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ABSTRACT 

An inverse correlation between dispersal ability and genetic differentiation 

among populations of a species is frequently observed in the marine environment. We 

investigated the population genetic structure of the free-living marine nematode 

Pellioditis marina. 426 bp of the mitochondrial COI gene was surveyed on a 

geographical scale of approximately 100 km during spring 2003. Nematodes were 

collected in two coastal locations in Belgium, and in two estuaries and a saltwater lake 

(Lake Grevelingen) in The Netherlands. Molecular variation was assessed with the 

Single – Strand Conformation Polymorphism (SSCP) method. 

In total, 32 haplotypes were observed, and sequence divergence among 452 

individuals ranged from 0.2 – 10.6 %. Four distinct mitochondrial lineages were 

discovered, with low divergences within the lineages (0.2 – 1.6 %) and high 

divergences between the lineages (5.1 – 10.6 %). The nuclear ribosomal ITS-region 

showed concordant phylogenetic patterns, suggesting that nematode species diversity 

may be considerably underestimated. 

AMOVA indicated a strong genetic differentiation among populations. The 

Lake Grevelingen population was clearly differentiated from all other populations, but 

genetic structuring was also significant within the Westerschelde and was correlated 

with gradients in salinity and pollution. The observed population genetic structure is 

in accordance with the limited active dispersal capacity of P. marina, but is at 

variance with its significant potential for passive dispersal. We therefore suggest that 

autecological characteristics, including short generation time, high colonisation 

potential and local adaptation may be at the basis of this nematode’s population 

genetic structure. 
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INTRODUCTION 

Many marine populations are thought to be demographically open because of 

long-distance larval dispersal (Caley et al. 1996). During the last decade, however, 

unexpectedly high levels of genetic differentiation have been reported for marine 

organisms with supposedly high dispersal capabilities (e.g. Taylor & Hellberg 2003, 

Caudill & Bucklin 2004, Ovenden et al. 2004), illustrating that straightforward 

predictions on the relationship between dispersal ability and genetic differentiation 

remain problematic. Fewer studies have focused on species with low(er) dispersal 

abilities (Schizas 1999, 2002, Kirkendale & Meyer 2004), where population genetic 

structuring is expected to be higher (Avise et al. 1987, Palumbi 1994). Factors 

influencing gene flow in marine species are roughly divided into physical (e.g. ocean 

currents, habitat characteristics) and biological (e.g. life-history, predation, larval and 

adult behaviour) categories (Hohenlohe 2004). These characteristics limit the 

dispersal abilities of planktonic larvae, and render marine environments less open than 

previously thought. Furthermore, the issue of spatial scale may further complicate the 

discussion about open vs closed marine populations (Cowen et al. 2000, Camus & 

Lima 2002). 

In addition, population genetic surveys have also revealed that many marine 

’species’ are in fact species complexes involving morphologically cryptic taxa 

(Knowlton 1993, Todaro et al. 1996, Matthews et al. 2002, Bond & Sierwald 2002, 

McGovern & Hellberg 2003). Such complexes are especially prominent in small 

invertebrates with few taxonomically diagnostic characters (Rocha – Olivares et al. 

2001). This taxonomic confusion evidently complicates the interpretation of 

distribution and dispersal patterns in the marine environment (Kirkendale & Meyer 

2004). 

In this study, we investigate the population genetic structure of the free-living 

marine nematode Pellioditis marina Andrassy 1983 (syn. Rhabditis marina Bastian 

(1865))11 over a fairly small geographic area. Nematodes are the most abundant 

metazoans on earth, and they are highly speciose at very small (< m2) to global scales, 

with estimates of total species numbers (including zoo- and phytoparasitic species) 

ranging from 105 (Coomans 2000) up to 108 (Lambshead 1993). Their omnipresence 

                                                 
 
11 But see General introduction, p 9. Pellioditis is at present considered to be a subgenus of Rhabditis 
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and high diversity combined with functional variability render them an interesting 

model group to test concepts about the link between structural and functional 

biodiversity (Coomans 2002, De Mesel et al. 2003).  

Most marine nematodes are endobenthic organisms with very limited active 

dispersal capacities. Passive (through erosion) and active (Wetzel et al. 2002) 

emergence into the water column do, however, occur, and passive dispersal through 

water currents, waterfowl or ballast water is plausible but hitherto poorly studied. 

Pellioditis marina typically frequents standing and decomposing macroalgae in the 

littoral zone of coastal environments (Moens & Vincx 2000b) and may therefore be 

more prone to passive resuspension and transport (e.g. through “rafting”) than 

typically endobenthic nematodes. Its high reproductive capacity (up to 600 eggs per 

female under optimal conditions (Vranken & Heip 1983)) and short generation time 

(less than three days under optimal conditions (Vranken & Heip 1983, Moens & 

Vincx 2000a)) render this species a strong colonizer capable of establishing viable 

populations from one or a few gravid females. In view of these features, we expected 

some capacity for passive dispersal and gene flow, at least over limited geographical 

distances.   

Several marine nematode species have wide to nearly cosmopolitan 

distributions. This also holds for Pellioditis marina, which has been reported from 

coastal environments in Europe, along the Mediterranean Sea, on both sides of the 

Atlantic Ocean (Inglis & Coles 1961), Vancouver Island (Canada) (Sudhaus & 

Nirmrich 1989), New Zealand, North Africa, Australia, South America (Sudhaus 

1974), and from both the Antarctic and Arctic archipelago (Moens unpublished). Such 

a wide geographical distribution is at variance with the alleged limited dispersal 

capacities of nematodes. However, P. marina shows substantial morphological (Inglis 

& Coles 1961, Sudhaus 1974), reproductive (oviparous vs ovoviviparous) and 

physiological variation. As an example, some populations thrive well at temperatures 

which are lethal to other populations (Moens & Vincx 2000a). While this in part may 

reflect local adaptation and phenotypic plasticity, it may also relate to differentiation 

among cryptic taxa as a result of vicariance events. Hence, since marine nematode 

taxonomy heavily relies on morphological criteria, there is an urgent need for 

information on the population genetic structure and cryptic variation within such 

morphologically defined species in order to better understand their current distribution 

and dispersal patterns. 
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Against this background, we used Single Strand Conformation Polymorphisms 

(SSCP) (Orita et al. 1989, Sunnucks et al. 2000) and DNA sequencing to screen  

mitochondrial COI nucleotide sequence variation of P. marina on a small and largely 

continuous geographical scale (ca. 100 km) along the Belgian coast and in the Scheldt 

Estuary (The Netherlands). This area comprises various suitable habitat types for P. 

marina, as well as several locations with different degrees of connectivity. This 

sampling design enabled us to test the influence of (1) different habitats (estuaries, 

lake and coast), (2) environmental gradients (salinity, pollution) and (3) geographic 

distance on the population genetic structure of a free-living nematode. 

