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Mijn carrière in de mariene biologie begon met het kiezen van een thesisonderwerp. Als 
studente in de biologie was die keuze gebaseerd op (1) een nogal onverklaarbare verbondenheid 
met de zee, vis en schepen (een ‘gen’ van mijn vader meegekregen?), en (2) de mogelijkheid om 
mee te kunnen op ‘expeditie’ op onderzoeksschepen. In drie weken tijd reden we van het zuiden 
van Frankrijk naar het noorden van Nederland om er evenveel estuaria te bemonsteren. We 
verbleven aan boord met Jacques Castel, overnachtten op het onderzoeksinstituut van Jean- 
Claude Sorbe, en ten huize van Karei Essink: iets wat als ik “groentje” toch wel indrukwekkend 
vond!

Ik weet niet wat mij uiteindelijk heeft doen besluiten verder te gaan in het onderzoek en 
meer specifiek in het onderzoek naar de auto-ecologie van de aasgamaal Neomysis. Was het 
enthousiasme van mijn “eerste-expeditie-genoten” en “labo-genoten” Jan Mees, Kris Hostens, 
Olivier Hamerlynck en Dré Cattrijsse op mij overgeslagen? O f was ik “gehypnotiseerd” door 
het zoeken naar de zwarte aasgamaal-oogjes tussen het vele detritus, tijdens het urenlang 
gebogen hangen over mijn trieerbak? Eén ding is zeker, na al die jaren ben ik Neomysis nog 
steeds niet beu! Hoe meer ik er over te weten kwam, hoe meer ik er nog wou over w eten... maar 
de plicht van het schrijven van een proefschrift bleef roepen.

Uiteindelijk is het zo ver en ben ik op het punt gekomen om de mensen te bedanken die 
mij gedurende al die jaren gesteund en geholpen hebben:

In eerste plaats wil ik mijn promotor Prof. Magda Vincx bedanken. Zij heeft mij steeds 
de complete vrijheid gegeven in het doctoraatsonderzoek, maar zonder die laatste duw(!) in de 
rug was ik blijven twijfelen over het afwerken en de inhoud van het werk... Ik kreeg daarnaast 
haar toestemming om ‘tussen het doctoraatsonderzoek door’ mijn jeugddroom waar te maken en
2 jaar met pak, zak en gezin naar Ecuador te trekken om er ‘tropenervaring’ op te doen. Magda, 
ook daar was jij nooit ver weg, en werden we steeds bevoorraad met Belgische chocolade en de 
Humo.

Co-promotor Prof. Dr. Jan Mees was er steeds en altijd! Uren hebben we gediscussieerd 
en ideeën gespuid, met liters koffie erbij (en in vroegere tijden ook véél sigaretten). Zonder jou 
zou het werk nooit geworden zijn wat het nu is! Een dikke merci!

Bij het stand komen van het werk werden heel wat mensen ingeschakeld voor hulp bij 
de statistiek, hulp bij het maken van figuren, omzettingen van documenten uit fossiele 
programmatuur (ja, ik ben al lang bezig!) en het nalezen van teksten. Bedankt Ann Vanreusel, 
Tom Moens, Marleen De Troch, Tom Gheskiere, Hendrik Gheerardyn, Ilse De Mesel, Thomas 
Remerie, Maarten Raes, Jan Wittoeck, Guy Desmet, Tim Deprez!

Alle huidige en vroegere medewerkers van de sectie Mariene Biologie wil ik bedanken 
voor de steun, medewerking, hulp en leuke babbels tijdens koffie/middagpauzes en 
staalnamecampagnes, maar enkele mensen wil ik toch in het bijzonder vermelden: Guy Desmet 
(als Dreamteam-member, PC- en programma-helpdesk et al.), Tim Deprez en Thomas Remerie 
(mysid-kompanen), de technische ploeg van vroeger en nu voor het sorteren, meten, 
uitprepareren van aasgamaal-magen, verversen van de kweek en uitpikken van faecal pellets 
(Johan Van de Velde, Myriam Beghyn, Ine Seys, Dirk Van Gansbeke, Danielle Schram, Annick 
Van Kenhove, Danny Peelaers, Bart Beuselinck, ... oei ik hoop dat ik hier niemand vergeet), de 
administratieve ploeg van vroeger en nu (Isolde De Grem, Regine Coolen), Annick Verween 
(altijd bereid om een emmertje mysids mee te brengen), en mijn (hardwerkende) thesisstudenten 
Bruwiere Stijn, Nathalie De Pauw, Stefaan Hermans en Alex Soselisa.



Het doctoraatswerk had er niet gelegen, als ik de laatste jaren niet binnen het ENDIS- 
RISKS onderzoeksproject had kunnen werken. Door dit project kreeg mijn, oorspronkelijk zeer 
fundamenteel wetenschappelijk, onderzoek op Neomysis integer een zeer mooie en nuttige 
toepassing. Ik wil dan ook de ganse ploeg bedanken voor de goede samenwerking aan boord en 
in het labo: An Ghekiere, Tim Verslycke, Prof. Dr. Colin Janssen, Herlinde Noppe, Sofie 
Poelmans, Els Monteyne, Marijke Neyts en Patrick Roose.

Vele vrienden hebben mij steeds gesteund: de voltallige wijvenclub, de ‘Bende van 
Gent’, Ilse en Bruno, Lieve en Thomas, Kris en Els, PP Yves, Pat, Fons en Jan Schrijvers. 
Hierbij wil ik speciaal ook Ann Dewicke bedanken: zij was mijn eerste collega. Door de vele 
gesprekken van achter de bino werden we vrienden en werden we eerste-vreemde-continenten- 
reispartners. Viva Guatemala, Honduras, El Salvador, salsa, arroz con frijoles en de ‘tourista’!

Mijn béste vriend en partner, Jan Wittoeck, verdient de grootste pluim. Bedankt Jan, 
voor je  liefde en steun gedurende al die jaren! En ook voor de vele eenzame uren als BB-sitter 
tijdens het uitvoeren van campagnes, experimenten en het afwerken van mijn doctoraat. Onze 
twee ‘meiden’ Janne en Karlien hebben hun mama veel weekends moeten missen gedurende de 
laatste maanden. Zal ik, nu dat boekje er eindelijk ligt, een nieuwe ‘hobby’ moeten zoeken?

Mijn ouders en familie hebben steeds in mij geloofd en mij gesteund in de keuzes die ik 
maakte. Het is echter ontzettend spijtig dat mij vader dit moment niet meer kan meemaken... 
Ook veel dank aan de familie Wittoeck-Vandestricht (Bonnie Nicole, Opa Ivan en Peter Peter) 
voor de aanmoedigingen.

Nancy, 11 september 2005

De financiële steun voor dit doctoraatsonderzoek werd verschaft door het ‘Instituut voor de 
aanmoediging van Innovatie door wetenschap en Technologie in Vlaanderen’ (IWT) en het 
onderzoeksproject ENDIS-RISKS van het Federaal Wetenschapsbeleid.



Summary

Neomysis integer (Leach 1814) is a common mysid crustacean along the Atlantic coast 
o f western Europe and the Baltic Sea. It is a hyperbenthic, euryhaline and eurythermie species, 
confined to the brackish environment within estuaries, and inland water bodies, which were 
once connected to the sea.

Neomysis integer is used as a model for studies on the physiology, behaviour and 
general ecology o f brackish water crustaceans. A lot o f information is available on the feeding 
and life history characteristics o f N. integer living in partly enclosed systems like ponds, lakes 
and the Baltic Sea, but ecological information o f N. integer living in the estuarine environment 
is much less documented.

In C h a p t e r  1  of this thesis, an extensive literature review on Neomysis integer is 
presented, focussing on its feeding, life history aspects, physiology, behaviour and energy 
budgets. All distribution records o f the species are listed in an appendix. The aim is to make a 
summary o f the currently available information on the species and to identify the gaps in our 
knowledge. The author’s own contributions (published papers, submitted manuscripts and 
unpublished work) are highlighted in the text.

More quantitative information on the position o f Neomysis integer in the heterotrophic 
food web o f the brackish, turbid reaches o f estuaries is needed. N. integer plays an important 
role in the diet of higher trophic levels, but a quantitative description o f its own diet was 
missing. In C h a p t e r  2  of the thesis, a methodology is described for the quantitative diet analysis 
o f mysids. The method brings together two techniques: (1) microscopic stomach content 
analysis and (2) a fullness index determination based on weight. After dissecting and preparing 
the stomach in a semi-permanent slide, food items are counted and measured using image 
analysis. Amorphous, unidentifiable detritus was characterised further by EDAX (Energy 
Dispersive Spectroscopy X-ray Microanalysis). The stomach fullness technique was adopted 
from fish feeding studies and this is the first time it is applied to small invertebrates like mysids.

This methodology is used to compare the diet o f Neomysis integer collected from the 
maximum turbidity zone o f the Schelde, Gironde and Elbe estuaries in spring. N. integer was 
found to be an omnivore which mainly utilizes mesozooplankton and detritus carbon pools. The 
quality o f the diet did not differ between the sexes or between different developmental stages, 
although smaller individuals consumed fewer items. In all three estuaries, the (spring) animal 
fraction in the diet was dominated by calanoid copepods ( 3 - 1 0  Eurytemora affinis ind"1) and 
supplemented with rotifers and cladocerans. Phytoplankton and benthic organisms, though 
present in the stomachs, were negligible. Macrophytal detritus and amorphous material, the 
latter unidentifiable under the light microscope, were very abundant food items too. The 
amorphous detritus was found to originate from the suspended sediment floes which are 
characteristic o f the estuarine turbidity zone and mainly consisted o f clay minerals. The 
energetic value o f these floes for N. integer remains unclear.



There has been an increasing interest in using the brackish water mysid Neomysis 
integer as a toxicological test species for Western European estuarine systems. In this respect, 
more data on the growth, moulting and development in this species was needed. The influence 
o f the prevailing environmental variables (e.g. temperature, salinity, food quality and quantity) 
on these processes, as well as their optimal range, have to be known in order to develop optimal 
laboratory cultures and to differentiate between chemically-induced variability and natural 
variability in toxicity testing. Furthermore, this knowledge is essential for ecological modelling 
and food web analyses. The following four chapters provide more insight in the growth o f N. 
integer and the impact o f salinity and temperature on the one hand (Chapter 3), and food quality 
on the other hand (Chapter 4 and 5) on the post-marsupial growth and moulting processes o f the 
species. Chapter 6 deals with the impact o f temperature and salinity on the intra-marsupial 
growth and embryonic development o f N. integer.

In C h a p t e r  3  the individual post-marsupial growth (size, intermoult period, growth 
factor) o f Neomysis integer was studied from first day neonates until adulthood under eight 
environmentally relevant temperature-salinity conditions. Three salinities (5, 15 and 30 psu) 
were tested at 15 and 20 °C, and two more extreme temperatures (8 and 25 °C) were tested at a 
salinity o f 5 psu.

Survival and growth o f Neomysis integer were studied within the whole range tested. 
Sexual maturation was only possible in the narrower range o f 15 -  25 °C and 5 - 1 5  psu. The 
size-at-maturity o f N. integer increased with decreasing temperature and increasing salinity. 
Salinity had a stronger effect on the time needed for maturation than temperature. Higher 
temperatures mainly resulted in shorter intermoult periods, but had less effect on the growth 
increment. Salinity effects on these growth parameters were less straightforward and dependent 
on the water temperature. A tool is provided to estimate the age, moult number, intermoult 
period, growth factor and growth rate from the standard body length o f N. integer at all tested 
temperature-salinity combinations.

The von Bertalanffy growth model could be fitted to the individual and pooled data, 
except for the 8 °C experiment where growth was linear. Growth parameter estimates from 
pooled data were comparable with individually-based estimates, but generally underestimated 
the asymptotic length. Temperature was negatively correlated with the asymptotic length L,nf 
and positively correlated with the growth constant K. Experimentally-derived von Bertalanffy 
parameter estimates resulted in a higher growth performance index than field-based estimates 
for Schelde and Galgenweel populations of Neomysis integer.

Estuarine aggregates were an abundant dietary item in the stomachs o f Neomysis integer 
in the turbid reaches o f European estuaries. Growth experiments ( C h a p t e r  4 )  have given a 
decisive answer on their nutritive value for the mysid by monitoring the ability o f N. integer to 
survive and grow when feeding on them. Because estuarine macro-aggregates fall apart when 
sampling in strongly bound microflocs, a roller table was used to regenerate the macro
aggregates from samples o f natural estuarine water from the oligohaline part o f the Schelde 
estuary. In a preceding experiment, the effect o f tidal dynamics on the floe formation process, as 
well as on the floe size and shape, was examined.

The effect o f continuous rotation in the roller tanks on the growth o f Neomysis integer 
was negligible and the device turned out to be an adequate tool for performing feeding 
experiments with N. integer and fragile estuarine aggregates.



Survival, growth, intermoult period, growth factor and intermoult growth rate o f subadult 
mysids ( 4 - 1 0  mm standard length) were monitored over a period o f 4.5 weeks and compared 
to the growth performance o f N. integer feeding ad libitum on Artemia salina nauplii. Also, the 
feeding rate of N. integer feeding on laboratory-generated macro-aggregates was estimated.

The estuarine aggregates were a valuable food source for Neomysis integer as the 
mysids showed good survival (80 %) and growth (0.08 ± 0.01 mm d"1) on this dietary item, 
although growth was slower than on Artemia salina nauplii (0.11 ± 0.01 mm d"1). A high 
feeding rate of subadult N. integer on the laboratory-made floes (38 floes ind'1 h"1) may 
compensate for their low energetic value.

For Neomysis integer living in the maximum turbidity zone o f estuaries, the estuarine 
aggregates may be an important additional food source, especially during periods when 
mesozooplankton prey (mainly calanoid copepods) are scarce. The rich bacterial and protozoan 
communities associated with the floes and the incorporated amorphous organic matter -  
normally too small to be efficiently consumed by mysids -  become part of their diet. This 
pathway thus constitutes a short-cut in the estuarine food chain.

The addendum to Chapter 4 ( A d d e n d u m  1 )  reports on the results o f a preliminary study 
to identify the composition o f estuarine aggregates and to quantify the associated micro
organisms. In November 1997 and June 1998, the composition of estuarine macro-aggregates in 
the Schelde estuary was investigated at 4 sites situated in the estuarine turbidity maximum. The 
flocculation process was simulated in vitro using the roller table. Macro-aggregates were 
separated from the surrounding water by sedimentation and décantation. 47 -  90 % o f the 
suspended particulate matter, 29 -  67 % o f the particulate organic carbon, 6 -  57 % o f the 
chlorophyll a, 1 -  39 % o f the bacteria, 5 -  14 % o f the heterotrophic nanoflagellates and 5 - 2 5  
% o f the ciliates in the water column were found to occur in association with the macro
aggregates. The fraction o f total chlorophyll a associated with the macro-aggregates was, at all 
sites, lower in June compared to November. The fraction o f total bacteria that was associated 
with the macro-aggregates was highest in the freshwater tidal reaches and tended to decrease in 
downstream direction. Concentrations o f bacteria, heterotrophic nanoflagellates and ciliates in 
the macro-aggregates were generally one to two orders o f magnitude higher than in the 
surrounding water. Despite high concentrations of micro-organisms in the macro-aggregates, 
living biomass contributed at most to 3.2 % of total organic carbon of the macro-aggregates.

C h a p t e r  5  evaluates to what extent diets of Artemia salina (nauplii), Eurytemora ajfinis 
(copepodites and adults), laboratory-made estuarine floes and macrophytal detritus (Scirpus 
maritimus and Spartina anglica), all administered ad libitum, influence the survival and somatic 
growth o f subadult Neomysis integer. Growth was monitored in three alternative ways: (1) by 
the increase in standard length (SL), (2) by the intermoult period (IMP), and growth factor (GF), 
or (3) by the intermoult growth rate (GR).

Detritus originating from non-leached Spartina anglica was toxic to Neomysis integer, 
leading to morphologic aberrations and a high mortality. The growth o f N. integer individuals 
was slower on a diet of Scirpus maritimus detritus than on a diet of animal food or laboratory- 
made floes. Artemia salina nauplii were the highest quality food for N. integer, a relatively 
shorter IMP and higher GF and GR resulted in a significantly higher SL at the end of the 
experiment.



When fed with laboratory-made floes, N. integer moulted as frequently as when fed with 
Artemia, but GR decreased over the course o f the experiment. A Eurytemora affinis diet 
resulted in a significantly elongated IMP from the first moult onwards compared to mysids fed 
with Artemia or floes. The mean associated growth rate was, however, comparable with the 
floes treatment and significantly lower than fed Artemia.

In an addendum to Chapter 5 ( A d d e n d u m  2 )  some experimental observations are 
reported on the gut passage time, egestion rate and faecal pellet production of Neomysis integer 
when feeding ad libitum on a variety o f environmentally relevant food types and a reference diet 
o f Artemia salina nauplii.

Gut passage times were calculated by measuring the voided faecal pellets. When 
feeding on Artemia salina nauplii, gut passage times were variable (from 4.1 to 12.9 h), but 
significantly longer than when feeding on the post-naupliar stages o f the calanoid copepod 
Eurytemora affinis (2.6 h). Estuarine floes passed through the intestine within 0.5 hour after 
ingestion, and N. integer produced daily up to twice its own body length in compact faecal 
material. The gut residence time of macrophytal detritus was 1.9 h and no difference was found 
between fresh and aged detritus.

The egestion rate of Neomysis integer feeding on estuarine floes (0.163 ± 0.001 mm3 h' 
') was significantly higher than in all other treatments (0.011 ± 0.001 mm3 h '1). The faecal pellet 
production rate, when feeding on floes, amounted to 0.044 mgDW mgDW"1 h '1.

Preliminary results on the C:N ratio o f food and faecal pellets demonstrated a general 
enrichment in nitrogen in the faecal pellets, probably due to bacterial growth on the pellets, the 
peritrophic membrane and disintegrating cells o f the mysid intestine. The faecal pellets 
produced by Neomysis integer are still potential sources of energy themselves. Scanning 
electron micrographs of faecal pellets give details about the peritrophic membrane and pellet 
content.

In C h a p t e r  6  a protocol is developed to examine the intra-marsupial development o f 
Neomysis integer in vitro and a morphological description o f the embryonic and larval 
developmental stages is presented. Daily survival percentage, percentage survival days, 
hatching success, total development time, duration o f each developmental stage and the size 
increment o f the embryos/larvae were evaluated as potential endpoints for ecotoxicological 
testing and their response to temperature and salinity was investigated.

The survival and hatching success are highly dependent on the salinity conditions, while 
the development time is strongly affected by temperature. High temperatures (21 °C) shorten 
the development time in comparison with low temperatures (11 °C) from 22 to 10 days, but 
have an opposite effect on survival. Optimal salinity for in vitro embryonic development of 
Neomysis integer is 14 -  17 psu. Living in lower or higher salinities thus implies suboptimal 
conditions for the juvenile recruitment to the population, unless the species can actively regulate 
the concentration of its marsupial fluid.

The developed in vitro technique may be used for testing the effect o f both abiotic 
factors and (endocrine) disrupting toxicants on the intra-marsupial development o f Neomysis 
integer. Survival, hatching success and development time appeared to be adequate endpoints, 
while size and growth increment o f the embryos seemed unsuitable.



In c o n c l u s i o n ,  Neomysis integer living in the turbid reaches o f estuaries is omnivorous, 
and mainly feeds on calanoid copepods, macrophytal detritus and estuarine sediment 
aggregates. The quality o f all of these food items is sufficiently high to provide a good survival 
for the mysid, but growth rates are significantly higher when N. integer feeds on animal food in 
comparison to detrital diets. For N. integer living in the maximum turbidity zone o f estuaries, 
the estuarine floes and macrophytal detritus may be important additional food sources, 
especially in periods when mesozooplankton prey (mainly calanoid copepods) is scarce.

Under experimental conditions, the following conclusions on the effect of 
environmental variables (temperature and salinity) on the growth and development o f Neomysis 
integer can be presented: the post-marsupial growth o f N. integer is possible over a wide 
temperature and salinity range, but sexual maturation is only possible within the narrower range 
o f 15 -  25 °C and 5 - 1 5  psu. Intra-marsupial survival (> 50 %) and development are confined 
to an even more restricted salinity range o f 14 -  17 psu, unless female mysids can actively 
regulate the concentration o f their marsupial fluid. The duration o f the intra-marsupail 
development o f N. integer is strongly affected by temperature, while survival and hatching 
success are dependent on the salinity conditions. Although survival is lower, the post-marsupial 
growth and development o f N. integer are both accelerated at a higher temperature, mainly due 
to a more frequent moulting o f the animals. The size-at-maturity decreased at a higher 
temperature. Salinity even had a stronger effect than temperature on the time needed to become 
mature.

The results o f the experimental research presented in this thesis contribute to our basic 
knowledge o f the ecology o f the mysid Neomysis integer, a key species in the brackish water 
zone o f temperate European estuaries. More specifically, this research contribute to the 
understanding and quantification o f the species’ feeding ecology and population dynamics, i.e. 
the impact o f environmental variables (temperature, salinity and food quality) on processes like 
growth, moulting and pre- and post-marsupial development. These data are relevant for 
ecological modelling and the techniques developed and described for assessing the effects of 
environmental conditions on individual growth, moulting, and in vitro embryology are currently 
used in bioassays for the evaluation o f the effects o f toxic substances (mainly endocrine 
disrupting chemicals) in the estuarine ecosystem.



Samenvatting

De brakwateraasgamaal Neomysis integer (Leach 1814) is een veel voorkomende soort 
langsheen de Atlantische kust van West Europa en in de Baltische Zee. Het is een 
hyperbenthische, euryhaliene en eurytherme soort, die specifiek aanwezig is in riviermondingen 
(estuaria) en brakwaterplassen en -kanalen.

Neomysis integer wordt vaak gebruikt als modelsoort in studies over de fysiologie, het 
gedrag en de algemene ecologie van brakwater crustaceeën. Er is dan ook grote hoeveelheid 
informatie beschikbaar over de voeding en de populatiedynamiek van N. integer populaties, 
maar deze beperkt zich vooral tot ingesloten brakwatermassa’s (plassen, meren, kanalen en de 
Baltische Zee). Ecologische informatie van estuariene N. integer populaties ontbreekt tot nu toe 
nog grotendeels.

In H o o f d s t u k  1  wordt een uitvoerig literatuuroverzicht gegeven van de aasgamaal 
Neomysis integer, met de nadruk op de voedingsecologie, de ontwikkelingsgeschiedenis, de 
fysiologie en biochemie, het gedrag en het energie budget van de soort. In een appendix van dit 
hoofdstuk werden alle waarnemingen van N. integer geïnventariseerd. Dit hoofdstuk wil een 
samenvatting geven van alle tot nu toe beschikbare informatie over N. integer, om zo de hiaten 
te kunnen aanduiden in onze kennis over de soort. De auteur haar eigen gegevens (gepubliceerd 
als artikel, ingediende manuscripten en ongepubliceerd werk) zijn opgenomen in de tekst in 
grijze kadertjes.

Er is nood aan kwantitatieve informatie over de rol van Neomysis integer in het 
heterotrofe voedselweb van het turbiede brakwater gebied van estuaria. Neomysis integer is er 
een belangrijk onderdeel in het dieet van de hogere trofische niveaus (vnl. van vissen en 
garnaal), maar een kwantitatieve beschrijving van het dieet van N. integer zelf ontbreekt tot nu 
toe. In H o o f d s t u k  2  van de thesis wordt een methodologie beschreven voor het uitvoeren van 
kwantitatieve maaganalyses van aasgamalen. De methode bestaat erin om 2 technieken samen 
te gebruiken: (1) een microscopische analyse van de maaginhoud en (2) het bepalen van een 
maagvulling index, gebaseerd op gewicht. Na het uitprepareren van de maag en het monteren 
ervan in een semi-permanent preparaat, worden de aanwezige voedselitems geteld en gemeten 
met behulp van beeldanalyse technieken. Amorfe detritus, verder niet identificeerbaar onder de 
lichtmicroscoop, wordt verder gekarakteriseerd met behulp van EDAX (Energy Dispersive 
Spectroscopy X-ray Microanalysis). De techniek voor het bepalen van de maagvulling a.d.h.v. 
het gewicht, vaak gebruikt in de studie van de voedingsecologie van vissen, werd hier voor het 
eerst toegepast op kleine ongewervelden (Mysidacea).

De methodiek werd toegepast om het dieet te vergelijken van Neomysis integer 
individuen die in de lente bemonsterd werden in de maximum turbiditeitzone van de estuaria 
Schelde, Gironde en Elbe. N. integer voedt zich in deze gebieden voornamelijk met 
mesozooplankton en detritus. De kwaliteit van het opgenomen voedsel verschilt niet sterk 
tussen de verschillende geslachten en ontwikkelingstadia, maar kleinere aasgamalen 
consumeren minder items.



In de 3 estuaria wordt het dieet gedomineerd door calanoide copepoden ( 3 - 1 0  Eurytemora 
affinis i n d ') en aangevuld met rotiferen en cladoceren. Phytoplankton en benthische organismen 
zijn aanwezig in de maag in verwaarloosbare hoeveelheden, terwijl macrofyten detritus en 
amorf materiaal zeer abundant zijn. Het amorfe materiaal bleek, na een EDAX analyse, 
afkomstig van gesuspendeerde sediment vlokken, typisch voor de estuariene turbiditeitzone 
waar de soort leeft. Het is onzeker welke voedingswaarde deze vlokken hebben voor N. integer.

Er is een grote interesse om de brakwateraasgamaal Neomysis integer te gebruiken als 
testorganisme voor toxicologisch onderzoek voor West-Europese estuariene systemen. In die 
zin is het belangrijk om de kennis uit te breiden over de groei, het vervellingsproces en de 
ontwikkeling van de soort. De invloed van omgevingsvariabelen (zoals temperatuur, saliniteit 
en voedsel kwantiteit en -  kwaliteit) op deze processen, alsook hun optimale bereik, moeten 
gekend zijn zodat een optimale laboratorium cultuur kan opgezet worden en in toxiciteit-testen 
onderscheid kan gemaakt worden tussen chemisch geïnduceerde variabiliteit en natuurlijke 
variabiliteit. Verder is deze informatie ook nuttig bij het opstellen van ecologische modellen en 
voedselweb analyses. De volgende 4 hoofdstukken van de thesis geven meer inzicht in de groei 
van N. integer en de impact van enerzijds de saliniteit en temperatuur (Hoofdstuk 3) en 
anderzijds van de voedselkwaliteit (Hoofdstuk 4 en 5) op de post-marsupiale groei van de soort. 
Hoofdstuk 6 behandelt de impact van saliniteit en temperatuur op de intra-marsupiale groei en 
embryonale ontwikkeling van N. integer.

In H o o f d s t u k  3  werd de individuele post-marsupiale groei (lengte, ‘intermoult period’ 
en groeifactor) van Neomysis integer bestudeerd bij 8 relevante temperatuur- en 
saliniteitscombinaties. De overleving en groei werden gevolgd bij individuele aasgamalen, 
vanaf de eerste dag na het vrijkomen uit het marsupium tot in het adulte stadium; dit bij 3 
saliniteiten (5, 15 and 30 psu) bij 15 en 20 °C, en bij 2 meer extreme temperaturen (8 en 25 °C) 
bij een saliniteit van 5 psu.

De aasgamalen overleven en groeien bij alle geteste temperatuur- en 
saliniteitscombinaties, maar de seksuele ontwikkeling van Neomysis integer was enkel mogelijk 
binnen het nauwe bereik van 15 -  25 °C en 5 -  15 psu. De ‘size-at-maturity’ van N. integer 
werd groter bij een hogere temperatuur en lagere saliniteit. Het zoutgehalte had een sterker 
effect dan temperatuur op de seksuele ontwikkelingstijd. Hogere temperaturen leidden 
voornamelijk tot een kortere ‘intermoult period’, en hadden een kleiner effect op de groeifactor. 
Het effect van saliniteit op deze twee groeiparameters was minder duidelijk en afhankelijk van 
de temperatuur. In het werk is een tabel voorzien die kan gebruikt worden als instrument voor 
het afleiden van de leeftijd, het aantal voorafgaande vervellingen, de ‘intermoult period’, de 
groeifactor en groeisnelheid a.d.h.v. de standaard lichaamslengte van de aasgamaal bij alle 
geteste temperatuur- en saliniteitscombinaties.

De data werden gefit met het ‘von Bertalanffy’ groeimodel, uitgenomen bij 8 °C waar 
de groei lineair verliep. De groeiparameters, geschat door het fitten van het model op de 
gepoolde data, waren zeer vergelijkbaar met schattingen gebaseerd op het fitten van individuele 
data. Over het algemeen werd de asymptotische lengte overschat bij de gepoolde data. 
Temperatuur was negatief gecorreleerd met de asymptotische lengte L^f en positief gecorreleerd 
met de groeiconstante K. De von Bertalanfy groeiparameters afkomstig van experimentele data 
resulteren in een hogere ‘growth performance index’ in vergelijking met schattingen gebaseerd 
op veldgegevens van N. integer populaties uit Schelde en Galgenweel.



