 

the residual cost function approximates the residual degrees of freedom. 

However, the average value of the residual WLS cost function (965) is 

higher than the number of degrees of freedom (892). Although the 

difference it not large, it is significant because it concerns an average 

value over 1000 realisations (the standard deviation associated with the 

average residual WLS cost function value = 1.3).  

 

It appears that the presence of active inequality constraints (mixing 

fraction must be nonnegative) is the reason of this discrepancy. Due to 
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the added noise, the optimal solution, associated with the minimal cost 

function, may include negative mixing fractions. However, the inequality 

constraints in the algorithm make this solution unacceptable, and the 

final solution will be associated with a higher residual cost function. If 

we repeat the 1000 simulations, but omitting the inequality constraints, 

we do find the expected average value for the residual cost function: 893 

(df = 892).  
 

8.3.5. Conclusions 
Although in the error free situation the POMP method works perfectly, 

these simulation tests indicate that elevated residual cost function 

values may be expected in real applications. First of all, because the 

spline parameterisation will never be perfect (real mixing distributions 

are probably not exactly spline-shaped). And even if the true model is a 

spline, it has been shown that (except for the true spline complexity) a 

model error is present and increasing the residual cost function. 

Secondly, even if no model errors are present, some inequality 

constraints are likely to become active due to the noise on the 

measurements. This will exclude the solution associated with the truly 

minimal cost function and thus force the solution to higher cost function 

values. Finally, a third reason why the residual cost function will be 

higher than expected has already been mentioned in section 8.2.3. 

Indeed, a OWLS cost function is used, implying that in real applications 

the uncertainty associated with the source water types is ignored. As a 

result the weights will underestimate the total uncertainty and the 

weighted cost function will be inflated compared to what is expected. 

This knowledge will be useful when analysing the real dataset in the 

next section.  

 

8.4. Results on field data 
In the previous sections of this chapter a refinement is proposed for the 

classical OMP analysis. After having tested it on simulations, this 

adapted procedure is now applied to a real dataset from the Southern 

Ocean.  
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8.4.1. Dataset and hydrological setting 
The dataset of interest was collected during the CLIVAR-SR3 cruise 

(October – December 2001) with the R/V Aurora Australis. Figure 8.4 

shows the study area.  

  

Samples were taken at a number of depths at stations along the WOCE 

SR3 line (~142°E) in the Southern Ocean between Tasmania and 

Antarctica. The dataset represents the situation of late winter - early 

spring 2001. We focus on the Subantarctic region (northern part of the 

transect), roughly between 44°S and 53°S, and on the upper 1000 m of 

the water column. 

 

 

 

 

 

 
Figure 8.4. Maps of the study area with the positions of the stations from the 

CLIVAR-SR3 cruise: (a) the whole cruise, (b) only those stations considered in this 

study. The specific front positions are shown in grey along the cruise track and the 

meaning of the abbreviations is: STF = Subtropical Front, SAF-N and SAF-S = 

northern and southern branches of the Subantarctic Front.  

STF 

SAF-N 

SAF-S 

a 
b 
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At this point it may be of interest to discuss the specific hydrological 

setting of the area in some more detail, because it could facilitate the 

interpretation of the reconstructed mixing fields in the next section. The 

study area is characterised by a number of specific fronts and water 

masses, mostly defined based on potential temperature and salinity 

values and gradients. From north to south along the WOCE SR3 line 

one can find: the Subtropical Zone (STZ), the Subtropical Front (STF), 

the Subantarctic Zone (SAZ), the Subantarctic Front (SAF, northern 

and southern branch) and the Polar Front Zone (PFZ). The fronts along 

the SR3 section are observed in approximately the same location year to 

year [Rintoul et al., 1997] but seasonal and interannual variabilities are 
apparent. The STF is generally reported to be located around 45°S 

[Rintoul and Bullister, 1999; Sokolov and Rintoul, 2002], with specific 
locations of 47°S for the CLIVAR cruise in spring 2001 [Jacquet et al., 
2004]. The SAF is the major front in this section. Sokolov and Rintoul 
[2002] consistently find two branches of the SAF along the SR3 line 

(SAF-N and SAF-S), at mean latitudes of 50.5°S and 52°S respectively. 

During spring 2001, the northern branch appeared at 49°S [Jacquet et 
al., 2004]. In Figure 8.4 the specific front positions during the CLIVAR-
SR3 cruise are indicated.  

 

These displacements of front locations are related to changes in water 

mass formation. Seasonal and interannual changes of water mass 

properties have been identified in Aoki et al. [2005a], Chaigneau and 
Morrow [2002] and Rintoul et al. [1997]. The major water masses in the 
study area are: the Subtropical Surface Water (STSW), extending north 

of the STF, the Subantarctic Mode Water (SAMW), located between 

the STF and the SAF, the Antarctic Intermediate Water (AAIW), 

subducting between the PFZ and the STF, the Circumpolar Surface 

Water (CSW) in the PFZ and the Upper Circumpolar Deep Water 

(UCDW), located deeper in the PFZ. 
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8.4.2. Input into POMP 
The conservative variables. For the mixing analysis, four 

conservative variables were used: potential temperature (Θ), salinity, 
PO and NO. PO and NO are tracers based on phosphate and nitrate, 

but corrected for respiration, according to Broecker [1974]: PO = 
170PO4 + O2 and NO = 9NO3 + O2. Redfield ratios are similar to those 

used in other Southern Ocean studies [You, 2002; You et al., 2003; Lo 
Monaco et al., 2005]. 
 

The source water types relevant for the spring 2001 data are listed in 

Table 8.1 and shown in a Θ-S diagram in Figure 8.5. They are defined 
based on the dataset itself, usually on the boundaries of the study area, 

and ensuring that the data are well encircled by the SWTs. This way, 

the SWTs represent local water masses, which is justified since the 

study area is small and we are concerned with local processes. The 

selected SWTs are in good agreement with values reported in literature, 

listed in Table 8.2. 

 

The weights. The weight attributed to each variable is given in Table 

8.1. PO and NO weights are based on analytical precision information 

obtained from Mark Rosenberg [Rosenberg et al., unpublished report]. 
The values for temperature and salinity were taken larger than the 

analytical precision, because preliminary tests showed that just taking 

into account analytical precision greatly underestimates the total 

variability associated with these data. To assess these overall 

variabilities of temperature and salinity, raw CTD data (downcast and 

upcast) were used, but from a different cruise. For several depth 

horizons the standard deviation for temperature and salinity 

measurements within a 2 meter water layer was computed and the 

average of these numbers is given in Table 8.1. This approach implies 

that the water within a 2 meter layer is homogeneous, or at least 

reflects the same (local) water mass. It is also assumed that the 

variability is similar throughout the water column (because we take one 

averaged standard deviation), but this only confirms the earlier decision 

to take one weight per variable and not to take any location dependency 

into account (see section 8.2.3). In this case, the standard deviation of 
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the water characteristics within a 2 m layer is a better measure of the 

total variability than the analytical precision. Chaigneau and Morrow 
[2002] use a similar procedure but with latitudinal neighbouring data to 

estimate sea surface temperature and salinity precisions (giving resp. 

~0.01°C and ~0.02). 

 

 

 

 

 
Figure 8.5. Θ-S diagram representing the CLIVAR-SR3 data (grey dots) and the 

SWTs (open circles). Only the data from the stations used in the analysis (i.e. north 

of 52.7°S) are shown, but for each station all sampling depths are represented (i.e. 

also the data deeper than 1000 m). Abbreviated SWT names stand for Antarctic 

Intermediate Water (AAIW), Subantarctic Mode Water (SAMW), Subtroptical 

Surface Water (STSW), Circumpolar Surface Water (CSW) and Upper Circumpolar 

Deep Water (UCDW). 
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Table 8.1. Source water types and weights (derived from the dataset itself). 

Excluding the last column, these values form the elements of source water matrix S. 

Abbreviated names stand for Antarctic Intermediate Water (AAIW), Subantarctic 

Mode Water (SAMW), Subtroptical Surface Water (STSW), Circumpolar Surface 

Water (CSW) and Upper Circumpolar Deep Water (UCDW). 

 AAIW SAMW STSW CSW UCDW weight=1/std 

Θ Θ Θ Θ (°C) 3.94 9.17 13.28 3.3 2.52 1/0.07 

Salinity 34.355 34.655 35.34 33.79 34.56 1/0.011 

PO (µM) 560 434 318 609 555 1/9 

NO (µM) 490 399 297 562 486 1/8 

 

 

 

 

 

 

 

 

 

Table 8.2. Literature values for the five sources considered in the mixing analysis, 

taken from the following references:  (1)Orsi et al. [1995], (2)Rintoul el al. [1997], 
(3)Rintoul and Bullister [1999], (4)Rintoul and Sokolov [2001], (5)Sokolov and Rintoul 

[2002]. This overview serves as a validation of the values selected in Table 8.1. 

 AAIW SAMW STSW CSW UCDW 

Θ Θ Θ Θ (°C) 3.4 – 5.6(3) 

4 – 5(4) 

± 9(2) 

8.8 – 9.5(3) 

8.75 – 9.25(5) 

11 – 16.25(5) - > 0.5(1) 

2.6(3) 

 

Salinity < 34.4(3) 

34.35 – 34.44(4) 

34;58 – 34.73(3) 

34.60 – 34.70(5) 
35 – 35.50(5) - 34.40 – 34.70(1) 

34.585(3) 

PO (µM) - - - - Nutrient max(1) 

NO (µM) - - - - Nutrient max(1) 
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The splines’ complexity. To parameterize the fraction fields, two-

dimensional splines were used. As mentioned above, it is necessary to 

determine the optimal complexity of the spline function, i.e. the optimal 

orders (kl and kz) and numbers (nl and nz) of the splines in latitude, 
respectively depth direction. A number of model complexities were 

optimised, and the results are shown in Table 8.3 and Figure 8.6. For 

any (nl, nz) combination (i.e. same number of splines means same 
number of unknown parameters) the optimal (kl, kz) was determined as 
that combination delivering the lowest cost function. Some models were 

omitted from this analysis because they did not converge to any 

reasonable solution, probably due to bad conditioning. To choose the 

best (nl, nz, kl, kz) model, a number of strategies were compared.  
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Figure 8.6. Evolution of residual WLS cost function value for varying number of 

splines in latitude and depth directions. 
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(i) CF test (cf. 6.3.1). This test appeared inadequate, because none of 

the models delivered acceptable cost function values, i.e. the 

residual cost functions were systematically too high. This was 

expected from the simulation tests in section 8.3, due to inequality 

constraints becoming active and non-optimal splines resolution. The 

high cost function values can also indicate the presence of other 

model errors such as nonconservative behaviour.  Finally, an 

incorrect weighting of the WLS cost function may be causing the 

elevated values too, e.g. if the weighting underestimates the total 

variance of if the noise is nonnormal. 

 

(ii) CF evolution (cf. 6.3.2). In Figure 8.6 the evolution of the residual 

WLS cost function value is shown as a function of nl and nz. 
Graphically, one can see a relatively steep decrease in cost function 

between nl = 8 and 9, which would suggest that nl = 9 is optimal. 
Increasing the number of B-splines in the latitude direction further 

slowly decreases the residual cost function but it should be kept in 

mind that there are (only) 21 station in this direction and we do 

not want to overmodel. Besides this, it is arguable whether the 

change in cost function between nz = 4 and 5 is significant. So from 
graphical inspection of the cost function evolution, we conclude that 

the optimal complexity is (nl, nz) = (9, 4) or (9, 5). 
 