 

MATERIAL AND METHODS 

SAMPLE LOCATIONS 

Individuals of Pellioditis marina were collected from 10 locations in Belgium, 

The Netherlands and England during April-June 2003 (Fig. 2.1). In Belgium, two 

coastal locations were sampled (Nieuwpoort: Ni; Blankenberge: Bl), representing true 

marine habitats with a coarse sandy sediment and direct impact of the sea. In The 

Netherlands, seven localities were sampled in two arms of the Scheldt Estuary 

(Westerschelde, Oosterschelde: Os) and in Lake Grevelingen (Gr). The Westerschelde 

is highly polluted, as it is a major drain for industrial and domestic wastes (De Wolf et 

al. 2004). Salinity varies between 12 and 35 in the upperpart of the estuary comprising 

our sample locations. The Oosterschelde estuary is relatively clean and shows little to 

no variation in salinity (33-35 psu). Lake Grevelingen also has a fairly constant 

salinity (32 psu) but differs from the Oosterschelde by being cut off from the sea and 

the lack of tidal currents. Yet, both Lake Grevelingen and the Oosterschelde  were 

transformed into their current basin like shape by man during the 60-70’s. Both 

environments are thus very young. Finally, in England one population was sampled in 

Plymouth, in the mouth of the River Plym (salinity of 32), in order to compare our 

small-scale patterns with larger-scale differentiation. 

The following entities can thus be identified in our sampling design: (1) 

locations with no apparent physical barrier between them (two Belgian coastal 

stations and five locations within the Westerschelde); (2) two nearby but recently 

isolated locations by both natural and man-made barriers (Oosterschelde and Lake 
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Grevelingen); (3) locations within the Westerschelde (40 km) along a salinity and 

pollution gradient and (4) samples from the more distant location of Plymouth 

(southwest England) under influence of Atlantic currents. 
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Fig. 2.1. Location of the sampled populations and distribution of the four lineages PmI, PmII, PmIII 

and PmIV. (Ni = Nieuwpoort (51° 9’ N, 2° 43’ E); Bl = Blankenberge (51° 19’ N, 3° 8’ E); Br 
= Breskens (51° 24’ N, 3° 33’ E); Pa = Paulina (51° 21’ N, 3° 49’ E); Ze = Zeedorp (51° 24’ 
N, 3° 58’ E); Kr = Kruispolderhaven (51° 22’ N, 4° 3’ E); Sl = Sloehaven (51° 27’ N, 3° 36’ 
E); Os = Oosterschelde Estuary (51° 36’ N, 3° 50’ E); Gr = Grevelingen lake (51° 44’ N, 3° 
57’ E); Pl = Plymouth (50° 22’ N, 4° 9’ E). 

SAMPLE COLLECTION AND PROCESSING 

Approximately 50 individuals from each location were processed, except from 

Plymouth, where only 31 individuals were analysed. Fragments of Fucus sp. (Ulva sp. 

and Sargassum sp. in Lake Grevelingen) were randomly collected and incubated on 

agar slants (Moens & Vincx 1998). Nematodes were subsequently allowed to colonize 

the agar for about two days, which is less than one generation time under the 

incubation conditions used here (Moens & Vincx 2000a). Pellioditis marina was then 

identified under a dissecting scope using diagnostic morphological characters (Inglis 

& Coles 1961) and handpicked from the agar with a fine needle. All individuals were 

transferred through sterile water and photographed digitally as a morphological 

reference. All worms were stored individually in 70 – 95 % acetone until processed. 
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Two individuals of the congener Pellioditis ehrenbaumi (syn. Rhabditis 

nidrosiensis (Sudhaus 1974), where Rhabditis and Pellioditis are subgenera of the 

genus Rhabditis (Sudhaus & Fitch 2001)) from stranded macroalgae in the 

Oosterschelde were also isolated and preserved on acetone. 

DNA EXTRACTION AND PCR AMPLIFICATION 

Prior to DNA extraction, the nematodes were transferred into sterile distilled 

water for approximately 30 min to remove traces of acetone.  Individual nematodes 

were then transferred to 20 µl Lysis Buffer (50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM 

MgCl2, 0.45 % NP40, 0.45 % Tween20), cut in pieces with a razor and frozen for 10 

min at -20 °C. Proteinase K (60 µg ml-1) was added and samples were incubated 1 h at 

65 °C, followed by 10 min at 95 °C. Finally, the DNA-samples were centrifuged for 1 

min at maximum speed (13200 rpm). One µl of extracted DNA was used as template 

for polymerase chain reactions (PCR)12.  

A portion of the mitochondrial cytochrome oxidase c subunit 1 (COI) gene 

was amplified with primers JB3 (5’-TTTTTTGGGCATCCTGAGGTTTAT-3’) and 

JB4.5 (5’- TAAAGAAAGAACATAATGAAAATG-3’) (Hu et al. 2002). Standard 

PCR- amplifications were conducted in 25 µl volumes for 35 cycles, each consisting 

of a 30 s denaturation at 94 °C, 30 s annealing at 54 °C, and 30 s extension at 72 °C, 

with an initial denaturation step of 5 min at 94 °C and a final extension step of 5 min 

at 72 °C. Because DNA amplification of nematodes from lake Grevelingen 

consistently failed with these primers, we constructed a new reverse primer (JB5; 5’- 

AGCACCTAAACTTAAAACATAATGAAAATG-3’) based on rhabditid nematode 

sequences from GenBank. Five µl of each PCR-product was loaded on a 1 % agarose 

gel to check the size of the amplified product. 

We additionally analysed the nuclear ribosomal internal transcribed spacer 

region (ITS) of several mitochondrial haplotypes. The primers from Vrain et al. 

(1992) were modified: VRAIN 2F (5’-CTTTGTACACACCGCCCGTCGCT-3’) and 

VRAIN 2R (5’- TTTCACTCGCCGTTACTAAGGGAATC-3’); these primers anneal 

in the conserved 28S and 18S region of the ribosomal DNA and amplify a product of 

approximately 900 bp (ITS-1, 5.8S and ITS-2). PCR-conditions were similar to those 
                                                 
 
12 The remaining amount of DNA was stored at -80°C. In this way, the same DNA-samples could be 
used for the amplification of multiple markers.  
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for amplification of the COI fragment, except for the final extension step, which 

lasted 10 min instead of 5. 

SINGLE STRAND CONFORMATION POLYMORPHISMS (SSCP) 

For SSCP-analysis, 2.5 µl of PCR-product was mixed with 5.5 µl loading dye 

(5 % EDTA, 95 % formamide, 0.05 % bromophenol blue), denaturated for 5 min at 95 

°C and put immediately on ice until loading on a non-denaturating polyacrylamide gel 

(0.5 mm thick, 2 % crosslinking and 5 % glycerol). For these horizontal gels, 

electrode strips were made with Tris/Hac (0.45 M) and Tris/Tricine (0.8 M) buffers. 

The conditions for electrophoresis (15 W, 4 h at 5 °C) were standardized for optimal 

resolution of bands, allowing the detection of single base differences for the 426 bp 

COI fragment. SSCP has a capacity to detect 75 – 95 % of the point mutations using 

fragments of 200 bp or less (Zhu & Gasser 1998), although the same authors showed 

that sequence heterogeneity can also be displayed in fragments of 440-550 bp. A 

single point mutation in a 530 bp fragment of the ITS-2 sequence of Toxocara cati 

was also detected by this method (Zhu et al. 1998). After electrophoresis, haplotypes 

were visualized with a DNA silver staining kit (Amersham Biosciences) and scored 

by their relative mobility. 