Estuariene vlokken hadden een belangrijk aandeel in de maaginhoud van Neomysis 
integer afkomstig uit het turbiede brakwatergebied van Europese estuaria. Groei-experimenten 
( H o o f d s t u k  4 )  kunnen uitsluitsel geven over de nutritieve waarde van deze vlokken voor de 
aasgamaal. Estuariene macro vlokken vallen uit elkaar in kleinere, sterk gebonden microvlokken 
op het moment van staalname. Er werd gebruik gemaakt van een roltafel om de macrovlokken 
te regenereren uitgaande van water bemonsterd in de oligohaliene zone van het Schelde 
estuarium. In een voorafgaand experiment werd nagegaan welke het effect was van het moment 
van waterstaalname (tidale fase) op de vlokvorming (aantal en grootte van de vlokken). Het 
effect van continue rotatie op de groei van Neomysis integer was verwaarloosbaar. De roltafel 
bleek een nuttig instrument voor het uitvoeren van voedingsexperimenten waarbij de 
aasgamalen zich voedden op de fragiele macrovlokken. De overleving, groei, ‘intermoult 
period’, groeifactor en groeisnelheid van subadulte aasgamaal (4 -  10 mm standaard lengte) 
werden opgevolgd over een periode van 4.5 weken en vergeleken met de overleving en groei 
van subadulte N. integer die zich ad libitum voedden met Artemia salina nauplii. In een 
bijkomend experiment werd een schatting gemaakt van de voedingsnelheid van N. integer op de 
macrovlokken.

Estuariene macrovlokken bleken een goede voedselbron te zijn voor Neomysis integer. 
De aasgamalen vertoonden een goede overleving (80 %) en groeiden 0.08 ± 0.01 mm d ', 
hoewel de groei trager was dan wanneer gevoed met Artemia salina nauplii (0.11 ±  0.01 mm d" 
'). De hoge voedingsnelheid van subadulte N. integer op de gegenereerde macrovlokken (38 
flocs in d 1 h"1) duidt op een compensatie voor hun lage energetische waarde. De vlokken kunnen 
een belangrijke aanvulling zijn in het dieet van Neomysis integer in de maximum turbiditeitzone 
van estuaria, vooral in periodes wanneer mesozooplankton (vnl. calanoide copepoden) schaars 
is. De rijke gemeenschap van bacteriën en protozoa op de macrovlokken en het geïncorporeerde 
amorfe organische materiaal, normaal te klein om efficiënt geconsumeerd te worden door de 
aasgamaal, gaan zo deel uitmaken van het dieet van N. integer, wat een ‘short-cut’ betekent in 
de estuariene voedselketen.

Het addendum van hoofdstuk 4 ( A d d e n d u m  1 )  rapporteert over de studie waarin de 
samenstelling van de gegenereerde macrovlokken geïdentificeerd werd en de ermee 
geassocieerde micro-organismen gekwantificeerd werden. In november 1997 en juni 1998 
werden de samenstelling van estuariene macrovlokken van het Schelde estuarium onderzocht 
van 4 plaatsen in en rond de maximum turbiditeitzone. Het vlokvormingsproces werd 
gesimuleerd door gebruik te maken van een roltafel. De macrovlokken werden gescheiden van 
het omgevende water door sedimentatie en decantatie. 47 -  90 % van het gesuspendeerde 
particulair materiaal, 29 -  67 % van de particulaire organische koolstof, 6 -  57 %  van het 
chlorofyl a, 1 -  39 % van de bacteriën, 5 -  14 % van de heterotrofe nanoflagellaten en 5 -  25 % 
van de ciliaten aanwezig in de waterkolom waren geassocieerd met de macrovlokken. De fractie 
totale chlorofyl a geassocieerd met de vlokken was in alle stations hoger in juni in vergelijking 
met november. De fractie van de totale bacteriën geassocieerd met de vlokken was het hoogst in 
de zoetwater stations en daalde stroomafwaarts. De aantallen bacteriën, heterotrofe 
nanoflagellaten en ciliaten aanwezig in en op de vlokken was algemeen gezien één tot twee 
ordes hoger dan in het omgevende water. Niettegenstaande deze hoge concentraties aan micro- 
organismen, maakt de biomassa slechts max. 3.2 % uit van de totale organische koolstof in de 
macrovlokken.

H o o f d s t u k  5  evalueert in welke mate een dieet van Artemia salina (nauplii), 
Eurytemora afftnis (copepodieten en adulten), in het laboratorium gegenereerde estuariene 
vlokken en macrofyten detritus (Scirpus maritimus en Spartina anglica), alle toegediend ad 
libitum, de overleving en de somatische groei van subadulte Neomysis integer beïnvloeden.



De groei werd opgevolgd op drie alternatieve manieren: (1) m.b.v. de toename in standaard 
lengte (SL), (2) m.b.v. de ‘intermoult period’ (IMP) en de groeifactor (GF), en (3) m.b.v. in 
‘intermoult’-groeisnelheid (GR).

Detritus afkomstig van niet-uitgeloogde Spartina anglica bleek toxisch voor Neomysis 
integer en resulteerde in morfologische aberraties en een hoge mortaliteit. De groei van N. 
integer individuen was trager op een dieet van Scirpus maritimus detritus dan op een dierlijk 
dieet o f op een dieet van estuariene macrovlokken. Artemia salina nauplii bleek het meest 
kwalitatieve voedsel voor N. integer, gezien een relatief korte IMP en een hoge GF en GR 
leidde tot een significant hogere SL aan het einde van het experiment. Indien de aasgamaal 
gevoed werd met estuariene vlokken, vervelde N. integer even snel als wanneer gevoed met 
Artemia, maar de groeisnelheid daalde geleidelijk over het verloop van het experiment. Een 
dieet op Eurytemora affinis resulteerde al vanaf de eerste vervelling in een significant langere 
IMP in vergelijking met individuen gevoed met Artemia of vlokken. De gemiddelde 
groeisnelheid op copepoden was echter vergelijkbaar met deze op vlokken en significant lager 
dan wanneer gevoed met Artemia.

In een addendum van Hoofdstuk 5 ( A d d e n d u m  2 )  worden enkele experimentele 
observaties gerapporteerd i.v.m. de ‘gut passage time’ (GPT) en ‘egestion rate’ (ER) van 
Neomysis integer, zijnde de tijd en snelheid waarmee de resten van het opgenomen voedsel 
uitgescheiden worden. Hierbij werden de aasgamalen ad libitum gevoed op een variëteit aan 
diëten, relevant voor hun leefomgeving in de maximum turbiditeitzone in estuaria, en op een 
standaard dieet van Artemia salina nauplii.

De GPT werd geschat door het meten van de uitgescheiden fecale pellets. Wanneer de 
aasgamaal gevoed werd met Artemia salina nauplii was de GPT zeer variabel (tussen 4.1 en
12.9 uur), maar significant langer dan wanneer gevoed met de latere stadia van de calanoide 
copepode Eurytemora affinis (2.6 uur). Estuariene vlokken passeerden in 0.5 uur doorheen het 
spijsverteringskanaal en N. integer produceerde dagelijks tot tweemaal zijn eigen 
lichaamslengte aan fecale pellets. De GPT op macrofyten detritus was 1.9 uur en er kon geen 
onderscheid gemaakt worden in de GPT tussen vers en verouderd detritus.

Neomysis integer die zich voedt op estuariene macrovlokken heeft een significant 
hogere ER (0.163 ± 0.001 mm3 h"1) dan bij alle andere diëten (0.011 ± 0.001 mm3 h '1). De 
productiesnelheid van fecale pellets, wanneer gevoed met estuariene vlokken, bedroeg tot 0.044 
mgDW m gD W 1 h '1.

Voorlopige resultaten van de C:N ratio van voedsel en fecale pellets toonden aan dat de 
pellets over het algemeen aangerijkt worden met stikstof, waarschijnlijk veroorzaakt door de 
bacteriële groei op de pellets, de afgescheiden peritrofe membraan en afgescheiden cellen uit het 
darmkanaal van de aasgamaal. Gezien hun C en N inhoud, zijn de fecale pellets van Neomysis 
integer nog een potentiële voedselbron. Scanning elektronen microscopische opnames van de 
fecale pellets geven details over de peritrofe membraan en hun inhoud.

In H o o f d s t u k  6  wordt een protocol ontwikkeld voor het in vitro opvolgen van de 
embryogenese van Neomysis integer. Er is tevens een morfologische beschrijving van de 
embryologische ontwikkeling toegevoegd. De dagelijkse overleving, de ‘percentage survival 
days’, het ‘hatching success’, de totale ontwikkelingstijd en de duur van de deelstadia, evenals 
de lengtetoename van de embryo’s werden geëvalueerd als mogelijke eindpunten voor verder 
gebruik in een ecotoxicologische test met de soort. Verder werd de respons van deze eindpunten 
op temperatuur en saliniteit bestudeerd.

De overleving en het ‘hatching success’ zijn sterk afhankelijk van de saliniteit, terwijl 
de ontwikkelingsduur bepaald wordt door de temperatuur. Hoge temperaturen (21 °C) verkorten 
de ontwikkelingstijd in vergelijking met lage temperaturen (11 °C) van 22 tot 10 dagen, maar 
hebben een negatief effect op de overleving van de embryo’s.



De optimale saliniteit voor de in vitro embryo- ontwikkeling van Neomysis integer is 14 -  17 
psu. Het leven van de soort in een lagere o f hogere saliniteit moet dus suboptimaal zijn voor de 
rekrutering van juvenielen tot de populatie, tenzij de soort het zoutgehalte van het marsupiale 
vocht kan regelen.

De in vitro ontwikkelingstechniek blijkt zeer gebruiksvriendelijk en reproduceerbaar te 
zijn voor het testen van de effecten van zowel omgevingsvariabelen als van (endocriene) 
verstorende stoffen op de embryologie van Neomysis integer. Overleving, ‘hatching success’ en 
ontwikkelingsduur blijken goede eindpunten, terwijl het gebruik van de grootte en groei van de 
embryo’s als eindpunt af te raden zijn.

Tot b e s l u i t :  Neomysis integer is een omnivoor in de turbiede zone van estuaria en voedt 
er zich voornamelijk met calanoide copepoden, macrofyten detritus en estuariene sediment 
aggregaten. De kwaliteit van al deze voedselitems is voldoende hoog voor de overleving van N. 
integer, maar de groeisnelheid is hoger wanneer dierlijk voedsel toegediend wordt en lager bij 
een detritus dieet. De estuariene vlokken en macrofyten detritus kunnen echter een goede 
aanvulling zijn in het dieet van N. integer in de maximum turbiditeitzone van estuaria, zeker in 
periodes van mesozooplankton schaarste.

Onder experimentele omstandigheden, kunnen de volgende conclusies genomen worden 
betreffende de effecten van de omgevingsvariabelen temperatuur en saliniteit op de groei en 
ontwikkeling van Neomysis integer. De post-marsupiale groei en overleving van N. integer is 
mogelijk over een brede range van temperaturen en saliniteiten, maar de seksuele ontwikkeling 
is enkel mogelijk in het nauwere bereik van 15 -  25 °C en 5 -  15 psu. De embryologische 
overleving (>50 %) en ontwikkeling zijn slecht mogelijk in een nog smallere saliniteit range van 
1 4 - 1 7  psu, tenzij de aasgamalen het zoutgehalte van hun marsupiale vocht actief kunnen 
regelen. De duur van de embryonale ontwikkeling van Neomysis integer is sterk afhankelijk van 
de temperatuur, terwijl overleving en ‘hatching success’ afhankelijk zijn van de 
saliniteitcondities. Hoewel een hogere temperatuur resulteert in een lagere overleving van 
Neomysis integer, worden de postmarsupiale groei en ontwikkeling versneld, voornamelijk door 
een hogere vervellingsfrequentie. De ‘size-at-maturity’ daalt bij hogere temperaturen. Saliniteit 
heeft een grotere impact dan temperatuur op de ontwikkelingsduur van juveniel tot adult.

Het experimentele onderzoek dat in deze thesis voorgesteld wordt, draagt bij tot de 
kennis van de ecologie van de brakwateraasgamaal Neomysis integer, een sleutelsoort in de 
turbiede brakwater zone van gematigde Europese estuaria. Meer specifiek, draagt het werk bij 
tot het begrijpen en kwantificeren van de voedingecologie van de soort en zijn 
populatiedynamica: nl. de effecten van omgevingsvariabelen (temperatuur, saliniteit en 
voedselkwaliteit) op processen zoals groei, vervelling en pre- en post-marsupiale ontwikkeling. 
Deze data zijn relevant voor ecologische modellering. De technieken, hier ontwikkeld en 
beschreven voor het bepalen van de effecten van omgevingsvariabelen op individuele groei, 
vervelling en in vitro embryologie, worden nu verder toegepast in bioassays voor de evaluatie 
van de effecten van toxische stoffen (vnl. endocriene verstoorders) in het estuariene ecosysteem.



Preface and outline

Neomysis integer is one o f the most common mysids along the Atlantic coast o f western 
Europe and the Baltic Sea. It is a hyperbenthic, euryhaline and eurythermie species, confined to 
the brackish environment within estuaries and inland water bodies (Tattersall and Tattersall, 
1951), where it reaches high densities and biomasses and often plays a key role in the food web 
as an important prey for fish and epibenthic macrocrustaceans {e.g. Mauchline, 1980; Hostens 
and Mees, 1999).

The position o f Neomysis integer in the heterotrophic food web of the brackish, turbid 
reaches o f estuaries remains unclear and more quantitative information on this topic is 
invaluable for the development o f accurate C-flux models. The description of detritus based 
food web patterns, including the quantification of transfer coefficients is a key-item in estuarine 
ecology. To date, few models have taken hyperbenthic mysids into account, because only 
limited quantitative information is available on the diet o f the mysid species. Therefore, 
quantitative stomach analyses are important to elucidate the diet o f N. integer in the estuarine 
habitat.

Estuarine organisms are exposed to fluctuating environmental factors such as 
temperature, salinity, and food quantity and quality. All o f these factors may act either singly or 
in concert to modify the life history and distribution o f the species. Survival o f the estuarine 
organisms in such a dynamic environment requires both physiological and behavioural 
adaptations (McKenney and Celestial, 1995; Devreker et al., 2004). Although some descriptions 
are available on the life history characteristics o f Neomysis integer in the field (Mees et al., 
1994 and the references therein), an experimental approach can help to clarify the specific 
impact o f temperature, salinity and food quality and quantity on population dynamics like post
marsupial growth, reproduction and intra-marsupial development o f the species.

The specific aims o f the thesis are:

1. To review all available literature on Neomysis integer, focussing on its 
distribution, feeding and life history aspects, behaviour, physiology and 
energy budget in order to identify current knowledge and indicate the gaps in 
the knowledge of the species (Chapter 1).

2. To describe the diet o f Neomysis integer in the maximum turbidity zone of 
estuaries, including variations due to latitude, gender and developmental 
stage by means o f quantitative stomach content analyses o f field caught 
animals (Chapter 2).

3. To study the combined effect o f temperature and salinity on the post
marsupial growth and development o f Neomysis integer by means of 
individually-based laboratory growth experiments over its entire life span 
(Chapter 3).



4. To examine the effect o f food quality on post-marsupial growth o f Neomysis 
integer through individually-based laboratory growth experiments (Chapter 4 
and 5).

5. To study the combined effect o f temperature and salinity on the intra
marsupial development o f Neomysis integer based on in vitro experiments 
(Chapter 6).

O U T L I N E  O F  T H E  P H D  T H E S I S

The aims o f C h a p t e r  1  are to make a summary o f the currently available information on 
Neomysis integer and to identify the gaps in our knowledge o f the species. As N. integer is often 
used as a model to study the ecology o f estuarine crustaceans, numerous investigations are 
encountered in literature. The older studies (< 1980) are often superficial or based on a limited 
number o f observations; many data are often unpublished (as Ph.D. theses or reports) or 
published in local journals. Information extracted from this grey literature has been integrated in 
the review. In the last 10 years, more in-depth studies have been published concerning aspects 
of the feeding ecology, population dynamics, physiology, bioenergetics, behaviour, and 
ecotoxicological use of the species.

Although originally not planned to be so extensive, Chapter 1 finally includes an 
extensive literature review on Neomysis integer with focus on its distribution, feeding and life 
history aspects, physiology, behaviour, biochemical composition and energy budgets. All 
distribution records o f the species are listed in an appendix. Some of the identified gaps in the 
knowledge o f N. integer have reference to the work performed further in the thesis (Figure 1), 
but reading o f the review is not necessary to understand the context o f the following chapters. 
One should consider Chapter 1 as a reference work, to refer to when specific information on one 
o f the topics is needed. The author’s contributions to the knowledge o f the species (results 
presented in this thesis and some unpublished work) are highlighted in the text. The chapter has 
a separate font and reference list because its contents differ from the remainder of the thesis.

In C h a p t e r  2  the diet of Neomysis integer living into brackish reaches o f estuaries is 
described. A methodology is presented for the quantitative diet analysis o f mysids by means of 
stomach fullness measurements and microscopic stomach content analyses. The diet o f N. 
integer in the maximum turbidity zone o f three western European estuaries (Elbe, Schelde and 
Gironde) was investigated in spring 1993. The quantitative technique allows for an objective 
comparison of latitudinal, sexual and ontogenic shifts in the diet. The chapter has been 
published as Fockedey, N., Mees, J., 1999. Feeding of the hyperbenthic mysid Neomysis integer 
in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J. Mar. Syst., 
22: 207-228.

In C h a p t e r  3  post-marsupial growth, moulting and development o f Neomysis integer is 
examined in detail over its whole life span under laboratory conditions and the effects of 
prevailing abiotic variables (temperature and salinity) and age on these processes were 
evaluated. Individual post-marsupial growth (size, intermoult period, growth factor) was studied 
from first day neonates until adulthood at eight environmentally relevant temperature-salinity 
conditions when feeding ad libitum on Artemia salina nauplii. Additional information was 
gathered on the timing o f sexual differentiation and maturation o f the mysids.



Generalized von Bertalanffy growth curves were fitted to the experimental data and compared 
with field derived estimates. This chapter is accepted for publication as: Fockedey, N., Mees, J., 
Vangheluwe, M., Verslycke, T., Janssen, C. and Vincx, M. Temperature and salinity effect on 
post-marsupial growth of Neomysis integer (Crustacea: Mysidacea). J. Exp. Mar. Biol. Ecol. (in 
press).

Both chapter 2 and chapter 3 delivered the basic knowledge to formulate the following 
research question: the impact of diet quality on the survival and growth performance of subadult 
Neomysis integer under laboratory conditions using environmentally relevant food items like 
calanoid copepods, estuarine floes and macrophytal detritus (chapters 4 and 5).

C h a p t e r  4  specifically deals with the methodological aspects o f applying estuarine 
floes as a food item in individual growth experiments with Neomysis integer. Because estuarine 
macroflocs fall apart upon sampling in strongly bound microflocs, a roller table (modified from 
Shanks and Edmondson, 1989) was used to regenerate the estuarine aggregates. We first tested 
the effect o f tidal dynamics in the field on the process of floe formation in the laboratory. 
Subsequently an experiment was performed in which N. integer was reared on laboratory-made 
aggregates. The nutritional importance o f the floes to the mysid was assessed by measuring its 
survival and growth. Furthermore, the feeding rate o f N. integer on laboratory-made floes was 
estimated. This chapter is submitted for publication as: Fockedey, N., Hermans, S., Mees, J., 
Vincx, M. Survival, growth and feeding rate of the mysid Neomysis integer (Crustacea, 
Mysidacea) on laboratory-made estuarine aggregates. Mar. Ecol. Prog. Ser.

In an addendum to Chapter 4 ( A d d e n d u m  1 ) ,  the importance o f estuarine floes as a 
substrate for micro-organisms is examined at four stations along the estuarine gradient o f the 
Schelde estuary. The estuarine flocculation process was simulated under laboratory conditions 
making use o f a roller table (Shanks and Edmondson, 1989). Concentrations o f suspended 
particulate matter, particulate organic carbon, chlorophyll a, bacteria, heterotrophic 
nanoflagellates and ciliates were quantified on the floes (after sedimentation) in comparison to 
the surrounding water (after décantation). This addendum is published as a chapter o f the Ph.D. 
thesis o f dr. Koenraad Muylaert and a manuscript is being prepared for submission: Muylaert, 
K., Fockedey, N., Mees, J., Vijverman, W., 1999. Association of microorganisms with estuarine 
floes. In: Muylaert, K., 1999. Distribution and dynamics ofprotist communities in a freshwater 
tidal estuary. Ph.D. Thesis, Ghent University: 137-147.

The aim o f C h a p t e r  5  was to compare the survival and growth performance o f subadult 
Neomysis integer, when feeding for several weeks on diets o f Artemia salina nauplii, calanoid 
copepods (Eurytemora affinis), estuarine floes or artificial detritus made from Spartina anglica 
and Scirpus maritimus. As all diets were administered ad libitum, the variation in growth could 
be fully attributed to the food quality. The impact on growth and moulting processes is 
evaluated in three alternative ways: (1) as increase in length, (2) by the intermoult period and 
growth factor at successive moults and (3) as the intermoult growth rate. This chapter is 
submitted for publication as: Fockedey, N., De Pauw, N., Mees, J., Vincx, M. The effect of food 
quality on the growth of the brackish water mysid Neomysis integer. Estuar. Coast. Shelf Sei.

In an addendum of Chapter 5 ( A d d e n d u m  2 )  some experimental observations are presented on 
the gut passage time and the egestion rate o f Neomysis integer when feeding on a diet of 
Artemia salina nauplii, Eurytemora affinis, laboratory-made macro-aggregates, and artificially- 
made (fresh and aged) macrophytal detritus from Scirpus maritimus. Additionally, the C:N ratio 
was determined for the food and the faecal pellets produced.



Scanning electron micrographs o f faecal pellets produced on the different food types give 
details about the peritrophic membrane and the pellets content. This addendum is submitted for 
publication as: Fockedey, N., Mees, J., Vincx, M. Some experimental observations on gut 
passage time, egestion rate and faecal pellet production of the brackish water mysid Neomysis 
integer (Mysidacea: Crustacea) feeding on different food items. J. Exp. Mar. Biol. Ecol.

Data on the intra-marsupial development o f Neomysis integer are available as well. One 
o f the aims o f C h a p t e r  6  was to develop and optimize a methodology to follow in vitro the 
intra-marsupial development o f N. integer. It allows a detailed description of the embryonic and 
larval mortality, morphology and the duration of subsequent developmental stages. The chapter 
also presents the results of an experiment performed to determine the temperature and salinity 
effects on intra-marsupial development o f N. integer on endpoints like survival, hatching 
success, duration o f development and size o f the embryonic and larval sub-stages. This chapter 
is submitted for publication as: Fockedey, N., Ghekiere, A., Bruwiere, S., Janssen, C.R., Vincx, 
M. Effect of salinity and temperature on the intra-marsupial development of the brackish water 
mysid Neomysis integer (Crustacea: Mysidacea). Mar. Biol.

In A d d e n d u m  3  a review is added on the use o f mysids (a.o. Neomysis integer) as an 
ecotoxicological test organisms to evaluate environmental endocrine disruption. It was written 
under the incentive o f the Ph.D. o f Tim Verslycke (2003), in which several authors have 
participated. It is published as: Verslycke, T., Fockedey, N., McKenney, C.Jr., Roast, S.D., 
Jones, M., Mees, J., Janssen, C.R., 2004. Mysid crustaceans as potential test organisms for the 
evaluation of environmental endocrine disruption: a review. Environmental Toxicology and 
Chemistry, 23 (5): 1219-1234.

A scheme is added (Figure 1) on how the different chapters o f this Ph.D. thesis relate to 
each other. The diet analysis o f field-caught Neomysis integer (Chapter 2) and the experiments 
on its post-marsupial growth (Chapter 3) were performed parallel in time. Both studies 
delivered the basic knowledge for the following research question on how food quality 
influences post-marsupial growth (Chapter 4 and 5). Although the intra-marsupial development 
comes earlier in the life-cycle o f N. integer, we chose to deal with it only in chapter 6 because 
o f the different techniques used in comparison with the common one used in chapters 3, 4 and 5.

Figure 1: Scheme of the 
outline of the PhD thesis, 
indicating the relation 
between the different 
chapters. Arrows indicate 
the results that lead to new 
research questions.

Description of 
diet in estuaries 

CHAPTER 2

Literature review 
CHAPTER 1

&
Gaps in knowledge

Growth

Post-marsupial Inter-marsupial
growth growth

Effect of Effect of
salinity salinity

& temperature & temperature
CHAPTER 3 CHAPTER 6

J3 -
Effect of
food quality
CHAPTER 4
CHAPTER 5

Other
gaps





Chapter 1
74294

Neomysis integer: a review

A B S T R A C T  ---------------------------------------------------------------------------------------------------------------------------------------

The present chapter aims to be a literature review on the brackish water mysid Neomysis 
integer, with focus on its feeding ecology, life history aspects, behaviour, physiology, 
biochemical composition, bioenergetics and ecotoxicology. All records on the species, available 
from literature, are listed as an appendix. The review aims to identify the state-of-the-art and the 
gaps in our knowledge on the species.

Abundant information is available on the distribution patterns o f Neomysis integer in 
enclosed brackish waters and estuaries, although on has to keep in mind that the swarming 
behaviour, vertical and horizontal migration, segregation o f life stages and escape behaviour of 
N. integer (all not fully understood yet) can handicap the quantification o f the density and 
biomass, and may hamper the calculation o f the production and the study o f the life history of 
the species.

There is a great need for the description o f the feeding ecology o f key species -  like 
Neomysis integer -  in estuarine environments for the development o f accurate C-flux models 
and the description of detritus based food web patterns, including the quantification o f transfer 
coefficients. Although N. integer is described as an important food item for many demersal and 
pelagic fish, larger epibenthic crustaceans and wading bird species, quantitative information is 
still lacking on its own diet, feeding rates, feeding patterns and selectivity (especially for 
populations living in estuarine conditions).

Numerous data are available on the life history o f Neomysis integer over a wide 
geographical and habitat range, although southern populations (< 51°N) are more poorly known. 
Variations are observed between these populations in the number o f cohorts, size-at-maturity, 
fecundity and growth rate. Growth and reproduction are affected by prevailing environmental 
conditions as generally observed in Crustacea. However, in the eurythermie and euryhaline 
Neomysis integer, typically living in the highly dynamic estuarine environment, this is not 
thoroughly studied yet. Details on how intra- and post-marsupial development, moulting 
processes and reproduction are affected by a wide range in salinity, temperature, food quantity 
and quality are still lacking.

The biochemical composition and the ecophysiology o f Neomysis integer are well 
known and several methodologies to calculate the energy budget have been applied to the 
species.



There has been an increasing interest in using the brackish water mysid Neomysis 
integer as a toxicological test species for Western European estuarine systems. Mortality, 
respiration, swimming behaviour, testosterone metabolism and energy budgets are well 
established endpoints for bioassays with the species. However, more data on its growth, 
moulting and development are needed (at the individual- and population-level). The influence of 
prevailing environmental variables on these processes, as well as their optimal range have to be 
known in order to develop optimal laboratory cultures and to differentiate between chemically- 
induced variability and natural variability in toxicity testing.

Because Neomysis integer is often used as a model species to study the ecology of 
brackish water crustaceans, and because the species is easy to sample qualitatively in shallow 
water and easy to keep in the laboratory, many studies and data are available concerning the 
species. The older studies (< 1980) are often superficial or based on a limited number of 
observations; many data are often unpublished (as Ph.D. theses or reports) or published in local 
journals. Information extracted from this ‘grey ’ literature has been integrated in the review. In 
the last 10 years, more in-depth studies have been published concerning aspects o f the feeding 
ecology, population dynamics, physiology, bioenergetics, behaviour, and ecotoxicological use 
o f the species, as well as on molecular work.

One should consider this chapter as a reference work, to refer to when specific 
information on one o f the topics is needed. Reading o f the review is n o t  necessary to understand 
the context o f the following chapters. Since its content differs from the remainder o f the thesis, 
the chapter has a separate reference list and font. It has a separate table o f contents to help to 
navigate through the text. The author’s contributions (results presented in this thesis and some 
unpublished work) are highlighted in the text.