(iii) MDLS and AICS (cf. Table 6.1) for each model complexity are 

shown in Table 8.2. MDLS returns (nl, nz) = (9, 4) as optimal 
complexity, whereas AICS suggests (13, 4). Since it has already 

been reported that AIC has the tendency to select too complex 

models, we decided to use (nl, nz) = (9, 4). In addition, the mixing 
patterns associated with both models appear surprisingly similar. In 

other words, no “external” oceanographical information seems to 

specifically favour the more complex model. Finally, the fact that 

the model selected by MDLS is so close to what was suggested by 

graphical analysis of the cost function evolution is a supplementary 

indication in favour of this model complexity. The associated orders 

are (kl, kz) = (1, 1), because all other order combinations for this 
complexity returned higher cost functions.  
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Table 8.3. Overview of MDLS and AICS values for the different model complexities. 

Minimal values are shaded. 

nl MDLS 
8 9 10 11 12 13 14 15 16 17 18 

4 64.4 57.4 61.4 59.6 61.9 62.2 67.9 67.5 73.1 73.5 - 

5 69.8 61.9 67.6 65.9 69.5 69.1 77.6 77.7 - 85.2 - 

6 78.6 69.1 77.8 77.3 82.7 82.1 93.1 94.2 - 105 - 

7 90.2 79.3 90.1 91.9 98.5 99.5 117 120 - 138 - 

nz 

8 102 91.1 105 106 118 117 - - - 168 - 

nl AICS 
8 9 10 11 12 13 14 15 16 17 18 

4 41.9 35.9 37.1 34.8 35.1 34.2 36.3 35.1 37.1 36.4 - 

5 42.2 35.9 37.7 35.5 36.2 34.8 38.0 37.0 - 38.5 - 

6 44.5 37.5 40.5 38.8 40.0 38.5 42.3 41.6 - 44.4 - 

7 48.2 40.5 44.1 43.3 44.7 43.7 49.9 49.8 - 54.5 - 

nz 

8 51.5 44.6 48.7 47.2 50.8 48.6 - - - 63.0 - 

 

 

 

8.4.3. Results from POMP analysis: mixing fractions 
The mixing fractions estimated by the POMP method are shown in 

Figure 8.7. To facilitate interpretation, sampling depths, density isolines 

and front positions are indicated as well. The five selected water masses 

are clearly significant in the investigated spatial window. 

 

The Antarctic Intermediate Water (AAIW) appears between 200 and 

400 m at 52°S and sinks northward below the SAMW and reaches 

depths greater than 1000 m north of the STF (~47°S). Its apparent 

extension at 1000 m in the northern part of the transect (~45°E) could 

reflect the presence of another variety of AAIW [Rintoul and Bullister, 
1999]: a “northern” type of Tasman Sea origin. The fact that the 

density isolines rise at this position supports this hypothesis. Similarly, 
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the discontinuity of the AAIW branch between 51 and 52°S probably 

reflects that the water immediately south of the SAF does not have the 

same origin as the low salinity core north of the SAF. Instead, the 

AAIW is supplied by a number of water types upstream and by the 

time they enter the studied area, these waters have developed distinct 

signatures [Rintoul and Bullister, 1999]. This could explain why one 
AAIW definition cannot perfectly account for all intermediate water 

samples in the investigated dataset. 

 

As reported in Sokolov and Rintoul [2002] the Subantarctic Mode Water 
(SAMW) appears as the principal water mass extending north of the 

northern branch of the Subantarctic Front (SAF-N; ~49°S) in the upper 

700m water column, a zone characterized by extremely homogeneous 

density. Between 700m and 1000m, SAMW still has a noticeable 

contribution, but it mixes with AAIW. The SAMW core between the 

STF and SAF-N reaches the surface, which illustrates the deep winter 

mixing in this zone, as noticed by Rintoul and Trull [2001]. North of the 
STF, SAMW does not reach the surface anymore, its contribution is 

concentrated between 300 and 800m. Like the AAIW, the SAMW does 

not form a single homogeneous water mass [Rintoul and Bullister, 1999]; 
it results in the large extension of SAMW observed here. 

 

The surface waters north of the STF (~ 47°S) form a homogeneous 

water mass, the Subtropical Surface Water (STSW). It corresponds to 

the Subtropical Lower Water identified by Sokolov and Rintoul [2002]. 
STSW appears as a compact water mass up to 250m, lying on top of 

and slightly mixing with SAMW. 

 

At the surface of the most southern part of the window, a fourth surface 

water is significant: the Circumpolar Surface Water (CSW). Its core lies 

at ~52°S and its contribution extends to 500-600m in depth and to SAF-

N (~49°S) in latitude. As for AAIW an unexpected contribution in the 

north is observed, which is probably due to the poor resolution in this 

zone, as mentioned before. 
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Figure 8.7. Mixing fractions associated with (a) Antarctic Intermediate Water, (b) 

Subantarctic Mode Water, (c) Subtroptical Surface Water, (d) Circumpolar Surface 

Water and (e) Upper Circumpolar Deep Water, estimated using the POMP method 

and the CLIVAR-SR3 data. Density isolines are plotted as dotted grey lines and 

range from 26.6 (upper north corner) to 27.6 (lower south corner) with increments of 

0.1. Dots represent the sampling depths. 
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Finally, the southern part of the section undergoes significant 

contributions of the Upper Circumpolar Deep Water (UCDW) between 

800 and 1000 m. This deep water is normally found between 1500 and 

2500m north of the SAF, and rises to depths of 1000 m just south of the 

SAF-N and 500m south of the SAF-S  [Sokolov and Rintoul, 2002], 
coinciding with the reconstruction shown in Figure 8.7. 

 

8.4.4. Uncertainties 
To quantitatively interpret the mixing distributions, it is necessary to 

quantify the variability of the estimated mixing coefficients due to 

measurement errors (these latter can be found in Table 8.1). One 

thousand Monte-Carlo simulations were performed, where in each 

simulation the original data are perturbed with a random number 

sampled from the measurement noise distribution [Coatanoan et al., 
1999]. The uncertainty of the mixing coefficients is different for each 

source: 3.5% for AAIW, 1.7% for SAMW, 0.8% for STSW, 1.6% for 

CSW and 1.9% for UCDW (average values of 1 standard deviation). 

Note that this uncertainty is much smaller (approximately a factor 10) 

than the variability if no nonnegativity constraints are applied. This 

means that the constraints are active and reduce the space of possible 

mixing fractions, resulting in a smaller variability. 

 

Remember that we chose only to take the output (measurement) 

uncertainties into account (cf. 8.2.3) in the construction of the weights, 

because it is so difficult to attribute uncertainties to the source water 

types (cf. 8.2.3). For the same reason, the above Monte Carlo standard 

deviations neglect the effect of source water type uncertainty. Therefore, 

it must be born in mind that these mixing fraction uncertainties are 

probably underestimations.  

 

8.4.5. Residuals 
The reliability of the estimated mixing fraction fields can be further 

assessed by examining the residuals. Notice that the residuals are 

defined as the difference between model reconstruction and 
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measurement (see expression (8.7)). The residuals for this analysis are 

presented in Figure 8.8. In the figures on the left, showing the residuals 

as a function of position, it is clear that the residuals are higher in the 

upper waters, which is probably an indication that the overall 

uncertainty associated with a property is also dependent of depth. But 

the histograms on the right show that on the whole the residuals behave 

as symmetrically distributed variables, centred around zero. This does 

not guarantee the absence of model errors as seen in the simulation 

tests. But combined with the spatial plots of the residuals, it is an 

indication that all major (large-scale) features are captured by the 

model, and hence that the residuals represent random or small-scale 

features (including features of ocean physics such as eddies and other 

products of geostrophic turbulence that can be treated as random).  

 

However, when inspecting the absolute values of the residuals, they 

appear to be significantly larger than the uncertainties associated with 

each tracer (cf. Table 8.1). This can either be due to significant model 

errors present or to an underestimation of the uncertainties. We argue 

that the first option cannot be of large importance because of the 

“normality” of the residual histograms, mirrored by the lack of specific 

large regions in the study area associated with high residuals. On the 

other hand, it seems likely that the uncertainties are underestimates of 

the real variability in the system, because (i) the source uncertainties 

were neglected, and (ii) the measurement uncertainties are so difficult to 

estimate because no sampling replicates are available. This problem of 

estimating the measurement uncertainties is further addressed in 

Chapter 9, where a new estimation algorithm is presented.  
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Figure 8.8. Residuals associated with the POMP analysis on the CLIVAR-SR3 

data for the four variables: potential temperature (first row), salinity (second row), 

PO (third row) and NO (last row). In the left column they are represented as a 

function of position, the right column shows them in histograms. Residuals are 

defined as observation – modelled value.  
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8.4.6. Comparison with classical OMP analysis 
As an illustration of the different performance of the POMP approach, a 

classical OMP analysis is performed using the same observations and 

SWT definitions. That is, the fractions are estimated directly from Eq. 

(7.2) and (8.1), instead of parameterising them first and estimating the 

spline coefficients from Eq. (8.6). The same weighting scheme and 

contour visualization is applied as for the POMP results (cf. expression 

(8.11)), so any differences are due to the parameterization. 

 

In Figure 8.9 the resulting mixing fraction fields are shown. The water 

masses’ average mixing pattern corresponds to the results from the 

POMP method (see Figure 8.7). However, the distributions clearly are 

much more “fitful”, due to the fact that the mixing fractions are 

optimized for every point independently. This approach allows the noise, 

inevitably present in the measurements, to fully propagate in the final 

mixing fractions (cf. imperfection B). This can lead to locally unrealistic 

features such as the “hole” present in the SAMW fractions around 49°S. 

To provide additional evidence to evaluate the POMP vs. OMP results, 

density isolines were added on the plots in Figures 8.7 and 8.9. Most, 

although not all, features present in the density pattern are recovered in 

the POMP fractions. Furthermore, the SAMW nicely fills its 

characteristic pycnostad, whereas from OMP analysis it would seem 

that CSW and STSW also contribute in this area. This is probably the 

result of the pointwise strategy allowing discontinuous mixing 

distributions. Conversely, the mixing distributions provided by the 

POMP procedure are modelled as a function of position and smoothed 

in a natural way because the effect of the noise on the individual points 

is suppressed by the parameterization. It is important to stress that if 

the complexity of the spline functions is chosen accurately, all 

significant features that can be described by linear mixing will be 

represented in the final mixing fractions. In other words, the fact that 

the fraction fields calculated by the POMP method are smoother does 

not mean that significant information has been lost. However, some 

small-scale features (e.g. eddies) can obviously only be captured if the 

sampling density is high enough, which is also true for the classical 

OMP analysis. 
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Figure 8.9. Mixing fractions estimated using the classical OMP method and the 

CLIVAR-SR3 data. Density isolines are plotted as dotted grey lines and range from 

26.6 (upper north corner) to 27.6 (lower south corner) with increments of 0.1. Dots 

represent the sampling depths. 
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Figure 8.9bis. Copies of Figures 8.7 and 8.9, to facilitate comparison of results 

found by POMP versus classical OMP analysis. 

POMP 

OMP 
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Figure 8.10. Residuals associated with the classical OMP analysis on the 

CLIVAR-SR3 data for the four measured variables and the mass balance equation: 

potential temperature (first row), salinity (second row), PO (third row), NO (fourth 

row) and mass balance (last row). In the left column they are represented as a 

function of position, the right column shows them in histograms. Residuals are 

defined as observation – modelled value. 
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The residuals for the classical OMP analysis are shown in Figure 8.10; 

they are much smaller than those shown in Figure 8.8. Small residuals 

are not necessarily the result of an accurate modelling, but could also be 

due to overmodelling (cf. linear regression through two data points). To 

make a real quantitative statement about the residual level which is 

acceptable, a more profound uncertainty analysis would be required, 

taking into account all aspects of environmental and SWT variability in 

addition to mere measurement uncertainties, as already discussed above. 