DNA SEQUENCING 

All samples with different SSCP patterns were sequenced with both the 

forward and reverse primers as described above. To ensure that band mobilities were 

consistent with actual sequence variability, we additionally sequenced 10 % of the 

samples from every location. Our SSCP conditions proved capable of distinguishing 

all haplotypes, except for one very rare haplotype (n = 2, in Sloehaven (Sl)) which 

was omitted from the dataset. Ribosomal ITS fragments were not analysed with SSCP 

but sequenced directly.  

Sequencing was performed using a Perkin Elmer ABI Prism 377 automated 

DNA sequencer. The PCR product was purified with shrimp alkaline phosphatase (1 

U µl-1, Amersham E70092Y) and exonuclease I (20 U µl-1, Epicentre Technologies 

X40505K) and cycle-sequenced using the ABI Prism BigDye V 2.0 Terminator Cycle 

Sequencing kit.  
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DATA ANALYSIS 

Genetic diversity 

Standard measures of genetic variation within populations, such as nucleotide 

diversity (π) (Nei 1987) and gene diversity (h) (Tajima 1983, Nei 1987) were 

calculated using ARLEQUIN v.2.0. (Schneider et al. 2000). Sequences were aligned 

with ClustalV 1.64b (Higgins 1991) and were trimmed for further phylogenetic 

analysis in PAUP* 4.0 beta 10 (Swofford 1998). MODELTEST 3.06 (Posada & 

Crandall 1998) was used to determine that GTR+I+G model was the most suitable for 

maximum likelihood analyses of our mitochondrial and nuclear data. The 

corresponding sequences of the closely related, marine/estuarine species Pellioditis 

ehrenbaumi were used for outgroup comparison (Accession number AJ867056 for 

COI and AJ867073 for ITS). Maximum parsimony (MP) and neighbour joining (NJ) 

trees were inferred with 1000 bootstrap replicates and 10000 rearrangements, while 

Maximum Likelihood (ML) trees inferred from 100 bootstrap replicates and 500 

rearrangements. Trees were obtained via stepwise addition and a tree-bissection-

reconnection branch swapping algorithm was used. Sequences were added randomly 

in 10 replicate trials, with one tree held at each step. To explore the intraspecific 

relationships between the observed haplotypes, a minimum spanning network was 

constructed with ARLEQUIN v.2.0. and drawn by hand in Microsoft PowerPoint. 

Ambiguities in the network were resolved following the criteria suggested by Crandall 

& Templeton (1993). 

Population genetic structure 

The genetic structure of Pellioditis marina was analysed with ARLEQUIN’s 

AMOVA (Analysis of MOlecular VAriance). This procedure calculates the molecular 

variance and ф-statistics among and within populations, and the significance of the 

variance components is tested by permuting haplotypes among populations (Excoffier 

et al. 1992). AMOVA was performed for all sequences combined and, where possible, 

for every clade separately.  

Genetic distances, which are a measure for the variability within versus 

between populations, between different populations were also calculated in 

ARLEQUIN, using the Tamura and Nei correction for different transversion and 
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transition rates. This model also distinguishes between different transition rates 

among purines and pyrimidines (Tamura & Nei 1993). Table-wide significance levels 

of the p-values obtained with 10000 permutations were corrected for multiple tests 

according to the sequential Bonferonni method (Rice 1989). To visualize the genetic 

distances between the different populations, a multidimensional scaling (MDS) plot 

was drawn using the program Primer 5.2.9 (Clarke & Gorley 2001). 

To test the isolation-by-distance model (IBD, Slatkin 1993), geographic and 

genetic distances were compared using a Manteltest as implemented in ARLEQUIN. 

The geographic distance between populations was measured as the shortest 

continuous water surface distance. The number of permutations was set to 1000. The 

strength of the IBD relationship was determined with reduced major axis (RMA) 

regression as implemented in the program IBD 1.5 (Bohonak 2002). 

 

RESULTS 

INTRASPECIFIC VARIATION OF COI 

In total, 452 individuals of Pellioditis marina were analysed for sequence 

variation in a 426 bp amplicon of the mitochondrial COI gene, yielding 32 haplotypes 

(Table 2.1). No insertions or deletions occurred within the trimmed fragment (393 bp 

long), and a total of 73 variable sites (18.58 %) were observed (Appendix 2.1), 51 of 

which were parsimony informative, involving 44 synonymous substitutions and seven 

replacement sites. Pairwise divergences between the COI sequences ranged from 0.23 

% (1 base substitutions) to 9.6 % (41 substitutions), most of them being third-base 

transversions. All sequences are available in GenBank under Accession numbers 

AJ867447 – AJ867478. 

A C D E F H I J K L M N O P R S T U V W G1 G2 G3 R1 R2 R3 R4 R5 O1 O2 S1 S2 n h π

Br 17 - 16 - 8 5 - 1 - - - 2 - - - - - - - - - - - - - - - - - - - - 49 0.7491 0.0072

Pa 15 - 13 3 1 2 3 1 - - - 8 - - - - - 3 - - - - - - - - - - - - - - 49 0.8121 0.0086

Ze 16 4 17 - 1 3 4 2 2 - - - - - - - - - - - - - - - - - - - - - - - 49 0.7679 0.0075

Kr 33 - 1 - 9 - - - - - - 1 - - - - - - - - - - - - - - - - - - - - 44 0.4038 0.0034

Sl 6 2 5 - - 1 - 12 - 1 - - 15 - - 1 1 - 1 1 - - - - - - - - - - - - 46 0.8097 0.1807

Os 7 1 22 - 1 1 - 8 - 3 2 - - 2 - - - - - - - - - - - - - - - - - - 47 0.7364 0.0237

Bl 22 - - - - - 1 - - - - - - - 6 7 - - 1 - - - - - - - - - - 7 - - 44 0.6956 0.1995

Ni 6 - - - 1 - - 9 - - - 22 - - - - 10 - - - - - - - - - - - - - - - 48 0.7101 0.0038

Gr - - - - - - - - - - - - - - - - - - - - 7 20 2 3 - - 3 4 2 - - 4 45 0.7667 0.1689

Pl - - - - - - - - - - - - - - - - - - - - - - - 12 8 6 - - - - 5 - 31 0.7441 0.0045

Total 122 7 74 3 21 12 8 33 2 4 2 33 15 2 6 8 11 3 2 1 7 20 2 15 8 6 3 4 2 7 5 4 452  
Table 2.1: Pellioditis marina. Distribution of the 32 haplotypes among sampling locations. 