1 1NTRODUCTION............................................................................................................................................ 11

1.1 Taxonomy....................................................................................................................................................11
1.2 External morphology...................................................................................................................................11
1.3 Geographical distribution and habitats....................................................................................................... 13
1.4 Sampling.....................................................................................................................................................14
2 DISTRIBUTION PATTERNS..........................................................................................................................14

2.1 Density, biomass and associated species in estuaries..............................................................................14
2.2 Brackish ponds and lakes.......................................................................................................................... 18
2.3 Swarming behaviour....................................................................................................................................19
2.4 Segregation / Partitioning of the life stages................................................................................................19
2.5 Position maintenance in the estuary.......................................................................................................... 20
2.6 Vertical and horizontal migration................................................................................................................ 21
3 ROLE OF NEOMYSIS INTEGER IN THE FOOD WEB..................................................................................24

3.1 Predators.....................................................................................................................................................24
3.1.1 Predation pressure on Neomysis integer...................................................................................28
3.1.2 Predator avoidance mechanisms.............................................................................................28

3.2 Diet of Neomysis integer...............................................................................................................................29
3.2.1 Qualitative diet descriptions.....................................................................................................29
3.2.2 Feeding modes...........................................................................................................................30
3.2.3 Quantitative diet descriptions..................................................................................................... 30
^  Stomach content analyses........................................................................................................... 30
■=> Fullness index................................................................................................................................31
<=> Ontogenic shifts and sexual variation..........................................................................................31
!=> Temporal variation........................................................................................................................32
^  Feeding periodicity........................................................................................................................32
3.2.4 Isotope fractionation in the field................................................................................................. 33

3.3 Feeding rate.................................................................................................................................................. 34
^  Phytoplankton.............................................................................................................................34
^  Zooplankton..................................................................................................................................35
o  Phyto- and zoobenthos.................................................................................................................38
■=> Detritus and sediments.................................................................................................................38

3.4 Selectivity experiments..................................................................................................................................38
3.5 Structuring of Zooplankton and phytoplankton populations..........................................................................39
3.6 Diet overlap with coexisting species............................................................................................................. 40
3.7 Feeding appendages.....................................................................................................................................40
3.8 Gut morphology, chitinases and cellulases.................................................................................................. 41
3.9 Gut passage time..........................................................................................................................................43
3.10 Faecal pellets and coprophagy.................................................................................................................. 43
3.11 Starvation....................................................................................................................................................43
3.12 Feeding ecology and changing temperature and salinity.................................................................44
3.13 Survival, growth and reproduction on different diets.........................................................................45

4 LIFE HISTORY.................................................................................................................................................46

4.1 Seasonal dynamics of Neomysis integer populations in the estuary.......................................................... 46
4.1.1 Annual production...................................................................................................................... 47
4.1.2 P/B ratio: biomass-specific production.......................................................................................50

4.2 Number of cohorts or generations per year..................................................................................................50
4.3 Maximal longevity I life span.........................................................................................................................51
4.4 Size-at-maturity............................................................................................................................................. 51
4.5 Fecundity.......................................................................................................................................................53

4.5.1 Breeding season........................................................................................................................ 53
4.5.2 Brood size...................................................................................................................................55
4.5.3 Number of subsequent broods per cohort.................................................................................56
4.5.4 Mortality during intra-marsupial development I hatching success............................................57
4.5.5 Morphology of the developing embryos.....................................................................................57
4.5.6 Duration of the intra-marsupial development............................................................................ 58
4.5.7 Size, growth and intra-marsupial production of the embryos....................................................58
4.5.8 Instantaneous birth rate............................................................................................................. 59
4.5.9 Instantaneous rate of population change.................................................................................. 59



4.6 Mortality.........................................................................................................................................................59
4.7 Sex-ratio........................................................................................................................................................59
4.8 Field-based growth curves......................................................................................................................... 60
4.9 Laboratory-based growth curve..................................................................................................................60
4.10 Growth rate............................................................................................................................................... 61
4.11 Moulting.................................................................................................................................................... 62
4.12 Intermoult growth...................................................................................................................................... 63
4.13 Response of post-marsupial growth to temperature, salinity, food quality and quantity........................ 63
4.14 Effect of genotype on life history characteristics..................................................................................... 64

5 BIOCHEMICAL COMPOSITION................................................................................................................... 65

5.1 Dry weight and ash content........................................................................................................................ 65
5.2 Chitin content............................................................................................................................................. 65
5.3 Caloric content........................................................................................................................................... 65
5.4 C, N and P content; C:N ratio.....................................................................................................................66
5.5 Protein and amino acids content................................................................................................................66
5.6 Lipid content............................................................................................................................................... 67
5.7 Carbohydrate content................................................................................................................................. 69

6 ENERGY BUDGETS..................................................................................................................................... 70

6.1 Energy intake -  daily ration........................................................................................................................ 70
6.2 Specific dynamic action.............................................................................................................................. 70
6.3 Assimilation efficiency................................................................................................................................ 71
6.4 Egestion: faecal pellet production..............................................................................................................72
6.5 Egestion: excretion of soluble excretory product (N, P )............................................................................ 72
6.6 Growth........................................................................................................................................................ 73
6.7 Moulting...................................................................................................................................................... 73
6.8 Reproduction.............................................................................................................................................. 73
6.9 Respiration................................................................................................................................................. 73
6.10 Energy budgets........................................................................................................................................ 74
6.11 Cellular Energy Allocation........................................................................................................................ 75
6.12 Scope for growth...................................................................................................................................... 76

7 PHYSIOLOGY................................................................................................................................................77

7.1 Salinity tolerance........................................................................................................................................ 77
7.2 Temperature tolerance............................................................................................................................... 77
7.3 Oxygen tolerance....................................................................................................................................... 78
7.4 Ammonium tolerance................................................................................................................................. 78
7.5 Osmoregulation.......................................................................................................................................... 79
7.6 Respiration................................................................................................................................................. 79

7.6.1 Temperature effect...................................................................................................................80
7.6.2 Salinity effect............................................................................................................................80
7.6.3 Body size effect........................................................................................................................80
7.6.4 Gender effect........................................................................................................................... 80
7.6.5 Season effect...........................................................................................................................81
7.6.6 Other effects............................................................................................................................81
7.6.7 Field validation.........................................................................................................................81

8 ECOTOXICOLOGY................................................................................................................ .......................82

9 CONCLUSIONS............................................................................................................................................ 83



1 1NTRODUCTION

1.1 Taxonomy
The order Mysidacea (Crustacea: Peracarida) includes species that inhabit most aquatic 

environments from the open sea to inland water bodies, and from strictly marine to freshwater conditions. 
At present 1065 species of mysids have been described, distributed over 170 genera (Deprez etal., 2004; 
http://www.vliz.be/vmdcdata/nemvs). The genus Neomysis (Czerniavsky, 1882) consists of 17 species, of 
which at least 10 are confined to brackish water conditions (Mauchline and Murano, 1977; 
www.iorbis.org) . The only European representative is Neomysis integer (Leach, 1814).

Phylogenetic discussion: MYSIDA - MYSIDACEA

In the 80 -  90's of the 20th century the phylogenetic relationship of the constituent taxa of the 
Order Mysidacea were discussed in literature. Watling (1981; 1999) suggested that the Lophogastrida and 
the Mysidacea could not be considered as sister groups and that they both were rather related to the 
Eucarida than to the other orders of the Peracarida. The family Mysidae (to which Neomysis integer 
belongs) was considered to be part of the order Mysida (e.g. http://tolweb. org/tree?group=Peracarida; 
Kobusch, 1998).

However, based on a complex of 93 morphologic, anatomic and embryonic characters, Richter 
and Scholtz (2001) recently concluded that the taxa Mysida and Lophogastrida are indeed sister-groups 
within the monophyletic Order Mysidacea and that they are not separated from the other peracarid orders 
(Amphipoda, Mictacea, Spelaeogriphacea, Cumacea, Tanaidacea, Isopoda and Thermosbaenacea). The 
discussion continues ...In  the present work we use the term Mysidacea.

1.2 External morphology
Mysidacea are shrimp-like animals that are characterized by a marsupium within which the entire 

larval development takes place (cfr. opossum shrimps). The brood pouch is composed of two, three or 
seven pairs of lamellae (oostegites) attached to the thoracic limbs. The uropods consist of lamellar 
endopods and exopods forming a tail fan with the telson. The endopods usually possess a statocyst. The 
telson is always wider at the base than at the apex. The abdominal legs never have chelae. The shield-like 
carapax covers the greater part of the céphalothorax, but is not attached to it in the last thoracal 
segments. For a more detailed definition of the order we refer to Tattersall and Tattersall (1951).

Neomysis integer (Leach, 1814) has a slender habitus and grows up to about 17 mm in length 
(Figures 1, 2). Its transparent body has occasional brown pigmentation. The large, stalked eyes are 
conspicuous. The well developed carapax, protecting the head and thorax, leaves the 7th and 8lh thoracic 
somites uncovered and has a short rostrum. The two pairs of antennae are long and biramous. In adult 
males, the peduncle of the first antennae (antennule) bears a setose lobe (lobus masculinus) between the 
flagellae. The outer extension (exopod) of the second pair of antennae, takes the form of a flattened plate, 
known as the antennal scale. It is an important diagnostic characteristic for the species. The antennal 
scale of N. integer is very long and narrow, tapering to a point. It is bordered along its margins with setae 
and has a distinct distal suture.

The thoracopods are well developed and biramous, but lacking branchiae. The exopods are 
fringed and look feather-like. The adult female has a marsupium consisting of two pair of brood lamellae 
(oostegites) present on the 7th and 8th thoracopods. The lamellae are thin-walled, transparent concave 
plates fringed with strong, short setae that interlock ventrally to form a closed chamber below the thorax. 
Typical for the genus Neomysis are the two pairs of median finger-like processes extruding from the 
sterna of the last 2 thoracic somites into the marsupial cavity.

http://www.vliz.be/vmdcdata/nemvs
http://www.iorbis.org
http://tolweb


Figure 1: (a) habitus of the brackish 
water mysid Neomysis integer, (b) 
Céphalothorax in lateral view; (c) 
Céphalothorax in dorsal view. Anti: 
1st antennae (antennules), Ant2: 2nd 
antennae, Asc: Antennal scale, Cpx: 
Carapax, The*0: exopodite of
thoracopod, Fp: faecal pellet, G: gut, 
M: (developing) marsupium, R:
rostrum, St: Stomach, T: Telson, Uro: 
Uropods. Scale bar: 1 mm (Pictures: 
Offermans, R.)

The abdominal limbs (pleopods) are less developed, with the exception of 4th pair in adult males. 
They have an elongated 4th pleopod with a terminal pair of barbed setae. The last pair of pleopods is 
biramous and flattened, and forms the tail fan (uropods). The endopods of the uropod are as long as the 
telson, and have a statocyst at their basis. The two endopods are armed with a dense row of comb-like 
spines on their ventral surface near the inner margin. The exopods are one and a half times as long as the 
telson. They are not armed with spines but do have setae all round. The telson is long, triangular in outline 
with a narrow, uncleft apex (cfr. integer). Short spines border the lateral margins, while the apex has two 
pairs of spines of which the outer are twice as long as the inner.



Figure 2: Habitus of adult male (a), female (b) and ovigerous female (c) Neomysis integer (scale bar 5 mm). Details 
on antennal scale (d ), 8th thoracic limb of male (e), 4th pleopod of male (f), uropod (g) and telson (h); scale bar 500 
pm. (Drawings from: Tattersall and Tattersall, 1951).

The morphology of the feeding appendages and the intestine of Neomysis integer are treated in 
paragraphs 3.7 and 3.8. The description is adapted from Tattersall and Tattersall (1951), Mauchline 
(1980), Hayward and Ryland (1995), http://www.marlin.ac.uk/species/taxon Neomvsisintecier.htm and 
http://ip30.eti.uva.nl/bis/crustacea.php. The telson and antennal scale, important diagnostic characteristics 
for the species, are particularly susceptible to injury, causing atypical morphology which may lead to 
misidentification (Hayward and Ryland, 1995).

1.3 Geographical distribution and habitats
Neomysis integer is one of the most common mysids along the Atlantic coast of Western Europe. 

It is a hyperbenthic, euryhaline and eurythermie species, confined to the brackish environment within 
estuaries (Tattersall and Tattersall, 1951). It is also abundant in brackish (oligohaline to freshwater) inland 
water bodies, which were connected to the sea in recent geological history, i.e. brackish water ponds, 
lakes, ditches and canals (Tattersall and Tattersall, 1951; Bremer and Vijverberg, 1982). Occasionally, the 
species is reported for the open sea in British and Belgian continental waters (Kramp, 1910; Makings, 
1977; Dewicke, 2002), but it is very uncommon there. N. integer is also reported as a resident species in 
the Belgian surfzone water (Lock et ai, 1999, Beyst, 2001; Beyst etal., 2001), although with low densities 
(< 1 ind nr2).

http://www.marlin.ac.uk/species/taxon
http://ip30.eti.uva.nl/bis/crustacea.php


Neomysis integer is commonly recorded along the Atlantic coastline and Britain between the 
longitudes 68° N (coast of Norway, Lofoten) and 36° N (South coast of Spain) and in the Baltic Sea (Figure 
3, Appendix 1). The species is reported to occur more to the North (68 to 71 °N), up till the Murman coasts 
of the Barents Sea and the White Sea (Wagner, 1885 referring to Jarzynsky), but recent observations do 
not confirm this (Väinölä, personal communication). Also, the two records of N. integer along the 
Mediterranean coastline in the canal d'Arlès and the mouth of the Rhone estuary (Bacescu, 1941) have 
not been confirmed since (Wittmann and Ariani, 2000).

1.4 Sampling
Mauchline (1980), Janssen (1985) and Mees and Jones (1997) summarize the different quantitative 
sampling techniques that can be applied to catch Neomysis integer in a variety of habitats. One should 
keep attention to the fact that the swarming behaviour, the vertical and horizontal migration, the often 
apparent segregation of the life stages and the escape behaviour of N. integer can handicap the exact 
estimation of their abundance and biomass, and hampers the calculation of the production and the study 
of the life history of the species (Mauchline, 1980; Arndt and Jansen, 1986; Thiel, 1992; Mees et al.,
1994).

2 Distribution patterns

2.1 Density, biomass and associated species in estuaries
Because of its sediment affinities (Hough and Naylor, 1992; David et al„ 2005), Neomysis integer 

can be considered as an element of the hyperbenthos (syn. suprabenthos), i.e. the fauna living in the 
lowest meter of the water column. Baseline studies on the spatial and temporal patterns in the estuarine 
hyperbenthic community, and on the contribution of N. integer, have been published for several NE 
Atlantic estuaries (Table 1).



Table 1: Available studies on the spatial and/or temporal distribution of Neomysis integer in the 
hyperbenthos of western European estuaries.

Latitude Estuary Source Max density (biomass)

53°N Elbe Bernât et al., 1994; Köpke and Kausch, 
1996

210 m 3 (bottom) 
4-360 m 3 (surface)

53° N Weser Schuchardt et al„ 1989; Haesloop, 1990 -

53° N Jade Bay Apel, 1992 -

53° N Eems Mees et al., 1995 22 nr2

53° N Conwy Hough and Naylor, 1992 -

52° N Shannon O'Sullivan, 1984 -

51 °N Severn Bamber and Henderson, 1994; Moore et al., 
1979

-

51 °N Schelde Subtidal: Mees and Hamerlynck, 1992; 
Mees et al., 1993; 1993b; 1994; 1995

Marshes: Cattrijsse et al., 1994; Hampel et 
al., 2003; 2003b

160-190 m 2 
(225mgADW m-*)

240 m 3
(840mgADW m 3)

50° N Tamar Milner, 1986
Moffat and Jones, 1992; Moffat, 1996

1400 m-3 
200 m 3

49° N Seine Zouhiri et al., 1998; Mouny et al., 1996; 
19 9 8 ,2000; Dauvin et al., 2000

6 6 7 -2 1 6 0  m 3 
(200mgADW m 3)

45° N Gironde Sorbe, 1980; Mees et al., 1995; David et al., 
2005

26 m 2

43°N Ria Deba San Vicente, 1993; 1996 < 0.5 m 2

43°N Ria Urola San Vicente, 1993; 1996 < 0.5 m 2

43°N Ria Oria San Vicente, 1993; 1996 < 0.5 nr2

43° N Ria Uremea San Vicente, 1993; 1996 < 0.5 nr2

43° N Ria Bidasoa San Vicente, 1993; 1996 Absent

40° N Ria de Aveiro Cunha etal., 1999 -

37° N Ria de Alvor Rodriguez and Dauvin, 1987 -

36° N Bay of Cädiz Drake et al., 1997 -

36-37° N Guadalquivir Drake et al., 2002 9 m 3
(59mqWW nr3)

The hyperbenthic fauna in the upper reaches of European estuaries is dominated by the mysids 
Neomysis integer and Mesopodopsis slabberi (Sorbe, 1980; Mees et al., 1993; 1993b; 1994; 1995; Moffat 
and Jones, 1992; 1993; Moffat, 1996; Kopeke and Kausch, 1996; Drake et al., 2002; David et al., 2005). In 
winter, the latter species is virtually absent in the estuary (e.g. Schelde, Tamar, Jade). Throughout the 
year N. integer occupies the upper, oligohaline zone (e.g. Moffat and Jones, 1992; Mees et al., 1994; 
1995), both in the subtidal and the adjacent marshes (Ralph, 1965; Mees et al., 1993b). It is generally 
found in lower saline water than M. slabberi and recorded right up to the point at which the high-tide 
salinity is 0.1 psu (Percival, 1929; Sorbe, 1980; Zouhiri etal., 1998).



Neomysis integer is typically associated with the zone of highest suspended matter 
concentrations (Bernât et al., 1994; Mees et al., 1995; Moffat, 1996; Kopeke and Kausch, 1996; Fockedey, 
unpublished).

The (daytime) vertical distribution of Neomysis integer in and around the maximum turbidity zone 
of the Elbe, Schelde and Gironde estuaries was studied by Fockedey (unpublished -  EU project 
MATURE). By sampling a shallow system in two depth strata (near the surface and near the bottom) with 
a High Speed Plankton Sampler (mesh size 1 x 1 mm), the entire water column (generally < 10 m) was 
considered to be sampled and the relative abundance of N. integer in the two layers was compared.

In turbid waters, i.e. when suspended particulate matter concentrations were higher than 200 mg 
|-\ the Neomysis integer population was evenly distributed over the water column, as was the case for the 
maximum turbidity zone of the Elbe and along the entire longitudinal transect of the Gironde. In the 
Schelde estuary, N. integer was predominantly present near the bottom during daytime, as turbidity is 
relatively low compared to the two other estuaries.

In many estuaries this zone of maximal turbidity at the fresh-water/brackish-water interface 
(maximum turbidity zone MTZ or estuarine turbidity maximum ETM) is associated with low dissolved
oxygen levels (Costa and Elliott, 1991; Baeyens et al., 1998; Mouny et al., 2000; Roast et al., 2002),
especially in summer periods. These low dissolved oxygen levels cause problems for metazoan life. 
Concentrations lower than 40 % oxygen saturation level (i.e. 3.3 -  5.1 mg M at 5 -  25 °C) are limiting for 
N. integer (Mees et al., 1995), while concentrations lower than 7 mg M produce a barrier for upstream 
migration of estuarine fish (Costa and Elliott, 1991). N. integer is found in the Schelde at a much higher 
salinity (1 0 -1 5  psu) than in other, less organically polluted estuaries where the population maximum is 
found at around 3 - 5  psu. In the polluted Schelde, the maximal population densities are found near the 
limit of viable oxygen concentrations regardless of salinity (Mees et al., 1993,1993b, 1994; 1995), where 
no adverse oxygen conditions hamper their development.

In shallow estuarine water, Neomysis integer is often associated with the coexisting mysid
Praunus flexuosus (Muus, 1967; Mauchline, 1971; Välipakka, 1992). P. flexuosus is more restricted to 
intertidal areas and occurs in much lower numbers in comparison with N. integer. Other typical associated 
hyperbenthic species in the subtidal are Gammarids (Gammarus zaddachi, Gammarus saiinus), the 
isopod Eurydice pulchra, shrimp (Crangon crangon, Palaemonetes varians, Palaemon longirostris) and 
fish (Pomatoschistus microps, P. minutes, Pleuronectes flesus and larvae and juveniles of clupeids) 
(Moore etal., 1979; Sorbe, 1980; Rudstam etal., 1986). Typical associated Zooplankton species are the 
calanoid copepods Eurytemora affinis and Acartia spp. (Moore et al., 1979; Castel, 1993; Soetaert and 
Van Rijswijk, 1993; David et al„ 2005). The endobenthic fauna of the oligohaline zone of the estuary is 
impoverished (mainly Corophium sp„ oligochaetes, and chironomids), due to the high turbidity clogging 
their feeding mechanisms, salinity stress and pollution, in addition to possible regular dredging of the 
upstream shipping channels (Pearson and Rosenberg, 1987; Ysebaert etal., 1993; Mouny etal., 1998).

Densities
Most authors (e.g. Moore et al., 1979; Mees et al., 1994) report distinct peaks of density (and 

biomass) of Neomysis integer in spring and summer, while densities generally drop in wintertime. 
Seasonal fluctuations in the densities can be partially explained by periods of active breeding when the 
population increases in size or by predation and increased winter mortality when the densities drop 
(Mauchline, 1971c; Gameson, 1982), although migration can also take part in explaining variable densities 
(Schuchardt et al„ 1989). The geographical position of the population within the estuary shows tidal 
variation due to advection within the tidal cycle and shows seasonal variation due to the freshwater 
discharge, with a more downstream position in winter and a more upstream position in summer and 
autumn (Sorbe, 1980; Schuchardt et al., 1989; Hough and Naylor, 1992; Kopeke and Kausch, 1996; 
Mouny etal., 1996).



In the subtidal of the Schelde estuary, the peak densities were 160 -  240 ind nr2 in spring and 
summer (Mees et al., 1994; 1995; Mees and Jones, 1997). In the marshes of this estuary, maximal 
densities of 240 ind m 3 were recorded in early summer (Cattrijsse et al„ 1994; Hampel et al., 2003; 
2003b). In the bottom waters of the main channel in the Elbe estuary, the densities of N. integer were 
more or less constant during the day (210 ind nr3), while at the surface densities fluctuated between 4 and 
360 ind m 3, with maximal values at the beginning of the ebb tide, especially at night (Bernât et ai, 1994; 
Kopeke and Kausch, 1996). Moffat and Jones (1992) and Moffat (1996) reported maximal N. integer 
densities of 200 ind nr3 in the Tamar estuary in late spring. Their value is considered to be an 
underestimate due to inefficient sampling of the larger immatures and adults with fine meshed plankton 
nets. In the same estuary, Milner (1986) reported a density of up to 1400 ind m 3 during summer. For the 
meso-oligohaline area of the Seine estuary, maximal densities of 667 and 2160 ind nr3 were reported for 
spring and autumn respectively (Zouhiri et al., 1998; Dauvin et al., 2000). In the Gironde and Eems 
estuaries, maximum densities were much lower in summer, respectively 26 and 22 ind nv2 (Mees et al., 
1995). In the Guadalquivir, mean density of N. integer m s  9 ind nr3 in the surface water (Drake et al„ 
2002). In the small Rias Deba, Urola, Oria and Uremea the estimated densities never exceeded 0.5 ind 
rrr2 (San Vicente, 1993). See Table 1.

Neomysis integer is the most widespread mysid species in the Baltic Sea (Köhn, 1992). It is a 
typical species of very shallow waters (Välipakka, 1992) with densities of 100, 10 and 1 ind nr3 at 
respective depths of 0.5, 2 and 5 metres (Weslawski, 1981). In shallow Danish estuaries and lagoons the 
maximal densities of N. integer can amount to 3000 -  4000 ind m 2 (Muus, 1967). Rasmussen (1973) even 
reported 50000 ind m 2. In open water, the species is far less abundant than the co-occurring Mysis mixta 
and Mysis relicta (Margonski and Maciejewska, 1999). Generally, the densities of N. integer are higher 
along the southern coasts of the Baltic Sea in comparison with the more northern areas (Thiel, 1992). In 
the northern Baltic region, with low densities of 24 ind nr2 (Hansson, 1990) N. integer contributes only 3 % 
of the total mysid biomass (Rudstam et al., 1992). In the South, densities between 160 ind rrr2 (Arndt and 
Jansen, 1986) to more than 600 ind m 2 (Thiel, 1992) were reported for shallow stations, while in open 
waters the densities reported by Margonski and Maciejewska (1999) were only 15 ind nr2. In the middle 
reaches of the Baltic, along the Swedish coast of the Baltic proper, maximal densities of N. integer were
24 ind nr2 (Rudstam etal., 1986) and in the Gulf of Riga (eastern Baltic, Latvia) maximal densities were 20 
-  40 ind m 2 (Kotta and Simm, 1979).

Biomass
The standing stock available at a certain moment is usually estimated by calculating the available 

biomass per surface or volume unit (in dry weight or ash free dry weight) using the length frequency 
distributions and a length-dry weight regression (Table 2). These regressions do not show significant 
differences between males and females (Beattie and de Kruijf, 1978; Mees etal., 1994). The relationship 
shows no variation with the time of the year (Beattie and de Kruijf, 1978; Mees et al., 1994), although 
Aaser et al. (1995) constructed separate regressions for winter and summer. When formalin-preserved 
animals are used for the biomass determination, some authors (e.g. Bremer and Vijverberg, 1982) use a 
correction factor for the weight loss and add 10 % to the calculated dry weight (Beattie, 1982). Some 
studies directly weigh the total biomass available as wet weight. The (dry weight) standing stock is then 
calculated as 22 % of the wet weight for Neomysis integer (Maciejewska and Opalinski, 2002). The ash 
weight amounts approximately 10 % of the dry weight of N. integer (Astthorsson, 1980). The ash free dry 
weight thus is 90 % of the dry weight. Biomass can also be expressed as volume through the water- 
displacement method based on the principle that an immersed mass displaces its own mass of water 
(Margonski and Maciejewska, 1999).

In the Schelde estuary, the standing stock biomass of Neomysis integer peaked in late spring 
with 225 mgADW m 2 (Mees et al., 1994). In the marshes along this estuary, maximal biomass values of 
840 mgADW m 3 were measured in the same period (Cattrijsse et ai, 1994). In the Seine estuary, the 
biomass of the species peaked in September with 200 mgADW nr3 (Dauvin et al., 2000). In the 
Guadalquivir, the mean biomass of N. integer only amounted to 58 mgWW nr3, i.e. 13 mgDW m 3 (Drake 
et al., 2002). In the southern Baltic the maximal biomass was estimated as 620 (Arndt and Jansen, 1986) 
and up to 9.5 g WW m 2 (i.e. 2100 mgDW nr2) in the shallow areas (Thiel, 1992). See table 1.



Table 2: Length -  weight regressions available for Neomysis integer.

InADW = -5 .539+ 2.267 InSL n=100; r2=0.997 Mees etal., 1994

lnDW* = 1.432 + 2.853 InSL n=9, r2=0.99, p<0.001 Irvine etal., 1995

Log DW = 2.7847 log TL -  2.5229 N=132; r=0.99, p<0.01 Astthorsson, 1980

DW = 0.00391 TL240 n=15; r2=0.998 de Kruijf, 1977

DW = 0.0041 SL278 n=51; r2=0.97, p<0.0001 Gorokhova and Hansson, 1999

DW = 0.00254 TL2 7676 r=0.99 Jansen, 1985c; Arndt and Jansen, 1986

DW = 0.00638TL2435 n=100; r2=0.98; p<0.0001 Aaser etal., 1995

DW = 0.00347 TL2-7046 (winter) n=50; r2=0.98; p<0.0001 Aaser etal., 1995

DW = 0.00621 TL2 4873 (summer) n=50; r2=0.98; p<0.0001 Aaser etal., 1995

DW = 0.0016 TL3 086 n=201; r2=0.97 Winkler and Greve, 2004
logioDW = -0.58 + 2.64 logioTL N=45; r=0.99 Summers, 1980

WW = 0.0022715 TL3 46 r=0.996 Jansen, 1985c; Arndt and Jansen, 1986

With DW: dry weight (in mg); DW: dry weight (in (jg); WW: wet weight (in mg); ADW: ash free dry weight (in mg); SL: 
Standard length, i.e. from the front of the eyes to the last abdominal segment (in mm); TL: Total length, i.e. from the front 
of the eyes to the end of the telson or the end of the uropods excluding the setae (in mm) TL= 1.165 SL - 0.080 (n = 112; 
rz = 0.997; p < 0.001; Mees et al., 1994); TL = 3.78 CL (Schuchardt et al., 1989); CL: Carapax length, from the basis of 
the eyed to the median end of the carapax, in lateral view (in mm); CL= 0.266 SL + 0.439 (n = 112; r2 = 0.908; p < 0.001; 
Mees et al., 1994).___________________________________________________________________________________________

2.2 Brackish ponds and lakes
Neomysis integer is common in brackish lakes and ponds which were once connected to the sea 

until recent historical times. In those enclosed brackish water bodies, the N. integer population can 
undergo blooms and crashes (e.g. Barnes etal., 1971; Parker and West, 1979; Fockedey and Remerie, 
unpublished). Its abundance and biomass can vary considerably between years and between lakes within 
the same district (Bremer and Vijverberg, 1982; Aaser etal., 1995). In the Frisian brackish lake district, the 
peak densities reported for the Bergumermeer were 1000 ind m 2 in one year and 5800 ind nr2 in another 
year (Beattie and de Kruijf, 1978) or 6 ind m 2 in the Tjeukemeer in one year and 110 ind m 2 in another 
year (Vijverberg, unpublished). In the pond Galgenweel (Belgium) maximal densities of 1100 ind nr2 were 
recorded in the 90’s (Soselisa, 1994; Fockedey, unpublished), but since 2002 densities dropped to < 1 ind 
m 2 (Verslycke et al., 2000; Fockedey and Remerie, unpublished). The factors controlling these large 
population fluctuations remain to be determined. Annual variations in densities can be caused by adverse 
winter conditions (e.g. low oxygen concentrations due to ice cover). Another reason for a low standing 
stock in some years might be due to varying levels of predation by young and larval fish. Also, high 
summer temperatures, combined with the low salinity of these lakes, might cause a population crash due 
to physiological constraints of N. integer. In deeper lakes the colder, but often anoxic, hypolimnion is not a 
refuge from the warm surface layers (Parker and West, 1979). The decline of a N. integer population in the 
Belgian pond Galgenweel might be related to the invasion of the Pontocaspian invader Hemimysis 
anomala (Verslycke etal., 2000).

Some lakes can support this very high density and biomass, while other lakes sustain a 
significantly lower order of densities. A high density of 1100 -  10400 ind nr2 was reported for Neomysis 
integer in Danish, Belgian and English brackish lakes (Irvine et ai, 1993; 1995; Jeppesen, et ai, 1994; 
Soselisa, 1994; Aaser et ai, 1995), while maximal densities of 6 ind nr2 are registered in the Slotermeer 
(Bremer and Vijverberg, 1982) or 0.5 ind m 2 in Lake Grevelingen (Platenkamp, 1983). The species is 
mainly abundant in those ponds or lakes with poorly developed submerged vegetation. According to 
Espeel (1982), wave action in these ponds is stronger due to the absence of macrophytes and more 
detritus is brought into suspension, providing a food resource for N. integer.



High densities of Neomysis integer in brackish lakes are often associated with a low predation 
pressure by fish. High densities of 3000 -  13000 N. integer ind rrr3 are present in Danish brackish lakes 
with low fish biomass (Aaser et al„ 1995; Jeppesen, et ai, 1994) and a removal of 75 % of the fish stock 
in a Dutch Lake resulted in a major increase in N. integer density (Hosper and Meijer, 1993; Meijer et al.,
1994). When fish predation decreased due to a toxic bloom, the population size of N. integer substantially 
increased in Hickling Broad, a brackish lake in England (Irvine etal., 1993). However, high densities of N. 
integer in brackish lakes may also reflect the hypertrophic character of the water mass (Aaser et al.,
1995), where the species even enhances eutrophication, both directly and indirectly (see later paragraph). 
In the brackish lake Hickling Broad, the N. integer population itself was suppressed by toxic algal blooms 
stimulated by the ingress of black-headed gull guano (Bales etal., 1993).