 

An additional consequence of overmodelling is that the mixing fractions 

are much more sensitive to stochastic errors. This is illustrated by the 

uncertainties estimated by Monte-Carlo simulations, as described in 

section 8.4.4. The uncertainties of the mixing fractions derived by the 

classical OMP analysis are much higher than with the POMP method, 

namely: 10 % (vs. 3.5%, see section 8.4.4) for AAIW, 14% (vs. 1.7%) for 

SAMW, 9% (vs. 0.8%) for STSW, 10% (vs. 1.6%) for CSW and 6% (vs. 

1.9%) for UCDW. 

 

8.5. Conclusions 
In Chapter 7 the classical OMP was presented and emphasis was put on 

its attractive simplicity, but also on a number of imperfections:  

A. No position dependence.  

B. Few or no residual degrees of freedom.  

C. Mass balance is not strictly imposed and inconsistent weighting.  

D. Subjectivity of source water type definition. 

 

In an attempt to address at least some of these imperfections, the 

Parametric OMP analysis (POMP) was developed in this chapter. By 

parameterising the mixing fractions as functions of position, the 

estimated mixing fractions become more robust and, obviously, 

explicitly dependent of position (imperfection A). The increased 

robustness is a consequence of the reduction of number of unknowns to 

be estimated (imperfection B). However, this reduction must be 
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supported by the data, and hence the determination of the optimal 

model complexity is an essential part of the POMP procedure. Besides 

the parameterisation, a weighting scheme compatible with the WLS 

framework is proposed. This scheme can be applied to all equations in 

the same way if mass balance is imposed as a strict equality constraint, 

instead of as an equation to be optimised (imperfection C). However, to 

achieve a really accurate weighting all sources of uncertainty must be 

correctly incorporated, which is not straightforward. The measurement 

(output) uncertainties are difficult to estimate since to replicate samples 

are available, and the SWT uncertainties are even more cumbersome to 

include because of their conceptual and dependent nature. Summarising 

the results regarding the correction of the OMP analysis imperfections, 

we could state that imperfections A and B are solved by the POMP 

methodology. Imperfection C is partly improved but a really accurate 

weighting remains complicated. And imperfection D is not addressed at 

all. In the next chapters, more attention is direction to these remaining 

issues. 

 

Besides being an improvement compared to the classical OMP analysis, 

several other results of POMP are worth summarising. Applying the 

POMP procedure to a synthetic dataset, revealed a number of 

noteworthy points. In particular, it is useful to know that in real 

applications the residual OWLS cost function value will most probably 

be higher than expected, even if no real model errors are present.   

 

The POMP method has also been applied to the CLIVAR-SR3 dataset. 

The derived mixing distributions correspond to what is expected from 

literature and are more reliable (robust) than those estimated using the 

classical OMP analysis. The residual analysis suggests that the residuals 

are normally distributed but their standard deviations are significantly 

larger than expected from the assigned measurement uncertainties, 

confirming the above anticipation of an inflated residual cost function. 

Some of the causes of this inflation may not be easy to tackle (e.g. 

inequality constraints becoming active or the inclusion of the SWT 

uncertainty in the weighting), but one possible improvement will be 

considered in more detail in the next chapter: a more accurate 

estimation of the measurement noise variances.  
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Chapter 9: 
 

Estimation of 
heteroscedastic noise 
variances 
 

 

 

 

“Uncertainty is a term used in subtly different ways in a number of 
fields, including philosophy, statistics, economics, finance, insurance, 
psychology, engineering and science. It applies to predictions of future 
events, to physical measurements already made, or to the unknown.” 
 

From Wikipedia, the free encyclopedia. 
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9.1. Introduction 
When knowledge about their noise levels is available, data can be 

processed in a much more rigorous way. For instance, model parameters 

can be optimised taking into account differences in noise level in the 

dataset (cf. 2.5.2), uncertainties on the optimised parameter values can 

be computed (cf. Chapter 4), the “goodness” of the model fit can be 

assessed (cf. Chapter 6), etc. To put it simply, a distinction can be 

made between what is (more) significant and what is not. Consequently, 

noise information is crucial to do any quantitative interpretation of 

data.  

 

Here we are concerned with the general case of noise variances varying 

with each sample (heteroscedastic noise). The necessity of estimating 

these variances arose in the previous chapter, when processing 

oceanographical data, for all the reasons mentioned above. Indeed, it 

was noticed that when the measurement uncertainties given by the 

oceanographers were used, the total variance was underestimated, 

probably due to the fact that sampling uncertainty was not taken into 

account. Unfortunately, this kind of experiments cannot easily be 

repeated. A first attempt to include the sampling variability (cf. section 

8.4.2) appeared insufficient, so another way had to be found to estimate 

the total uncertainty associated with the measurements.  

 

This chapter is based on de Brauwere et al. [2007b]. 

 

9.2. Methods 

9.2.1. Literature 
One possible strategy to obtain this variance information is by 

performing replicate measurements. In that case, for example the sample 

variances can be calculated, although (iterative) methods based on the 

residuals are proven to be more reliable, especially when the number of 

replicates is small [Rao, 1970; Jacquez and Norusis, 1973; Carroll and 
Cline, 1988; Chen and Shao, 1993]. Yet, replicate measurements, are 
often not performed because they are too expensive. An alternative 



9. Estimation of heteroscedastic noise variances 

163 

strategy proposed in literature is to model the noise variances 

parametrically, for instance as a function of the response [Carroll and 
Ruppert, 1982; Davidian and Carroll, 1987; Davidian and Haaland, 
1990]. For this approach to be useful, the class of the variance function 

(e.g. polynomial, rational, …) should be well known, which is not always 

obvious.  

 

This chapter presents a general procedure to extract heteroscedastic (i.e. 

varying with position) noise information from observations when neither 

replicates or a well known variance function are available. With the 

same objective, Vanlanduit [2001, §4.2] used the absolute value of the 
residuals as an estimate of the measurement noise standard deviation, 

but suggested to first locally average the residuals and subtract the local 

mean value. This procedure increases the accuracy of the estimates, but 

the price to be paid for this averaging is that information about the 

local variations of the noise variances is lost. We will use a similar 

approach, but estimating the noise variances grouped in predefined 

subsets. In order words, it is assumed that the noise variances vary in a 

stepwise manner such that within groups of observations the variance 

can be assumed constant.  

 

The algorithm also starts from residuals, so it necessitates a model to 

describe the data. However, if model errors are present, the residual is a 

biased measure of the stochastic noise. Therefore, a first order correction 

is included in the procedure to suppress possible model errors and hence 

make the noise variance estimation relatively independent of the specific 

model used. This is important because the estimated noise variances 

may be used in a later step exactly to detect model errors. A final 

difference with the procedure proposed by Vanlanduit [2001] is that it is 
taken into account that if the noise variances vary over the 

measurement domain, the model parameters will be more fitted to those 

measurements associated with low uncertainty. Hence, the residual 

degrees of freedom will not be uniformly distributed over the domain. 

This effect can especially become important if the number of parameters 

is not much larger than the number of data. 
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9.2.2. No model errors present 
Consider observations y (vector of length N) modelled by a linear model  
 

y = Jθθθθ + e,          (9.1) 

 

where J stands for the Jacobian matrix associated with the model and e 

is the error vector. In the following derivation we assume that y 

represents measurements of only one variable. In the case of a 

multivariate y (nv variables), the equations remain valid. Only the size 
of data-related quantities (y, J, r, …) changes from N to Nnv. 
For models which are nonlinear in the parameters, Eq. (9.1) and all 

following equations represent a first order approximation. The model 

parameters θθθθ (vector of length nθ) can be optimised by minimising a 

least squares cost function. This results in optimised parameter values 

 

( )−
=

1ˆ T TJ J J yθθθθ .         (9.2) 

 

The residuals r can be written as the remaining difference between data 

and model, using Equations (9.1) and (9.2) 

 

( )−
= − = −

1ˆ T Tr y J y J J J J yθθθθ .      (9.3) 

 

 

In order to cope with heteroscedasticity, the complete dataset y is cut 

into nh subsets. For every subset a variance will be estimated. If 
multivariate data are analysed, each variable is associated with a 

different variance, i.e. in that case nhnv variances are to be estimated. In 
analogy with Eq. (9.3), the residuals of subset h ∈ {1, 2,…,nh} are given 
by  

 

( ) 1
ˆ T T

h h h h h

−
= − = −r y J y J J J J yθθθθ ,      (9.4) 

 

where the subscript h indicates the subset considered. Eq. (9.4) 
expresses that the subset residuals rh are not only a function of the 

subset data yh, but depend on the whole dataset y, via the estimated  
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Figure 9.1. Schematic representation of the matrices Kh and K-h. The total dataset 

y has length N. Index h defines the data indices of the subset data yh. Subset h 

counts Nh elements. The general case is depicted where the data indices forming a 

subset are not subsequent. 

 

 

 

 

model parameters θ̂θθθ . Since y contains the subset data yh, Eq. (9.4) can 
be decomposed in a term depending on yh and a term depending on the 
remaining data, denoted by y-h 

 

h h h h h− −= −r P y K y ,        (9.5) 

 

where hh N h= −P I K  and the columns of Kh and K-h form ( ) 1
T T

h

−
J J J J  

as depicted in Figure 9.1. 

 

If no model errors are present, these residuals can be used to estimate 

the noise variances. The expected value of the residual variance in the 

hth subset is given by 
 

{ } ( ) ( ){ }− − − −= − −
T

T
h h h h h h h h h hE Er r P y K y P y K y .   (9.6) 

 

A scalar is equal to its trace, hence 

 

{ } ( ) ( ){ }− − − −
 = − −
  

T
T
h h h h h h h h h hE trace Er r P y K y P y K y .   

 

( )
1

T T
−

J J J J  

N 

N 

( )
1

T T

h
J J J J

−
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Nh 

h
K  

Nh 

Nh 

h
K−

 Nh 

N – Nh 
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To further rearrange this equations, trace properties (A.2) – (A.3) are 

used, such that 

 

{ } ( ) ( ){ }
{ } { }

{ } { }

− − − −

− − − −

− − − −

 = − −
  

   = +   

   − −    .

T
T
h h h h h h h h h h

T T T T
h h h h h h h h

T T T T
h h h h h h h h

E trace E

trace E trace E

trace E trace E

r r P y K y P y K y

P y y P K y y K

P y y K K y y P

 

 

Considering that P(-)h and K(-)h do not contain stochastic components, so 
their expected value equals their value, and further rearranging the 

trace terms according to property (A.3) gives 

 

{ } { } { }
{ } { }

− − − −

− − − −

   = +   

   − −    .

T T T T T
h h h h h h h h h h

T T T T
h h h h h h h h

E trace E trace E

trace E trace E

r r y y P P y y K K

y y K P y y P K
.   

           (9.7) 

 

The expected values in (9.7) can be further reformulated assuming no 

model errors are present (i.e. yh = yh
0 + eh with yh

0 representing the true 

value and eh only stochastic noise; and analogous for y-h) and white noise 

with constant variance within each subset (i.e. { } = 0hE e , 

{ } σ= 2T
h h hE e e  and analogous for y-h): 

 

{ } { }
{ }
{ }
{ }

− − − − − −

− − −

− − −

 = + + 

 + + + 

 − + + 

 − + + 

0 0

0 0

0 0

0 0

( )( )

( )( )

( )( )

( )( )

TT T T
h h h h h h h h

T T T
h h h h h h

T T T
h h h h h h

T T T
h h h h h h

E trace E

trace E

trace E

trace E

r r y e y e P P

y e y e K K

y e y e K P

y e y e P K

 

{ } { } { } { }
σ

 
 

= + + + 
 
  

+
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0 0 0 0

20 0 0 0

( )

...

T TT T T
h h h h h h h h h h

T
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σ − − − −

− − − − − − −

    = + +    

     + Σ − −     

20 0 0 0

0 0 0 0 .