Haplotype diversity (h) and nucleotide diversity (π) for every location are indicated; n = 
number of individuals analysed. For sample location abbreviations see legend Fig. 2.1.  
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The minimum spanning network revealed 32 haplotypes (Fig. 2.2). For 

convenience, all locations within the Westerschelde were grouped (‘Westerschelde’) 

and the two Belgian coastal locations were pooled (‘Coast’). The haplotypes are 

divided into four distinct groups (PmI, PmII, PmIII and PmIV), with a low number of 

substitutions within each group (one to seven), and high numbers between groups (23 

to 32). PmI and PmII consist of 15 and 13 haplotypes respectively, and are clearly 

more diverse than the PmIII (only one haplotype) and PmIV (only three haplotypes) 

groups.  Haplotype relations within groups PmI and PmII display a star-like pattern, 

with the rarer haplotypes showing a higher amount of mutational differences. 

Furthermore, the haplotypes within group PmI have much higher frequencies than 

haplotypes from the other groups, haplotypes A, D, J and N being particularly 

abundant in the Westerschelde and at the Belgian coast. Moreover, the commonest 

haplotypes, A and D, are present in all locations, except Blankenberge, Plymouth and 

Lake Grevelingen. Haplotypes belonging to group PmIV are restricted to Lake 

Grevelingen, G2 being the most abundant. PmII haplotypes are rare in the Wester- 

and Oosterschelde, but comprise all individuals from Plymouth. Haplotypes R1 and O 

have the highest frequency in this group; four haplotypes are unique to Lake 

Grevelingen (O1, R4, R5 and S2) and three to Plymouth (R2, R3 and S1). Group 

PmIII consisted of a single haplotype in very low frequency (M, n = 2). This 

haplotype was only found in the Oosterschelde. 

Within the PmI group, 2 replacement sites are observed (represented by the 

rarely encountered haplotypes U (n = 3) and W (n = 1)). Within the PmII group, six 

replacement sites are detected, three of which are observed in the rare haplotype V (n 

= 2). 
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Fig. 2.2. Pellioditis marina. Minimum spanning network of the mtDNA COI sequences. The circles are 

proportional to the frequency of the haplotypes in the total sample. Shared haplotypes among 
the different hydrodynamic regions are represented by frequency diagrams. Substitutions are 
represented by black dots, white triangles represent 23 to 32 substitutions.  

PHYLOGENETIC ANALYSES 

Mitochondrial COI gene 

A heuristic search identified 20 most parsimonious trees, which differed from 

each other only in the position of haplotype V within its clade. One of the MP trees is 

shown in figure 2.3A. Maximum likelihood and neighbour joining methods gave 

generally consistent trees. Support for the monophyly of the three major clades (PmI, 

PmII, PmIV) is strong (> 95 %), while the node that unites haplotype M with those of 

clades PmI and PmIV lacks good support and was absent in ML and NJ analyses.  
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Fig. 2.3. Pellioditis marina. Maximum parsimony trees for (A) COI and (B) ribosomal ITS 

sequences. Bootstrap values are based on 1000 replicates and are shown for maximum 
parsimony, neighbour joining and maximum likelihood respectively. The four clades are 
indicated by PmI, II, III and IV. The congener Pellioditis ehrenbaumi (PE) was used as 
outgroup species. 

Nuclear rDNA 

Because the COI–fragment showed high divergences between and low 

divergences within clades, we analysed a fragment of the nuclear spacer region. The 

nuclear genome evolves independently from the mitochondrial genome, and is subject 

to different evolutionary forces. A concordant pattern between these two markers will 

therefore provide extra support to the observed mitochondrial subdivision in four 

clades.  

In total, 827 – 859 bp of the ribosomal ITS region were sequenced from 17 

individuals (Accession numbers AJ867057 - AJ867072), representing the most 

abundant mitochondrial haplotypes of each mitochondrial clade. Because the PmIII 

clade consisted of only one haplotype, both individuals belonging to this clade were 

processed for the nuclear marker. The alignment (888 sites) of the 17 ITS sequences 

showed that 240 sites were variable (27 %), 233 of which were parsimony 

informative. The heuristic search yielded a total of 91 most parsimonious trees, which 

differed only in the relative positions of individuals within clades (Fig. 2.3B). MP, NJ 

and ML analyses all separated the individuals into three major clades, which were 
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supported by strong bootstrap values, and individuals of PmIII were separated from 

the other three groups showing a basal position in the phylogenetic tree. The length of 

the amplified region varied because of insertion/deletion differences between the four 

groups (Appendices 2.2 and 2.3). Within the PmII clade, a clustering of the sequences 

R1, R2 and S2 was supported by high bootstrap values and differed in four transitions 

and three transversions from the other PmII sequences. Within clade PmI, all 

sequences were identical, except for sequence P and D, which differed in one and two 

transitions, respectively, from the other sequences. 

Divergences within the clades ranged from 0 to 0.24 % for clade PmI, and 

from 0 to 0.81 % for clade PmII. Divergences between the different clades were much 

higher and are summarized in Table 2.2.When the MP tree was calculated using gaps 

as a fifth base, no differences in topology were found, except for a better separation of 

the two groups within the PmII clade. 

PmI PmII PmIII PmIV
PmI - 8.1  - 10.6 % 7.0 - 7.8 % 5.8 - 7.5 %
PmII 11.0 - 12.0 % - 8.5 - 10.1 % 8.0 - 9.8 %
PmIII 20.9 - 21.1 % 20.3 - 21.1 % - 6.8 - 7.3 %
PmIV 3.3 - 3.5 % 10.5 - 11.6 % 20.0 % -  
Table 2.2.  Divergence range between the four clades. Above diagonal are 

divergences for the mitochondrial COI fragment, below diagonal 
for the nuclear ITS region. 

INTERSPECIFIC VARIATION AND GEOGRAPHICAL DISTRIBUTION 

The observation that both mitochondrial and nuclear markers show the same 

subdivision of the sampled individuals, raises the question whether Pellioditis  marina  

may comprise several cryptic species. Table 2.3 shows the fixed differences, i.e. the 

number of base positions at which all sequences of one ‘species’ differ from all 

sequences of the second ‘species’ (Hey 1991), for both molecular markers between 

the different clades. PmIII has the highest number of fixed differences in the nuclear 

ITS marker, while PmII has the highest number of fixed differences in COI.  

PmI PmII PmIII PmIV
PmI - 29 26 22
PmII 98 - 30 27
PmIII 186 182 - 25
PmIV 37 96 178 -  
Table 2.3.  Number of fixed differences between the four clades for the 

mtDNA COI fragment above diagonal, and below diagonal for the 
nuclear ITS region. 
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The amount of unique fixed differences, i.e. the number of positions at which 

a species is different from all others (Kliman & Hey 1993), shows the same pattern: 

PmIII has 155 unique fixed base differences and five unique fixed length differences, 

which is the highest number for the nuclear marker; PmII has 54 unique fixed base 

differences and 4 unique length differences, while PmI and PmIV have 18 and 16 

unique base differences and no unique length difference (Appendices 2.2 and 2.3). For 

COI, PmII has the highest amount of unique fixed differences (12), followed by PmIII 

(10), PmI (7) and PmIV (6) (Appendix 2.1). Fig. 2.1 shows the geographical 

distribution of each clade along the sampled region. The PmI clade is clearly the most 

abundant and geographically widespread lineage. It is the dominant lineage within the 

Westerschelde and Oosterschelde, and is absent from Lake Grevelingen and 

Plymouth. In Plymouth, only the PmII clade was found and this clade is also abundant 

in Lake Grevelingen. PmIII is only encountered in the Oosterschelde and PmIV only 

in Lake Grevelingen. In several of our sample locations, two lineages occurred 

sympatrically. 