The maximal biomass of Neomysis integer (in summer) in brackish lakes can be less than one 
mg (Bremer, 1980), several mg (Platenkamp, 1983), around 1g (Soselisa, 1994; Aaser etal., 1995; Irvine 
etal., 1995) or in the order of several grams DW nv2 (Beattie and de Kruijf, 1978).

In brackish lakes and pools, Neomysis integer is often associated with Palaemonetes varians 
(Norman, 1892; Kemp, 1910) and Pleuronectes flesus (Parker and West, 1979). In the more saline Lake 
Grevelingen, the species lives together with Praunus flexuosus, Idotea chelipes and Gammarus locusta 
(Platenkamp, 1983).

2.3 Swarming behaviour
Large line-formed swarms of Neomysis integer have been observed in shallow estuarine waters 

(Percival, 1929; Mauchline, 1971c; Arndt and Jansen, 1986; Walesby, 1973; Kopeke and Kausch, 1996). 
The shoals are one to two meters across by up to 10 m long and stay approximately at 10 cm under the 
water surface (Parker and West, 1979). At the turn of the tide at flood and some time afterwards during 
ebbing, the shallow water along the edge of the estuary and the edges of mud banks can be overcrowded 
with N. integerlhus forming a thick 'mysid soup’ (Percival, 1929). Kopeke and Kausch (1996) encountered 
far higher densities (1230 ind irr3) in a shallow area of the upper Elbe estuary as compared to the subtidal 
(210 ind m 3). Also, in the Baltic and in brackish water ponds the species has an extremely aggregated 
spatial distribution (e.g. Espeel, 1982; Arndt and Jansen, 1986; Rudstam etal., 1986).

Although difficult to sample quantitatively (Mauchline, 1971c; Arndt and Jansen, 1986; Thiel, 
1992), Roast et al. (2004) made an attempt to realistically estimate the maximal density of Neomysis 
integer swarms present over a subtidal flat at low tide by using a dip net and a Perspex cylindrical drop 
trap. They obtained densities of 11000 to 27000 ind m 2 or 36000 to 89000 ind nr3. The volume taken by 
the swarms was extremely variable, ranging from 0.07 to 1.1 m3 and containing from 6000 to 51000 
individuals.

Next to creating a protection against predation (see later paragraph), increasing the reproductive 
success and helping in maintaining position (Clutter, 1969), living in a shoal may improve the filtration of 
suspended food by creating unidirectional currents (Zelickman, 1974). Individuals in large swarms had a 
decreased individual respiration rate and saved energy (Ritz et al., 2001). For other aggregating 
crustaceans like Penaeids (Cortoni Valenti et ai, 1993), daphniids (Burns, 2000) and euphausiids 
(Haywood and Burns, 2003), it has been demonstrated that the cost of forming aggregations lead to a 
decreased growth rate and a lower asymptotic length (possibly by allelopathy). This is not yet 
demonstrated for Neomysis integer.

2.4 Segregation I Partitioning of the life stages
It has often been observed that juvenile and adult stages of Neomysis integer shoal separately 

(Tattersall and Tattersall, 1951; Kinne, 1955; Milner, 1986). Adults of N. integer ate frequently found in 
dense swarms near the shore margins or in tidal marshes at certain phases of the tidal cycle in estuaries, 
while juveniles stay in deeper water (Valipakka, 1992). Sorbe (1980) described the reverse situation in the 
Gironde estuary with the juveniles occupying the shore, while the adults prefer the subtidal reaches.



Ralph (1965) noted that females utilize the marsh creeks, while newly released juveniles in the smallest 
size classes and males did not co-occur there. Cattrijsse et al. (1994) observed juveniles to be more 
present in the marsh than in samples from the subtidal of the Schelde estuary. Kinne (1955), Parker and 
West (1979) and Platenkamp (1983) did not find the early post-marsupial juveniles (2 -  4 mm total length) 
in bottom samples. This segregation of juveniles from the adults can help to prevent cannibalism 
(Välipakka, 1992). The swimming speed of adults and juveniles of a species can differ considerably, with 
the result that a mobile shoal or school becomes a self-sorting mechanism, separating age groups and so 
producing swarms of individuals of similar body size (Clutter, 1969). Differential swimming speed of 
juveniles and adults has not been investigated yet for Neomysis integer.

Some authors found the larger Neomysis integer situated more upstream along the subtidal, 
longitudinal estuarine gradient than the juveniles. In the Tamar estuary, there is some evidence that the 
mature and immature mysids move upstream to occupy the lower salinity zones during some periods of 
the year (spring and September), while juveniles are fairly evenly distributed along the salinity gradient 
(Moffat, 1996). Smaller juveniles were found in higher salinities than the larger size classes of juveniles 
(Milner, 1986; Moffat, 1996). In the Conwy, Gironde and Weser estuaries, males occurred more commonly 
down-estuary, and gravid females and juveniles more upstream (Sorbe, 1980; Schuchardt et at., 1989; 
Hough and Naylor, 1992). Also, Astthorsson (1980) observed a geographical segregation between the 
sexes in the Ythan. The different life stages must be able to select particular physico-chemical regimes 
(mainly temperature, salinity and current speed) in order to achieve the partitioning seen in the population 
along the gradient. The occurrence of ovigerous females higher up the estuary may relate to the selection 
of optimal salinity for embryonic development (Hough and Naylor, 1992). Small sexual and/or ontogenic 
differences in the substrate preference might also be the cause of this segregation in brackish lakes 
(Beattie and de Kruijf, 1978).

2.5 Position maintenance in the estuary
In estuaries, Neomysis integer faces the problem of retaining its position against conditions of net 

seaward transport (Hough and Naylor, 1992; Roast et ai., 1998). In general, there are three main control 
mechanisms for the positioning of invertebrate populations in estuarine systems: (1) reproductive 
compensation of seaward losses, (2) behavioural adaptations like alterations in swimming activity at 
different tidal phases, and (3) use of hydrodynamic processes within the estuary (e.g. Siegfried et ai, 
1979; Wooldridge and Erasmus, 1980; Wooldridge and Bailey, 1982; Moffat and Jones, 1993; Schlacher 
and Wooldridge, 1994).

Position maintenance has a high environmental relevance, as the mysids have to maintain in 
areas of optimum feeding conditions, lowest competition and lowest vulnerability to predation. However, 
due to the position maintenance, the animals experiences tidal and seasonal salinity and temperature 
fluctuations (Roast et ai, 1998). In the Looe estuary for example, Neomysis integer is exposed to daily 
temperature fluctuations of 5 to 15 °C and daily salinity fluctuations of 1 to 34 psu (Roast etal., 1998). In 
the Schelde the daily and seasonal fluctuations are smaller (Mees et al., 1993), while in other estuaries 
like for example Elbe, Weser, Conwy and Gironde the tidal variations are notable (Sorbe, 1980; 
Schuchardt etal., 1989; Hough and Naylor, 1992; Kopeke and Kausch, 1996; Mouny etal., 1996).

Neomysis integer maintains its position in estuaries by a combination of the three previously 
described factors: by a reproductive compensation through the production of relatively large numbers of 
juveniles per brood, by using hydrodynamic processes within the estuary (Moffat and Jones, 1993) and by 
an adapted swimming behaviour (Roast et al., 1998). It migrates during the ebbing tide laterally out of the 
main channel towards the shallow areas with lower current velocity. By horizontal lateral movements prior 
to low water tide, N. integer can take advantage of the upstream transport provided by the subsequent 
flood tide and thereby compensates for the downstream drift (Kopeke and Kausch, 1996). The mysids stay 
predominantly close to the bottom during the peak ebbing tide. At the low tide and the beginning of the 
flood tide, N. integer undertakes vertical and lateral migration to reach the surface of the water in the 
channel of rapid current flow in order to be transported upstream (Kopeke and Kausch, 1996; Fockedey, 
unpublished).



In laboratory experiments, Hough and Naylor (1992) demonstrated a maximum swimming activity 
by Neomysis integer after the time of the expected high tide, which indicates that there is an endogenous 
ebb-phased circa-tidal rhythmicity. This result contrasts with the above described field data to prevent 
displacement of the animals out of the estuary. In general, mysids (also N. integei) exhibit positive 
rheotactic behaviour and swim forward into the current at low current velocities (Parker and West, 1979; 
Hough and Naylor, 1992; Roast etal., 1998). At velocities greater than 12 cm s 1, position maintenance of 
N. integer breaks down (Roast et al., 1998) and animals are displaced by the current. In the East Looe 
river estuary (UK), N. integer is generally only present in areas where current velocities do not exceed 15 
cm s 1 (Roast et al., 1998; Lawrie et ai, 1999). Persistent swimming throughout the ebb tide under 
endogenous control, coupled with the rheotactic behaviour prevents the N. integer individuals occupying 
shallow zones of stranding in a pool in the intertidal. Aggregations of N. integer in imminent risk of 
stranding initially head into the current, but as the water level drops, and before a pool is completely cut 
off, the species swims with the current draining from the pool and enters the stream before finally re
orientating and swimming into the current (Hough and Naylor, 1992). In the inner part of Arcachon Bay 
near the mouth of the I'Eyre river, a substantial part (12 %) of the macrobenthic community of intertidal 
mudflats sampled during ebb consisted of (stranded) N. integer (Bachelet and Dauvin, 1993).

As swimming speed is an important factor in the position maintenance of the species, it is likely to 
be beneficial for the mysid to utilize any available shelter in order to conserve energy (Roast etal., 1998b). 
The species aggregates in shallower water with low current velocity (Roast et ai, 1998; Lawrie et ai,
1999) and in the lee of rocks and macroalgal clumps where water flow rates were less than 10 cm s 1 
(Hough and Naylor, 1992; Lawrie et a i, 1999). In experimental conditions, Roast et al. (1998b) observed 
Neomysis integer to enter the boundary layer where lower velocity flows are experienced. This 
corresponds with field studies, where N. integer is generally caught in greatest abundance in near-bottom 
samples (Hough and Naylor, 1992; Bernât et ai, 1994; Kopeke and Kausch, 1996; David etal., 2005; see 
earlier remark of Fockedey, unpublished). Attachment to the substratum and even shallow burrowing into 
the sediment are also common means of position maintenance in moving waters (Roast et ai, 1998b).

A decreased swimming activity of Neomysis integer was demonstrated under conditions of 
hypoxia and pollution with heavy metals and pesticides (Roast et ai, 2000b; 2000c; 2001b; 2002; 2002b). 
In situ this alteration in the swimming activity may be reflected in an altered position maintenance of the 
population in the estuary (cfr. Schelde?).

2.6 Vertical and horizontal migration 
Vertical migration

Diel and tidal vertical migration and distribution patterns of Neomysis integer in estuaries were 
described for populations in the Elbe (Bernât et ai, 1994; Kopeke and Kausch, 1996; Fockedey, 
unpublished -  EU project MATURE), Severn (Moore et ai, 1979), Schelde (Mees, unpublished -  EU 
Project JEEP; Fockedey, unpublished - EU project MATURE), Seine (Zouhiri et al„ 1998; Dauvin et al„
2000) and Gironde (Fockedey, unpublished - EU project MATURE). A considerable amount of the N. 
integer population is distributed all over the water column in the turbid reaches of the estuary, especially at 
the beginning of the flooding tide (just after low water) when the current velocity is low (Kopeke and 
Kausch, 1996; Fockedey, unpublished). In the Elbe, the animals showed a pronounced day-night rhythm 
in their vertical distribution pattern (Bernât et a i, 1994; Kopeke and Kausch, 1996; Fockedey, 
unpublished). During daylight hours the mysids remained near the bottom, while during the night equally 
high numbers were found in bottom and surface waters. In the Seine estuary, the mysids were sampled 
near the bottom in high abundance only during the day at low tide. At high tide and during the night the 
densities in the benthic boundary layer were up to seven times lower, due to dispersal into the water 
column (Zouhiri et al., 1998; Dauvin et ai, 2000). In the Westerschelde and Gironde estuaries, N. integer 
did not show a diurnal vertical migration pattern (Fockedey, unpublished).

Diel vertical migration of Neomysis integer in the Baltic is well documented (Jansson and 
Källander, 1968; Jansen, 1985; Arndt and Jansen, 1986; Rudstam et ai, 1986; Debus et ai, 1992). In 
deeper stations of the Baltic N. integer stays near the sediment during daytime and migrates to the surface 
with the beginning of the evening twilight (Rudstam et al., 1986; Debus et al., 1992).



Also the diurnal vertical migration patterns of Neomysis integer in shallow brackish lakes are 
well described (Beattie and de Kruijf, 1978; Bremer and Vijverberg, 1982; Irvine etal., 1993; Aaser etal.,
1995). From noon until sunset, virtually 100 % of the population is living near the bottom. At midnight the 
animals are more or less evenly distributed over the water column. At sunrise a substantial part of the 
population is still present in the water column. Densities of N. integer caught at the bottom (with bottom 
traps) during daytime can be 2 to 3-fold greater than at night, while daytime densities based on vertical 
hauls are 4-fold less than at night (Aaser etal., 1993). There are no evident differences in the population 
structure over the water column at night, indicating that all stages and both sexes perform the vertical 
migration to the same extent (Beattie and de Kruijf, 1978). The vertical migration is more pronounced in 
summer than in late autumn and winter (Beattie and de Kruijf, 1978). Through their vertical migrations N. 
integeris considered to form a direct link between the benthos and the pelagos (Elliott etal., 2002).

Horizontal migration and distribution patterns
The longitudinal distribution of the population of Neomysis integer along the estuary can 

change in response to seasonal changes in the position of the salinity gradient and the maximum turbidity 
zone, which in turn are influenced by the long-term seasonal cycle of freshwater run-off (Moore et al., 
1979; Sorbe, 1980; Eisma, 1986; Kopeke and Kausch, 1996; Allen et al., 2003). In winter and spring, 
during high run-off, the N. integer population of the Elbe estuary was geographically situated more 
downstream than in summer. However, the salinity range where the species is present varied from 1.2 -  
27.7 psu in winter to a more compressed salinity zone at 0.6 -  3.4 psu in summer (Kopeke and Kausch,
1996). In the Schelde, however, the salinity zones are relatively stable and the N. integer population 
remained in a narrow zone of 20 km close to the Dutch-Belgian border due to adverse oxygen conditions 
more upstream, regardless of salinity (Mees etal., 1994). Hough and Naylor (1992) designated the middle 
part of the Conwy as a distribution centre for N. integer, from which the species spread upstream and 
downstream in the estuary as their numbers increased during summer. N. integer is also reported to 
perform active seasonal migration along the longitudinal axis of the estuary (Kühl and Mann, 1969; 
Schuchardt etal., 1989).

In the estuarine environment, Neomysis integer actively migrates during certain periods of the 
tidal cycle from the subtidal channel towards the sheltered shores with low current velocities (Astthorsson, 
1980; Hough and Naylor, 1992; Mees et al., 1993b; Kopeke and Kausch, 1996; Speirs etal., 2002; see 
former paragraphs). Speirs et al. (2002) could demonstrate that the high numbers of N. integer over the 
immersed intertidal mudflats were not the result of a passive diffusion process, nor the result of an 
attraction to the organically rich sediments as feeding grounds, nor a predator avoidance response, but 
were the result of an active migration to areas with a low current velocity.

Neomysis integer is known to make extensive use of salt marshes on the margins of estuaries 
(Ralph, 1965; Jansen, 1985; Mees etal., 1993b; Cattrijsse etal., 1994; Hampel etal., 2003; 2003b). The 
non-vegetated subtidal channels of European marshes do not provide shelter to predation. On the 
contrary, migration into the intertidal marsh is associated with an increased predation pressure on the 
mysids by juvenile and adult fish and shrimp, using the marsh respectively as a nursery and feeding 
ground (Cattrijsse et al., 1994; Dean etal., 2005). In the Schelde estuary, N. integer follows the edge of 
the tidal cycle and makes maximal use of the salt marsh from the first hour to the last hour of the high 
water period (Cattrijsse et al., 1994; Hampel et al., 2003). Migration in and out of the marsh is maximal 
when current velocities are minimal, and is considered to be an -  at least partly -  active process 
(Cattrijsse et al., 1994). Possibly, the marshes of the Schelde estuary serve as areas favoured by N. 
integer for reproductive purposes. Smaller individuals were more frequently found in the marsh area and 
peak abundance of juveniles occurred earlier in the season than in the subtidal channels of the estuary 
(Cattrijsse etal., 1994; Mees etal., 1993). Probably the large amount of detritus inside the marsh creeks 
attracts the mysids as well (Zagursky and Feller, 1985; Cattrijsse et al., 1994).

Neomysis integer living in the coastal waters of the Baltic Sea performs seasonal horizontal 
migrations from the shallow littoral zone to deeper water when temperatures became too low (< 2 °C) or 
too high (> 20 °C) (Kinne, 1955; Muus, 1967; Jansen, 1979; Arndt and Jansen, 1986; Rudstam et al., 
1986; Thiel, 1992; Välipakka, 1992; Jansen, 1993). Similar observations were made for N. integer 
inhabiting brackish lakes and ponds (Vorstman, 1951; Barnes etal., 1977).



Part of the latter populations can make seasonal horizontal migrations towards almost freshwater 
environments in the connected ditches and channels. However, N. integer is dependent on higher saline 
waters to complete its reproductive cycle and is not present all year in these fresh water bodies (Haesloop 
and Scheffel, 1991).

Neomysis integer living in the Baltic performs additional daily horizontal migrations from the 
shallow shores towards the central part of the water body at night. In the daytime, N. integer forms large 
shoals (up to 600 ind nr2) in the shallow nearshore regions of the Baltic Barther Bodden to reduce the 
danger of predation by visually predating fish. At that moment the organisms are restricted to feed on 
detritus. At night, when young and small fish do not feed, the swarms break up and N. integer migrates to 
the offshore region to search actively for Zooplankton (Debus etal., 1992).

In the stagnant water of brackish lakes and ponds, large variations in the horizontal distribution 
pattern of Neomysis integer are described. These result from the swarming behaviour and the bottom 
substrate preferences of the species (Beattie and de Kruijf, 1978; Bremer and Vijverberg, 1982). In the 
Slotermeer (The Netherlands), N. integer preferred sand substrates with a thin layer of fine mud on top 
over mudless sand or peat substrates (Bremer and Vijverberg, 1982). In Bergumermeer (The 
Netherlands), the densities of N. integer were on average 3 times higher on the hard sandy bottoms in 
comparison with the bottoms of soft mud or peat (Beattie and de Kruijf, 1978). In loch Furnace (Ireland), N. 
integer forms 1 metre wide and 1 metre deep band at a few decimetres from the water surface above 
steep bouldery shores (Parker and West, 1979). Where the bottom was weedy the shoals tend to be more 
concentrated, while in more exposed areas the shoals tend to be deeper. In shallow parts with stands of 
Phragmites the distribution of N. integer is patchier, being associated with bottom features like occasional 
stones or plants.



3 ROLE OF Neomysis integer IN THE FOOD WEB

In the brackish part of estuaries, the high standing stock of many functional units (hyperbenthos, 
but also epibenthos, mesozooplankton, and both demersal and pelagic fish) is explained by the import of 
large quantities of allochtonous organic matter (natural inputs and discharges from various effluents). The 
food web has been described as heterotrophic, i.e. respiratory processes exceed the in situ autotrophic 
production and the food web tends to be based on detritus (Hummel etal., 1988; Hall and Raffaelli, 1991; 
Hamerlynck etal., 1993; Heip etal., 1995). This compares with the autotrophic food chain in the mouth of 
the estuary, where primary production lies at the basis of the food web (Hamerlynck et al., 1993). 
Heterotrophic bacteria are not only responsible for the remineralisation of the nutrients (Goosen et a!., 
1992); they simultaneously constitute the basis of the food web for higher trophic levels (Azam et al., 
1983; Sherr and Sherr, 1988; Billen etal., 1990). Detritus and/or their associated bacteria are consumed, 
directly or indirectly, by the microzooplankton, the mesozooplankton and the hyperbenthos (Fenchel, 
1988; Hamerlynck etal., 1993). Fish and epibenthic macro-invertebrates can then feed at this 'secondary 
energy level'. There is a great need for the description of the feeding ecology of key species in estuarine 
environments.

3.1 Predators
Mysids are important food items for many demersal and pelagic fish, larger epibenthic 

crustaceans and wading bird species (Mauchline, 1980). In particular environments, where mysids are 
present in large numbers (e.g. coastal and estuarine waters), they form an important link in the food web. 
Often they replace copepod prey progressively in the diet of fish during ontogenic development from the 
postlarval to juvenile stages (Sorbe, 1981). In estuaries, the hyperbenthos, and mysids in particular, often 
dominate in the diet of 0-group individuals of commercially important fish and also sustain high densities of 
non-commercial demersal fish (e.g. gobies), which are an important prey for the larger size classes of the 
commercial species (Elliott et ai, 2002). Despite the differences in the species composition of the fish 
fauna between estuaries, similar feeding guilds can be distinguished over a wide geographical range. 
Each estuary has a dominant food web that relies on small detritivore epibenthic crustaceans; in some 
cases this can be mysids, while in others it relies on gammaridean amphipods or even isopods (McLusky 
and Elliott, 2004). A mysid feeding guild is described for several estuaries (Costa and Elliott, 1991; Mees 
and Jones, 1997; Hostens and Mees, 1999; Elliott et a i, 2002), although it is replaced by a gammaridean 
feeding guild in e.g. the Humber (Elliott, personal communication) and in Scottish Loch systems 
(Kislalioglu and Gibson, 1977), despite the presence of large densities of Neomysis integer (Mauchline, 
1971; Budd, 2002). Next to these small epibenthic crustaceans, larger epibenthic crustaceans (like 
Crangon crangon or Palaemonetes varians) and mesozooplanktonic calanoid copepods (like Eurytemora 
affinis, Acartia spp.) also play an important role in the food web of the upper part of estuaries (Costa and 
Elliott, 1991; Maes et ai, 2003). Burke (1995) even suggested that the gradient in mysid densities in 
North-Carolina estuaries (Neomysis americana) can act as a guide for the migration of flounder to their 
nursery grounds.

The low-salinity reaches of estuaries, around the turbidity maximum, have proved their role as a 
nursery for larval and juvenile stages of marine and freshwater fish species and epibenthic crustaceans 
(Elliott and Hemingway, 2002). A large biomass of food must be available to sustain the populations of 
these rapidly growing individuals. In turbid waters, the number of sessile macrobenthic species generally 
decreases due to burial and/or clogging of their feeding apparatus; macrobenthic prey being largely 
ignored by fish predators in the upper reaches of the Schelde (Maes et al., 2003). Hyperbenthic animals, 
like Neomysis integer, are present in high densities all over the year (Mees et ai, 1994) and certainly 
contribute to the nursery function of the area (Maes et al„ 2003; Hostens and Mees, 1999). Some 
examples of quantitative studies are available (Table 3) for the estuaries of the Schelde (Hostens and 
Mees, 1999; Maes et ai, 2003), Darss-Zingst (Thiel, 1996), Medway (Van den Broek, 1978), Tagus 
(Moreira et al., 1992) and Loch Etive (Kislalioglu and Gibson, 1977). Qualitative studies are available for 
the upper Elbe (Thiel, 2000) and the Forth (Costa and Elliott, 1991).



In the mesohaline part of the Schelde estuary (The Netherlands), Neomysis integer is preyed upon by at 
least 15 fish species (Hostens and Mees, 1999). It is a dominant prey item in the stomachs of bib 
(Trisopterus luscus), sand goby (Pomatoschistus minutus), Lozano's goby (P. lozanoi) and herring 
(Clupea harengus). N. integer is also a numerically important food item for whiting (Merlangius 
merlangus), tub gurnard (Trigla lucerna), intertidally caught plaice and flounder (Pleuronectes platessa 
and P. flesus), sea bass (Dicentrarchus labrax), sea snail (Liparis liparis), pipefish (Syngnathus rostellatus) 
and hook-nose (Agonus cataphractus). For the common goby (P. microps), sprat (Sprattus sprattus), sole 
(.Solea solea) and subtidally caught plaice (P. platessa) N. integer was only supplementary food. In 
contrast to the intertidal, the stomachs of subtidally caught flounder never contained N. integer. In the 
upper reaches of the Schelde estuary (power plant of Doel, Belgium) the diet of Pomatoschistus minutus, 
Anguilla anguilla and pike perch (Stizostedion lucioperca) was dominated all over the year by the mysid 
species (Maes et at., 2003). N. integer and Mesopodopsis slabberi are important food supplements for 
young clupeids (Clupea harengus and Sprattus sprattus), sea bass (Dicentrarchus labrax) and 
Pomatoschistus microps in the Schelde estuary, especially in autumn (Maes etal., 2003).

Next to fish, the very abundant caridean shrimp and prawn (Crangon crangon, Palaemonetes 
varians and Palaemon longirostris) are also important predators of the estuarine Neomysis integer 
population (Kemp, 1910; Marchand, 1981; Sorbe, 1983b; Mouny et ai, 1998; Flostens and Mees, 1999; 
Maes et al., 2003; Hostens, 2003). They compete for the same resources (mainly N. integer) with the 0- 
group fish in the upper reaches of the estuary (Maes et ai, 2003).

In the southern Baltic Sea (Darss-Zingst estuary, Germany) Neomysis integer is dominant in the 
diet of pike-perch (Stizostedion lucioperca), perch (Perea fluviatilis), smelt (Osmerus eperlanus), 
pleuronectids and the sand goby (Pomatoschistus minutus), while it is an addition to the diet for the 
common goby (Pomatoschistus microps), roach, three-spined stickleback and herring (Arndt and Jansen, 
1986; Thiel, 1996 and references therein).

In inland water bodies the typical predators of Neomysis integer are three-spined stickleback 
(Gasterosteus aculeatus), smelt (Osmerus eperlanus), perch (Perea fluviatilis), juvenile pike-perch 
(Stizostedion lucioperca), ruffle (Gymnocephalus cernua) and palaemonid shrimp (Bremer and Vijverberg, 
1982; Irvine et ai, 1993; Sandergaard et ai, 2000). Occasionally eel (Anguilla anguilla) feeds on N. 
integer when its densities are high and chironomid larval densities are rather low (Bremer and Vijverberg, 
1982).

Neomysis integer is also described to be an important prey for birds (Patterson, 1905; Cramp, 
1977; 1983; Van De Vijver, 1983): a.o. avocet (Recurvirostra avosetta), common goldeneye (Bucephala 
clangula), common and red-breasted merganser (Mergus merganser and M. senator), black-legged 
kittiwake (Rissa tridactyla), little tern (Sterna albifrons), tufted duck (Aythya fuligula), shoveler (Anas 
clypeata), green sandpiper (Tringa ochropus), common sandpiper (Actitis hypoleucos), eared grebe 
(Podiceps nigricolli), and non-specified wading birds. The low density of N. integer populations in several 
brackish inland waters was significantly related to the high density of foraging birds (Van De Vijver, 1983).

In laboratory feeding experiments, Winkler and Greve (2004) demonstrated the intraguild 
predation of the mysid Praunus flexuosus on juvenile (< 4 mm) Neomysis integer. However, P. flexuosus 
preferred calanoid copepods over N. integer in mixed prey conditions since they were easier to catch. In 
the Baltic the isopod Saduria entomon predates on N. integer, but laboratory and field experiments 
demonstrated that the large isopod caught more efficiently its own juveniles compared to the juvenile 
mysids (Leonardsson, 1991).

Estuaries are believed to provide non-limiting resources to the level of consumers (Barnes, 1974). 
As a result, estuarine fish often feed opportunistically on copepods, mysids and caridean shrimp (Hostens 
and Mees, 1999). The high productivity and standing stock of invertebrate prey may cause high niche 
overlap between the species since there is no need to partition the available food resources (Pianka, 
1982).



Table 3: Some studies demonstrating the role of Neomysis integer as food for estuarine macro-invertebrates and fish. For the quantitative studies the degree of dominance (including a 
measure indicating the importance in the diet) is given.