T TT T T
h h h h h h h h h h h

T TT T T
h h h h h h h h h h h

trace trace trace

trace trace trace

y y P P P P y y K K

K K y y K P y y P K

           (9.8) 

 
2
hσ represents the (average) noise variance of subset h. ΣΣΣΣ-h is a diagonal 

matrix containing the noise variances of all subsets except the hth 
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I

I

I

I

�

�

ΣΣΣΣ ,   (9.9) 

 

where 
hN

I is the identity matrix of size Nh, the number of objects in 
subset h. 
 

From Eq. (9.4) and since the residuals are zero if noiseless data are 

concerned, 0 0
h h h h− −=P y K y , such that four of the six terms in expression 

(9.8) cancel against eachother, leaving only 

 

{ } σ − − −
   = +   

2T T T
h h h h h h h hE trace tracer r P P K KΣΣΣΣ .   (9.10) 

 

Eq. (9.10) states that (and how) the expected residual variance in the 

hth subset depends on the unknown noise variances of all subsets. Hence, 
to estimate the unknown σ 2

h , equations of the form of Eq. (9.10) have to 

be formed for all subsets 1,…, nh  
 

{ }

{ }

21 1 1 1 1 1 1
1

2

0

0
hh h h h hh h

T T T

T TT
nn n n n nn n

E trace trace

trace traceE

r r P P Σ K K

P P Σ K Kr r

σ

σ

− − −

− − −

         
         

     = + 
      

                      

� � � � , (9.11) 
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and all equations have to be solved simultaneously for the σ 2
h . 

 

The last term in Eq. (9.11) can be further reorganised in order to isolate 

the noise variance vector from the second term. Doing this, estimates for 

the noise variances σ 2
ĥ  (h = 1,…, nh) can finally be found as the solution 

of a set of linear equations of the form 

 

( )= + =2 2
1 2

ˆ ˆv T T Tσ σσ σσ σσ σ ,        (9.12) 

 

where v is a vector containing the residual subset variances, T1 is a 

diagonal matrix (cf. first term in Eq. (9.11)), T2 is an off-diagonal 

matrix (since ΣΣΣΣ-h refers to all but the h
th variance, cf. Eq. (9.9) and 

(9.11)) and 2σ̂σσσ  is a vector with the noise variance estimates. So, 

estimating 2σ̂σσσ  now boils down to solving a classical linear inverse 

problem (9.12).  

 

Several remarks can be made about Eq. (9.12): 

 

(i) Matrix T in Eq. (9.12) has size s × s and expresses how the degrees 
of freedom are spread throughout the dataset (subsets). The sum of 

all elements in T gives the exact number of degrees of freedom of 

the residuals, i.e. generally N – nθ. This can easily be checked for 

the special case of only one subset: residual variance = (N – nθ)
2σ̂σσσ . 

The elements of T1 (diagonal elements of T) express the “local” 

degrees of freedom of each subset, i.e. Nh – nθ,h , where nθ,h stands 

for the number of model degrees of freedom “used” in subset h. If a 
part of the dataset was measured with much lower uncertainty, the 

model parameters were mainly fitted to these data. Hence the 

“loss” of degrees of freedom is largest in this region of the dataset 

and this will be confirmed by lower elements in T1. If, on the other 

hand, the noise is homoscedastic, all elements of T1 have 

approximately the same value. T1 symbolises that in a first 

approximation, ( )θσ = −2
,ĥ h h hv N n , where vh is the h

th element of v.  

T2 is a correction on this local view, expressing that the residual 

variance in a given subset is not only influenced by the noise 

variances in its own subset, but also by those in all other subsets.  
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(ii) Applying the strong law of large numbers [Kendall and Stuart, 
1979; Lukacs, 1975], shows that this estimator is consistent. In 
other words, it (almost surely) converges to the true value with 

increasing number of data. Alternatively, when the number of data 

is too limited, the estimation can be unreliable. In section 9.2.4 

some practical actions are discussed to improve the general 

reliability of the estimates.  

 

(iii) The estimated variances represent all stochastic variations 

contained in the residuals. It will in general be (much) larger than 

the precision of the analytical measurement, because it includes the 

effect of input noise (uncertainty of J) and all additional variation 

sources like sampling, sample preparation, etc. 

 

(iv) Two major assumptions underlying Eq. (9.12) are  

 

 

Assumptions 9.1 (Estimation of heteroscedastic noise variances in 
absence of model errors) 

A. the residuals are uncorrelated, i.e. no systematic errors are present 

and the measurements are mutually independent, and  

B. the noise variance is constant in each subset.  

 

In the next section these assumptions will be further discussed. 

 

 

9.2.3. Model errors present 
In order to better satisfy assumption A, we suggest to perform a first 

order correction on the residuals before using them in the variance 

estimation. In other words, the best linear model (e.g. a line in 2D, a 

plane in 3D) is fitted to the residuals and then subtracted from them. 

This preprocessing step is supposed to reduce any slowly varying 

systematic error present in the residuals and consequently the diminish 
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importance of the model chosen. Since additional parameters are 

estimated, the degrees of freedom contained in matrix T (Eq. (9.12)) 

should be adjusted. Formally, the corrected residuals 'hr  of the hth 
subset are found by subtracting a best linear approximation ( ˆh hL αααα ) 

from the original residuals rh (see Eq. (9.5)) 

 

( )
( )

−

− −

= −

= −

= = −

a

1

ˆ'

' '

h h h h

T T
h h h h h h

h h h h h h h

r r L

r L L L L r

P r P P y K y

.      (9.13) 

 

This step is comparable to the creation of the original residuals in Eq. 

(9.3)-(9.5), except here a model fit ( ˆh hL αααα ) is subtracted from the subset 

residuals, rather than from the real measurements. Analogous to Eq. 

(9.6)-(9.10) and considering that 'hP  is a symmetric idempotent matrix, 

the expected residual variance is now given by 

 

{ } σ − − −
   = +   

2' ' ' 'T T T
h h h h h h h h h hE trace tracer r P P P P K KΣΣΣΣ .  (9.14) 

 

The unknown variances 2
hσ  can again be estimated by solving a linear 

set of equations like Eq. (9.12). In this case, matrices T1 and T2 also 

depend on 'hP . T can still be interpreted as the total degrees of freedom 

associated with the residuals (cf. remark (i) in 9.2.2), but its sum will 

generally not be a natural number anymore and hence its interpretation 

in terms of number of estimated parameters (i.e. nθ and nα) is no longer 

straightforward. 

 

For this correction step to be efficient, the systematic errors present 

should be quasi-linear in each subset. Therefore, the choice of the 

subsets is an important factor in the method (cf. remark (iv)B in section 

9.2.2). A possible strategy is to form subsets of equal width and to 

optimise their number. The optimal number of subsets could be 

determined e.g. as the smallest number giving white corrected residuals 

(assessed by some whiteness test, Hoel [1971]) . But the user is free to 
apply any other procedure, prior knowledge or experience to choose the 

subsets. A general rule of thumb is to have around sqrt(N) objects per 
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subset with a lower limit of approximately 10. This way, both the 

number of subsets and the number of objects per subset increases with 

increasing N. 
 

From the derivations given above, a variance estimation algorithm was 

distilled. One major aspect of the algorithm not yet mentioned is that 

the variance estimation should be iterated. In a first step residuals from 

an unweighted least squares fitting are used to obtain first estimates for 

the noise variances (as in the derivations above). Next, these variances 

can be used to estimate the model parameters by WLS fitting, resulting 

in new residuals which can be used to further refine the variance 

estimates, etc. The algorithm and some practical details which appear to 

influence the reliability of the results are described in the next section. 

Subsequently, the algorithm is applied to two simulations as a 

validation test (section 9.3) and to the same real world CLIVAR-SR3 

data (section 9.4), already presented in the previous chapter.  

 

9.2.4. Practical comments and algorithm 
In this section some practical aspects of the variance estimation are 

discussed, concluding with a schematic presentation of the algorithm. 

This algorithm was used for all results shown further down.  

 

One of the major problems encountered during our preliminary tests is 

the occurrence of negative variance estimates, which is obviously 

unacceptable. Based on our experience, these negative estimates arise 

when too few data are available. In fact, this behaviour is an illustration 

of the consistency of the estimator (cf. remark (ii) in 9.2.2). In 

simulations, when the number of data is increased, the estimates become 

positive. This is usually not possible in real life, but two other rules also 

seem to increase the reliability of the results.  

 

(i) The weighted Jacobian should be used, i.e. every row of J is divided 

by the uncertainty associated with that measurement 

 
[ , ]

[ , ]
[ ]

w

i j
i j

iσ
=

J
J .         (9.15) 
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Evidently this is not possible in the first stage, since the weights still 

have to be estimated. Therefore, an iterative procedure is proposed to 

improve the estimation stagewisely. In order to start with good initial 

estimates, it is recommended to start with an approximate estimation 

which is guaranteed to provide nonnegative estimates, e.g. by neglecting 

the off-diagonal terms in T (i.e. setting T2 = 0).  

 

(ii) If the model is fitted to the data, simultaneously obeying some 

equality constraints, it is important to take this into account. In 

practice, this is done by correcting the Jacobian matrix for this loss in 

free parameters. If the following constraints should be satisfied 

 

eq eq=A bθθθθ           (9.16) 

 

(cf. Eq. 8.13), the corrected Jacobian is found by [Rik Pintelon, personal 
communication] 

 

c =J JH  with ( ) 1
T T

eq eq eq eqnθ

−
= −H I A A A A .    (9.17) 

 

H can be computed in a numerically more stable way via the singular 

value decomposition of Aeq (Aeq = UAΣΣΣΣAVA
T) 

 
T

n
θ

= − A AH I V V .         (9.18) 

 

Jc will not be of full rank anymore, its rank now expresses the number 

of parameters left to be freely estimated.  

 

Combining the theory with these practical considerations, the following 

algorithm is proposed. 

 

1. initialisation 

a. No variance information is known. Compute the Jacobian matrix 

J, estimate θ̂θθθ  using a Least Squares procedure and calculate the 
residuals (see Eq. (9.3)).  
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b. If linear constraints must be obeyed, compute Jc from Eq. (9.17). 

Otherwise Jc = J. 

c. Cut grid into predefined subsets. 

d. Compute the corrected residuals by subtracting the best linear 

approximation from the residuals of each subset. 

e. Estimate 2σ̂σσσ  from Eq. (9.12), using the unweighted Jacobian Jc, 

and setting T2 = 0. The latter will avoid negative variance 

estimates, which could appear because the unweighted Jacobian 

was used. 

 

2. iteration: for i = 1, …, niter 

a. Now an initial estimate for the weighting is available. Compute 

the weighted Jacobian matrix Jw (Eq. (9.15)), estimate θ̂θθθ  using a 

Weighted Least Squares procedure and calculate the residuals 

(see Eq. (9.3)).  

b. If linear constraints must be obeyed, compute Jwc using Jw in Eq. 

(9.17). Otherwise Jwc = Jw. 

c. Cut grid into predefined subsets. 

d. Compute the corrected residuals by subtracting the best linear 

approximation from the residuals of each subset. 

e. Estimate 2σ̂σσσ  from Eq. (9.12), using the weighted Jacobian Jwc, 

and now allowing T2 ≠ 0, i.e. accounting for coupling effects 

between the subsets. 

f. If any element in 2σ̂σσσ  is negative, re-estimate it neglecting the 

coupling. This can happen for those subsets associated with 

lowest uncertainty. 
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9.3. Simulation tests 
By dividing the data in subsets, the presented method aims to cope with  

(i)  heteroscedasticity of the noise variances, which is closely linked to a  

(ii)  heterogeneous distribution of degrees of freedom, and  

(iii)  (first order) suppression of model errors.  

In the following sections the performance of the procedure in achieving 

these aims is assessed. 