POPULATION GENETIC STRUCTURE 

A significant spatial population genetic structure is found when all sampling 

locations are pooled. This indicates that migration between the different locations is 

not sufficient to homogenize the COI gene pool. Of all molecular variation found, 

55.9 % (фST = 0.559, p < 0.0001) is explained by differences among locations (Table 

2.4). Omitting the Plymouth population, variation between locations is still significant 

(фST = 0.4471, p < 0.0001). The MDS plot of the genetic distances clearly shows a 

large divergence of the Plymouth and Lake Grevelingen samples: 60.14 % of the 

variation (фCT = 0.6014, p < 0.05) is caused by differences between Plymouth and 

lake Grevelingen on the one hand, and the Belgian and Dutch populations on the other 

hand (Fig. 2.4A). The MDS plot does not change when Plymouth and Lake 

Grevelingen are omitted, although the percentage of variation explained by 

differences between the remaining populations decreases to 30.58 % (фST = 0.30575, 

p < 0.0001). 
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n % Φ p
451

55.90 0.56 ***
44.10

335
18.76 0.19 ***
81.24

85
47.00 0.05 ***
53.00

2 - - -
29 - - -

Among populations

Within populations

Pm III

Pm IV

Pm II

Pm I

All sequences

Among populations

Within populations

Among populations

Within populations

 
Table 2.4.  Hierarchical analyses of variance across ten populations of 

Pellioditis marina. Ф – statistics are calculated for all data 
combined, and for sequences allocated to their respective 
clades. (n) number of individuals analysed, (%) percentage 
variance explained, (p) significance level of ф – statistic (*** 
< 0.0001). 

When we look at the distribution of the locations within the Westerschelde 

(Fig. 2.4B), a clear distinction between the most upstream (Kr) and one of the two 

most downstream locations (Sl) is seen. The highest genetic diversity is found in 

Sloehaven (h = 0.81, π = 0.181) and the lowest in Kruispolderhaven (h = 0.404, π = 

0.003). No significant differentiation is found between the other locations (Breskens, 

Paulina and Zeedorp, фST = 0.00315, p = 0.3) within this estuary. Genetic diversity in 

these locations is comparable but somewhat higher in Paulina (Table 2.1). 

AMOVA was also performed on clades PmI and PmII separately. The MDS – 

plot in Fig. 2.4C shows the genetic distances of PmI between the sampled locations. 

The coastal zones (Bl and Ni) are clearly differentiated from the Westerschelde and 

Oosterschelde populations, and AMOVA indicates a significant differentiation (18.76 

%) among the locations (фST = 0.18762, p < 0.0001). Within the Westerschelde, PmI 

is still significantly structured, albeit less pronounced (фST = 0.08475, p < 0.0001). 

This mainly reflects differences between the most upstream location and the three 

others (Fig. 2.4C). The differentiation with the westernmost coastal location (Ni) is 

due to the presence of one haplotype unique to that location (haplotype T, except for 

one individual in Sl). Haplotypes belonging to the PmII clade are also significantly 

structured, 47 % of the total variation being explained by differences among locations 

(фST = 0.47003, p < 0.0001).  
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Fig. 2.4. Pellioditis marina. Multi-dimensional scaling (MDS) of the Tamura & Nei 

genetic distance matrix of the COI fragment and its associated stress value. 
(A) complete dataset (no distinction between clades was made); (B) locations 
within the Westerschelde (no distinction between clades); (C) clade PmI; (D) 
clade PmII. For sample location abbreviations see legend Fig. 2.1. 

ISOLATION BY DISTANCE 

Genetic and geographic distances are correlated when all sampled populations 

are included (r = 0.7178, p = 0.007). More than 50 % of the molecular variation is 

explained by geographic distance (R2 = 0.515). When plotting both distances in a 

scatter diagram (Fig. 2.5), a clear separation of nematodes from Plymouth and from 

Lake Grevelingen is 

found. Calculating IBD 

between the populations 

from Belgium and The 

Netherlands (and thus 

omitting the Plymouth 

population) still gives a 

significant (r = 0.4725, 

p =  0.037), albeit less 

strong correlation.  
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Fig. 2.5. Scatterdiagram of geographic distance vs. genetic 
distance. Population pairs containing Plymouth are 
indicated with ▲, those containing lake Grevelingen 
with ●. All other population pairs are indicated with ♦. 
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DISCUSSION 

POPULATION GENETIC STRUCTURE 

With all data combined, there was a significant population genetic structuring 

over the sampled area. Even within the Westerschelde, locations were differentiated 

from each other. The strong differentiation of the Plymouth population (Pl, Fig. 2.4A) 

was caused by the presence of only PmII in this location. At first sight, these results 

support the idea of limited dispersal abilities in marine nematodes. Free-living 

nematodes are small, have an endobenthic life style and lack dispersive stages. Active 

dispersal is therefore restricted. However, Pellioditis marina typically lives on 

decomposing algae in littoral and coastal environments, and can passively disperse 

through rafting on floating algae (pers. observation). The dominant currents in the 

English Channel and the North Sea transport macroalgae from southwest England to 

the Belgian and Dutch coasts (Turrell 1992, Ducrotoy et al. 2000), and can therefore 

homogenize populations living on both sides of the North Sea. However, we found a 

strong differentiation between Plymouth and the Belgian coastal zone, as well as 

among the stations located in the small area sampled in Belgium and The Netherlands. 

One possible explanation is that passive dispersal may be inefficient. However, 

considering the high reproductive potential and short development times of P. marina 

(Vranken & Heip 1983, Moens & Vincx 2000a), even very small founder populations 

are expected to be sufficient for effective colonisation. Therefore, the genetic 

structuring on our small geographical scale may rather be explained by repeated 

colonisation events combined with high reproductive rates (Caudill & Bucklin 2004, 

De Meester et al. 2002). Monopolisation of resources and local adaptation (which 

may be prominent in P. marina, Moens & Vincx 2000a,b) can then produce persistent 

genetic structure over small spatial scales in the face of significant gene flow (De 

Meester et al. 2002).  

The differentiation and lower genetic diversity (h = 0.404, π = 0.003, Table 

2.1) of the most upstream location (Kr) within the Westerschelde may well be linked 

to the lower salinity and/or higher pollution at this location, rather than by cessation of 

gene flow. It is in agreement with the range of P. marina in the Westerschelde, which 

extends only just beyond this most upstream sampling location (Moens & Vincx 

2000b). However, the salinity gradient in the Westerschelde is parallelled by a 
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pollution gradient, rendering assignment of species ranges to either factor difficult. 