Scientific name Common name Estuary Country Dominance in diet Measure of importance Scource

Crangon crangon Brown shrimp Schelde -  subtidal 
Schelde - march

The Netherlands 
The Netherlands

D+
0 (<10mm SL)

%0=50% Flostens, 2003 
Cattrijsse et al., 1997

Palaemon longirostris Delta prawn Seine France D+ (spring) %N= 24-27% Mounyetal., 1998

Pomatoschistus microps Common goby Darss-Zingst
Schelde -  subtidal
Schelde- marsh
Schelde -  power station
Seine
Ythan
Tagus

Germany
The Netherlands
The Netherlands
Belgium
France
UK, Scotland
Portugal

S
S
D-
S (esp. autumn)
D+ (esp. 39-50 mm) 
S (mainly in summer) 
D+

Rli = 6%
%0=16%
%N= 15%; %G= 39% 
%0=3%; %W=7% 
%N=57%
%0=9% 
no information

Thiel, 1996
Hostens and Mees, 1999 
Hampel and Cattrijsse, 2004 
Maes et al., 2003 
Mounyetal., 1998 
Healey, 1972 
Moreira et al„ 1992

Pomatoschistus minutos Sand goby Darss-Zingst
Schelde
Schelde -  power station 
Tagus

Germany 
The Netherlands 
Belgium 
Portugal

D
D- (SL>30mm)
D
D+

Rli = 13%
%0=59%
%0=33%; %W=38% 
no information

Thiel, 1996
Hostens and Mees, 1999 
Maes et al., 2003 
Moreira et al., 1992

Pomatoschistus lozanoi Lozanoi's goby Schelde -  subtidal The Netherlands D+ %0=57% Hostens and Mees, 1999

Dicentrarchus labrax Sea bass Schelde -  subtidal 
Schelde -  salt marsh 
Schelde -  power station 
Tagus

The Netherlands 
The Netherlands 
Belgium 
Portugal

D-
D
S
D+

%0=22%
%A=40%; %G=70% 
%0=14;%W=13% 
no information

Hostens and Mees, 1999 
Cattrijsse, 1994 
Maes et al., 2003 
Moreira et al., 1992

Osrnems eperlanus Smelt Darss-Zingst Germany D Rli = 13% Thiel, 1996

Pleuronectes flesus Flounder Medway -  power station 
Schelde -  subtidal 
Schelde -  intertidal 
Schelde -  power station 
Ythan

UK
The Netherlands 
The Netherlands 
Belgium 
UK, Scotland

0
0
D-
S
S

%o=o%
%o=o%
%0=35%
%0=21%; %W=38% 
%N=<5%

Van den Broek, 1978 
Hostens and Mees, 1999 
Hostens and Mees, 1999 
Maes et al., 2003 
Summers, 1980

Pleuronectes platessa Plaice Medway -  power station 
Schelde -  subtidal 
Schelde -  intertidal

UK
The Netheriands 
The Netherlands

0
s
D+

%o=o%
%0=4%
%0=21%

Van den Broek, 1978 
Hostens and Mees, 1999 
Hostens and Mees, 1999

Soiea solea Sole Schelde The Netheriands S %0=3% Hostens and Mees, 1999

Clupea harengus Herring Darss-Zingst
Schelde
Schelde -  power station

Germany
The Netheriands
Belgium

S/D
D-
S (esp. autumn)

Rli = 9%
%0=62%
%0=24%; %W=25%

Thiel, 1996
Hostens and Mees, 1999 
Maes et al„ 2003

Sprattus sprattus Sprat Schelde
Schelde -  power station

The Netheriands 
Belgium

S
S (esp. autumn)

%0=10%
%0=17%; %W=2%

Hostens and Mees, 1999 
Maes et al., 2003



Scientific name Common name Estuary Country Dominance in diet Measure of importance Scource

Anguilla anguilla Eel Schelde -  subtidal 
Schelde -  power station

The Netherlands 
Belgium

0
D

%o=o%
%0=57%; %W=68%

Hostensand Mees, 1999 
Maes et al., 2003

Gasterosteus aculeatus Threespined stickleback Darss-Zingst Germany S (not for O-group!) Rli = 3-4% Thiel, 1996

Spinachia spinachia Fifteen-spined stickleback Loch Etive W Scotland, UK S %N=12% Kislalioglu and Gibson, 1977

Liparis liparis Sea snail Schelde The Netherlands D- %0=31% Hostens and Mees, 1999

Stizostedbn lucioperca Pike-perch Schelde -  power station Belgium D %0=40%; %W=63% Maes et al., 2003

Perea fluviatilis Perch Darss-Zingst Germany D Rli = 15-30% Thiel, 1996

Rutilus rutilus Roach Darss-Zingst Germany S II

oE Thiel, 1996

Syngnathus rostellatus Pipefish Schelde The Netherlands D %N=80%; %G=90% Delbaere, unpublished
Syngnathus typhle Pipefish (deep-nosed) Tagus Portugal D+ no information Moreira etal., 1992
Syngnathus abaster Pipefish Tagus Portugal D- no information Moreira etal., 1992
Syngnathus sp. Pipefish Tagus Portugal D- no information Moreira etal., 1992

Merlangius merlangus Whiting Medway -  power station 
Schelde

UK
The Netherlands

D- (< 80mm SL) 
D-

%0=21%; %A=12% 
%0=19

Van den Broek, 1978 
Hostens and Mees, 1999

Trisoptems luscus Bib Medway -  power station 
Schelde -  subtidal

UK
The Netherlands

D- (< 100 mm SL) 
D+ (SL: 50-130mm)

%0=22%; %A=19% 
%0=57%

Van den Broek, 1978 
Hostens and Mees, 1999

Trigla lucerna Tub gurnard Schelde -  subtidal The Netheriands D+ %0=33% Hostens and Mees, 1999

Agonus cataphractus Hook-nose Schelde The Netherlands D- %0=25% Hostensand Mees, 1999

Ciliata mustela Five-bearded rockling Schelde The Netheriands S %0=14% Hostens and Mees, 1999

D+: Dominant food item (>50%); D-: Subdominant (10-50%); S: Supplementary food item; 0: absent; %W = annual average of percentage biomass of the stomach content; %A = annual 
average of percentage abundance; %N = numerical abundance; %0 = frequency of occurrence; %G = gravimetrical abundance; Rli = relative importance index according to George and 
Hadley (1979)



E.g. while the feeding niches of Pomatoschistus minutus and P. lozanoi in the coastal zone are spatially 
segregated through interspecific competition, this is not the case in the brackish water zone, where mysids 
are highly abundant and food is unlikely to be a limiting factor. Here both species prefer to feed on 
Neomysis integer (Hostens and Mees, 1999). Although the resources meet the annual food demand of the 
dominant fish species in the Schelde estuary, Maes et al. (2003) found some degree of trophic 
segregation between the dominant members of the estuarine fish assemblage.

For some predators, like gadoids, Neomysis integer is only a preferred food item during a 
particular period in the life cycle. As the fish grow larger, an ontogenic shift from calanoid copepods to N. 
integer and amphipods has been described for bib (Trisoptems luscus) and whiting (Merlangius 
merlangus) (Van den Broek, 1978; Hostens and Mees, 1999). Later in their life they shift their diet to 
shrimp and small fish. Simultaneously the gadoids migrate out of the estuary to spend the rest of their 
lives in coastal areas and the open sea. Mysids are still encountered in stomach contents, but only the 
more marine species Schistomysis spiritus and S. kervillei (Hamerlynck and Hostens, 1993).

3.1.1 Predation pressure on Neomysis integer
A comparison between the annual consumption of the dominant fish species (610 mgADW m 3y 

1) and the annual production of estuarine copepods (1600 mgADW m 3 y 1; Escaravage and Soetaert, 
1995) and Neomysis integer (300 mgADW nr2 y 1; Mees et al., 1994) in the Schelde estuary, suggest that 
food is not in short supply for the predators (Maes et al., 2003). N. integer is consumed throughout the 
year by estuarine fish (Maes et al., 2003). The impact of fish and macro-invertebrates on the local N. 
integer population is considerd to be rather low (1 % of the annual standing stock) and top-down control is 
unlikely (Hostens and Mees, 1999). Maes etal. (2003), on the other hand, found maximal consumption by 
fish on N. integer to coincide with minimal production and standing stock of the prey item (autumn-winter) 
in the upper Schelde estuary and concluded that predation sometimes may lead to a rapid depletion of the 
resources (a.o. N. integer), especially in years of high fish recruitment.

The impact of predation by young and small fish on the population of Neomysis integer in the 
Barther Bodden (southern Baltic Sea) is high and the mean annual consumption of N. integer mounts up 
to 9 gWW m 2. This corresponds to 94 -  99 % of the total annual production of N. integer population (Thiel, 
1992; 1996). In summer, Clupea harengus and Osmerus eperlanus consumed more than 5 times the local 
production of N. integer (franeK 1988; 1989).

3.1.2 Predator avoidance mechanisms
For small aquatic invertebrates, predation is an important mortality pressure. The ability to detect 

the presence of predators and to adjust behaviour accordingly is a major advantage (Lindén et al., 2003). 
The following abilities help Neomysis integer to diminishing the predation risk: vertical and horizontal 
migration patterns, swarming behaviour, well developed visual cues, mechanical and chemical predator 
detection, adapted feeding and swimming behaviour, and a direct escape response by tail flipping.

In brackish lakes and the Baltic, Neomysis integer performs diel vertical migrations (see before) 
to decrease the predation risk. They live in the dark, near bottom layers at daytime to avoid visual 
predators, and rise to the surface to feed at night time (Mauchline, 1980). In the daytime, N. integer is 
known to form large shoals in the shallow nearshore regions (Mauchline, 1971c) to reduce the danger of 
predation by visually predating fish. In the night time, when young and small fish do not feed, these 
swarms break up and N. integer migrate to the offshore region to search actively for Zooplankton (Debus 
etal., 1992).

The schooling behaviour of mysids is considered to be an effective anti-predator mechanism 
(Clutter, 1969; O'Brien and Ritz, 1988). If schools are attacked, the confusion effect serves to protect 
individual members and reduces the capture efficiency (Magurran, 1990). Information about approaching 
predators can be obtained through other school members, without each mysid needing to individually 
confirm the extent of the danger (Magurran, 1990).



In the littoral, mysids (like Neomysis integer) can use their good visual abilities (Fulton, 1982) in 
the well-lit shallow water to detect predators and derive an optimum escape direction. In darker or turbid 
waters, mechanical reception (Rademachers and Kils, 1996) and chemical reception of kairomones 
excluded by predators (Linden et al„ 2003) are relatively more important. The eye function of Neomysis 
integer is studied by Hallberg etal. (1980) and Lindström (1992, 2000).

Another reaction described for Neomysis integer to a predator attack, is the direct escape 
response by tail flipping in which N. integer escapes at a high speed (796 mm s 1 or 80 body lengths s*1) by 
flexion of the 3rd abdominal segment (Kaiser et ai, 1992b; Rademacher and Kils, 1996). Mysids like N. 
integer can be ranked with euphausiids and calanoid copepods as one of the fastest members of the 
Zooplankton (Rademachers and Kils, 1996). The high-speed escape response by tail flipping seems to be 
very effective and only 25 % of the predator attacks were successful under laboratory condition 
(Rademachers and Kils, 1996). The tail flip itself seems to expose the telson to the bite of the predator, 
making it quite vulnerable for mechanical damage, even if the attack is not effective. The presence of N. 
integer individuals with an altered telson morphology (< 1 -  9 %; Holmquist, 1957; Chojnacki and 
Ciupinski, 1986; Mees et ai, 1995b) is considered to be a result of damage due to the unsuccessful 
predation attacks and subsequent regeneration of the damaged parts. The alternative theory (Norman, 
1892; Holmquist, 1957; Chojnacki and Ciupinski, 1986), that the aberrant telson forms would result from 
mutations resulting from environmental pollution, was refuted by an amputation/regeneration experiment 
performed by Mees et al. (1995b), but cannot be ruled out completely. In contrast to the large escape 
reaction in the case of a fish predator attack, N. integer did not show any escape reaction at all in the case 
of Praunus flexuosus attacking (Winkler and Greve, 2004). Especially the juveniles of N. integer are 
strongly suppressed by this intraguild predation.

3.2 Diet of Neomysis integer
There is a great need for the description of the feeding ecology of key species (like Neomysis 

integer) in estuarine environments for the development of accurate C-flux models and the description of 
detritus based food web patterns, including the quantification of transfer coefficients. To date, few studies 
have taken hyperbenthos or mysids into account. Notable exceptions are Hall and Raffaelli (1991) and 
Soetaert and Herman (1995). Hyperbenthic mysids are thought to provide a significant link in the 
exchange of organic matter between the benthic and pelagic systems of estuaries, however, data on the 
contribution of N. integer to such food fluxes are limited (Roast et ai, 2000). The trophic position assigned 
to mysids and the hyperbenthos in general seems to be guessed rather than derived from field data.

Mysidacea are generally described as omnivores, feeding on detritus, algae and Zooplankton 
(e.g. Mauchline, 1980). They can feed selectively on different Zooplankton species and size groups (e.g. 
Cooper and Goldman, 1980; Murtaugh, 1981a; 1981b), and thus have the potential of structuring 
Zooplankton communities (Fulton, 1982; Rudstam etal., 1989). The phytoplankton (Kost and Knight, 1975; 
Siegfried and Kopache, 1980) and tychoplankton (Webb etal., 1987; Wooldridge, 1989) are possibly also 
influenced through selective grazing by mysids. Mysid predation has even been reported as a possible 
control on meiofaunal densities (Siegfried and Kopache, 1980; Grossnickle, 1982; Johnston and Lasenby,
1982). Most mysids utilize organic detritus to a considerable extent and they can be responsible for the 
remineralisation of a substantial proportion of the non-refractory detritus (Kost and Knight, 1975; Jansen, 
1985b).

3.2.1 Qualitative diet descriptions
Literature on the diet of the omnivorous Neomysis integer is scarce, and often only qualitative 

information is available. According to Lucas (1936) and Tattersall and Tattersall (1951) the species grazes 
on suspended organic detritus and/or planktonic diatoms. According to these authors the species only 
feeds on living copepods, dead mysids or amphipods when concentrations of other suspended food items 
are too low.



Later studies describe N. integer as an omnivore, consuming bottom detritus, organic matter in 
suspension, phytoplankton (a.o. diatoms), mesozooplankton (rotifers, calanoid and harpacticoid 
copepods), amphipods, carrion, fragments of leaves and of macroalgae, spores and seeds, insects and 
insect larvae and sand grains (Vorstman, 1951; Mauchline, 1971; 1980; Sorbe, 1980; Astthorsson, 1980; 
Jansen, 1985b). N. integer however prefers animal food (Kinne, 1955; Uitto et al., 1995). In some 
locations phyto- and zoobenthos, like benthic diatoms, meiofaunal nematodes, harpacticoids and 
ostracods, amphipods, chironomids, and oligochaets, are present in stomach contents of Neomysis 
integer (Astthorsson, 1980; Bremer and Vijverberg, 1982; Haesloop, 1990; Speirs etal., 2002; Vilas and 
Fockedey, unpublished).

In monospecific laboratory cultures, Neomysis integer feeds on dead or immobile individuals, just 
released juveniles, shed moults and faecal pellets (Vorstman, 1951; Molloy, 1958; Raymont and 
Krishnaswamy, 1960; Parker and West, 1979; Astthorsson, 1980; Sorbe, 1980; Kuhlman, 1982; Weisse 
and Rudstam, 1989; Roast etal., 2000; Winkler, 2000; Verslycke and Janssen, 2002; Fockedey etal., in 
press -  Chapter 3). It can survive in the laboratory given a monospecific or mixed diet of Artemia nauplii, 
phytoplankton (Nannochlorisspp.) and Cladocera like Daphnia spp. (Kuhlmann, 1984; Roast etal., 1999), 
but it also effectively feeds on barnacle larvae and harpacticoid copepods (Mauchline, 1971) or 
oligochaetes (Haesloop, 1990). Astthorsson (1980) sustained the culture with a mixture of ground mussel 
tissue, Enteromorpha, detrital mud and Artemia nauplii. Raymont etal. (1964; 1966; 1968) kept N. integer 
for several weeks without additional food. They fed on the micro-organisms and detritus present in the 
water from which they were collected.

3.2.2 Feeding modes
Neomysis integer is a skilful swimmer and gathers small prey items, phytoplankton and 

suspended detrital material with the endopodites of the thoracopods, while simultaneously generating 
feeding currents with the exopodites of the thoracopods (Lucas, 1936; Tattersall and Tattersall, 1951; 
Astthorsson, 1980; Espeel, 1982). Furthermore, N. integer feeds raptorially on mesozooplankton and 
benthic invertebrates (Astthorsson, 1980; Mauchline, 1980; Bremer and Vijverberg, 1982). In brackish 
lakes the species grazes upon periphyton on the submerged plant (Irvine etal., 1993; Bales etal., 1993).

Neomysis integer feeds on the upper layer of the sediment substratum by stirring it up and 
feeding, both by filtering and raptorially, in the clouds of particles suspended (Raymont etal., 1964; Parker 
and West, 1979; Astthorsson, 1980). The species is also able to collect aggregations of surface sediment 
prior to ingestion (Roast, 1997; Roast et al., 2000; Roast et al., 2004). While feeding according to this 
mode N. integer can actually contribute to the turbidity of its environment (and, more specifically, the 
maximum turbidity zone), either by de-stabilising the sediment surface by its feeding behaviour and so 
enhancing erosion rates or, by actively increasing the SPM due to sloppy feeding on sediment aggregates 
collected at the sediment surface (Roast etal., 2004).

3.2.3 Quantitative diet descriptions

<=> Stomach content analyses
Performing quantitative stomach content analyses of mysids is the most appropriate way to 

obtain information of the amount of food ingested in the field. This information is scarce for Neomysis 
integer, and is often missing details on the used methodology and results. Generally, the dietary items 
present in the gut are simply counted or recorded as present. Often only body parts of the larger 
Zooplankton are found in the stomachs of N. integer as well as amorph detrital material, both hampering 
quantitative analyses. One study expresses the gut content of N. integer in terms of biomass (Bremer and 
Vijverberg, 1982). Biomass of the prey was derived from morphometric and length-wet weight regressions 
for Zooplankton, and biomass of the ingested algal cells was derived from their bio-volume (assuming a 
specific weight of 1.0). The information available on quantitative stomach analyses of N. integer concerns 
populations from inland water bodies (Bremer and Vijverberg, 1982) and the Baltic Sea (Jansen, 1985b; 
Arndt and Jansen, 1986). Quantitative diet information is generally lacking for the maximum turbidity zone 
of estuaries.



Stomach content analyses were performed by Arndt and Jansen (1986) on Neomysis integer 
from the southern Baltic Sea. The diet composition was 53 % detritus, 37 % animal food, 6 % 
phytoplankton and 4 % sand grains. In brackish lakes N. integer feeds predominantly on Zooplankton, 
plant detritus and algae (Bremer and Vijverberg, 1982; Irvine et ai, 1993). In terms of biomass, the diet 
consisted of more than 95 % detritus and animal food (Bremer and Vijverberg, 1982), mainly Bosmina sp„ 
nauplii and copepodites of cyclopoids and calanoids. Rotifers and oligochaetes were taken occasionally. 
In numerical terms, algae (mainly benthic diatoms) were a very abundant food item, but their share in the 
biomass of the total gut filling was very small. N. integer feeds on filamentous blue-green algae (like 
Osciliatoria) and is capable of actively breaking down the longer algal filaments to smaller bits. Bremer 
and Vijverberg (1982) analysed only gut contents, i.e. faecal pellets; the content of the stomach itself was 
not included in their analysis.

In the Weser estuary Neomysis integer preferentially consumes animals prey (Haesloop, 1990). 
Next to Zooplankton (mainly Eurytemora affinis), other prey were consumed too (Corophium lacustre, 
small gammarids, oligochaets and chironomids) as well as diatoms, macroalgae (Enteromorpha spp.) and 
macrophyte detritus. Sorbe (1980) described semi-quantitatively, and without giving further details, the diet 
of N. integer in the Gironde estuary. It consisted mainly of macrophytal detritus and benthic diatoms. 
Zooplankton was not considered important. In the intertidal areas of the Ythan, N. integer is a benthic 
feeder as sand grains, endobenthic harpacticoids (1 5 -2 0  ind mysid1), nematodes and ostracods were 
the main dietary components (Astthorsson, 1980; Speirs et ai, 2002), while phytoplankton and other plant 
material (fragments, spores, and seeds) were eaten incidentally (Astthorsson, 1980).

■=> Fullness index
Bremer and Vijverberg (1982) considered the alimentary track of Neomysis integer as a tube 

(without taking the spherical stomach into account) and determined its fullness by estimating the total 
amount of food (i.e. faecal pellets) present in the gut at a certain moment as a percentage of its total 
volume. Calculated in this way, the fullness index of N. integer in the brackish lake Slotermeer was used to 
monitor feeding intensity over a 24h cycle (see later paragraph). Astthorsson (1980) evaluated the quantity 
of food in the stomachs of N. integer on an arbitrary scale from 0 to 3. Throughout the year the majority of 
the mysids had a stomach fullness index of 3, reflecting that N. integer does not experience food shortage 
in the Ythan estuary. However, both techniques are subjective and do not deliver firm or detailed results.

A stomach fullness index, as the weight of the stomach relative to the weight of the animal, can 
give a better indication on the species' feeding periodicity and feeding intensity when studied at regular 
intervals over a certain time span. One can even calculate the feeding rate or ingestion rate from weight- 
based fullness index data by taking the gut passage time (i.e. gastric evacuation rate, turnover time) into 
account. An assumption is that animals only feed on one type of food and that they feed continuously. If 
the animals do not feed continuously, but in discrete meals, it is necessary to know the daily ration and the 
periods of feeding activity. Different calculation methods are available in fisheries research, but they have 
never been applied to animals as small as mysids (Eggers, 1977; Elliott and Persson, 1978). Fockedey 
and Mees (1999 -  Chapter 2) applied the fullness index technique for the first time with Neomysis integer 
and used it to describe latitudinal, sexual and ontogenic variation in the diet, as well as seasonal and 
diurnal variation (Fockedey, unpublished -  ELI MATURE). By using the same technique, the diet of N. 
integer m s  compared between species (Remerie, 1999; Vilas and Fockedey, unpublished) and between 
populations of different habitats (Fockedey, unpublished; Soselisa, 1994; Fockedey, unpublished).

<=> Ontogenic shifts and sexual variation
An ontogenic shift in the diet of Neomysis integer was demonstrated for a Dutch brackish lake 

(Bremer and Vijverberg, 1982), where the species fed intensively on Zooplankton. N. integer showed no 
distinct size selective predation on Cladocera, but the larger cyclopoid copepods were only eaten by the 
larger mysids. Juvenile mysids (< 5 mm TL) fed more heavily on rotifers than the larger mysids. In an 
English brackish lake, Irvine et al. (1993) found that larger N. integer individuals had a higher number of 
Eurytemora affinis in their stomachs.



The size of the ingested E. affinis was not related to the size of the mysid. Juvenile N. integer of the 
Gironde estuary fed more on benthic diatoms, while adults had a relatively higher proportion of detritus in 
their stomachs (Sorbe, 1980). No ontogenic variation in the quality of the diet of N. integer could be 
demonstrated by Fockedey and Mees (1999 -  Chapter 2), but smaller individuals consumed less items.

Sexual differentiation in the diet of Neomysis integer can be expected as well, as females 
probably need specific nutritional requirement for the development of the ovaries and the production of 
viable eggs (Kiorboe et ai, 1985). Fockedey and Mees (1999 -  Chapter 2) could not demonstrate any 
sexual variation in the diet quality of N. integer, but they did not include gravid females in their study.

■=> Temporal variation
The diet of Neomysis integer can vary over different time scales due to tidal, diurnal, monthly, 

seasonal and interannual variation. However, little information is available and is restricted to the study of 
the relative proportions of the diet constituents of N. integer over the course of the year. In the diet of N. 
integer from the southern Baltic Sea, detritus is more important in wintertime, while animal food is more 
important in summer (Arndt and Jansen, 1986). In an English pond, the number of higher plant remains 
was large in early spring in comparison to late spring and summer (Irvine et ai, 1993). In the Gironde 
estuary, the diet of N. integer shifts from a dominance of detritus in winter, to benthic diatoms in summer 
(Sorbe, 1980).

Feeding periodicity
The feeding periodicity and the variation in intensity of feeding can be demonstrated through the 

study of the variability in the gut fullness and from the frequency of occurrence of empty guts. In the 
brackish lake Slotermeer, Neomysis integer's feeding activity reached a maximal intensity at sunset. It was 
still high during the first part of the night, but became low towards the morning and reached a minimum 
just after sunrise (Bremer and Vijverberg, 1982). N. integer is the only mysid from the Schelde estuary 
feeding at night and daytime. The other mysid species (Schistomysis kervillei, Schistomysis spiritus, 
Praunus flexuosus and Gastrosaccus spinifer) are typically night feeders (Remerie, 1999). More detailed 
patterns in the feeding intensity, coupled to tidal and diurnal rhythms, have not been studied yet for N. 
integer.

Fockedey and Mees (1999 -  Chapter 2) developed a method to perform quantitative diet 
analyses of Neomysis integer individuals taken from the field. The method joins two techniques: (1) a 
microscopic stomach analysis and (2) a fullness index determination based on weight. After the dissection 
and preparing of the stomach in a semi-permanent slide, the counting and measurement of food items is 
further performed using image analysis. The technique includes an analysis of the amorph unidentifiable 
detritus by EDAX (Energy Dispersive Spectroscopy X-ray Microanalysis). The stomach fullness technique 
is adopted from fish feeding studies and here applied for the first time on small invertebrates like mysids.

Fockedey and Mees (1999 -  Chapter 2) compared the diet of Neomysis integer collected from 
the maximum turbidity zone of the Schelde, Gironde and Elbe in spring. N. integer was found to be an 
omnivore which mainly utilizes the mesozooplankton and detritus carbon pools. In all three estuaries, the 
diet was dominated by calanoid copepod (up to 10 Eurytemora affinis ind^) and was supplemented with 
rotifers (esp. in Elbe) and cladocers. Phytoplankton, pollen and benthic organisms, though present in the 
stomachs, were negligible. Macrophytal detritus and amorphous material, originating from sediment 
macro-aggregates suspended in the water column or deposited on the sediment surface, were very 
abundant food items. Fullness indices in the Elbe and Schelde were comparable (< 1) and significantly 
lower than in the Gironde (1 -  4). A higher fullness index in the Gironde reflects the consumption of higher 
amounts of detritus in this estuary. No sexual, nor ontogenic shifts, could be demonstrated in the diet 
quality, nor in the prey size, but smaller mysids consumed less.



Additional measurements were made (Fockedey, unpublished) on the variation in the fullness 
index of Neomysis integer from the subtidal of the Schelde estuary over the course of a year. The lowest 
indices were measured in spring (< 1) as compared to summer (1.0 -  1.2) and winter (> 1.3). The higher 
stomach fullness in winter is related to a higher abundance of (macrophytal and unidentifiable) detritus in 
the stomachs of the mysids. The lower fullness indices in spring and summer were related to a more 
abundant feeding on higher quality food items like mesozooplankton (Eurytemora affinis in spring, Acartia 
spec, in summer).

The variation of the stomach fullness index of Neomysis integer m s  determined for several 24h 
cycles in the turbidity maximum of the Schelde, Gironde and Elbe (Fockedey, unpublished). Although 
variations in the fullness index are difficult to relate to diurnal and tidal cycles, the results indicate a 
continuous feeding over the day (fullness index between 0.8 and 1.4 in Elbe, 1.0 and 1.5 in Schelde, and 
between 1.8 and 2.9 in Gironde).

The stomach fullness of Neomysis integer caught in the surface layers of the maximum turbidity 
zone of the Schelde (at night) was significantly lower in comparison to the stomach fullness of individuals 
caught in the bottom layers (Fockedey, unpublished). No such pattern could be demonstrated for mysids 
living in the maximum turbidity zone of the Gironde estuary.

Vilas and Fockedey (unpublished) used the same techniques to compare the diet of Neomysis 
integer and Rhopalophthalmus sp. from the Guadalquivir estuary. N. integer m s  much more omnivorous 
than the predator Rhopalophthalmus sp. and mainly consumed calanoid copepods and detritus. The diet 
was supplemented relatively more with zoobenthic organisms, like nematodes and harpacticoids, as 
compared to the Schelde, Elbe and Gironde estuary.

The seasonal variation in the diet of Neomysis integer from the brackish pond Galgenweel was 
investigated as well (Soselisa, 1994; Fockedey, unpublished). The fullness indices of the mysids living in 
the pond were approximately 5 times as high (5.9 -  7.4) as compared to N. integer living in the 
mesohaline of the Schelde estuary (0.8 -  1.4). High values of the fullness index in winter, summer and 
autumn were associated with a high abundance of calanoid copepods (Eurytemora affinis) in the 
stomachs. The significantly lower fullness index in spring coincides with a dominance of Cladocera and 
pollen in the stomach contents of N. integer.

3.2.4 Isotope fractionation in the field
Food web structure can be described studying trophic interactions based on gut analysis. The 

interpretations however, can be biased by the lack of couplings to the microbial food web and direct errors 
in the diet analysis e.g. caused by differences in digestion rate between food types. Natural abundances of 
stable carbon and nitrogen isotopes can then be used to identify the sources of organic matter, the 
foraging location of organisms and trophic structures in aquatic food webs. Organisms tend to become 
enriched in heavy isotopes as compared to their food. Isotopic fractionation data are available from the 
northern Baltic Proper (Hansson et ai, 1997) and the low-salinity zone of the Schelde estuary (De 
Brabandere et a!., 2002 and references therein). Unfortunately, these studies did not include the mysid 
Neomysis integer, albeit the species is present in both systems.

The 513C and 515N values of subadult (summer) Neomysis integer in the Baltic Sea (South of 
Stockholm) ranged from -23.1 to -21.5 %o and 10.2 to 12.6 %o, respectively (Rolff, 1998; Gorokhova, 1999; 
Gorokhova and Hansson, 1999). No variation could be demonstrated between sexes, but 515N values 
increased with body size. These ontogenic changes in the isotopic composition can be caused by either 
decreased growth efficiency with increasing size or by a shift in diet to food from a higher trophic level 
(Gorokhova and Hansson, 1999). Seasonal variations in ö13C values might be due to the seasonally 
varying energy reserves, i.e. lipid content.



According to the 513C and 515N values reported by Rolff (1998) for Zooplankton, it is suggested 
that Neomysis integer may be feeding on the largest mesozooplankton, namely older copepodites and 
adults (Gorokhova and Hansson, 1999). However the cyanobacteria (513C = -22.9 %o and 515N = 4.5 %»; 
Rolff, 1998) and microbially degraded material (515N = 4.5 %o) present in the water column cannot be ruled 
out as possible food sources (Gorokhova and Hansson, 1999).