 

9.3.1. Heterogeneous distribution of degrees of freedom 
If it is assumed that the degrees of freedom are spread homogeneously 

over the whole dataset, the expressions greatly simplify. Each subset 

variance 2

h
σ  can then be estimated by dividing the subset residual 

variance by the subset degrees of freedom 

 

( )
2ˆ

T
h h

h
hN n N Nθ

σ =
−

r r
        (9.19) 

 

(N is the total number of data, nθ is the total number of estimated 

model parameters and Nh is the number of data in subset h). However, if 
the number of parameters is not much smaller than the number of data, 

this approximation will provide unsatisfactory results.  

 

Consider for instance the following basic simulation example: a number 

of data simulated with a sixth order polynomial y = u6 – u2 + 0.2 
(Figure 9.2). The first part of the dataset has a lower uncertainty 

(standard deviation = 0.01) than the last part (standard deviation = 

0.1). A sixth order polynomial is fitted to the data. Next, the data are 

cut in two subsets and the subset variances are estimated assuming 

(A) homogeneous degrees of freedom using Eq. (9.19) and  

(B) heterogeneous degrees of freedom, using the procedure given in 

section 9.2.  
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Figure 9.2. Example of data simulated by a sixth order polynomial (see true 

function) and two different noise levels (1 realisation). 

 

 

 

 

 

 

Table 9.1. Mean estimation results over 1000 Monte Carlo simulations. For each 

simulation, the noise variances of two subsets of data generated with a sixth order 

polynomial (see Figure 9.2) were estimated. Four different methods were used: with 

and without linear correction step, and based on two different assumption on the 

degrees of freedom. (A) homogeneous and (B) heterogeneous distribution of the 

degrees of freedom. The results are given as standard deviations since these are more 

easily interpretable. “df” stands for “degrees of freedom”.  

Linear correction step 

(preprocessing) 

Assumption 

on df 

σ̂σσσ , subset 1 

(σσσσsim=0.01) 

σ̂σσσ , subset 2 

(σσσσsim=0.10) 

A 0.0227 0.0982 
No 

B 0.0100 0.103 

A 0.0229 0.0982 
Yes 

B 0.0098 0.102 
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Figure 9.3. Evolution of estimated standard deviation as a function of iteration 

number for one arbitrary realisation. 

 

 

 

 

The mean results for 1000 Monte-Carlo simulations are shown in Table 

9.1. On the whole, method (B) outperforms the more approximate 

method (A), especially for the smaller variance. The estimation 

algorithm seems to converge well (Figure 9.3). 

 

In this example no model errors are present, so performing the linear 

correction preprocessing is not necessary. This is confirmed in the 

simulation test: when this step is omitted in the procedure of method 

(B), the estimated variances are accurate. However, in real situations it 

is generally not possible to guarantee a priori that there are no 

systematic errors present. Therefore, it is recommended to include this 

correction step, at least initially. The effect of including this 

preprocessing step although no model errors are present is also assessed 

in this test. It does not appear to influence the estimations. Finally, 

notice that this example also illustrates the performance of method (B) 

to reconstruct heteroscedastic noise variances. 
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9.3.2. Performance of model error correction 
In this section the performance concerning the reduction of model errors 

influence on the noise variance estimates is assessed. To do so, the 

following simple simulation was performed (see Figure 9.4a): a fourth 

order polynomial was fitted to data that were generated using a sine 

function (y = sin(u)). Again, the first part of the dataset was disturbed 
by lower noise levels (standard deviation = 0.03) than the second part 

(standard deviation = 0.1). Obviously, this is a situation with model 

errors, as is confirmed by the systematic shape of the residuals (Figure 

9.4b and c).  

 

To test the performance of the first order correction, the grid was cut in 

ten equally wide subsets and the noise variances were estimated with 

and without this preprocessing (step 1d and 2d of the algorithm). The 

mean results of 1000 Monte Carlo simulations are given in 9.2. As 

expected, the outcomes without correction step are overestimations. 

With the correction step, the estimates are lowered and thus much 

closer to the true values. This is also illustrated by the shape of the final 

corrected residuals (Figure 9.4d). These are more random, except for a 

few subsets where the first order correction is too approximate. The 

correction could perhaps be improved if the subsets (size, position, 

number) were optimised.  

 

 

 

Table 9.2. Mean estimation results over 1000 Monte Carlo simulations: noise 

standard deviations are estimated from uncorrected and corrected residuals to 

illustrate the efficiency of the correction. All simulation results correspond to the 

outcome after 10 iterations. 

 Mean estimated standard deviation for subset… 

 1 2 3 4 5 6 7 8 9 10 

Uncorr. residuals 1.80 0.109 0.0610 0.0445 0.126 0.152 0.178 0.174 0.213 0.465 

Corr. residuals 0.0883 0.0318 0.0333 0.0305 0.0332 0.100 0.102 0.103 0.107 0.171 

True values 0.03 0.03 0.03 0.03 0.03 0.1 0.1 0.1 0.1 0.1 
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Figure 9.4. (a) Example of data simulated by a sine function and two different 

noise levels. In addition the final fourth order polynomial is shown that was fitted to 

these data using the method with the linear correction steps. (b) Uncorrected 

residuals after first step (unweighted least squares fitting). (c) Uncorrected residuals 

after last iteration. (d) Residuals in (c) after linear correction. 
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9.4. Results on field data 

9.4.1. CLIVAR-SR3 2001 data 
The aim of this section is to use the procedure described in section 9.2 

to estimate the noise variances associated with the CLIVAR-SR3 data, 

already presented in 8.4.1. These data Y are multivariate: they count 4 

variables (Θ, salinity, NO and PO) at every sampling position. The 
residuals needed in the procedure will be computed by fitting the 

POMP model Eq. (8.6) to Y in a constrained optimisation algorithm. 

Since linear equality constraints must be satisfied (mixing fractions add 

up to one in each point), the Jacobian matrix used in the variance 

estimation will be adapted to take these into account (see 9.2.4).  In 

practice, matrix Y will be vectorised using the vec operator, which puts 
the columns of a matrix on top of each other (cf. Eq. (8.12)) making the 

model equations equivalent to Eq. (9.1). 

 

The variance estimation procedure is suitable for this problem, because 

(i) it is difficult to perform replicates which really assess the total 

reproducibility of the measurements, because this would require 

replicate samplings of water at different depths and at different 

locations. These samplings are very time-consuming and expensive.    

(ii) the noise variance is surely heteroscedastic. First, some variables are 

indeed measured with a much higher precision than others. Second, 

processes influencing the total reproducibility (e.g. internal waves, 

interactions with atmosphere) change with location and therefore the 

total noise variances will also be dependent on the position. 

 

9.4.2. Estimated noise variances 
The noise variances are estimated for the same set-up as used in 

Chapter 8 (different from the one in de Brauwere et al. [2007b]): 4 
variables are used to reconstruct the fractions of 5 sources (given in 

Table 8.1). A model with 9 first order splines in the latitude direction 

and 4 in the depth direction is used, as decided from model selection 

criteria (cf. 8.4.2). The noise variances for all variables are estimated in 

20 subsets (see Figure 9.5). 
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Figure 9.5. Grid with sampled depths for selected stations of CLIVAR-SR3 cruise. 

The dashed lines separate the subsets considered in the variance estimation 

algorithm. 

 

 

 

 

 

 

Table 9.3. Ranges of estimated standard deviations, 

compared to typical analytical uncertainties reported in 

literature (see references in text). The values between 

brackets are the average standard deviations.  

 Standard deviations from… 

 algorithm literature 

ΘΘΘΘ (°C) 0.012 – 0.62 

(0.29) 

0.003 

Salinity 0.010 – 0.087 

(0.038) 

0.002 

PO (µM) 3.9 – 23 

(11) 

9 

NO (µM) 3.3 – 21 

(11) 

8 
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The results are presented in Table 9.3 as ranges and average values for 

each hydrographic variable, and compared to values usually reported in 

literature for analytical uncertainties [Mark Rosenberg, personal 
communication; You, 2002]. The mean standard deviation values 
estimated using the algorithm are systematically higher than the 

analytical uncertainties, although the reported analytical precision is 

included in the estimated range for PO and NO. This is probably due to 

two factors. First, the analytical precision is usually estimated 

neglecting the sampling uncertainty. That is to say, the replicates are 

sampled at the same occasion. Processes like (internal) waves are known 

to deteriorate the total reproducibility of the measurements, yet with a 

single sampling this variability is not taken into account. Especially for 

temperature and salinity this source of uncertainty is probably 

significant compared to the strict analytical uncertainty. A second factor 

that could explain the discrepancy seen in Table 9.3, is incomplete 

correction for model errors. Indeed, a simplified mixing model is used 

here and some model errors are likely to be present. If they are not 

completely corrected, this will result in an overestimation of the noise 

variances.  

 

At least a part of the model errors is already corrected for, as indicated 

by the higher values of the estimated variances if no linear correction 

step is included: mean std(Θ) = 0.34, mean std(salinity) = 0.061, mean 
std(PO) = 50, mean std(NO) = 12.  

 

9.4.3. POMP analysis with new noise variance estimates 
Having estimated the noise variances, which vary with position (per 

subset) and per variable, it seems interesting to re-analyse the CLIVAR-

SR3 data with the POMP model. Using these new noise variance 

estimates as weights in the OWLS optimisation, we obtain only slightly 

different spatial mixing patterns (Figure 9.6, compare with Figure 8.7). 

However, the residuals (Figure 9.7) are now of the same order of 

magnitude as the estimated uncertainties, although the first are still 

larger. Similarly, the OWLS cost function value (1826) has the right 

order of magnitude (expected value = df = 908). The residuals are thus 
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still approximately a factor √2 too large if they were to be only caused 
by measurement noise. The remaining variability could be due to source 

water type variance, which is not taken into account at all, and/or to 

unmodelled features still present in the data. Remember that even if no 

model errors are present, the residual cost function is slightly increased 

because of inequality constraints becoming active (cf. 8.3.4), but this is 

probably only a minor factor explaining the doubling of the residual cost 

function.  

 

So, the residuals are still too high, but note that we are able to detect 

this systematic residual thanks to the estimated noise variances. This 

confirms the importance of the linear correction step in the variance 

estimation algorithm. Indeed, without this step, the raw residuals (i.e. 

including the systematic errors) would have been used to estimate the 

noise variances, and thus no systematic features could have been 

detected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6. Mixing fractions associated with (a) Antarctic Intermediate Water, (b) 

Subantarctic Mode Water, (c) Subtroptical Surface Water, (d) Circumpolar Surface 

Water and (e) Upper Circumpolar Deep Water, estimated using the POMP method 

and the CLIVAR-SR3 data. The difference with Figure 8.7 lies in the used 

weighting for the OWLS cost function: here the weights are inverses of the noise 

variances, as estimated by the noise variance estimation procedure described in this 

chapter. Density isolines are plotted as dotted grey lines and range from 26.6 (upper 

north corner) to 27.6 (lower south corner) with increments of 0.1. Dots represent the 

sampling depths. 
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Figure 9.7. Residuals associated with the four variables for the POMP analysis on 

the CLIVAR-SR3 2001 data and with the improved noise variance estimates for the 

weighting: potential temperature (first row), salinity (second row), PO (third row) 

and NO (last row). On the left the raw residuals are represented as a function of 

position, the central column shows them in histograms (same scale as in Chapter 8), 

and on the right the weighted residuals are shown, i.e. the raw residuals divided by 

the priorly estimated standard deviation. Residuals are defined as observation – 

modelled value.  

 

 

 

 

9.5. Conclusions 
A method to estimate heteroscedastic noise variances in the presence of 

(reasonable) model errors was presented, validated on two simulations 

and applied to a real dataset. The results show that the variance 

estimations are accurate even when model errors are present, but can 

still depend on the subset choice and the number of data available.  