Moreover, a whole range of pollutants is present in this estuary with unknown 

consequences for communities and species living there. Interestingly, De Wolf et al. 

(2004) also found a correlation of population genetic structure with the salinity / 

pollution gradient in the Westerschelde for the periwinkle Littorina littorea. Toxicants 

can influence the population genetic structure of a species by mutagenic, 

physiological or ecological effects, which can lead to a decrease in genetic variation 

and in frequency of haplotypes (De Wolf et al. 2004). Experimental studies with 

harpacticoid copepods indicate that severe bottlenecks can occur in populations 

exposed to toxicants (Street et al. 1998), and environmental history seems to have no 

effect on their survival ability when copepods are exposed to different concentrations 

of sediment–associated contaminants (Kovatch et al. 2000). In contrast, Schizas et al. 

(2001) observed differential survival of three harpacticoid copepod lineages and 

inferred that this differential survival might explain some of the genetic patterns 

observed in contaminated habitats.  

Contrary to De Wolf et al. (2004), we found no clear differentiation between 

the Oosterschelde population and the downstream locations in the Westerschelde. 

Even though there is a storm surge barrier since 1986 between the Oosterschelde and 

the North Sea, it remains open most of the time. Exchange between neighboring 

populations remains therefore important. The high degree of genetic differentiation of 

Lake Grevelingen is caused by the presence of the PmIV lineage, which was absent 

from all other locations.  

CRYPTIC SPECIATION 

We found a high degree of intraspecific differentiation in the COI gene of 

Pellioditis marina. Within the Nematoda, intraspecific variation has hitherto only 

been studied in parasitic species and divergences of the COI gene range from 0.3 –  

8.6 % (0.3 – 8.4 % in Oesophagostomum bifurcum (de Gruijter et al. 2002), 0.5 –  

8.6 % in Ancylostoma caninum, 0.3 – 3.3 % in A. duodenale, 0.3 - 4.3 % in Necator 

americanus (Hu et al. 2002)). Interspecific divergences within genera range from 4.8 

– 13.7 % (11.5 – 13.7 % within Oesophagostomum, 4.8 – 12.9 % between 

Ancylostoma and Necator). These interspecific values are comparable with the 

divergences found between the four lineages in the COI gene of P. marina (5.8 – 10.6 
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%, Table 2.2). For comparison, divergences between P. marina and its congener  

P. ehrenbaumi range from 7.5 - 9.5 %. Nucleotide differences within lineages are 

much lower and range from 0.25 - 1.7 %, lower than the above within-species 

divergences. Furthermore, we found a large amount of fixed differences (= the 

number of base positions at which all sequences of one lineage differ from all 

sequences of another lineage) in the COI fragment between our lineages (22 – 29, 

Table 2.3). Hu et al. (2002) and Zhu et al. (2001) found no fixed differences within 

sets of populations of A. duodenale and C. ogmorhini and concluded that these 

populations belong to the same species. On the other hand, Hu et al. (2002) detected 

four unequivocal nucleotide positions in a 395bp region of the COI gene between 

individuals of N. americanus from China and Togo, suggesting that these individuals 

belong to distinct sets of genotypes as a consequence of geographical isolation over a 

long period of time.  

The high levels of COI differentiation between the haplotype groups of  

P. marina are thus in the order of differences found between different species of 

parasitic nematodes and between congeneric species of Pellioditis. This observation, 

together with the high amount of fixed differences between these haplotype groups, 

suggest that the mitochondrial lineages represent different cryptic species of  

P. marina. When morphological stasis persists after speciation events, resulting 

species may continue to diverge genetically in the absence of morphological 

differentiation (Rocha – Olivares et al. 2001). Especially in organisms with small 

body size, the number of taxonomically relevant characters decreases rapidly (Rocha 

– Olivares et al. 2001).  

Analysis of the nuclear ribosomal spacer region is consistent with the 

hypothesis of cryptic speciation. This region is particularly useful for phylogenies 

among closely related taxa (taxa that have diverged within the last 50 million years) 

(Hillis & Dixon 1991), and the region is generally of uniform length and composition 

within species (Hillis et al. 1991). Sequence differences within each lineage are low (0 

– 0.81 %). However, a lot of fixed differences between the four lineages are found 

(Table 2.3). Lineages PmII and PmIII also contain, respectively, four and five fixed 

length differences (Appendix 2.2 and 2.3). The concordance between COI and the 

nuclear marker provides further support that P. marina consists of multiple cryptic 

species using the phylogenetic-species and the genealogical-concordance criteria 

(Rocha – Olivares et al. 2001). The existence of other cryptic species or intermediate 
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lineages can not be excluded and additional sampling in time and on a larger 

geographical scale would probably uncover still more variation in Pellioditis marina.  

Hybridisation experiments and detailed morphological analysis of the four  

P. marina lineages will be performed to further substantiate and describe these cryptic 

species13. The ease with which P. marina can be cultured in laboratory conditions will 

also enable us to address differences in autecology. 

DISTRIBUTION OF THE FOUR LINEAGES 

On the geographical scale sampled here, clade PmI is the most abundant with 

an estuarine and coastal distribution (Fig. 2.1). Within PmI, haplotypes A and D are 

very common within the Westerschelde, except in the most upstream location (Kr), 

where only a single individual of haplotype D was found. The ‘star like’ pattern 

within PmI in the minimum spanning network suggests that haplotype J is the oldest 

haplotype, which gave rise to all other haplotypes of PmI.  

Within the Westerschelde, a gradient of decreasing (organic and chemical) 

pollution occurs towards the sea, and at the same time, salinity increases. Pellioditis  

marina is a marine and brackish water nematode, with an optimal fitness at salinities 

between 10 and 30. However, these ranges are characteristic of populations rather 

than of species and local adaptation as well as adaptation to culture conditions may be 

prominent (Moens & Vincx 2000b). From these results, it seems likely that haplotype 

A is the most tolerant for a range of salinities. In general, the PmI lineage seems to be 

more tolerant for fluctuating environmental conditions than the other haplotype 

groups. Lake Grevelingen has no tides, and in these stable conditions PmIV was the 

only haplotype group found. PmII was found in much lower frequency than the PmI 

species and contains many haplotypes which are unique to either Lake Grevelingen or 

to the Plymouth population. The most abundant haplotype (R1 = 15) was shared 

between these two locations.  

From Fig. 2.1, it is obvious that the four cryptic lineages occur sympatrically. 

As far as we know, P. marina is not a specialist feeder, nor is it constrained to a very 

strict abiotic environment (Moens & Vincx 2000 a, b). Furthermore, we do not 

                                                 
 
13 See Chapter 5 
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exclude that the cryptic lineages occur in a temporal succession, correlating with the 

decomposition stage of the algae and hence the quality of the organic detritus on 

which they live. Whether speciation occurred sympatrically or allopatrically cannot be 

inferred from our data. 

 

CONCLUSION 

Although its active dispersal capacities are extremely limited, Pellioditis 

marina can disperse passively through rafting on floating algae. Our results suggest 

that this dispersal is either small or that pulsed colonisation events occur. Therefore, 

information on life strategies, colonisation potential and local adaptation is as 

important as knowledge of dispersal ability for interpreting the potential relationship 

between population genetic structure and dispersal capacity. 