The fractionation of heavy isotopes is a continuous process, whose influence on the isotopic 
composition of different tissues depends on their growth and turnover rate (Owens, 1987). The 
fractionation and the speed of incorporation of food in different body tissues (muscle, exuvia) and faeces 
was studied for Neomysis integer by Gorokhova and Hansson (1999). The muscle tissue did not get in 
balance with the diet isotopic composition, not even after 3 months. Exuvia of N. integer were enriched in 
513C (+1.41 %o) and depleted in 615N (-5.59 %o) in comparison with muscle tissue, indicating that the 
exoskeleton is composed of nutrients that are more directly derived from the diet. The relative abundance 
of carbon isotopes in the excuvia of N. integer is in close balance with the carbon isotopic composition of 
the diet during the time of exoskeleton secretion, i.e. the previous intermoult period. Digestion leads to 
increased 513C (+1.4 %o) and 515N (+3.4 %o) values in the faeces compared to the food. The isotopic 
composition of each muscle tissue, exuvia or faecal pellets may form a basis for diet reconstruction of field 
caught mysids (Gorokhova and Hansson, 1999): the 513C and 515N of the faeces mirror the diet over the 
last few hours, exuvia 513C values represent nutrient metabolized 2 - 3  weeks ago and muscle tissue 
integrates the isotopic signal over a relatively long period (weeks to months).

To perform an isotope fractionation study with Neomysis integer from the low-salinity, turbid 
reaches of estuaries would be of great interest. It can confirm earlier conceptual estuarine food webs links 
based on the stomach analyses of the mysid species itself (Fockedey and Mees, 1999 -  Chapter 2) and 
the higher trophic levels consuming it (Hostens and Mees, 1999; Maes etal., 2003).

3.3 Feeding rate
Feeding rates (Table 4) can be measured directly in laboratory experiments or calculated from 

stomach content weights combined with gut evacuation time, given the animals feed continuously on one 
type of food. In the laboratory the ingestion rate (DW of food ingested per time unit) and the egestion rate 
(DW faecal pellet produced per time unit) can be measured and the assimilation efficiency calculated. 
While it is well established that the feeding rates of many crustaceans are influenced by various factors 
including temperature, salinity, weight, gender and food density, few of these factors have been 
investigated for mysids and specifically for Neomysis integer (Roast et al., 2000; Winkler and Greve, 
2004).

■=> Phytoplankton
Experimenting with Neomysis integer in very dense diatom cultures, Lucas (1936) measured an 

average consumption rate of over 1.106 (max 6.106) Nitzschia cells mysid'1 h 1 (Table 4). The species is 
feeding much in excess of their actual requirements under these circumstances (Lucas, 1936). They 
survived optimally at an intermediate food density of 25 -100  cells mm 3. The filtration rate of N. integer on 
Chlorella vulgaris suspensions yielded a mean intake of 0.5 106 cells ind1 h 1, corresponding to a specific 
feeding rate of 108 pgDW mysid1 d 1 (Arndt and Jansen, 1986).

Filter feeding on phytoplankton is often measured as the clearance rate (Gauld, 1951) and 
expressed as the volume filtered by the animals per hour. Astthorsson (1980) performed feeding 
experiments with Neomysis integer feeding on different species of cultured phytoplankton (Table 4). 
Highest clearance rates were obtained on the dinoflagellate Prorocentrum micans (26 pm) and the 
coccolithophore Cricusphaera oblongata (13 pm), respectively 6.6 and 6.7 ml mgDW h \  Far lower 
filtering rates were recorded on the diatom Chaetoceros curnectum (13 pm) and a further unidentified 
small chain diatom species (10 pm): 1.7 and 2.4 ml mgDW h 1. No feeding was recorded on the small 
flagellate Tetraselmis sp. (8 p m). Energetic benefit, with a higher carbon intake than respired and excreted 
during the course of the feeding experiments, was only possible when feeding on C. oblongata.



Estimations of feeding rates of Neomysis integer on the in situ phytoplankton community of the brackish 
lake Hickling Broad indicated that phytoplankton cells were not an important component in the diet of the 
species in comparison with the calanoid Eurytemora affinis and epiphytic algae (Irvine et al., 1993; 1995). 
Stomach analyses of N. integer in a variety of habitats confirmed the minor role of algae in terms of 
biomass in its diet (Bremer and Vijverberg, 1982; Irvine etal., 1993; Fockedey and Mees, 1999 - Chapter 
2).

o  Zooplankton
Laboratory experiments and field evidence revealed that Neomysis integer feeds extensively on 

the calanoid copepod Eurytemora affinis (e.g. Aaser et al., 1995; Irvine et al., 1993; Fockedey and Mees, 
1999 -  Chapter 2; Winkler and Greve, 2004). Experimentally derived predation rates (Table 4) of N. 
integer on a mixture of nauplii and copepodites averaged 23 nauplii and 17 copepodites mysid1 h 1 (Irvine 
etal., 1993). The maximal predation rate on a similar mixture was 52 nauplii and 8 copepodites mysid1 h 1 
(Aaser etal., 1995). Winkler and Greve (2004) measured a predation rate of maximally 170 copepodites 
mysid1 d 1 by adult N. integer, significantly decreasing with decreasing mysid size and lower temperature. 
Fockedey et al. (submitted a -  Chapter 5) reports a feeding rate of only 9 copepodites mysid-1 d 1. Also 
Daphnia sp. is readily taken by N. integer (Irvine et al., 1993). The feeding rates did not differ when other 
prey items were present or not (± 15 daphnia mysid-1 h 1). An egg-carrying E. affinis female was handled 
for approximately 2 minutes by N. integer (Viitasalo et al., 1998), whereas small cladocerans (like 
Bosmina) could be swallowed in its entirety.

Often Artemia nauplii are used as animal food for Neomysis integer under laboratory culture 
conditions. The maximal feeding rate of N. integer on Anemia nauplii amounts to 600 -  800 nauplii d'1 for 
adults (Astthorsson, 1980) and 200 -  300 nauplii d 1 for subadults (De Pauw, 1998; Fockedey, 
unpublished). Feeding rate is lower at a smaller body size and each time when the animals are about to 
moult (Astthorsson, 1980). The feeding rate increases with the prey density according to a rectilinear 
model (Astthorsson, 1980). The feeding rate of adult N. integer rapidly increases at initial prey 
concentrations of less than 700 nauplii h1; while higher prey densities do not longer affect the feeding rate. 
At prey densities below the maximum feeding rate, N. integer appears to search for and find all available 
Artemia nauplii (Astthorsson, 1980). On the contrary adult mysids do not attempt to hunt at low 
concentrations of calanoid copepod prey (Irvine etal., 1993).

Filter feeding on Zooplankton can also be expressed as clearance rate in volume filtered by the 
animals per time unit (Cooper and Goldman, 1980). It provides an estimate of the proportion of total prey 
removed by the predator in a given time. Clearance rate values of Neomysis integer when feeding on 
Eurytemora affinis are 0.34 -  0.62 I mysid1 h 1 for naupliar prey and 0.08 -  0.15 I mysid1 h 1 for 
copepodites (Irvine et el., 1993; Aaser etal., 1995).

Using length-weight regressions of Zooplankton (Bottrell etal., 1976; Burkell and Kendall, 1982) 
or assigned values for the discrete life stages (Lavens, 1978; Aaser etal., 1995) the feeding rates can be 
expressed as weight-specific feeding rate. When feeding on a mixture of nauplii and copepodites of 
Eurytemora affinis, N. integer specific feeding rate varies according to the predator size, the prey density 
and the temperature between 1 8 -1 3 7  pgDW mysid1 d 1 of 20 -  350 % body C mysid1 d 1 (Irvine et al., 
1993; Winkler and Greve, 2004). When feeding on daphniid prey, the specific feeding rate varied from 67 
- 149 pgDW mysid1 d 1 (Irvine etal., 1993).

Laboratory studies on the predation rates of mysids on Zooplankton can have quite some 
artefacts. A homogeneous spread of Neomysis integer individuals in an experimental set-up is difficult, 
since the species appears to be attracted to structures and surfaces (Irvine etal., 1993). Prey like Anemia, 
cladocers and calanoids have the tendency to respond photopositively and to concentrate at the side of 
the feeding arena where the light intensity is greatest (Astthorsson, 1980; Bergström and Englund, 2004). 
To make the distribution random and prevent that N. integer is able to collect all prey from one 
concentrated spot, one can work in the dark or obscure the feeding containers (Astthorsson, 1980). The 
attack rate of N. integer on cladocerans is significantly higher in small containers in comparison with large 
feeding arenas due to a higher encounter rate (Bergstrom and Englund, 2004).



Ta
ble

 4
: F

eed
ing

 r
ate

s 
rep

ort
ed

 f
or 

Ne
om

ysi
s 

int
eg

er 
on 

dif
fer

en
t f

ood
 i

tem
s

Fo
od

 
item

 
Co

nc
en

tra
tio

n 
Vo

i 
Tim

e 
Co

nd
iti

on
s 

Siz
e 

my
sid

s 
Fe

ed
ing

 
rat

e 
Sc

ou
rc

e

EE .S -bJS) JS) J/Î ^
"05 "03 "03 QO C_> Oo o o -3-
T—  T—  T—  C O

E o

° 8

!

•5 ■ft :
a

LO CO CO

I
1

§s
I

1

g
£

8

.o

§ i.•g* c o

s

I

g E
_C: CO
O  ZZ,

ggo

Jz ' 2  V 
=ï E f  

-Ö
f  s |
E o  ,,

T—  <NJ <NJ

i= 'g -  
s  e  ;

I  s
E &

g.E
o

Ë JC ■§
I ’ S E 
E ° c t

g  f f f  S' E E E
“  O .  Û .  Q .o  o  o  °  o  o  oo  r  s  r

i

C L
o

O

8

•ja &

o  o  
o

■o -a 
g ,« . E E
C L  CL
O O O O

T---  1—  CO

I 2 ¢0 I 
1 CD r -  i

CO CO CO I CO :E E E co co co j- co
e e e e e e | eo) cpcpEEE0 E 

œ  c o  c o  f  i o  c o  i - o

Q_Q_ Q_ §  
°  °  ^  O  O  £

I

^  ^  co co co to co "OO O O O r
¢,¾¾.¾ I 1E E E E =

Q _ Q _  Q _ Q -  OO O O O O O O O O

t o  t o  t o  t o  CNj 
■ CVl tO  t o  i o  t o  t—

Q_oo oo
Q<

■ O'- Ĉ- t-
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Astthorsson (1980) though, report the container size not to have a significant impact on the maximal 
feeding rates of N. integer on Artemia nauplii. Gorokhova and Hansson (1997) report the effects of other 
experimental conditions like light regime, duration of the experiment and extent of starvation on the 
feeding rate estimate of mysids (Mysis mixta). Laboratory derived feeding rates must be considered as 
overestimates (Aaser et ai, 1995) due to the relative high prey density in comparison to the field, an 
aberrant prey and predator behaviour and due to the fact that N. integer in the field does not feed 
exclusively on Zooplankton, but has an omnivorous diet.

■=> Phyto- and zoobenthos
Neomysis integer is known to feed in some locations on phyto- and zoobenthos like benthic 

diatoms, meiofaunal nematodes, harpacticoids and ostracods, amphipods, chironomids, and oligochaets 
(Astthorsson, 1980; Bremer and Vijverberg, 1982; Haesloop, 1990; Speirs et al., 2002; Vilas and 
Fockedey, unpublished). Although it can survive on harpacticoid copepods (Mauchline, 1971) or 
oligochaets (Haesloop, 1990) in aquaria, no further data are available on the feeding rates on these food 
itmes. Recently, Albertsson (2004) hypothesised a predator-interaction of N. integer on juveniles of the 
amphipod Monoporeia affinis but could not confirm this in mesocosm experiments. The mesocosm 
experiments however, could demonstrate a significant predation of N. integer on near-bottom Zooplankton 
(mainly cyclopoids) in the Baltic (Albertsson, 2004).

■=> Detritus and sediments
Qualitative stomach content analyses of Neomysis integer described the species to feed on 

fragments of leaves of higher plants and macroalgae, and on amorph suspended detritus. Ingestion rates 
of macrophytal detritus can be measured directly by weight difference of the food eaten over a certain time 
period (e.g. Nilsson, 1974). However, a significant decrease in food weight is difficult to measure and 
leads to a very variable feeding rate (Marchant and Hynes, 1981). The duration of the experiment have to 
be long enough and/or should contain many individuals. However, no experiments to determine ingestion, 
egestion and gut evacuation rates on macrophytal detritus or suspended particulate matter have been 
performed with N. integer, except for Fockedey et al. (submitted c -  Chapter 4) and Fockedey et al. 
(submitted d -  Addendum 2).

Neomysis integer also feeds on the sediment surface. It feeds raptorially on the whirled up 
particles (Parker and West, 1979) or directly ingests aggregations of surface sediment (Roast etal., 2000). 
The egestion rate of N. integer on sieved, organically poor sediments was determined as a measure for 
the ingestion rate (Roast etal., 2000). Egestion rate increased with increasing salinity and temperature.

3.4 Selectivity experiments
Selectivity of Neomysis integer for specific prey types or prey sizes can be determined in two 

ways: (1) via feeding experiments in artificial laboratory conditions, or (2) via the analysis of ingested food 
items. In laboratory experiments, nauplii and the smallest copepodites of Eurytemora affinis are most 
strongly selected (Irvine etal., 1993; Aaser etal., 1995). N. integer also readily feeds on Daphnia hyalina 
and again smaller prey individuals are preferred. Selectivity coefficients are significantly greater for 
Daphnia sp. than for copepodites of E. affinis (Irvine et ai, 1993). When administering a mixture of natural 
Zooplankton, N. integer seemed to be largely missing the older Eurytemora copepodites as these are 
capable of more vigorous flight reactions (Arndt and Jansen, 1986). In the Elbe, N. integer m s  found to 
feed on elder developmental stages of E. affinis (Bernât et ai, 1994). Juvenile mysids preferred small 
rotifers and copepod nauplii, while larger N. integer favoured larger prey like Cladocera and calanoid 
copepodites over Rotifera (Arndt and Jansen, 1986). Larger N. integer individuals consumed a larger size 
of E. affinis (Fockedey and Mees, 1999 -  Chapter 2).

In a Frisian brackish lake N.integer showed a strong negative selection for the filamentous blue- 
green alga Oscillatoria and a rejection of the filamentous green alga Planctonema, while it was preferably 
feeding on Bosmina sp., cyclopoids and detritus (Bremer and Vijverberg, 1982).



3.5 Structuring of Zooplankton and phytoplankton populations
It is well known from fresh- and brackish water lakes, that high mysid densities may affect 

phytoplankton and Zooplankton composition and abundance, especially in periods of low vertebrate 
predator abundance (Moss and Leah, 1982; Hanazato, 1990; Jeppesen et ai, 1994; Aaser et al., 1995). 
This phenomenon has also been suggested for brackish coastal areas, e.g. the Baltic (Rudstam et ai, 
1986; Hansson et ai, 1990). Information on the structuring impact of N. integer on the mesozooplankton 
(and phytoplankton) communities in dynamic estuarine systems is still lacking.

The high abundance of Neomysis integer in brackish water ponds and lakes is typically 
associated with a low abundance of pelagic Cladocera and copepods (Espeel, 1982; Van De Vijver, 1983; 
Aaser étal., 1995), indicating the governing role of mysids in the structuring of Zooplankton communities. 
In a Danish lake, Aaser et al. (1995) could demonstrate the negative impact of N. integer on Eurytemora 
affinis. By its heavy predation on the Zooplankton community N. integer reduces the grazing pressure on 
the phytoplankton and enhances the eutrophication in nutrient-rich brackish lakes (Aaser et ai, 1995; 
Samuels and Mason, 1998). Moreover, N. integer also directly stimulates the phytoplankton growth (Aaser 
et al., 1995), perhaps because nutrients consumed when feeding on the sediment surface are 
subsequently excreted to the water column and become available to the phytoplankton.

In laboratory experiments, Neomysis integer extensively feeds on nauplii and copepodites of 
Eurytemora affinis and Cladocera and thus has the potential to dramatically affect the population structure 
and density of its prey (Irvine et ai, 1993). However, in the field (Hickling Broad) no evidence was found of 
a link between the population dynamics of N. integer and E. affinis (Irvine et ai, 1995), except for a slight 
reduction in the total biomass and size-at-maturity of E. affinis in periods when larger mysids are relatively 
more abundant (cfr. these feeding more effectively on larger prey). The copepod reproduces so rapidly 
that its population is unlikely to be controlled by the mysid predation (Irvine et ai, 1993). Vice versa there 
was no indication that Neomysis integer m s  affected by (interannual) changes in the Eurytemora affinis 
population dynamics. The potential for omnivorous feeding in mysids implies that they may modify their 
diets in response to changes in the food quality and abundance. In periods of low Zooplankton densities, 
the omnivorous N. integer can switch its diet from Zooplankton to other food items, like epiphytic algae, 
(macrophyte) detritus and even organic matter in sediments. In this way, N. integer can keep its densities 
high and maintain a potentially high predation pressure on the remaining Zooplankton (Irvine et ai, 1995).

Neomysis integer is an important regulator of Zooplankton abundance and species composition in 
the Baltic as well (Jansen etal., 1983; Jansen and Heerklos, 1983; Hansson et ai, 1990), except for the 
northern part of the Baltic Sea where the species contributes only 3 % of the total mysid biomass 
(Rudstam et al., 1992), while another mysid species (Mysis mixta) and clupeid young-of-the-year larvae 
are the most dominantly zooplanktivores (Rudstam et ai, 1992). In coastal waters of the southern Baltic, 
N. integer consumption was estimated to amount to 2.7 -  20.1 % of the total annual Zooplankton 
production in the Darss-Zingst estuary (Jansen, 1985b; Thiel, 1992). N. integer has a minor impact on the 
phytoplankton in the Baltic region (Jansen et ai, 1983; Jansen and Heerklos, 1983). Jansen (1985b) 
found Zooplankton to constitute up to 37 % of the stomach content of N. integer in a bay of the southern 
Baltic Sea.

During periods when juveniles dominated the N. integer population, small Rotifera and copepod 
nauplii played a greater role in the food spectrum, while larger mysids selectively preferred larger prey like 
Cladocera and calanoid copepods (Arndt and Jansen, 1986). Only 8 % of the total annual rotifer 
production is consumed by N. integer in the southern Baltic. Still, N. integer juveniles are the main 
predators and select the larger rotifer species (like Brachionus plicatilis), the larger size classes and egg- 
bearing females (as demonstrated by feeding experiments by Arndt (1988).

A long-term dataset on the seasonal variation of Neomysis integer density in the Gironde estuary 
revealed a significantly positive correlation with copepod densities (Eurytemora affinis and Acartia spp.) 
and suggested predation by N. integer on copepods in the turbid reaches of the estuary with a possible 
food limitation (David et al., 2005). No correlation between N. integer and E. affinis or chlorophyll a could 
be statistically demonstrated in the brackish regions of the Elbe estuary (Kopeke and Kausch, 1996).



3.6 Diet overlap with coexisting species
Larvae and young of zooplanktivorous estuarine fish (like herring and smelt) can heavily predate 

on Zooplankton in some periods of the year, especially in years of high recruitment (Thiel, 1996), and then 
show a high degree of diet overlap with Neomysis integer (Kinne, 1955, Sanina, 1961, Maciejewska, 
1992). The zooplanktivorous fish select their prey visually and prefer larger prey like larger cladocerans, 
calanoid copepods, and N. integer itself (Thiel, 1996). The mysid exhibits a more tactile behaviour (next to 
visual cues) in their prey selection and is able to prey on smaller organisms like larger rotifers and nauplii 
of copepods and cladocerans (Jansen, 1985b). N. integer and planktivorous fish respectively consume
20.1 % and 25.4 % of the total annual Zooplankton production in the Baltic (Thiel, 1992). N. integer 
competes for food with the early fish developmental stages, but is at the same time a food component of 
the older stages of e.g. herring and sprat (Maciejewska and Opalinski, 2002).

Neomysis integer and Praunus flexuosus compete for the same food resource Eurytemora affinis 
(Winkler and Greve, 2004). In situations where not a lot of copepods are available, Praunus flexuosus will 
feed on the younger life stages of N. integer (Winkler and Greve, 2004), while N. integer will shift to a 
more detrital feeding mode under limited prey circumstances (e.g. Arndt and Jansen, 1986).

Remerie (1999) compared the stomach contents of Neomysis integer of the Schelde with other 
estuarine mysid species like Gastrosaccus spinifer, Praunus flexuosus, Schistomysis kervillei and S. 
spiritus N. integer m s  the only species feeding during day änd night, while the others were mainly night 
feeders. For all of the species, stomachs contained large amounts of unidentifiable detritus, originating 
from estuarine micro-flocs typically formed in the estuary by flocculation of sediment, particular suspended 
and dissolved organic matter (Eisma, 1986).

3.7 Feeding appendages
The feeding appendages of mysids consist, in anterior to posterior order, of an unpaired labrum, 

and paired mandibles, paragnaths (labia), maxillules and maxillae (Mauchline, 1980). The mouth is 
situated ventrally and is enclosed by a chamber formed by the labrum, mandibles and paragnaths. The 
mandible has cutting, grinding and macerating regions and a forwardly directed mandibular palp. The 
morphology of all these mandibular features vary between species according to their feeding habits 
(Mauchline, 1980). The endopods of the thoracic legs function in filter feeding. The anterior thoracic 
endopods, together with the mouthparts form a "food basket” in which organic matter collected from the 
sediment surface is collected, mainly by the mandibular palp, and held in the basket prior to maceration by 
the mouthparts (Mauchline, 1980; Roast etal., 2004).

Remerie (1999) and Maciejewska (1992) studied the morphology of the mandibles and 
thoracopods of Neomysis integer, since it can give information on their diet. The length and the distance 
between setae of the thoracopod endopods, identifying the surface and mesh size of the sieving device 
(Jerling and Wooldridge, 1994), was small in N. integer and indicate that filter feeding is of minor 
importance to the species. The structure of the mandibles, like the surface of the pars molaris (pm) and 
the length of the pars incisivia (pi), makes it possible to hypothesise on the degree of herbivory or 
carnivory of a species. For N. integer the pm/pi-ratio is low in comparison to other estuarine species and 
the presence of large, sharp incisive teeth on the pars molaris indicates a carnivorous or detritivorous 
feeding. When mysids are filter feeding they use the setae on the proximal endite of the maxilla for food 
collection (Cannon and Manton, 1927). Maxilla have feather-like setae with 2 rows of setules and a 
second type of more robust setae with short irregular setules overlaying the heather-like ones. The 
distance between setae and between setules on the maxilla of N. integer are respectively 4 -  5 and 2 -  3 
p m apart (Astthorsson, 1980) and should be able to retain particles as small as 2 -  3 p m.



3.8 Gut morphology, chitinases and cellulases
The alimentary canal of crustaceans is typically devisable in three regions (Molloy, 1958; Brunet 

et al., 1994): foregut, midgut and hindgut. In Mysidacea the foregut is more or less distinctly divided into 
four regions (Kobusch, 1998): the oesophagus, the cardiac and pyloric chambers of the stomach and the 
funnel. The midgut consists of a comparatively long straight intestine bearing a number of blind-ending 
caeca at its junction with the foregut.

Gelderd (1909), Molloy (1958), Haffer (1965), Mauchline (1980) and Kobusch (1998) all 
described the histological and morphologic structure of the gut of Neomysis integer (Figure 4a, b). Its 
oesophagus is short and muscular, lined with chitin and has spines that tend to point upwards towards the 
stomach. The stomach is divided into a large anterior 'cardiac' region and a smaller posterior 'pyloric' 
region. Both are armed internally with strong spines and setae and posses folds to assist the passage of 
food through the stomach. In general, the omnivorous N. integer retains a large mass of food in the 
cardiac chamber of the stomach, where it is continuously being worked up by the various cardiac folds, 
spines and teeth (Molloy, 1958).

Neomysis integer has a single, large dorsal diverticulum (Figure 4b) that arises as an extension of 
the midgut in the posterior dorsal area of the pyloric region of the stomach. It continuously secretes the 
peritrophic membranes into the intestine, within which the faecal material is bound (Molloy, 1958). The 
digestive glands (or hepatopancreas), consisting of two groups of five blind-ending caeca, open with a 
common duct into the posterior ventral area of the pyloric region of the stomach (Figure 4c, d). Part of the 
food passes from the stomach into the lumina of the digestive glands. The walls of the digestive glands 
posses circular muscles that power the movement of food and digestive enzymes within the lumina. The 
finely particulate food is digested and absorbed there. The caeca can reach up to the abdomen and is 
coloured yellowish green to brown in freshly caught specimens (Molloy, 1958). The intestine emerges from 
the stomach in the 3rd or 4th thoracic segment and extends posteriorly (as midgut) to the posterior end of 
the fifth abdominal segment where it becomes the hind gut, wider, lined with chitin and more muscular. 
Studies of a number of crustacean species revealed that cells of the digestive epithelium are cyclically 
shed (Brunet etal., 1994) and replaced as is supposed to happen in N. integer as well (Bradshaw etal., 
1989). The hindgut is short, extending only from the 6th abdominal segment to the anus, which is situated 
ventrally at the base of the telson. The volume of the gut of N. integer is approximately 7.5 mm3 for a 10 
mm long (SL) mysid (Irvine etal., 1993).

Cellulases and chitinases have been identified in whole specimen extracts of Neomysis integer, 
probably present in the alimentary canal (Molloy, 1958). So it can be assumed the species is capable of 
digesting exoskeleton remains of ingested Zooplankton, their own moults and faeces (with chitinous 
peritrophic membrane) and the (retractile) macrophyte detritus. Also it is assumed that some kind of 
inhibitor must be present as well to prevent digestion of the chitinous lining of the hindgut and the chitinous 
peritrophic membrane surrounding the faeces (Molloy, 1958).

In other detritivore crustaceans, cellulolytic bacteria are described to mobilize previously 
unavailable material in the faeces (Hargrave, 1976). Starved Neomysis integer individuals are known to re- 
ingest their faeces and may increase the efficiency of nutrient extraction due to both processes (enzymes 
and bacterial breakdown). Its own digestive system can be complemented by the 'external rumen' of 
bacterial action through coprophagy (Parker and West, 1979). The cellulolytic bacteria are not yet 
specified in the mysid N. integer though, although Armitage etal. (1981) mention the presence of general 
gut micro-organisms in the species. Other authors (e.g. Hargrave, 1970) suggest that the main energy 
value of the macrophyte detritus for crustaceans lies in the associated bacteria, fungi and protozoans 
present on the detritus, while the detritus itself is egested unchanged.



Figure 4: (a) Foregut of Neomysis integer 
in lateral view, with dorsal diverticulum 
omitted (Kobusch, 1998). (b) Schematic 
view of a longitudinal section through the 
foregut (Molloy, 1958; Mauchline, 1980). (c) 
Midgut glands in relation to the foregut in 
lateral view (Kobusch, 1998) and (d) in 
dorsal view with the foregut removed usch,
1998). Cc: Cardiac chamber (foregut); Dd: 
Dorsal diverticulum (midgut); Fu: Funnel 
(foregut); Int: Intestine (midgut); M: mouth; 
OE; oesophagus (foregut); Pc: Pyloric 
chamber (foregut); 1-5: five tubes of the 
digestive glands on each side. Scale bar: 
500pm



3.9 Gut passage time
Molloy (1958) noted that carmine particles require 30 -  40 minutes, occasionally as much as 90 

minutes, passing along the complete length of the alimentary track of Neomysis integer. The food stays in 
the stomach and anterior part of the midgut for most of the time. The intestine of N. integer starts anti- 
peristaltic movements when faecal material passes into the abdominal part of the intestine (Molloy, 1958). 
The rhythmic pumping of the hindgut muscles is associated with gulping in of water through the anus, and 
subsequent defecation. These gulping movements appear to initiate a forward wave of contractions along 
the intestine (anti-peristalsis).

Direct observations of the passage of food through the gut of Neomysis integer were performed 
by Ferguson (1973). Animal food (crab hepatopancreas) had a considerably longer time in the gut than the 
(natural and laboratory-made) detrital food sources; the first faecal pellets were produced after 
respectively 177 -  188 and 35 -  56 minutes and gut clearance took 4 to 6 times as long as on natural 
detritus. There was little difference in the digestion rate between juvenile and adults feeding on the same 
food source. N. integer produced more faecal pellets on the detrital diet as compared to the animal diet, 
although the time allowed for ingestion was similar (Ferguson, 1973). The higher the assimilation 
efficiency of a certain food source, the longer the gut passage time (Ferguson, 1973). The higher the ash 
content of the food, the shorter the gut passage time (Ferguson, 1973). Fockedey et al. (submitted d -  
Addendum 2) determined the gut passage time on environmentally relevant food sources for estuarine N. 
integers be between 0.5h (estuarine aggregates) and 2.6h (Eurytemora affinis).

3.10 Faecal pellets and coprophagy
Neomysis integer produces faecal material surrounded by a chitinous peritrophic membrane. The 

pellets break apart into smaller pieces after egestion. One fifth of the produced faecal pellet weight 
disintegrates and disperses into the surrounding water in which the animal is living (Bradshaw etal., 1989; 
Maciejewska and Opalinski, 2002).

Neomysis integer feeds on its own faeces when there is a shortage of food (Molloy, 1958; Parker 
and West, 1979; Weisse and Rudstam, 1989; Roast et al, 2000). The faecal pellets of N. integer are 
potential sources of energy; especially when derived from organically rich food sources, the faecal pellets 
have a high carbon content (40 -  60 %; Ferguson, 1973). A more efficient assimilation of a specific food 
item does not automatically implicate organically poorer faecal pellets (Ferguson, 1973). An assimilation 
efficiency of more than 75 % resulted mostly in faeces containing > 35 -  66 % organic matter. When N. 
integer is offered its own faecal pellets as food, the assimilation efficiency is 10 -  25 %. Although this is 
not particularly high, it indicates that some nourishment can be derived from the faecal pellets. The faecal 
pellets produced by N. integer on a variety of food environmentally relevant sources are studied in detail 
(scanning electron micrographs and C:N analysis) by Fockedey etal. (submitted d -  Addendum 2).