 

An aspect which has not been discussed so far is that the variance 

estimation procedure also provides an estimate of the subset degrees of 

freedom. Indeed, each subset variance is equal to the subset cost 

function (residual sum of squares) divided by the subset degrees of 

freedom. Due to the subset cutting and to the heterogeneous spreading 

of uncertainty, these subset degrees of freedom will not be a natural 

number, nor a divisor of the total number of degrees of freedom.  

 

The estimation of noise variances is often a preprocessing step itself, 

before a more “essential” calculation. For instance, our primary 

motivation to find reliable estimates of noise variances was to enable the 

use of an OWLS cost function for parameter optimisation, model 

selection and even quality assessment of the results in the POMP 

application.  
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Figure 9.8. Diagram showing the time and horizontal space scale of several 

physical and biological processes in the ocean. Taken from Dickey [2003]. 

 

 

 

After these general conclusions, we would like to discuss the POMP 

application in more detail. First, the meaning of the estimated noise 
variances will be discussed, followed by a further analysis of the results 

presented in section 9.4. Often, the variances used for the weighting of 

the cost function are thought to represent the experimental uncertainty 

associated with the modelled observations. However, in the case of the 

POMP application, this uncertainty is clearly an underestimation of the 

real variability related with the observations. Indeed, their value is not 

only influenced by experimental variations but also by environmental 

processes which can be treated as random because they occur at a 

smaller scale than the sampling. This latter effect could be evaluated by 

performing repeated samplings at the same position. These repeated 
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observations will be subject to a higher scatter than if they were only 

perturbed by experimental noise.  

 

This additional error is sometimes called representation error and 
follows from the fact that different scales are present and only some of 

them can be resolved by the available sampling and modelling. This 

issue has been extensively discussed in the framework of writing decimal 

fractions as binary numbers. It is also closely related to rounding and 

averaging. In the POMP application, a way to view the representation 

error is as the error due to the fact that one observation is taken to 

represent a much larger volume of water. In other words, this error is 

essentially the difference between the point-measurement (taken at a 

given location and time) and the filtered variable which it is supposed to 

represent, but is meant to reproduce larger space and time scale 

variability. In Figure 9.8 the range of variability scales of several 

oceanographical processes are illustrated, including the meso-scale 

phenomena, having the scale of interest for this POMP application.  

 

These arguments support the fact that the “noise” variances attributed 

to the variables in POMP should (or at least could) be larger than the 

mere experimental precision of the measurements. The variances 

estimated by the newly proposed algorithm include this type of error as 

long as its scale is small relative to the sampling density. The fact that 

these estimated variances are indeed (much) larger than the 

experimental precisions seem to confirm the importance of 

representation error as a source of “uncertainty”.  

 

Finally, let us turn to the results themselves and their significance. 

When the estimated noise variances of the CLIVAR-SR3 2001 data are 

used for weighting in the POMP model optimisation, the residuals are 

still significantly higher than the estimated noise levels. At this point it 

is not possible to determine the cause of this √2 discrepancy, but it is 
probably a combination of the following factors:  

(i)  underestimation of the total variance to be expected in the 

residuals because the SWT uncertainty is ignored,  
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(ii)  increased residuals due to un- or badly modelled features still in the 

data, e.g. suboptimal knots positions of the splines, nonconservative 

processes or additional number of sources, and  

(iii) active inequality constraints will also (slightly) inflate the residuals.  

 

From the simulations in section 8.3.4 it can be assumed that the last 

factor is probably only of minor importance in explaining the 

unaccounted residuals. So, the importance of the two remaining factors 

is at most of the magnitude of half (0.4) the estimated noise level. 

Further investigation of these factors may be of interest for future work 

(cf. Chapter 12). 
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Chapter 10: 
 

Identifiability  
of the  
source water matrix 
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10.1. Introduction 
In Chapter 5 the issue of identifiability was already raised in the context 

of compartmental models. Now it appears that this topic is relevant in 

the framework of the POMP method as well. One of the advantages of 

the POMP approach compared to the classical OMP analysis is that the 

number of unknowns to be estimated is reduced. This increase in 

degrees of freedom would in theory enable the estimation of additional 

unknowns, for instance all or part of the elements of the source water 

matrix S (cf. remark (ii) in section 8.2.1). This would be an immense 

improvement as the characterisation of the source water types is still 

the most subjective part of the method. Purely from the point of view 

that the number of unknowns must be smaller than (or equal to) the 

number of observations, this reasoning seems promising. However, it still 

has to be investigated whether all unknown parameters are identifiable 

in the current setup. In other words, given the observations Y and the 

POMP model (Eq. 8.6), can all elements of S and C be uniquely 

identified? 

 

10.2. Derivation 

10.2.1. Method 1: Jacobian rank 
Let’s recapitulate the situation: the model equations are (cf. Eq. 8.6) 

 

	 	 	 	
× ×× ×

= ⋅ ⋅
v S S Bv B

T

n n n nn N n N
Y S C B ,         

 

where now both S and C are unknowns to be estimated. Identifiability 

could be verified by inspecting the rank of the Jacobian matrix, as was 

done in Chapter 5. The Jacobian matrix is defined in Eq. 2.16; 

translated to the POMP model, this results in  

 

∂
=

∂

( )vec Y
J

θθθθ
, with 

 
 
 
 

( )

( )

vec

vec

S

C
θ =θ =θ =θ = ,      (10.1) 
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remembering that the vec operator stacks the columns of a matrix on 
top of each other to form a column vector (cf. Appendix). In other 

words,  

 

( ) ∂ ∂
= = ⊗ ⊗ ∂ ∂ 

( ) ( )

( ) ( ) B

T
n

vec vec

vec vec

Y Y
J B S BC I

S C
.    (10.2) 

 

For a given dataset and model, J can be computed and hence its rank 

can be determined. For all elements of S and C to be identifiable, the 

rank of the Jacobian matrix must equal the number of these unknowns 

minus the number of independent equality constraints imposed by 

forcing the sum of all mixing fractions at each point to equal one: 

 

identifiable ⇔  rank(J) = nθ - neq = nvnS + nSnB – neq.  (10.3)  

 

The number of independent equality constraints can be determined by 

the rank of the equality constraint matrix  eqA (cf. Eq. 8.13 and 9.16), 

defining the equality constraints  

 

 
= = 

 
 

( )

( )
eq eq eq

vec

vec

S
A A b

C
θθθθ .       (10.4) 

 

Compared to Eq. (8.14) for the case where only C was unknown, 

 eqA will be extended with a block of zeros, because the unknown 

parameter vector is now enlarged with vec(S), which does not play a 
role in the equality constraints. This extension has no influence on the 

rank of matrix, so the rank of  eqA remains the same as in the situation 

where only the splines coefficients C are estimated. 

 

Summarised, Eq. (10.3) reformulates to  

 

identifiable ⇔  rank(J)= nvnS + nSnB – rank(Aeq).   (10.5)  

 

or 
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number of identifiable parameters = rank(J) + rank(Aeq).  (10.6) 

 

The drawback of this method to check for identifiability is that the 

Jacobian and equality constraint matrices have to be computed. A 

simpler approach is given in the next section. 

 

10.2.2. Method 2 
Recall that the model equations are (cf. Eq. 8.6) 

 

	 	 	 	
× ×× ×

= ⋅ ⋅
v S S Bv B

T

n n n nn N n N
Y S C B ,       (10.7)  

 

where now both S and C are unknowns to be estimated. Nothing 

prevents us to add the following factors in Eq. (10.7) 

 

Y = S⋅⋅⋅⋅H-1⋅⋅⋅⋅H⋅⋅⋅⋅C⋅⋅⋅⋅BT,        (10.8) 

 

with H a regular nS×nS matrix (H
-1⋅⋅⋅⋅H is nothing but the identity 

matrix). This implies that S and C cannot be identified closer than to a 

factor H. Indeed, different matrices S’ = S⋅⋅⋅⋅H-1 and C’ = H⋅⋅⋅⋅C will give 
equally good solutions as the original S and C.  

 

Since the size of H is nS×nS this indicates that nS
2 relations exist between 

the parameters, and thus that all but nS
2 elements of S and C can be 

identified. However, this is still without taking into account the equality 

constraints. Due to these constraints H cannot be chosen completely 

arbitrarily, but only such that H⋅⋅⋅⋅C satisfies the same equality 
constraints as C. So, to determine how many elements of S and C are 

identifiable, we have to find how many elements of H can still be freely 

chosen such that the equality constraints (cf. section 8.2.5) 

 

1(1, nS)⋅H⋅C⋅⋅⋅⋅BT = 1(1, nS),       (10.9) 

 

and 
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1(1, nS)⋅C⋅⋅⋅⋅BT = 1(1, nS)       (10.10) 

 

are satisfied.         

 

Combining both equations one gets 

 

1(1, nS)⋅H⋅C⋅⋅⋅⋅BT = 1(1, nS)⋅C⋅⋅⋅⋅BT.      (10.11) 

 

Applying the vec operator to both sides (cf. Appendix for properties), 
this equation can be reformulated in the form of a classical set of linear 

equations (Aθ=b): 

 

( ) ( )⊗ ⋅ = ⋅ ⋅(1, ) ( ) (1, )T T
S Sn vec vec nBC 1 H 1 C B .    (10.12) 

 

The rank of the first matrix expresses the number of independent 

relations that H must satisfy. It can easily be demonstrated that 

rank( )⊗ (1, )T
SnBC 1  = rank( )TBC  ≤ nS. 

If the splines are well conditioned (which should be the case in all 

relevant situations), rank( )TBC  = nS. 
 

Summary 

The number of independently identifiable parameters 

−

+ −

+ − −

+ − +2

= total # unknown parameters # relations between parameters

= # elements in # elements in # free to choose elements in 

= (#  elements in # relations involving )

= .

v S S B

v S S B S S

n n n n

n n n n n n

S C H

H H
 

  

(“#” stands for “number of”) 

 

This result has the advantage to only depend on the a priori (structural) 

parameters nv, nS and nB. No additional calculation has to be performed, 
in contrast with the Jacobian rank method.  
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Interpreting the above results, the following conclusions can be drawn: 

(i)  With the current POMP model it is not possible to simultaneously 

identify all elements of S and C (nS
2 – nS ≥ 0 for all nS ≥ 1). 

(ii)  In the “minimal” experimental setup, i.e. where the minimal 

number of variables (hydrographic quantities) are measured (nv = 
nS – 1), the number of identifiable parameters is nSnB, this is 
exactly the number of spline coefficients. So, in this case only C can 

be fully identified. 

(iii)  If additional variables are used in the analysis, i.e. if nv ≥ nS, some 
elements of S can be identified in addition to all elements of C. It is 

always good to include additional variables in the analysis because 

they represent new independent information, but this result 

represents a supplementary advantage to do so. But no matter how 

many variables are added, in the current design it will never be 

possible to simultaneously identify all elements of S and C.  

 

10.2.3. Example 
As an illustration, the two methods will in this section be applied to a 

numerical example. The ever-returning CLIVAR-SR3 2001 dataset is 

taken as a test case. The POMP method is used as described in Chapter 

8, i.e. nv = 4, nB = 9 × 4 = 36 and nS = 5. We can now use the two 
methods to verify whether it is possible to identify all elements of both 

S and C, i.e. nvnS + nSnB = 20 + 180 = 200 parameters.  
 

Applying method 2, we find that only nvnS + nSnB – nS
2 + nS = 180 

parameters can be identified, so all elements of C can be estimated, but 

then nothing can be said about the source water types.  

 

Applying method 1, from statement (10.5) follows that to verify 
identifiability the ranks of the J and eqA  matrices must be computed. 