Phylogenetic analyses of the mitochondrial COI gene and the nuclear ITS 

region shows the existence of four cryptic lineages within the morphospecies  

P. marina. This cryptic speciation, found in only a small (100 km) geographical range 

of P. marina, has strong implications for diversity estimates within the Nematoda, 

which are mainly based on morphological characteristics. Because P. marina has a 

very short generation time with a high reproductive output, extrapolations and 

generalisations to other nematode species have to be done carefully. Nevertheless, this 

result does indicate that the real species diversity within the phylum Nematoda is 

probably much higher than hitherto suggested.  
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Appendix 2.1: Pellioditis marina: partial cytochrome oxidase c subunit 1 sequences of the 32 haplotypes (H) with EMBL accession numbers (AN). Only 

variable sites and their positions are represented. The four haplotype groups (HG) are also indicated. Unique fixed differences for each 
haplotype group are indicated in bold. 

HG AN H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 3 3 5 6 6 6 7 9 9 9 0 1 2 3 3 4 5 5 5 6 6 7 7 8 8 9 0 0 1 1 1 1 2 3 4 5 5 6 7 7 7 8 8 9 9 9 0 0 1 1 2 2 2 3 3 4 5 5 6 7 7 7 7 7 7 8 8 9 9

4 2 5 8 6 9 4 0 6 9 8 0 3 6 5 7 6 5 8 4 0 3 6 2 5 1 7 6 9 2 1 7 0 3 6 9 2 4 3 2 8 5 3 6 9 2 5 1 2 7 6 9 2 8 1 5 7 0 6 5 1 4 3 1 2 5 6 7 8 7 8 0 3

IV AJ867453 G2 T A T T G T T G A A A T T T T A T C T A A A T T A T A T T T T T T C A T A T T T G G A A T G A G T A C A T A T C T T T T T T T A T T A C T T G T T

IV AJ867454 G3 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? ? . ? .

IV AJ867452 G1 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . A . A . . . . . . . . . . . . . . . . . . . . A A . A .

I AJ867447 A . . A . A A . A . T T . . . . G A A . G . . . . . A . A G . . . A A T A . . . . . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867450 E . . A . A A . A . T T . . . . G A A . G . . C . . A . A G . . . A A T A . . . . . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867478 W . . A . A A . A . T T . . . . G A A . G . . . . . A . A G . . . A A T A . . . . . . . T . A G A . C T . . . A . . . A A . . . . . . . G A A C . .

I AJ867458 K . . A . A A . A . T T . . . . G A A . G . . . . . A . A G . . . A A T A . . . . . . . T . A G A . T T . . . G . . . A A . . . . . . . . A A . A .

I AJ867465 P . . A . A A . A . T T . . . . . A A . G . . . . . A . A G . . . A A T A . . . . . . . T . A G A . T T G . . G . . . A A . . . . . . . . A A . A .

I AJ867457 J . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867461 N . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . C . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867475 T . G A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867451 F . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A . T T . C . A . . . A A . . . . . . . . A A . A .

I AJ867449 D . . A . A A . A . T T . C . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A C T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867459 L . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A C T T . . . A . . A A A . . . . . . . . A A . A .

I AJ867456 I . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A C A . . . . . . . T . A G A . T T . . . A . . . A A . . . . . . . . A A . A .

I AJ867448 C . . A . A A . A . T T . . . . . A A . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A . T T . . . G . . . A A . . . . . . . . A A . A C

I AJ867455 H . . A . A A . A . T T . . . . . A G . G . . . . . A . A A . . . A A T A . . . . . . . T . A G A . T T . . . G . . . A A . . . . . . . . A A . A .

I AJ867477 U . . A . A A . A . T T . . . . . A G . G . . C . . A . A A . . . A A T A . . . . . . . T . A G A . T T . . . G . . . A A . . . . . . . . A A C . .

III AJ867460 M . . . A A A . A G . T . . A A . A T C . . T . . G A T G . . . . . T T . . A . . A . . . . A . A . T T . . . . T A A A . . . . . . . . . . A . . .

II AJ867463 O1 . G . . A A A A . T . A . . . . A T . . T . . . . . T . . . A A A A . G . . A . A T G T A A . T . T T . C . . T A A . . A A . . C . . . . . . . .

II AJ867464 O2 . G . . A A A A . T . A . . . . A T . . T . . . . . T . . . A A A A . A . . A . A T G T A A . T . T T . C . . T A A . . A A . G C . . . . . . . .

II AJ867476 V . G . . . A A A . T . A . . . . A T . G T . . C . . T . . . A A A A . A T . A . A T G T A A . T . T T . C . . T A A . . A A A . C A T . . A . . .

II AJ867466 R C . . . A A A A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . . . . T A A . . A A . . C . . . . . . . .

II AJ867467 R1 . . . . A A A A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . . . . T A A . . A A . . C . . . . . . . .

II AJ867469 R3 . G . . A A A A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . . . . T A A . . A A . . C . . . . . . . .

II AJ867468 R2 . . . . A A A A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . C . . T A A . . A A . . C . . . . . . . .

II AJ867470 R4 . . . . A A A A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . C . . T A A . . A G . . C . . . . . . . .

II AJ867471 R5 . . . . A A A A . T . A . . . . A T . . T . . . . . T . . . A A A A . A T . A . A T G T G A . T . T T . C . . T A A . . A A . . C . . . . . . . .

II AJ867472 S . . . . A A A A . T . A . . . . A T . . T . . . . . T . . . A A A A . A T . A . A T G T A A . T A T T . C . . T A A . . A A . . C . . . . . . . .

II AJ867473 S1 . . . . A A . A . T . A . . . . A T . . T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . C G . T A A . . A A . . C . . . . . . . .

II AJ867474 S2 . . . . A A . A . T . A . . . . A T . G T . . . . . T . . . A A A A . A T . A . A T G T A A . T . T T . C . . T A A . . A A . . C . . . . . . . .

II AJ867462 O . G . . A A A A . T . G . . . . A T . . T . . . . . T . . . A A A A . A . . A . A T G T A A . T . T T . C . . T A A . . A A . . C . . . . A . A .
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Appendix 2.2:  Pellioditis marina: ITS1 sequences of the 16 haplotypes (H) with EMBL accession numbers (AN). The four haplotype groups (HG) are also 
indicated. Only variable sites and their positions are represented. Unique fixed length differences for haplotype groups PmII and PmIII are 
indicated in bold. 