3.11 Starvation
Juvenile and subadult Neomysis integer survived no longer than 7 weeks when starved at 9 °C 

(Gorokhova and Hanssen, 1999). Morris et al. (1977) and Armitage et al. (1978) starved N. integer by 
feeding it with kaolin clay and obtained a mortality of 60 % after 6 to 8 days. Survival to starvation is 
dependent on salinity and temperature conditions and size of the mysid (Vlasblom and Elgershuizen, 
1977; Winkler, 2000).

Starvation of Neomysis integer during 5 weeks resulted in a 36 % mortality, a dry weight 
decrease of 18.6 % and 7.6 % reduction of body carbon (Gorokhova and Hanssen, 1999; Gorokhova, 
2002). Starvation reduces the protein content of N. integer (-41 %) and thus reduces the dry weight 
(Armitage et ai, 1977; 1978). Wet weight does not alter much during starvation, because of the increase 
in water content (Armitage et ai, 1978). The level of total free amino acids was reduced (28 -  29 %) in 
starved animals (Armitage et ai, 1977; 1978). Starvation did not change the isotopic composition of N. 
integer, as might be expected since progressively lighter isotopes are expected to be catabolized first 
(Gorokhova and Hanssen, 1999).



A prolongation of the starvation period from 6 to 30 hours significantly reduced the ammonia 
excretion rate of Neomysis integer (Weisse and Rudstam, 1989), but did not affect the oxygen 
consumption or dissolved inorganic phosphorus excretion rate. Starvation reduces the carbohydrate 
reserves of N. integer (Raymont and Conover, 1961), but does not reduce significantly the total lipid 
content (Linford, 1965). More recently, starvation was demonstrated to cause an increased atomic 0:N 
ratio, indicator for the reserve substrate being catabolized (Weisse and Rudstam, 1989). The actual 
amount of glycogen is small, and allows the mysid to live for only a few hours (Raymont et al., 1966; 
1968). The (low) amount of lipid reserves of N. integer 02  - 15 % of DW) is enough to maintain respiration 
rates and activity levels for at least 48 h (Weisse and Rudstam, 1989). When starved for a longer period, 
the species can deaminate body protein (Raymont et al., 1964; 1967; 1968; Verslycke and Janssen, 
2002).

When starved, mysids are known to increase the retention time of the food present in their 
stomach (Murtaugh, 1984). Molloy (1958) starved Neomysis integer in order to clear the gut, but 5 -  7 
days after being deprived of food, the alimentary track still contained food items. When food is limited, N. 
integer is feeding coprophagously on its own faeces (Weisse and Rudstam, 1989; Roast et al., 2000). 
They flex their body and bring the faecal thread close to the mouthparts where it is seized, drawn out and 
eaten (Parker and West, 1979). They also feed on dead N. integer individuals, though living ones, other 
than lost larvae and just released juveniles, are not attacked when there is shortage of food (Raymont and 
Krishnaswamy, 1960; Parker and West, 1979; Fockedey, unpublished). Usually only the thoracic region of 
the dead N. integer is eaten. It is thus difficult to ensure complete starvation conditions experimentally for 
N. integer. Armitage etal. (1977,1978) solve this by administering kaolin clay, since the mysids keep on 
feeding and hence do not retrieve the remaining food in the stomach.

3.12 Feeding ecology and changing temperature and salinity
Generally, the ingestion rate increases with increasing temperature, as anticipated from the 

general effect of temperature on most rates of physiological processes including the feeding responses of 
aquatic invertebrates. Increased temperature increases the predation rate of Neomysis integer 
(Astthorsson, 1980; Winkler and Greve, 2004) and the egestion rate on organically poor sediments (Roast 
et al., 2000). Temperature has a strong effect on the excretion rates (ammonia and DIP) of N. integer 
(Weisse and Rudstam, 1989). The feeding rate of N. integer feeding on organically poor sediments 
increased also with increasing salinity (Roast et al., 2000), probably because more energy is spent in 
osmoregulation.

Roast et al. (2000) used the response of the egestion rate (as a measure of the ingestion rate) to 
changes in salinity and temperature under laboratory conditions, to calculate the tidal and seasonal 
changes in the feeding rate of Neomysis integer in the East Looe River estuary (with extreme tidal 
fluctuations in the salinity and temperature). They concluded that the feeding rates of N. integer are 
generally low during the tidal cycle, except for a short period of 2 hours around high tide. Seasonal 
temperature changes cause seasonal changes in the feeding rate of N. integer, with increased rates in the 
warmer summer months, i.e. the main reproductive period (Roast etal., 2000).

Two other aspects of the feeding ecology affected by the prevailing temperature and salinity are: 
(1) the survival to starvation (see above; Vlasblom and Elgershuizen, 1977) and (2) the assimilation 
efficiency of Neomysis integer increases with increasing temperature when feeding on animal food 
(Ferguson, 1973), though not when feeding on organically poor sediments (Roast et al., 2000). Salinity 
has little or no impact on the assimilation efficiency of N. integer feeding on animal food or sediments 
(Ferguson, 1973; Roast etal., 2000).



3.13 Survival, growth and reproduction on different diets
Survival, growth, development and reproduction rates can be used as indicators of food quantity 

and food quality. Feeding rate alone cannot explain the differences observed in growth, development, egg 
production or mortality (Koski et al., 1998) and thus experiments are needed to elucidate the degree to 
which specific food items are ingested, digested and -  especially -  assimilated. Somatic tissue and eggs 
have a different chemical composition, which demand a different nutritional composition of the food. 
Probably specific lipids and fatty acids are more critical for gonad development and egg production, while 
proteins are more important for somatic growth (Kiorboe etal., 1985).

Until now, few studies have examined the survival and growth rates of mysids in relation to food 
quality (Lehtiniemi et al., 2002) and little information is available on the impact of food quality on their 
reproduction (Domingues et ai, 2002). Some studies are available on the impact of food quality on the 
feeding activity, ingestion and assimilation efficiency (Ferguson, 1973; Astthorsson, 1980). Filter feeding 
experiments with Neomysis integer on 5 species of cultured algae (Astthorsson, 1980) suggested that only 
when feeding on one species (Cricussphaera oblongata), the mysid was able to meet all its metabolic 
requirements. On the other phytoplankton N. integer experienced some kind of shortage.

For Neomysis integer, only Ferguson (1973) performed experiments for comparing growth 
efficiencies of selected size classes of mysids feeding them an animal diet (crab hepatopancreas) and two 
detrital diets (artificial detritus of aged algal culture and natural detritus). The smallest animals exhibited 
the highest growth efficiencies. When feeding artificial detritus, the growth efficiency was significantly 
smaller than on the animal food. On natural detritus, collected from the surface of the marsh creek beds, 
the animals lost weight due to the poor quality of the natural detritus sample. Fockedey et al. (submitted a
-  Chapter 5) evaluated survival, growth and moulting of subadult Neomysis integer when fed Eurytemora 
affinis, estuarine aggregates and macrophytal detritus in order to evaluate the nutritive value of these 
environmentally relevant food sources.



4 LIFE HISTORY
Reliable estimates of secondary production and well documented life history data are necessary 

for key species in order to understand the functioning of estuarine ecosystems. As life history 
characteristics can vary considerably from one habitat to another, local knowledge on the species' biology 
is essential for further use in ecosystem modelling, energy flow studies, experimental and toxicological 
work. For Neomysis integer, quite some data are available on its life history over a wide geographical and 
habitat range (Table 5), and quite some variations exists between populations. Life history of southern 
populations < 51° N are poorly known, with the exception of the Gironde population (Sorbe, 1980). Studies 
on the Guadalquivir population, at the southern most border of the species distribution area are ongoing 
and not published yet (Vilas, personal communication).

4.1 Seasonal dynamics of Neomysis integer populations in the estuary
Most studies on the population dynamics of Neomysis integer are exclusively based on field data 

(e.g. Mees etal., 1994 and the references herein). Generally, length frequency distributions are obtained 
through regular sampling (once or twice per month) of the population for at least one year. As a result of 
the asynchronous moulting between individual mysids, the lengths within a cohort are presumed to be 
normally distributed. Cohorts can then be segregated by modal progression analysis, but this is often 
complicated due to the occurrence of overlapping generations and prolonged reproductive periods (e.g. 
Astthorsson and Ralph, 1984; Mauchline, 1985; Irvine et al., 1995). In order to detect and separate 
cohorts in a more objective way, length frequency distributions can be analyzed with the Bhattacharya 
method (Bhattacharya, 1967 implemented in Pauly and Caddy, 1985). It splits composite length-frequency 
distributions into separate normal distributions. The means of the normal distribution for all sampling dates 
are then plotted over time to trace the modal length progression (growth curve) of the cohorts. This 
technique was used for N. integer populations in the Schelde, Galgenweel, Gironde, Tamar and 
Guadalquivir (Mees et al., 1994; Fockedey, unpublished; Mees et al., unpublished; Villas, personal 
communication; Moffat, 1996). For each of the cohorts identified, density, biomass and production can be 
estimated, and growth curves can be fitted. The growth rate (mm d 1) of each cohort can then be 
calculated as the increase in the mean length during each sampling interval (Omori and Ikeda, 1984).

Based on the development of the secondary sexual characteristics, the mysid individuals within the 
population can easily be staged and sexed (Mauchline, 1971) into the following classes: (1) juveniles, (2) 
immature males, (3) mature males, (4) immature females, (5) adult females and (6) gravid females. Adult 
males are distinguished by their well developed 4lh pleopods which reach beyond the posterior edge of the 
last abdominal segment. They are further characterised by a well-developed and setose lobus masculinus 
between the flagellae of the antennal peduncle. Adult females all have a well developed marsupium 
between the thoracic legs. Juveniles lack secondary sexual characteristics. A further distinction between 
adult and subadult (immature) males and females is often more subjective. For subadult males the 
following criteria were used by Mees etal. (1994), Mees etal. (unpublished) and Fockedey (unpublished): 
the 4“1 pleopod stop short of reaching the end of the last abdominal segment and/or the lobus masculinus 
is present but it is much smaller than in adult males and it is not yet setose. The latter criterion seemed to 
be the most reliable when distinguishing immature males from juveniles. Females were categorised as 
adults when their marsupial were large enough to be seen from the lateral side. In contrast, the developing 
Oostegites in subadult females are only visible between the thoracopods when the ventral side of the 
animal is carefully examined. Adult females are further divided into females without embryos or larvae 
(fully developed but empty marsupia) and 'gravid' or ovigerous females (embryos or larvae present in the 
marsupium). When gravid females are present one can make larval counts of females with complete 
broods.

Information on the population structure at subsequent moments within the year, like the relative 
number of adults and gravid females or the appearance of high amounts of small juveniles, helps to 
identify the breeding season and distinguish the subsequent cohorts within the length-frequency 
distributions.



Some authors distinguish juveniles from subadult stages at a fixed length: 6 mm TL (Platenkamp,
1983), 6 mm TL (Borghouts, 1978), 8 mm TL (Kinne, 1955) and 9 -  10 mm TL (Beattie and de Kruijf, 
1978; Bremer and Vijverberg, 1982). However, this is an inadmissible simplification since the transition 
from juvenile to subadult occurs at a different size, dependent on the season, sex of the animal and the 
latitude it is living at (Mauchline, 1971; Schuchardt etal., 1989; Mees etal., unpublished).

4.1.1 Annual production
Annual production can be estimated from the length-frequency data and a length-weight 

regression (Table 2). Three commonly used methods, each with their own strengths and weaknesses are: 
(1) the growth summation method (Winberg, 1971; Crisp, 1984), (2) the removal summation method 
(Crisp, 1984) and (3) the size frequency method (Hynes and Coleman, 1968; Menzie, 1980). Furthermore, 
production of mysids can independently be estimated using the estimated mortality rate. This low effort 
method only requires the length-frequency distributions and an estimate of the mean annual biomass 
(Brey, 1986). The total mortality of a population equals the P/B ration, if the individual growth can be 
described by a von Bertalanffy function (Allen, 1971). The first method is applied most in production 
estimates of Neomysis integer(Bremer and Vijverberg, 1982; Arndt and Jansen, 1986; Mees etal., 1994; 
Irvine et al., 1995). The different methods were compared with each other in a study of the population 
dynamics of N. integer in the Schelde estuary (Mees et al., 1994). The growth summation and removal 
summation method yielded comparable production estimates. The size-frequency method only gave 
similar results when applied to the 3 cohorts and to both sexes separately. Although the identification of 
cohorts is not a prerequisite to obtain a production value with this method, it is advisable in order to avoid 
an overestimation (up to 40 %). The production estimate based on the mortality rate of the different 
cohorts resulted in values comparable for the overwintering generation, but overestimated the spring and 
summer cohort production with 24 %.

The annual production of Neomysis integer in the Schelde estuary was 322 -  449 mgADW m 2 y
1 (Mees et al., 1994). Despite the long life span of the winter generation it generated only a quarter of the 
annual production, while the spring generation accounted for almost half of it.

Several annual production estimates of Neomysis integer are available for the Baltic region. In 
the southern Baltic (Darss-Zingst estuary and adjacent bays), the annual production was estimated as 3.0
-  4.7 gWW m 2 y 1 (Arndt, 1985) or 437 -  876 mgDW nr2 y 1 (Arndt and Jansen, 1986); but Thiel (1992) 
obtained a higher production of 9 gWW m 2y 1 for the same region. The annual production in the shallow 
littoral water (< 1.5 m) is one order of magnitude higher as compared to deeper water of the Darss-Zingst 
Bodden: 400 -  800 vs 30 -  60 mgDW m 2y 1 (Arndt and Jansen, 1986).

The annual production of Neomysis integer in brackish lakes is variable. For Lake Ferring 
(Denmark) it amounted to 2.2 gDW nr2y 1 (Aaser etal., 1995), and daily production peaked in July and 
August when respectively 35 and 29 mgDW m 2 d 1 were recorded. In Hickling Broad (England) the daily 
production ranged from 2 to 73 mgDW m 2 d 1 (Irvin et al., 1995), yielding a total annual production 
(including intra-marsupial production) of 5.8 gDW nr2y-1. Soselisa (1994) reports an annual production of 
5.6 gADW m 2y 1 in the Belgian brackish pond Galgenweel. Bremer and Vijverberg (1982) and Bremer 
(1980) calculated a far lower production of N. integer in the Dutch lakes Slotermeer and Tjeukemeer as 10 
mgDW m 2y 1 and 0.03 mgDW m 2y \  respectively.

Most estimates of the production of Neomysis integer must be considered to be underestimates, 
since net efficiency, mesh selection or weight-loss due to formalin conservation are generally not taken 
into account. In none of the former studies the loss through moulting or the intra-marsupial production 
were considered. One exception on the latter is Irvine et al. (1995), who calculated the intra-marsupial 
production rate using the growth increment summation method as being always lower than 10 % of the 
total production.
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4.1.2 P/B ratio: biomass-specific production
The P/B coefficient can be of more general significance than the production value itself (Greze,

1978). The P/B decreases with size and body mass within and between populations. Within a population 
the young animals show low body mass and relatively high growth (i.e. production) and have a 
comparatively high P/B, whereas the large and older animals have a reduced growth and a high biomass 
and resulting in a comparatively low P/B ratio. P/B ratio decreases with each trophic level by one order of 
magnitude, as the transfer efficiency among trophic levels amounts to 10%. P/B is mostly measured on an 
annual scale or daily scales.

The estuarine Neomysis integer population from the Schelde has an annual P/B ratio of 6, while 
the average cohort P/B was 3 (Mees etal., 1994). The daily P/B coefficients of N. integer in the southern 
Baltic are 0.011 to 0.013 (Arndt and Jansen, 1986). In brackish lakes, the daily P/B ratio for N. integer 
varies between 0.001 and 0.050 in Frisian lakes (Bremer and Vijverberg, 1982), while in a lake in Jutland 
values between 0.001 and 1.0 were recorded (Aaser etal., 1995). Peak values of the daily P/B coefficient 
coincide with periods when the recruitment of juveniles into the population is high (Bremer and Vijverberg, 
1982). In brackish lakes, the annual P/B ratio is 3.3 to 14.8 (Bremer and Vijverberg, 1982; Irvine et al., 
1995; Soselisa, 1994; Fockedey, unpublished). The lower and upper limits of the daily P/B coefficients of 
N. integer based of laboratory experiments are 0.009 to 0.051 (Kuhlmann, 1982) and are comparable to 
the daily P/B ratios measured in the field.

4.2 Number of cohorts or generations per year
In the most northern populations (> 53° N) generally 2 generations per year are reported, while in 

the more southern studies (< 53° N) 3 generations or more are described per year. In the Baltic region of 
Darss-Zingst (Arndt and Jansen, 1986), the Swedish coast (Rudstam et al., 1986), Gdansk bay (Wiktor, 
1961) and the Kiel Canal (Kinne, 1955), only 2 generations are reported. In some brackish lakes, like Lake 
Ferring (Aaser et al., 1992), Bergumermeer (Beattie and de Kruijf, 1978), Hickling Broad (Irvine et al., 
1995) the spring or summer generation is not developed or it is difficult to distinguish them from each other 
(Borghouts, 1978; Parker and West, 1979). In the Ythan estuary (Astthorsson, 1980; Astthorsson and 
Ralph, 1984) only 2 generations are described. Sorbe (1980) originally categorized N. integer in the 
Gironde estuary as a bivoltine species as well, although the author expected an additional spring 
generation to be present between February and May. A later study of Mees etal. (unpublished) concluded 
that even more than 3, highly overlapping generations are present in the Gironde estuary.

The creation and maturation of the specific cohorts differs between the different populations 
(Table 5). Along the west coast of Ireland and Scotland, in lakes Hickling Broad, Barnegat, Galgenweel 
and in the estuaries of the Schelde and Gironde, the spring generation appears in the population in April 
-May. In other locations the juveniles of the spring generation are released in May and/or June (Baltic 
populations, east coast of Scotland; lake Ferring, Dutch lakes Grevelingen, Bergumermeer, Slotermeer, 
Tjeukemeer, lake Veere, Den Inkel, the clay pits of Stuyvekenskerke and the Weser estuary).

The moment when this spring generation reaches maturity and releases brood is not linked 
to the moment they appear in the population but probably to environmental variables (like temperature, 
salinity, food conditions,...). In Slotermeer and Tjeukemeer e.g., the spring generation only appears in the 
course of June but rapidly reaches maturity to release a summer generation in the course of July 
(Bremer and Vijverberg, 1980; Bremer, 1980). This phenomenon is also observed in the other Dutch lakes 
(Borghouts, 1978; Platenkamp, 1983), with the exception of the oligohaline Barnegat (Vorstman, 1951). 
Here the summer generation is considered as the latest hatching product of the overwintering generation 
before they die. In other populations with a 'late' spring generation, like for example in Lake Ferring (Aaser 
et al., 1995) or the Barther Bodden (Arndt and Jansen, 1986), the summer generation is completely 
lacking due to the delayed maturation of the spring generation in late summer (August/September). 
Those populations with an early spring generation all produce a summer generation, with the exception of 
Hickling Broad (Irvine etal., 1993; 1995).



The appearance of the individuals that will overwinter as large juveniles or subadults generally 
occurs in late summer (August/September) in most populations with 3 annual generations per year. In the 
populations of the Weser and Slotermeer this period is prolonged up to October. In loch-like estuaries 
along the Irish and Scottish west coast breeding continues in winter, although at a very low rate.

In populations with 2 generations a year, the juveniles of the overwintering generation generally 
appears in July. In the Darss-Zingster Bodden and the Bergumermeer, overwintering juveniles appear in 
late August/September. The overwintering generation disappears from the population generally within 
the same month the spring generation appears or 1 month later at the most. However in loch Etive, 
Barnegat, Schelde and Gironde, the overwintering adults only die 3 to 5 months later.

4.3 Maximal longevity / life span
Most epipelagic species of the littoral zone have relatively short lives of 2 -  9 months (Mauchline,

1972). Neomysis integer is estimated to be tri- or bivoltine (see Table 5). The winter generation has a 
longer life span than the spring and summer generations. The latter reach maturity within 1 -  2 months 
after having left the brood pouch and probably live for maximally 4 months (Mauchline, 1971). The winter 
generation has a retarded growth and maturation due to the low winter temperature, and starts 
reproduction only in spring of the following year. They are generally present for 9 -  11 months in the 
population (Table 5). Mauchline (1971b) reports for the Clyde Sea that remnants of the spring generation 
(born in June/July) contribute to the winter generation that reproduces in March/May and their longevity is 
thus maximally 1 2 - 1 3  months. Some survivors of the summer generation of the previous year probably 
are still present in the population of Hickling Broad the next summer (Irvine et al., 1995) and longevity is 
estimated to be one year. Tattersall and Tattersall (1951) estimate a maximal longevity of 18 months.

Along the west coast of Scotland and Ireland, females of the overwintering generation die first, 
the males later (Mauchline, 1971; Parker and West, 1979), while in the Grevelingenmeer, Lake Veere, 
pond Den Inkel and the Schelde estuary females outlive the males (Borghouts, 1978; Platenkamp, 1983; 
Mees et al., 1994). In the Bergumermeer the males and females died simultaneously (Beattie and de 
Kruijf, 1978). No difference in the mortality between the sexes is observed for spring and summer cohorts 
(Mees etal., 1994).

4.4 Size-at-maturity
The animals from the spring and summer generations reach a smaller length at maturity in 

comparison with the overwintering generation (e.g. Mees et al., 1994). In Frisian lakes for example, 
animals of the summer generation reach at most 15 mm TL, while adults of the overwintering generation 
reach a maximum length of 19 mm TL (Bremer and Vijverberg, 1982).

Marked differences are apparent in the growth patterns of the 2 sexes within each cohort. Adult 
females generally have a larger length than males. Adult females of (late summer) Neomysis integer 
(Baltic proper) are approximately 30 % larger than males (Weisse and Rudstam, 1989). Dry weight of adult 
males from the Baltic ranged from 2.7 to 3.2 mg (overall mean 2.9 mg) and for females between 4.0 and
4.8 mg (overall mean 4.2 mg) (Weisse and Rudstam, 1989). Mees et al. (1994) found adult males and 
females of the overwintering generation -  respectively 10 and 14 mm SL (i.e. 12 and 16 mm TL) -  to be 
larger than the spring/summer generation at respectively 9.5 and 10 mm SL (i.e. 11 and 12 mm TL).

Comparing the population dynamics of Neomysis integer in 2 lakes in SW Netherlands, 
Borghouts (1978) found the size at maturity to be significantly smaller in the more densely populated lake 
(Den Inkel). Size at maturity of the spring generation was respectively 15 - 19 mm TL and 10 - 13 mm TL 
in Lake Veere and Den Inkel; in summer respectively 10 - 15 mm TL and 7 -  9 mm TL.



Figure 5: Effect of latitude and salinity on 
the size-at-maturity (SAM) of all available 
information in literature

Parker and West (1979) report the Neomysis integer of Loch Furnace to be smaller (10 - 14 mm 
TL) than elsewhere in Europe. Comparing all studies available up till 2005, this postulation no longer 
holds. The reported size-at-maturity in August/September is smallest (<10 mm TL) in the lakes Hickling 
broad, Den Inkel and the Gironde estuary. Largest size at maturity (>15 mm TL) are observed in the Ythan 
and the Darss-Zingster estuaries. Late summer size-at-maturity (August-September) is significantly related 
to latitude (Spearman rank = 0.66, p = 0.01), but no effect of salinity could be demonstrated (Figure 5).

The comparison of the published data resulted to difficult, mainly because of differences in the 
measuring and staging techniques used by the different authors. In order to overcome this problem, Mees 
et al. (unpublished) measured and staged N. integer collected in spring and summer from populations of 
the estuaries Guadalquivir, Gironde, Adour, Schelde, Eems, Elbe, Shannon and Lay (Figure 6). A clear 
logitudinal effect could be observed in the size-at-maturity of N. integer.

Figure 6: Effect of latitude on the size-at- 
maturity (SAM) of Neomysis integer from 
Guadalquivir, Gironde, Adour, Schelde, 
Eems, Elbe, Shannon and Lay (according to 
Mees etal., unpublished).
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4.5 Fecundity
The fecundity of a Neomysis integer population, i.e. the number of young recruiting to the 

population, is determined by (1) the prevailing temperatures which governs the breeding season, (2) size- 
at-maturity and associated brood size, (3) the number of successive broods, (4) intra-marsupial 
development rate and (5) intra-marsupial mortally. Also, (7) the size of the pool of large mysids that 
successfully reaches maturity, especially after the winter, and the time to reach maturity also have an 
important role in the population's fecundity (Irvine et al, 1995).

4.5.1 Breeding season
In the most western populations of Neomysis integer of the Scottish and Irish Lochs and the 

estuaries Severn, Tamar, Test and Conwy breeding is continuous over the year (Raymont et al., 1966; 
Mauchline, 1971; Parker and West, 1979; Moore et al., 1979; Hough and Naylor 1992; Moffat, 1996). 
However, periods of intensive breeding result in the production of distinct spring (March-May), summer 
(June-July) and overwintering (August-September) generations (Mauchline, 1971; Parker and West,
1979). There is always a proportion of the population breeding, but the intensity of breeding in winter 
(October-February) is low with gravid females representing less than 1 -  2 % of the population (Mauchline, 
1971; Moore etal., 1979). Moffat (1996) also mentions continuous breeding in the Tamar estuary, since 
juveniles are present all year round in the samples.

Other authors (see Table 5) report no reproductive activity during the cold winter period when no 
gravid females are found, but the breeding season varies substantially between the different populations. 
The species is described to breed for 5 -  7 months between April/May and September/October in most of 
the populations. E.g. Neomysis integer breeds for 7 months, respectively between April and October in the 
Schelde estuary (Mees et al., 1994) and between March and September in the pond Galgenweel 
(Soselisa, 1994; Fockedey, unpublished). The breeding season starts earlier in February/March in the 
Neomysis integer populations of Hickling Broad, Barnegat and Gironde and gets on to November in the 
populations of Darss-Zingster Bodden and Gironde. An extremely short breeding season of 4 months is 
recorded in Den Inkel, while extreme long (but intensive) breeding is observed in Hickling Broad (9 
months) and the Gironde (10 months).

During the period of most intensive breeding (spring), the relative abundance of gravid females 
into the population can increase to 17 -  30 % of the total population or more than 80 % of the total number 
of adults females (Kinne, 1955; Mauchline, 1971; Moore et al., 1979). In the Weser (Schuchardt et al., 
1989) and Bergumermeer (Beattie and de Kruijf, 1978) only 40 -  50% of the adult females were gravid. 
Schuchardt etal. (1989) ascribe this relative low value of the proportion of gravid females in the breeding 
season to (1) an inaccurate separation of the subadult and adult females during the analysis while 
distinguishing stages; or (2) to high relative numbers of females with the brood recently hatched, or (3) to 
a relative long period of sexual inactivity in between subsequent broods, although a bad conservation can 
also be the cause of this low number (Mees, personal communication).

The first breeding in spring is quite synchronous. Given the multiple broods of one female, the 
synchronicity diminishes over the course of summer and it becomes more and more difficult to distinguish 
the breeding efforts in subsequent cohorts (Schuchardt et al., 1989). Some authors give the advice to 
consider the whole period of development of the population as one period of continuous reproduction with 
2 or 3 periods of intensive breeding which can be followed for some time as pulses in the length frequency 
distribution of the population (Mauchline, 1971; Beattie and de Kruijf, 1978; Bremer and Vijverberg, 1982; 
Schuchardt etal., 1989).
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4.5.2 Brood size
The number of embryos/larvae in the marsupium depends on body size, the size of the individual 

eggs, and the season of the year. Brood size also differs between populations living at different latitudes 
(Mauchline, 1980; Mees et al., unpublished). The maximum brood size reported for Neomysis integer is 98 
embryos per female in the Ythan estuary (Astthorsson, 1980) and in the Schelde estuary (Mees et al., 
1994).

For Neomysis integer brood size is demonstrated to be highly depended on female body size 
(Table 6). Bremer and Vijverberg (1982) report a little variation of this relationship over the course of the 
year, but other authors (Astthorsson, 1980; Arndt and Jansen, 1986; Mees et al., 1994) observed a 
significantly different size-fecundity relationship between the overwintering generation and the spring- and 
summer generations.

Seasonal variation in size at maturity, and consequently in fecundity, between different cohorts 
has been reported. The late summer and autumn breeding animals usually have a smaller size at maturity 
and related fecundity as compared to those breeding in spring and early summer (Vorstman, 1951; Kinne, 
1955; Borghouts, 1978; Parker and West, 1979; Astthorsson, 1980; Bremer and Vijverberg, 1982; Arndt 
and Jansen, 1986; Mees etal., 1994). Females of the winter generation generally produce more eggs than 
the spring and/or summer females of the same body size (Mauchline, 1971; Arndt and Jansen, 1986; 
Mees et al., 1994). For example, the brood size of Neomysis integer from the overwintering generation is 
50 (40 -  65 ind°) eggs per female in the Darss-Zingst estuary of the southern Baltic (Arndt and Jansen, 
1986); females of the summer generation generally produce far less eggs (9 -  28 ind-1). In Loch Etive 
breeding continues during winter at a rate of 12 -  27 ind1, while brood size in spring, early summer and 
late summer was 29 -  46, 14 -  57 and 14 -  32 ind'1, respectively (Mauchline, 1971). Also, size-specific 
brood size can vary between successive years (Irvine etal., 1995).

Bremer and Vijverberg (1982) and Schuchardt et al. (1989) demonstrated a lower brood size in 
almost freshwater populations (0.2 psu) in comparison to populations living in more saline water ( 10 -18  
psu).

Comparing the size-specific brood size of Neomysis integer living in the Schelde estuary (15 psu) and a 
population living in a nearby brackish pond (5 psu), Fockedey and Mees (unpublished) can make a similar 
conclusion (Figure 7).