This is done by constructing the matrices according to Eq. (10.2) and 

(8.14) respectively. The ranks of the resulting matrices appear to be: 

rank(J) = 144 and rank( eqA ) = 36. So, according to Eq. (10.6), the 

number of identifiable parameters = 144 + 36 = 180, confirming the 

outcome of method 2. 
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10.3. Discussion and conclusions 
The main conclusion from this chapter is that it is impossible to 

simultaneously estimate the spline coefficients (i.e. the mixing fractions) 

and the SWTs in the current POMP design. Only if enough variables 

are included, some elements of S may be identifiable besides a full 

identification of C. This conclusion is not trivial, because at first sight 

enough data are available to estimate all unknowns, in contrast with the 

classical OMP analysis.  

 

The problem of estimating the SWTs is of current interest because a 

nonlinear optimisation procedure has recently been proposed to estimate 

the SWTs simultaneously with the mixing fractions in the classical 

OMP analysis framework [Henry-Edwards and Tomczak, 2006]. As they 
say, this “means that the minimisation function becomes non-linear and 
highly under-determined. Such systems have an infinite number of 
solutions, and it is necessary to impose additional constraints upon the 
minimisation in order to achieve a viable result.” Indeed, they were only 
able to find “realistic” results because they strongly constrained the 

possible solutions. For instance, fixed upper and lower limits were 

defined for each SWT and for the mixing fractions. Moreover, not all 

SWTs are optimised at once, only those “that can reasonably be 
expected to have undergone significant variations” [Henry-Edwards and 
Tomczak, 2006]. The main problem with this procedure is that it can 
hardly be called objective, and in fact is designed to find more or less 

what is expected. 

 

Nevertheless, this recent development illustrates that one is aware of the 

importance of a better definition of the SWTs in OMP-like analyses. 

The choice of the SWTs remains the most subjective component of the 

whole procedure. In this chapter it has been demonstrated that even 

within the current POMP setup the SWT problem remains unsolved. 

More objective source selections can only be achieved if additional 

information can be included in the analysis, for example if repeated 

transects are available, preferably from the same year and season.  
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Chapter 11: 
 

General conclusions 
 

 

The aim of the study presented herein was to improve two existing 

environmental modelling problems such that their results are more 

reliable. The focus was thus on the development and application of 

suitable estimation algorithms, and no new models or new 

measurements come out of the study. Indeed, the merit of this work is 

not to have enabled the estimation of flux rates or of mixing fractions, 
but rather to have enabled their more accurate and precise estimation, 
together with an estimate of the associated uncertainty. In order to 

achieve this objective, a number of new methodological developments 

were necessary. The major novel contributions are summarised below. 

 

1. Introduction of IOWLS – LCM combination for the 

estimation of flux rates and their uncertainty (Chapter 4). 

For the first time in the field of tracer experiments it was proposed to 

include the input uncertainty in the weighting of a WLS cost function. 

Although the input effect is linearised, the approach seems satisfactory 

in the case of the simple silicon model. Most importantly, the residual 

cost function values appear to be very close to their expected values, 

which enables their use for checking the quality of the results. 

Combining this input-output weighting with the LCM expression 

provides a satisfactory method to estimate the uncertainties associated 

with the flux rates. The estimated variances are again approximations 

but they can be computed quickly and automatically, thus shortcutting 

the need for time-consuming Monte-Carlo simulations. 

To illustrate the relevance of this section, it may be mentioned here that 

this estimation procedure has been adopted as the default routine for all 

other compartmental modelling work performed in the ANCH group.  
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2. Model selection based on the statistical interpretation of the 

residual WLS cost function (Chapter 6). 

Compared to other existing model selection methods, the strategy 

proposed herein has the advantage to be very fast and reliable even if 

few observations are available. Joined with the IOWLS formulation, it is 

the preferred method for model selection for tracer experiments 

modelled by compartmental models. However, to increase the insight in 

a giving modelling exercise, it has recently been suggested to combine 

the overall quality information given by the residual cost function with 

a more detailed inspection of the individual residuals [Elskens et al., 
submitted]. For instance, an acceptable cost function may hide the fact 

that one variable is systematically associated with a very high residual. 

 

3. Improvement of OMP analysis for large-scale applications 

(Chapter 8). 

As an attempt to improve some of the deficiencies of the classical OMP 

analysis, the POMP method was proposed. Its main development 

consists of describing the sources’ mixing contributions by 2D-functions. 

This approach effectively reduces the number of unknowns to be 

estimated, resulting in more robust mixing patterns. Obviously, this 

increased robustness should not be paid by a lowered accuracy. 

Therefore, it is crucial to perform a thorough model selection to 

determine the optimal complexity of the mixing functions. This could be 

achieved thanks to the tools presented in Chapter 6. The second 

development included in POMP regards the more technical aspect of 

weighting. In order to allow a weighting scheme consistent with the 

WLS framework, it was necessary to impose mass balance as an equality 

constraint rather than to optimise it as a model equation. This was 

easily implemented, and the main difficulty remaining is the accurate 

quantification of the weights. This last point is important to enable the 

statistical interpretation of the residuals (or the residual cost function), 

i.e. to identify possible systematic errors. To achieve this accurate 

weighting the uncertainties associated with both the observations 

(output) and the SWTs (input) should be known. As a first step, a 

method to objectively and accurately estimate the first has been 
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developed in Chapter 9, but the SWT variances remains beyond the 

scope of this study. 

 

4. Algorithm to estimate noise variances (Chapter 9). 

Originally intended to improve the weighting in POMP applications, an 

algorithm was designed which can be applied to estimate noise variances 

in most modelling applications. Using this algorithm in the POMP 

application enabled position dependent variance estimates and resulted 

in much higher uncertainties (especially for temperature and salinity) 

than implied by the instrumental precision. This outcome confirms the 

suggestion that the uncertainties to include in the weighting should 

include the sampling variability in addition the mere instrumental 

precision.  However, with these improved estimates of the output 

variances the weighting still appears to be unsatisfactory, indicating the 

need to include the SWT variances.  

 

5. Identifiability studies (Chapters 5 and 10).  

The issue of identifiability lies slightly apart from the rest of the 

problems. Indeed, it is not concerned with observations and unavoidably 

related uncertainties. Instead, it assesses whether a planned model-

experiment can provide the requested information under the form 

estimated parameters. This topic was addressed in both parts of this 

thesis. In the first part, the methodology using the Jacobian rank as a 

measure of the amount of available information was extensively 

described and applied to the complete set of two-compartments models. 

In Part B, the Jacobian rank was again used, this time to determine 

how many parameters can be independently determined in a typical 

POMP application. The results are confirmed by a formal derivation, 

demonstrating that it is never possible to estimate all splines coefficients 

simultaneously with all SWT elements. In the typical situation where 

there is one source more than the number of hydrographic variables, 

only the spline coefficients can be estimated. It thus remains impossible 

to objectively define the SWTs, only based on the data.  
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Chapter 12: 
 

Perspectives for future 
research 
 

 

 

 

 

“De quoi demain sera-t-il fait?” 
 
Victor Hugo, Les chants du crépuscule, Napoléon II (1835). 
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12.1. Introduction 
As the research is never finished at the end of a PhD, a thesis always 

seems to contain the obligate chapter on future perspectives. It is no 

different for this thesis.  

The focus will be mainly on work in progress, as I find it difficult to 

enclose the greatness of (all) possible future developments.  

 

All developments proposed in this chapter are situated within the scope 

of research priorities of the ANCH and ELEC groups. The collaboration 

between these two groups may have started as an uncertain experiment, 

it now seems to have become a fact. More and more ANCH topics are 

studied using tools from the system identification, sometimes even 

requiring the development of new specialised tools, as illustrated in 

several chapters of this thesis. The promising results so far seem to 

convince at least some people that this kind of interdisciplinary work 

can be meaningful, as implied by some recent granted projects. On the 

other hand, it is the communication aspect that appears to be the most 

troublesome in practice. The introduction of new methods and especially 

new (according to us more objective) evaluation criteria is not always 

welcomed. I hope that my work will be a contribution to a better 

communication between scientific communities and that I have 

convinced you of its significance. Especially because the work is not yet 

finished… 

 

12.2. Future developments in system 
identification? 

One of the conclusions of this thesis (and other simultaneous work) is 

that the branch of system identification considering small datasets is 

underdeveloped. Asymptotic properties are not relevant anymore in this 

context, so new fundamental research on the properties of estimators for 

small datasets is needed. How to proceed is not obvious and it seems a 

long term project in which the link with the applications must remain 

active.  
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One step has been made in this thesis with the proposed model selection 

procedure (Chapter 6), and its applicability can be further enlarged by 

combining it with the noise variance estimation of Chapter 9.  

 

12.3. Future developments in modelling 
tracer experiments? 

The tracer models have been further developed since my work in Part 

A, the main progress being the introduction of small kinetic experiments 

and related first order and saturation models. The model development is 

mainly constrained by the complexity of the experiments which must 

still be feasible to perform e.g. on board of a ship. For instance, the 

number of samples (and hence reagents) necessary for kinetic 

experiments is beyond the possibilities during long range cruises as those 

crossing the Southern Ocean. Therefore, the effort is mostly directed to 

designing the most efficient experiment to answer the question of 

interest, taking into account the experimental constraints. This means 

that today a range of experimental designs exists, all linked to their 

specific model to answer their specific question. As the main constraint 

is the experimental complexity, it appears that today the tracer models 

cannot be much further improved [Marc Elskens, personal 

communication].  

 

Instead, a focus for future research should be the combination of 

different available experiments to retrieve even more information about 

the system. This is more specifically of interest in the context of 

estimating export fluxes of organic material through the water column. 

Nitrogen experiments provide information about the fraction of the total 

production that can be potentially exported out of the surface layer (i.e. 

new production). Silicon observations offer some insight in the 

contribution of diatoms in this flux. In addition, barium and thorium 

tracers are currently used to make inferences about the remineralisation 

of the exported organic matter in deeper layers of the ocean. Finally, 

sediments and sediment traps contain information about the fraction 

reaching the ocean floor. Until now these pieces of information are used 

separately, but it seems promising to combine them to get a bigger 



12. Perspectives for future research 

204 

picture of the fate of organic material leaving the upper ocean. This 

approach would take advantage of existing experimental expertise but 

would require the construction of a new model combining the different 

inputs, and thus consists of a real modelling development. Of course, 

concepts like identifiability and model selection will help to create this 

model, at least for it to be numerically useful. 

 

12.4. Future developments of POMP 
analysis? 

A number of developments further improving the POMP analysis seem 

useful. From our experience so far, the major problem for interpreting 

the results is the residual cost function which is too high. As argued 

above, at this point it is difficult to say which factor(s) is (are) the 

primary cause. Two developments may help to solve this problem. First, 

including the possibility to change the knots’ positions of the splines 

would certainly improve the fit that can be achieved with a spline of a 

given complexity. Indeed, this would allow the spline to be even more 

flexible and to have different “resolutions” in different areas of the data 

grid (now equidistant knots are used, thus the “resolution” of the spline 

is equal everywhere). More flexible splines would enable a closer fit of 

the data and hence would reduce the residuals, as wanted. This 

development is not so much technically complicated, but it is difficult to 

automatically optimise the knots positions. This is actually the reason 
why it was not implemented in the POMP method so far. So, optimising 

the knots positions will probably reduce the model errors but at the 

same time it will introduce a spark of subjectivity.  