HG AN H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9

8 9 0 1 2 3 6 7 9 0 1 2 3 4 8 0 3 7 9 0 1 9 0 3 7 8 9 0 4 5 7 0 1 2 3 4 5 7 5 7 8 9 0 1 4 8 9 0 1 3 7 8 9 6 0 1 2 7 8 0 1 2 6 9 0 1 2 8 9 0 1 3 4 7 9 0 1 2 3 4 5 6 7 8 9 1

III AJ867068 M C G T A A T T G T - - C A A T G A A A A C T T A A A A G A C T T T T C C T T T T C T C A C T T T A G T A C T T - A T G T T C C T C T G C C G G A A - - - - - - - - - G A A C

II AJ867064 R1 T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867072 S2 T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867070 R2 T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867065 O2 T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867066 O T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867067 R T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

II AJ867069 S T T G G C C A A C A T . . G C A T G G - . A A G G . . T C T A C C A A - - C C C T C A G A C C . T A . C T C . A T C C C C T T . T . T A . . . . G A G G T G G G G C . . T T

I AJ867057 D T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867071 P T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867061 A T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867062 C T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867060 F T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867059 J T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

I AJ867058 H T T C . C . A A . - T T G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C G T G G A C C G T G T C T A A C - G G T T G - - - - G A . . C T

IV AJ867063 G2 T T C . . . A A . - T . G G . . C G G - T A A G T T T C C T A C . G A - - . C C T C A . A C . C T . A T T C - - G . A C C G T . T - T A - - - G . G T G - - - - G T T T - .

HG AN H 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 3 3 4 4 4 5 5 5 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 1 1 1 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6

3 4 5 6 8 9 0 1 2 3 4 5 6 7 8 9 0 1 7 3 6 7 0 1 2 3 5 0 5 9 0 1 2 3 6 7 0 6 7 6 7 8 1 3 8 0 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 0 4 7 0 9 0 3 4 5 6 1 4 5 6 8 1 2 3 4 5 6 8 4

III AJ867068 M A G C G G G T - G A A A G C C C A T C A A T - - - - T G G G C A T A T A T T T - T A A G C T T - - - - - - - G T T A - - - - - - A T T A C A C G T G T - - A T G T T A A T T

II AJ867064 R1 G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - C T A . . A G G T C . C C T T C A

II AJ867072 S2 G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - C T A . . A G G T C . C C T T C A

II AJ867070 R2 G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - C T A . . A G G T C . C C T T C A

II AJ867065 O2 G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - - T A . . A G G T C . C C T T C A

II AJ867066 O G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - - T A . . A G G T C . C C T T C A

II AJ867067 R G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - - T A . . A G G T C . C C T T C A

II AJ867069 S G T . . . T . C . T C C T G G . C . . . G . T A C T C A . T G T A T C T . . C C . C G T T G . C A T C A T G . A C . T G G T G C G C C - - - T A . . A G G T C . C C T T C A

I AJ867057 D C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867071 P C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867061 A C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867062 C C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867060 F C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867059 J C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

I AJ867058 H C T G C A T C C T G T C . G G G T A T - G . T A A G C A A C G T A T . C C C . C . C . . . G - - - - - - - - - A - - - - - - - - G C C - - - T T . A G T C . C A C C T T C A

IV AJ867063 G2 C . T A T T C C T G . C T T T G T A T - G A T A C T C A . - G T A T . C . C . C A C . . . G - - - - - - - - - A - - - - - - - - G C C - - - A A C A G T C . C A C C T T C A
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Appendix 2.3:  Pellioditis marina: ITS2 sequences of the 16 haplotypes (H) with EMBL accession numbers (AN). Only 
variable sites and their positions are represented. The four haplotype groups (HG) are also indicated. Unique 
fixed length differences for haplotype groups Pm II and PmIII are indicated in bold. 

HG AN H 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

6 6 7 7 7 7 7 8 8 8 8 8 9 9 0 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7

1 5 2 4 6 7 8 1 3 4 6 7 1 8 1 7 2 3 3 5 7 3 8 9 1 3 6 9 2 3 4 5 6 7 8 9 0 3 5 6 7 8 9 0 1 4 5

III AJ867068 M C T T A A G T A G C - - A - A A T G A T - C C T T - A G T G A T T G G G T A C C A A T C A C T

II AJ867064 R1 T A C G G T G T C T A C G A T G C A T C C A T . . C . A C - - - - - - - . C T . G G A . G . .

II AJ867072 S2 T A C G G T G T C T A C G A T G C A T C C A T . . C . A C - - - - - - - . C T . G G A . G . .

II AJ867070 R2 T A C G G T G T C T A C G A T G C A T C C A T . . C . A C - - - - - - - . C T . G G A . G . .

II AJ867065 O2 T A C G G T G T C T A C G - T G C A T C T A T . . - . A C - - - - - - - - C T . G G A . G . .

II AJ867066 O T A C G G T G T C T A C G - T G C A T C T A T . . - . A C - - - - - - - - C T . G G A . G . .

II AJ867067 R T A C G G T G T C T A C G - T G C A T C T A T . . - . A C - - - - - - - - C T . G G A . G . .

II AJ867069 S T A C G G T G T C T A C G - T G C A T C T A T . . - . A C - - - - - - - - C T . G G A . G . .

I AJ867057 D T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - . C T T G - A . G T C

I AJ867071 P T A C . G T G T C T A C G - T G C A T C T A T A C - . A C - - - - - - - . C T T G - A . G T .

I AJ867061 A T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

I AJ867062 C T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

I AJ867060 F T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

I AJ867059 J T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

I AJ867058 H T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

IV AJ867063 G2 T A C . G T G T C T A C G - T G C A T C T A T A C - . A - - - - - - - - C C T T G - A . G T .

HG AN H 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 0 0 0 0 1 1 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6

9 0 1 2 3 5 6 8 9 0 2 3 4 5 6 2 3 5 6 5 8 1 4 5 6 8 3 4 5 6 7 6 7 0 3 4 5 7 9 0 1 2 3 5 6 7

III AJ867068 M A A C T G T T T C A A C C A C T T A A T G - T T T C T C A A A G A - G G T T G A T T T C A G

II AJ867064 R1 G G T C C A A . G T T G A C A C A T . . A A A C C T G A T T G C T T C T A . T T A C G A - -

II AJ867072 S2 G G - C C A A . G T T G A C A C A T . . A A A C C T G A T T G C T T C T A . T T A C G A - -

II AJ867070 R2 G G - C C A A . G T T G A C A C A T . . A A A C C T G A T T G C T T C T A . T T - C G A - -

II AJ867065 O2 G G - . C A A . G T T G A C A C A T C . A A A C C T G A T T G C T T C T A . T T - C G A - -

II AJ867066 O G G - . C A A . G T T G A C A C A T C . A A A C C T G A T T G C T T C T A . T T - C G A - -

II AJ867067 R G G - . C A A . G T T G A C A C A T C . A A A C C T G A T T G C T T C T A . T T - C G A - -

II AJ867069 S G G - . C A A . G T T G A C A C A T C . A A A C C T G A T T G C T T C T A . T T - C G A - -

I AJ867057 D G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867071 P G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867061 A G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867062 C G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867060 F G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867059 J G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

I AJ867058 H G G - . T A . C G C T G A C A . . T C C A A A C C T G T T G . C T T C . G G T T C A . - - -

IV AJ867063 G2 G G - . T A . C G C T G A C A . C T C C A A A C C T G T T G . C T T C . G G T T C A . A - -