 

A second, in my opinion much more tricky, development bringing the 

residuals closer to the expected value, is including the SWT 

uncertainties in the estimation of the total variance (thus hopefully 

achieving the expected residual value). The difficulty here lies on two 

levels. First, an estimate must be found for these SWT uncertainties. If 

the definition of the uncertainty associated with the measurements was 

already subtle (cf. discussion in 9.5), it is even more so for the SWT 

uncertainties. It also depends on the way the sources themselves are 
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defined: based only on the investigated dataset (as we do) or as more 

general, average sources which can be found in literature or by 

comparing a number of datasets of the same region. It is obvious that 

some choices have to be made by the user. But as soon as these SWT 

uncertainties are quantified, the second problem arises: how to 

incorporate them in an estimate of the total variance, or, which is 

similar, in a total weighting matrix? It is not so much a problem to 

include the input variances as long as they are independent from sample 

to sample (see 2.5.4 and Chapter 4), but since the influence of a source 

extends over a number of samples this is clearly not the case here. And 

since the source variances are not independent, covariances should be 

estimated too. In short, estimation of the SWT variances (and 

covariances) seems tricky but it would allow the estimation of a real 
total variance, to which the residuals could be compared to detect 

systematic errors. 

 

Another progress improving the POMP method involves the definition 

of the source water types. If this definition can be performed more 

objectively, this would increase the reliability of the POMP results, and 

it would also help to solve the previously raised problem of quantifying 

the SWT covariance matrix. It was demonstrated in Chapter 10 that in 

the current POMP setup it is not possible to estimate the SWTs 

simultaneously with the spline coefficients. Therefore, this problem can 

only be solved by including additional information in the analysis. 

Maybe this information can be found under the form of repeated 

observations. For instance, in some regions the cruise frequency may be 

high enough to enable the combination of a number of datasets which 

are similar in terms of SWTs. It is important to carefully select these 

repeated datasets since the SWTs can differ according to season and 

also between years [e.g. de Brauwere et al., 2007a].  
 

A final “development” of the POMP analysis is more of a modification, 

but it could be useful to improve the fit and interpretability in some 

applications. It consists of performing the spline parameterisation as a 

function of other variables than geographical position (latitude and 

depth). For instance, instead of depth, neutral density [Jackett and 
McDougall, 1997] may be used as the vertical axis. An example of how 
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the mixing fractions for the CLIVAR-SR3 2001 data and SWTs look 

like with this axis transformation is shown in Figure 12.1. Alternatively, 

the latitude axis could be replaced by dynamic height, a variable that 

would rearrange the stations such that their temperature and salinity 

values are (more) monotonically ordered. This could have an advantage 

if eddies are present in the transect. However, so far, these  

axis transformations do not appear to significantly improve the 

description of the data, but it seems worthwhile to remember this 

possibility for future applications. 

 

 

 

 

 
Figure 12.1. Mixing fractions derived for the same data and SWTs as in Chapter 

8, but parameterised as function of latitude and neutral density.  
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12.5. Future application of POMP: detecting 
biogeochemical processes 

12.5.1. Introduction 
Although a number of further improvements have been proposed in the 

previous section, the POMP method is far from worthless as it is now. 

Its performance in reconstructing mixing fields has been shown in the 

previous chapters, especially compared with the classical OMP analysis 

which is used regularly in literature. In some applications these mixing 

fields may be the product of interest. In this section, however, we 

propose to use the mixing fractions as an intermediate result and use it 

in a subsequent calculation to predict the behaviour of dissolved barium. 

In fact, this application was the incentive of the whole POMP 

development (cf. Part B).  

 

Why study barium? Barium in the oceans has been suggested to be 

involved in biogeochemical processes such as the microbial 

remineralisation of sinking organic matter. Dissolved barium profiles 

consistently show depletion in the surface layers, implying a 

consumption of biological nature. As barium is not known to be an 

essential micronutrient, another mechanism has been suggested to 

explain the observed profiles. Dissolved barium would be used to form 

barite crystals within microenvironments present in decaying 

phytoplankton cells and fecal pellets [Dehairs et al., 1980]. Biological 
mediation of barite formation is supported by correlations between 

barite concentrations in intermediate waters and biological productivity 

in the overlying water column [Dehairs et al., 1980]. In addition, 
enrichments of dissolved barium are often observed in intermediate to 

deep waters, pointing toward a regeneration of dissolved barium during 

microbial remineralisation of the organic aggregates containing barite. 

This apparent link between productivity and barite formation, and 

between barite transport to intermediate depths and export production 

has led to the use of barium as a tracer for past oceanic productivity 

and export production, crucial parameters in the understanding of the 

carbon cycle. Nevertheless, the quantitative importance of these 

biogeochemical processes for the dissolved barium distribution is not 

well known. Surely its overall distribution in the oceans is primarily 
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determined by physical processes at all scales, but it is possible that 

“sometimes” it is significantly influenced by biogeochemical processes as 

well. When, where and how much barium is subject to these influences 

is difficult to predict. Therefore, it would be useful to have a tool to 

determine the location and importance of these nonconservative 

processes, from a given dataset. A way to do this involves the use of the 

POMP analysis in a first step. In the next section, the actual method to 

estimate the importance of mixing on the dissolved barium observations 

is described.  

 

12.5.2. Method  
The basic idea of the method is that dissolved barium in the ocean is 

composed of a part due to conservative processes and a part influenced 

by biologically mediated processes. The conservative processes are 

simplified to be only (large scale) mixing, such that the observed 

dissolved barium can be decomposed as follows: 

 

[Ba]obs = [Ba]mix + [Ba]bio.       (12.1) 

 

[Ba]bio can be quantified if [Ba]mix can be estimated. This can be achieved 

if in the same study area measurements of strictly conservative tracers 

are available. If this is the case, they can be used to “calibrate” a 

mixing model (e.g. POMP) which would then fully describe the 

variations in the study area due to mixing. Using the POMP model, this 

means that the spatial distribution of the mixing coefficients for the 

relevant sources is fixed (“calibrated”). With these mixing coefficients, 

[Ba]mix can be reconstructed if barium concentrations can be attributed 

to the SWTs.  

 

Summarising, a three step procedure is followed to estimate [Ba]bio: 

 

Step 1: determine the mixing fields using the POMP method with only 

conservative tracers. 

 

Step 2: Compute the “mixing-only” barium at each point:  
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[Ba]mix = 
=
∑
1

[Ba]
Sn

i i
i

x ,         (12.2) 

 

with xi the mixing fraction of SWT i (derived in step 1) and [Ba]i the 
barium content of SWT i. 
 

Step 3: Compute the biogeochemical barium component:  

 

[Ba]bio = [Ba]obs – [Ba]mix.       (12.3)  

 

The main weakness of this procedure is that the uncertainty associated 

with the final values for [Ba]bio is relatively high, because it is computed 

as a difference of two uncertain terms of comparable magnitude. Note 

that if the “mixing-only” barium was computed using mixing fractions 

derived from the classical OMP, the uncertainties would be even higher, 

and probably too high too make any statements, which is one of the 

justifications for executing the work presented in Part B. Even using the 

POMP, the resulting [Ba]bio distributions are mostly interesting as 

qualitative information, i.e. to indicate subregions associated with 

nonconservative consumption ([Ba]bio is negative) or rather with 

production ([Ba]bio is positive). This information can then be related to 

independent indications from other data, e.g. particulate barium, to 

make inferences about the role of barium in the biological cycling of 

organic material. 

 

12.5.3. Results and possible future applications 
This method has already been applied to two Southern Ocean datasets, 

among which the ever revisited CLIVAR-SR3 2001 dataset. This work 

was done in cooperation with Stéphanie Jacquet and has been 

materialised in a manuscript submitted to Geophysical Research Letters 

[Jacquet et al., submitted]. In Figure 12.2 an example for the CLIVAR-
SR3 2001 section is shown. A region of consistent production and a 

region of consumption becomes apparent, which can now be further 

interpreted, e.g. by comparing with other available data. For instance, 

in the subantarctic zone where dissolved barium seems to be depleted, 

elevated levels of particulate barium have been reported, which is 
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consistent with a subtraction of dissolved barium in ambient water 

during barite formation [Jacquet et al., submitted]. 
 

Similar studies, using a classical OMP model, were executed by Kumar 
and Li [1995] to evaluate the amount of Si and 226Ra added to the water 
column by decomposing particles, and by Schneider et al. [2005] to 
approximate changes in DIC and nutrients due to remineralisation. The 

advantage of using the POMP model instead of the classical OMP 

equations is that the mixing fractions estimated first are associated with 

(much) lower uncertainties, as was shown in Chapter 8. This aspect is 

particularly important in this application because the mixing fractions 

are only an intermediate result, and thus their uncertainty is further 

propagated through the subsequent steps. 

 

In analogy with Schneider et al. [2005] the proposed procedure can be 
repeated for nutrients instead of barium, provided that enough 

conservative tracers are available (since NO and PO cannot be used if 

NO3 and PO4 are analysed). Quantifying the biogeochemical component 

of nutrients has the advantage that it can be linked to primary 

production. An interesting variation of the procedure would therefore be 

to investigate the upper layer of a particular ocean region, and thus to 

perform the POMP analysis in the (latitude, longitude) dimensions. 

From the biogeochemical nutrient component, the local production can 

be estimated, and by integrating this value over a representative volume 

of water around the sample, large scale maps of production can be 

derived. In many regions, local production estimates are available, which 

would allow a cross-check of the derived production estimates. The 

advantages of this three-step procedure compared to an “extended OMP 

analysis” (cf. section 7.4) are  

(i) a reduction of the noise influence due to the parameterisation, and 

(ii) no assumption about Redfield ratios must be made. 

 

 



12. Perspectives for future research 

 

211 

 

 

 
Figure 12.2. (a) Measured barium profile (in nM) along the CLIVAR-SR3 2001 

section. (b) Example of reconstructed “mixing-only” barium profile. (c) Difference 

between (a) and (b), giving an estimate of excess and missing barium. Here only 

those values are shown which are above the estimated uncertainty (1 standard 

deviation). 
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12.6. Future application of POMP: inclusion 
of more tracers 

A final suggestion for future application of POMP concerns the inclusion 

of more conservative tracers than we did so far, i.e. potential 

temperature, salinity, NO and PO. This is useful since more tracers will 

increase the reliability of the results. Besides, if one wants to use NO3 

and PO4 to make statements about biological production (vide supra), 

other tracers will be needed too. In literature, concentrations of inert 

compounds such as CFCs have been used in OMP analyses [e.g. Olsson 
et al., 2005]. Measurement of CFCs have been made during several 
cruises, including the CLIVAR-SR3 2001 campaign. At the same time, 

some new tracers may appear as useful conservative variables. For 

instance, aluminium is currently investigated as a potential tracer for 

water masses [Clare Johnston and Toby Sherwin, personal 

communication]. Following these developments and checking which 

additional tracers are already available now, is something that must 

certainly be done in future applications of POMP. 
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Appendix 
Matrix algebra 

 

 

Consider the following matrices 

 

A ∈ Rp×q ,  B ∈ Rp×q ,  C ∈ Rq×p ,  D ∈ Rs×t ,  E ∈ Rq×s . 

 

 

A1. Trace operator 

Definition:  
( , )

( , )
1

[ ]
min p q

i i
i

trace
=

= ∑A A      (A.1) 

 

Properties: trace[A + B] = trace[A] + trace[B]   (A.2) 

 trace[AC] = trace[CA]      (A.3) 

 

A2. Vec operator  

Definition:  

(:,1)

(:,2)

(:, )

( )

q

vec

 
 
 =  
 
 
 

A

A
A

A

�
 ∈ Rpq×1     (A.4) 

 

A3. Kronecker product  

Definition:  

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( ,2) ( , )

q

q

p p p q

 
 
 ⊗ =  
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A D A D A D
A D

A D A D A D

�

�
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�

 ∈ Rps×qt (A.5) 
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Properties involving the vec operator:   

 

 vec(AED) = (DT ⊗ A) vec(E)     (A.6) 

 vec(AE)  = (Is ⊗ A) vec(E)     (A.7) 

   = (ET ⊗ Ip) vec(A)     (A.8) 

   = (ET ⊗ A) vec(Iq)     (A.8) 
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