Figure 7: Size-specific brood size of 
Neomysis integer in Galgenweel (GALG) 
and Schelde (SCH) in the spring and 
summer generation.



Mees et a i (unpublished) report the Schelde population of Neomysis integer, living at a higher 
salinity (15 psu) than other estuarine populations (< 5 psu), to be characterised by the largest brood size.

7 8 9 10 11 12 13 14 15 16 17
standard length

It remains unclear why most estuarine populations live at a low salinity that finally results in a 
relatively smaller brood size. Possible explanations may include a trade-off for suboptimal brood sizes with 
competitive advantages of living in low-salinity waters which in estuaries coincide with higher turbidity, 
lower predation pressure, a higher food availability, less competition with other mysids or benthic filter 
feeders (Mees et ai, 1994).

4.5.3 Number of subsequent broods per cohort
Whether a higher brood size also results in a higher fecundity is difficult to say based on field 

data. Smaller brood sizes may be compensated by the production of several subsequent broods per 
female in the spring and summer generations. However, without laboratory observations, it is difficult to 
decide whether females breed more than once (Vorstman, 1951). Tattersall and Tattersall (1951) coin the 
possibility of 3 or 4 subsequent broods in the spring individuals. Astthorsson (1980) assumes that 
Neomysis integer in the Ythan produces 2 - 3  subsequent broods. Extrapolating laboratory derived 
development times to the field observations, Kinne (1955) concludes that the winter generation of N. 
integer in the Kiel Canal produces 3 broods and the summer generation 4 - 6  broods. Mees et al. (1994) 
report unpublished culture experiments (Janssen, unpublished) where N. integer produce 5 consecutive 
broods at 20 °C.

Figure 8: Effect of latitude 
on the brood size of the 
spring and summer 
generation in the Elbe 
(ELBE), Eems (EEMS), 
Schelde (SCH) and Gironde 
(GIR) estuaries.
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In the laboratory (Fockedey, unpublished; Table 7) Neomysis integer produced 4 successive 
broods at 1 5 0 C, independent of salinity (5 or 15 psu). At 20 0 C, up to 5 broods were produced per female. 
The time between successive brood is 0 -  4 days and 0 -  7 days at 15 and 20 °C.

Table 7: Unpublished laboratory experiments on the in vivo intra-marsupial development of Neomysis integer.

15°C -  5 psu 15°C -  15 psu 20°C -  5 psu
length experiment (days) 61 61 55

# females brought into experiment 38 32 43
50% mortality (days) 16 33 21

Mauchline (1980) Wittmann (1981) days % days % days %
Egg Embryonic phase 5.3 32 5.1 32 3.2 29

Larva Nauplioid phase 6.5 40 6.7 42 4.2 38
Eyed larva Post-nauplioid phase 4.6 28 4.3 26 3.7 34

Incubation time (days) 16.5 16.1 11.1

# successive broods max. 4 max. 4 max. ;
time between successive broods (days) 0 - 2 0 - 4 0 - 7

#  iuveniles liberated per brood 24,/ 1 3 / 6 / ? 2 2 / 11 / 7 7 ? 7 / ' 7 / 6 / ? / ?

4.5.4 Mortality during intra-marsupial development I hatching success
The number of early embryos in the marsupium always outnumbers the number of later larval 

stages (Astthorsson, 1980; Mauchline, 1980). Generally, 10 % of the young are lost in a premature 
condition (Mauchline, 1973; Wittmann, 1981). Mortality or loss of eggs initially laid in the marsupium was 
estimated to be 27 % for the winter generation; for the summer generation the marsupial mortality was 
dependent on the body size of the female and was 25,17 and 3 % for gravid females with a total length of 
12,14 and 16 mm, respectively (Astthorsson, 1980). By comparing the abundance of embryos/larvae in 
brood carrying females and the subsequent abundance of neonates (< 3 mm) in the field, Irvine et al. 
(1995) suggest a high mortality (> 50 %), especially in the early embryo stages.

Little data were available on the hatching success of embryos of Neomysis integer. Vlasblom and 
Elgershuizen (1977) tested survival of embryos at a relative narrow range of salinities at 15 °C. Hatching 
success was optimal at a salinity between 11 and 18 psu. The optimal salinity for hatching is strongly 
related to the salinity the animals are adapted to and hatching percentage amounted to 60 -  80 % for 
animals adapted to low salinity (7 psu) and 40 -  60 % for animals adapted to higher salinity (23 psu). The 
early embryos had a smaller salinity tolerance than the later larvae (Vlasblom and Elgershuizen, 1977).

More in-depth information on the intra-marsupial development of Neomysis integer and the 
impact of environmental variables on mortality, hatching success, and the duration of the developmental 
stages is available in Fockedey etal., submitted b -  Chapter 6). Information on the impact of biotic factors 
(size female, brood size, egg size) is still lacking.

4.5.5 Morphology of the developing embryos
Mauchline (1980) divides the intra-marsupial development into three easily distinguishable 

stages. The early embryo, at first egg-like but later with rudiments of antennae and abdomen developing, 
are named 'stage I' or 'eggs'. The latter name however is a confusing term, since eggs are immediately 
fertilized after being deposited from the oviduct into the marsupium. Better is to use the term egg-shaped 
embryo or (sub)-spherical embryo. The stage I embryos are still surrounded by the egg membrane. Stage
II larvae or 'eyeless larvae’ are hatched from the egg membrane and develop the antennae and the 
thoracic appendages, while the eyes become pigmented. Stage II terminates in a moult. Stage III or ’eyed 
larvae' have stalked eyes and moult to a free living juvenile when released from the marsupium. Most 
authors follow this division (e.g. Wittmann, 1984).



Before, de Kruijf (1977) described 6 distinct developmental stages of the embryo in the brood 
chamber of Neomysis integer and can be distinguished as follows: Stage I is a simple egg-like structure, 
spherical in shape. The next stage (II) contained a rudimentary abdomen with a clear distinction between 
the rounded anterior and the pointed posterior of the larva. Development into stage III comprised a further 
extension of the abdomen, a rudimentary telson and two thoracic appendages. In stage IV the body was 
further extended and had the clear beginning of abdominal segmentation. In stage V there was a first 
projection of the head with development of the eyes, further segmentation of the abdomen, and first 
development of pleopods. Stage VI had distinct eye projections and development of the pleopods and 
uropods. The body contained an obvious carapax and elongated abdomen. The morphological stages 
described by de Kruijf (1977) were used by Irvine et al. (1995) in the intra-marsupial staging of N. integer, 
but Fockedey et al. (submitted b -  Chapter 6) considered them to be impractical and based on subjective 
criteria. Wittmann (1981) even used a third set of criteria to stage the embryos and larvae of mysids in 
general and Fockedey etal. (submitted b -  Chapter 6) compares the different terminologies used.

Detailed descriptions of the histology of successive larval stages of Neomysis integer are given 
by Wagner (1896) and Needham (1937). External morphological descriptions of the intra-marsupial 
development are available by Kinne (1955) and de Kruijf (1977). A description of the embryonic and larval 
stages of N. integer, together with pictures illustrating the development, is given in Fockedey et al 
(submitted b -  Chapter 6).

4.5.6 Duration of the intra-marsupial development
Neomysis integer, like all other mysid species, carries its embryos in a marsupium within which 

the entire larval development takes place from oviposition to the release of free swimming juveniles 
(Wittmann, 1984). No correlation could be found between the duration of the intra-marsupial development 
and the prevailing salinities (0.4 -  16 psu) at 15 °C (Vlasblom and Elgershuizen, 1977). Individuals 
adapted to a higher salinity of 23 psu are able to develop their embryos, but over a longer time span (i.e. 
1 7 - 2 2  days) than the population adapted to lower salinity of 7 psu (15 -  18 days). Irvine et al. (1995) 
report an intra-marsupial development time of 42 days at 6 °C and 5.8 days at 20 °C measured in vivo in 
laboratory experiments. Indirectly estimated development times are obtained from field observation in 
Hickling Broad (Irvine etal., 1995): 56 days at 7 - 16.5 °C, 29 days at 16.5 - 18.0 °C and 13 - 14 days at 
19.5- 20 °C.

Generally, most breeding females are found with eyeless larvae in their marsupium, indicating 
that this is the longest larval stage in mysids intra-marsupial development (Mauchline, 1973; 1980; Parker 
and West, 1979). Astthorsson (1980) found on average almost equal proportions of gravid females with 
spherical larvae, eyeless larvae and eyed larvae in a 2 year study of the Neomysis integer population from 
the Ythan.

Following the intra-marsupial development in detail in vivo, i.e. through the semi-transparent 
oostegites, is difficult (Fockedey, unpublished; see table 7) or needs anaesthetization (Irvine etal., 1995). 
Information on the dependence of the intra-marsupial development time with temperature or/and salinity is 
reported in Fockedey et al. (submitted b -  Chapter 6).

4.5.7 Size, growth and intra-marsupial production of the embryos
Embryo size of Neomysis integer from Hickling Broad generally falls within the range of 0.48 -  2.1 

mm (Irvine et al., 1995). The diameter of the egg-shaped embryo of N. integer from Loch Etive equals 0.5
-  0.6 mm (Mauchline, 1972). The length of the eyeless larvae is 1.3 -  1.5 mm (Mauchline, 1972). The 
length of the eyed larvae is 1.9 -  2.1 mm (Mauchline, 1972) and the total length of freshly emerged 
juvenile is ± 2.0 mm, i.e. 1.6 -  2.4 mm (Vorstman, 1951; Kinne, 1955; Mauchline, 1971; 1972; 
Astthorsson, 1980; Aaser etal., 1995; Moffat, 1996).



The biomass of embryos of Neomysis integer m s  estimated from their volumes as 11.3 pg DW 
for the early spherical embryos, 16.0 p g DW for ellipsoid embryos and 13 -  14.4 p g for the later larval 
stages (Irvine et al., 1995). The size of the (earliest) embryos in Neomysis integer can vary seasonally 
(Mauchline, 1973; Irvine et al., 1995), with winter embryos being larger than in spring or summer. The 
smaller embryo appeared to contain fewer and smaller oil globules (Mauchline, 1973). Although no more 
details are given, Irvine etal. (1995) estimated the intra-marsupial production rate of Neomysis integer al 
all times to be less than 10 % of the total production.

4.5.8 Instantaneous birth rate
The instantaneous birth rate b’ of Neomysis integer can be estimated from the equation:
b' = In ((E/N) + 1)/D

with E the egg density, N the total density of all life stages and D the development time at the appropriate 
temperature (Paloheimo, 1974). Since the mortality during the first embryonic stages is high (> 50 %) 
instantaneous birth rate b’ was calculated by Irvine et ai. (1995) based on the egg ratio E and 
development time of the latest larval stages only. In the reproductive periods (June to October) the 
instantaneous birth rate of N. integer in a brackish lake (Hickling broad) was measured as 0.05 -  0.15, i.e. 
between 5 and 15 births per 100 individuals (Irvine et al., 1995). Generally, mysids have a low 
instantaneous birth rate and thus a low intrinsic rate of natural increase (Fager and Clutter, 1968).

4.5.9 Instantaneous rate of population change
Instantaneous rate of population change r' for successive population estimates (Nt+i, Nt) is 

calculated from
r1 = (In Nt+i - lnN,)/t

with t the sampling interval. Generally r' is highest during periods of high reproduction and/or immigration 
into the population. Irvine et al. (1995) report the instantaneous rate of population change r' of Neomysis 
integer in a brackish lake (Hickling Broad) to be +0.06 to -0.10. Positive measurements occurred when the 
N. integer population was highly reproductive. A positive peak in r’, measured before the reproductive 
period (during early spring), reflect the influx of adults into the population through immigration.

4.6 Mortality
Under certain conditions (a.o. that individual growth is described by a von Bertalanffy growth 

model) the total mortality of a population is equal to the P/B ratio of the population (Allen, 1971). Mortality 
rate (Z) can also be obtained from a length converted catch curve (Mees et al., 1994) and amounted from 
3.15 to 4.41 over the year. Mortality rate was not different between the sexes for the summer cohorts of 
Neomysis integer in the Schelde (Mees et al., 1994).

Instantaneous dead rate d' is estimated as the difference between the instantaneous birth rate 
and the instantaneous rate of population change. Instantaneous dead rate of a Neomysis integer 
population in Hickling Broad amounts between 0.02 and 0.15 (Irvine etal., 1995), i.e. 2 to 15 animals per 
100 animals die daily. In wintertime dead rate is minimal. A negative dead rate in early spring indicates the 
immigration of individuals into the water mass from outside.

4.7 Sex-ratio
A shifted sex ratio (further always expressed males:females) is a well described phenomenon in 

mysid species (Mauchline, 1980). Differences in the sex-ratio over time can be explained by a differential 
mortality of one of the sexes, while spatial differences in the sex-ratio may be linked to sexual differential 
habitat preferences as described for other estuarine crustaceans (like Palaemon longirostris, Sorbe, 
1983b; Schuchardt et al., 1987). In most Neomysis integer populations the sex ratio is close to 1:1 
(Mauchline, 1971). The sex ratio in Frisian lakes, ranged between 1:1.5 and 1:0.7; with a mean close to 
1:1 (Bremer, 1980; Bremer and Vijverberg, 1982).



In loch Furnace (Parker and West, 1979), the sex ratio was strongly biased towards the females, 
being greatest in April (1:9). Only in June and August when the breeding females of the spring and 
summer generation were dying off, males outnumbered the females. Females are always more abundant 
than males in the Severn estuary (1:2 to 1:6) (Moore et al., 1979). In the Kiel canal sex-ratio is 1:1.9 
(Kinne, 1955). In the lower reaches of the Weser estuary significantly more females than males were 
caught (Schuchardt et al., 1989). This shifted sex-ratio is different for the different generations, 
respectively 1:6 in the overwintering generation, and 1:2 - 1:4 in summer. In a study in the Tamer estuary 
(Moffat and Jones, 1992), the proportions of males, females and juveniles were not related to temperature. 
The sex-ratio ranged between 1:1 and 1:2 for most of the year, except for October when females 
outnumbered males with a ration of 1:9.

In the Weser and Gironde estuaries, a shifted sex-ratio was observed along the longitudinal axis 
of the estuary (Sorbe, 1980; Schuchardt et al., 1989). More females (1:5) were caught in the most 
upstream reaches while in the mesohaline region an almost equilibrated ration was found (1:0.9). Along 
the longitudinal transect of the Ythan the overall sex-ratio equals 1.0 (Astthorsson, 1980). No information 
is available on this segregation of sexes along the salinity gradient for other estuaries.

4.8 Field-based growth curves
Growth curves of all cohorts present over the year have been derived from field data for several 

estuarine Neomysis integer populations (Mauchline, 1977; Astthorsson, 1980; Astthorsson and Ralph, 
1984; Mauchline, 1985; Mees et al., 1994), as well as in the Baltic (Arndt and Jansen, 1986) and for 
brackish lakes (Aaser et al., 1995). Bremer and Vijverberg (1982) and Beattie and de Kruijf (1978) only 
derived a growth curve of the first summer generation of N. integer Uom Slotermeer and Bergumermeer.

Growth curves can be fitted to a growth model. The generalized von Bertalanffy growth function 
(Gayanilo et al., 1989) is originally designed for describing fish growth but is recently applied to mysids 
growth with good results (Mees et al., 1994; Soselisa, 1994; fockedey, unpublished). To describe the 
growth stop during the period of coldest temperatures of the winter generation, a seasonally oscillating 
version of the latter growth model can be used. Mees et al. (1994) demonstrated that a good fitting of the 
von Bertalanffy growth model in Neomysis integer m s  only possible if the differences in growth between 
the sexes were taken into account. N. integer grows almost linearly up to sexual maturity. From then on 
the growth rate slows down (Astthorsson, 1980).

To date, the field-estimated growth parameters have rarely been validated with laboratory 
observations. Only Astthorsson (1980), compared the field derived growth curve for Neomysis integer from 
the Ythan estuary with a growth curve derived from laboratory growth experiments at 9 and 16°C, however 
based on very few observations. Fockedey et al. (in press -  Chapter 3) compared laboratory-based 
growth parameters estimates of N. integer with those from field studies in the Schelde estuary and the 
brackish pond Galgenweel.

4.9 Laboratory-based growth curve
Very little detailed information is available on the growth curves and growth rate of Neomysis 

integer cultured under constant laboratory conditions. Bremer and Vijverberg (1982) refer to a study 
performed by Schrotenboer (1980) who estimated growth and development rate of N. integer by means of 
laboratory culture at 15 °C and 17.5 °C over 110 days. The growth curve at 15 °C was linear and the one 
at 17.5 °C was curvilinear.

Kuhlmann (1984) described the growth of juvenile Neomysis integer (between 3 and 10 mm) to 
be linear. Astthorsson (1980) constructed average growth curves for N. integer based on laboratory 
length-specific measurements of the intermoult period and growth factor and an initial juvenile length of
2.4 mm TL. Irvine et al. (1995) describe post-marsupial growth under constant laboratory conditions (20 
°C) as a linear regression: SL = 2.8 + 0.105 days (n = 52; r2 = 0.92; p < 0.001).



Field observations of the same population (successive peaks in the length-frequency distributions) also 
suggested a linear growth rate. Fockedey et al. (in press -  Chapter 3) described growth of N. integer 
under 8 salinity/temperature combination. At all treatments, except the coldest (8 °C) where growth was 
linear, the growth curves were best fitted with a von Bertalanffy growth model.

4.10 Growth rate
Field- and laboratory-based growth rates of Neomysis integer from several investigations are 

presented in Table 8. Flowever, Astthorsson and Ralph (1984) questioned the validity of growth rates 
calculated from field data, based on the grounds that it is often difficult to follow the cohorts. On the other 
hand, growth rates calculated from laboratory experiments may be influenced by the experimental 
conditions. Arndt and Jansen (1986) and Bremer and Vijverberg (1982) found higher growth rates in a 
natural population in comparison with the available laboratory growth rates. When comparing the data 
from Table 8 this statement cannot be confirmed as maximal laboratory growth rates are all higher than 
those recorded in the field.

The growth rate of Neomysis integer kept in laboratory cultures at 20 °C and feeding on 
copepods and Cladocera was 1 mm per 9.5 days, i.e. 0.11 mmTL d 1 (Irvine et al., 1995). The mean 
growth rate of N. integer maintained on a diet of Artemia nauplii was 0.06 mmTL d 1 at 9 °C and 0.09 
mmTL d 1 at 16 °C (Astthorsson, 1980; Astthorsson and Ralph, 1984). Growth rate of the same population 
in the field (Ythan) was estimated from the time spent within each 1 mm size class and varied between 
0.03 and 0.16 mm d 1 in the growth season from May to September, and from 0.03 -  0.13 mm d 1 in 
wintertime, i.e. from November to April (Astthorsson, 1980). Other field derived maximal growth rates 
amount to 0.13 mm d 1 in the Schelde (Mees et al., 1994) and 0.16 mm d 1 in Slotermeer (Bremer and 
Vijverberg, 1982). Juveniles, just released from the marsupium, grew between 0.142 and 0.281 mm d 1 in 
laboratory experiments at different temperature/salinity combinations (Kuhlmann, 1984).

The growth rate is related to the length of the mysid and differs between and within the cohorts. In the 
Schelde (Mees et ai, 1994) Neomysis integer grows at a rate of 3 -  4 mm month1 in autumn, and ceases 
completely during wintertime. In spring the mysids regained their fast growth rate that they maintained 
during summer. In these cohorts the smaller juveniles and subadults grew fastest (3 -  4 mm month \  i.e. 
0.10 -  0.13 mm d 1), while the larger mysids grew slower (1 -  2 mm month1; i.e. 0.03 -  0.06 mm d 1). 
Aaser et al. (1995) formulated semi-log transformed linear relationships between the cohorts-specific 
growth rate and the (total) length of N. integer.

The growth rate of Neomysis integer is related to environmental temperature (Kinne, 1955; 
Astthorsson and Ralph, 1984), although it cannot be seen as the only determining factor. At the same 
temperature of for example 12 °C, the growth rate of N. integer accelerates in spring, but decreases in 
autumn (Schuchardt et ai, 1989). Probably the length of the daylight period also plays an important role 
(Schuchardt et ai, 1989). In the Bergumermeer, N. integer living near the warm water discharge of a 
power plant grows equally fast in spring and summer as in other parts of the lake. However, growth can 
continue longer into autumn in the warmer water sites (Beattie and de Kruijf, 1978).

Individual production or growth in terms of dry weight was 0.02 mgDW d 1 and 0.03 mgDW d \  
respectively at 9 and 16 °C respectively (Astthorsson, 1980). Maciejewska and Opalinski (2002) measured 
the average body wet weight increase over an 18 days period at 14 °C feeding ad libitum on frozen 
Daphnia: 0.057 mgWW ind1 d 1 or 0.01 mgWW mgWW1 d 1 for the smaller animals (initial length ± 8mm), 
and 0.0002 mgWW ind1 d 1 or 0.0003 mgWW mgWW1 d 1 for the larger animals (initial length ± 15 mm). 
Production rates of Neomysis integer, calculated from field based growth curves, amounts 0.611 mgWW 
mgWW1 d 1 (Beattie and de Kruijf, 1978) in Bergumermeer, and 0.283 mgWW mgWW1 d 1 in Slotermeer, 
two Frisian brackish lakes (Bremer and Vijverberg, 1982). In the laboratory experiments at 15 °C 
performed by Schrotenboer (1978), N. integer individuals grew 0.277 mgWW mgWW1 d 1.



Table 8: Growth rates available for Neomysis integer m literature (Adapted from Winkler and Greve, 2002)

Field Temperature
Salinity

Period Stage Growth rate 
(mm TL d 1)

Hickling Broad 20 -  22 °C Jun/Aug 0.18 Irvine etal., 1995
? Sept/Oct 0.08-0.11
? Nov/Apr 0.04
? Apr/May 0.14

Schelde 17 °C Autumn 0.10-0.13 Mees et al., 1994
estuary 9 °C Winter 0

18 °C Spring/Summer Juvenile 0.10-0.13
18 °C Spring/Summer Adult 0.03-0.06

Slotermeer 15 -  20 °C May-Oct 2-14 mm 0.13-0.16 Bremer and
TL Vijverberg, 1982

Ythan ? Summer Juvenile 0.13-0.16 Astthorsson, 1980;
estuary ? Summer Adult 0.03-0.06 Astthorsson and

? Winter Juvenile 0.10-0.13 Ralph, 1984
? Winter Adult 0.03-0.06

Lake Ferring ? Spring/Summer 3.14 X  0.567tl (n=5; r2=0.82; p<0.03) Aaseretal., 1995
Winter cohort (< winterstop) 2.41 X  0.53Stl (n=7; «^=0.97; pO.OOl)
Winter cohort (> winterstop) 0.024 mm d ' (n=5; pO.OOOl)

Laboratory Temperature
Salinity

Food Stage Growth rate 
(mm TL d 1)

Laboratory 14 ° C - 13 psu Green algae Juvenile 0.142 Kuhlmann, 1984
14 ° C -  17 psu Daphnia sp. 0.161
14 °C -2 4  psu Artemia sp. 0.166
17 ° C - 13 psu 0.229
17 ° C -  17 psu 0.233
17 °C -  20 psu 0.232
17 °C -  24 psu 0.189
19 ° C - 13 psu 0.231
19 ° C - 17 psu 0.274
19 °C -2 0  psu 0.224
21 °C -  17 psu 0.281
21 °C -  20 psu 0.271
21 °C - 2 4  psu 0.186
24 ° C - 17 psu 0.204
24 °C - 2 0  psu 0.194
24 °C -  24 psu 0.193

Laboratory 20 °C Copepoda ? 0.11 Irvine et al., 1995
Cladocera

Laboratory 9 °C Artemia 3-13 mm 0.02-0.09 Astthorsson, 1980;
16 °C Artemia 3-12 mm 0.03-0.15 Astthorsson and

Ralph, 1984

Laboratory 10 °C Artemia 3-7 mm 0.05-0.09 Winkler and Greve,
15 °C Artemia 3-7 mm 0.12-0.19 2002
10 °C Artemia 8-12 mm 0.03-0.08
15 °C Artemia 8-12 mm 0.03-0.09

4.11 Moulting
Growth of mysids can be described in terms of intermoult periods (IMP) and growth factors (GF) 

(Mauchline, 1976; 1977; 1977b). The IMP is the period between two successive moults and the GF is the 
percentage increase in length at each moult. Generally the intermoult period increases when the animals 
become larger, while the growth factor decreases steadily at successive moults. Although mysids grow in 
discrete steps when moulting, the length increase at a moult can also be expressed as the mean length 
increase within the intermoult period or intermoult growth rate (GR) (Winkler and Greve, 2002).

Detailed information on the growth and moulting of Neomysis integer is scarce. Schrotenboer 
(1980), Astthorsson (1980), Astthorsson and Ralph (1984), Kuhlmann (1984), Irvine et al. (1995), 
Gorokhova (2002) and Winkler and Greve (2002) all performed growth experiments with N. integer, but 
only at very few temperature-salinity combinations or at limited periods within the life cycle.



According to Mauchline (1976; 1977; 1977b) the intermoult period is related in an exponential 
function to body length and moult number. Astthorsson (1980) and Gorokhova (2002) confirm this log- 
linear relationship for Neomysis integer. The relationship differed between the two experimental 
temperatures 16 °C and 9 °C (Astthorsson, 1980): the intermoult period ranged from approximately 4 and 
8 days in juveniles to 12 and 16 days in adult N. integer al 16 and 9°C, respectively. The intermoult period 
is inversely related to temperature (Astthorsson, 1980). At higher temperatures the moulting occurs more 
frequently, resulting in a higher growth rate (Astthorsson and Ralph, 1984). However Winkler and Greve 
(2002) and Fockedey et al. (in press -  Chapter 3), basing their conclusions on a more extended dataset, 
could not confirm the exponential relation between IMP and body length or moult number. No differences 
in IMP were found between the sexes (Gorokhova, 2002; Fockedey etal., in press -  Chapter 3).

Mauchline (1976; 1977; 1977b) demonstrated that the growth factor in mysids is related in an 
exponential function to mysid length and to moult number. The log-linear relationship was confirmed for 
Neomysis integer (Astthorsson, 1980; Astthorsson and Ralph, 1984; Gorokhova, 2002). Temperature (9 
and 16°C) did not have an effect on the growth factor in the experiments of Astthorsson (1980) and 
Astthorsson and Ralph (1984), but was affected by temperature (8°C -  25°C) in the experiments of 
Fockedey et al. (in press -  Chapter 3). The growth factor ranged from 14 % in juveniles to 3 % in adult N. 
integer (Astthorsson, 1980). However Winkler and Greve (2002) and Fockedey etal. (in press -  Chapter 
3), basing their conclusions on a more extended dataset at more temperature/salinity combinations, could 
not confirm the exponential relationship between GF and body length or moult number.

The moulting process can be grouped into 3 major sub-periods (Gorokhova, 2002): the 
postmoult, intermoult (not to confuse with the IMP (Mauchline, 1976; 1977a; 1977b) and premoult periods. 
Each period constitutes 34 %, 22 % and 44 % of the intermoult period in Neomysis integer (Gorokhova, 
2002). Development of the new exoskeleton occurs during the premoult stage and involves the enzymatic 
digestion of the existing post-ecdysial layer and re-absorption of material from this layer into the new 
cuticle. At the time of moulting (ecdysis), this pre-ecdysial layer is fully developed. Another portion of the 
exoskeleton is formed after ecdysis, and the synthesis of this post-ecdysial layer is associated with the 
incorporation of assimilated nutrients into newly formed matter. Thus the old, shed cuticle contains 
material synthesized during one moult cycle before the last one (Gorokhova and Hansson, 1997).

Moulting in Neomysis integer always occurs at night (Fockedey, personal observation). The 
removal of exuvia proceeds fast (< 1 min) in three steps: (1) carapace and thoracopods, (2) abdomen with 
abdominal appendages, and (3) first antennae. Freshly moulted individuals lie on the bottom for a while (5
-  7 min), then swim and behave normally. The formation of the statolyth at the base of the endopod is 
completed within 3h after ecdysis (Gorokhova, 2002). In experiments, Neomysis integer is often seen to 
eat its own cast moults, even if enough other food is available. Possibly, the mysid can acquire important 
minerals and organic matter in this way (Astthorsson, 1980).

4.12 Intermoult growth
Mauchline (1973), Childress and Price (1978), Cuzin-Roudy et al. (1981) and Hartnoll (1982) 

report a limited growth increment during the intermoult period of mysids due to the stretching of the 
abdominal joints. For Neomysis integer the increase in length within a moult cycle amounts to 5 -  15 % 
(Mauchline, 1973). This phenomenon was described for field caught gravid females, which do not moult as 
long as they carry embryos and larvae in the marsupium. However, females moult in between successive 
broods and then increase (minimally) in length (Fockedey, unpublished). This was not taken into account 
by (Mauchline, 1973).

4.13 Response of post-marsupial growth to temperature, salinity, food quality and quantity
Juveniles just released from the marsupium and fed a mixture of green algae, Daphnia sp. and 

Anemia nauplii, grew maximally (0.25 mm d 3) at 19 -  21 °C and 16 -  20 psu (Kuhlmann, 1984). However, 
a limited salinity and temperature range was selected in this study (between 14 -  24 °C and 13 -  24 psu) 
and the lower limits were far from reached.



Only a limited number of replicates were used per treatment (between 2 and 9 individuals) and no 
information on the mortality, intermoult period and growth factor was reported in the paper. Effects of 
temperature and salinity on the growth parameters IMP and GF were described in a previous paragraph
4.11 (Astthorsson, 1980; Astthorsson and Ralph, 1984; Winkler and Greve, 2002; Gorokhova, 2002; 
Fockedey etal., in press -  Chapter 3).

The growth over the whole life span in terms of IMP, GF and GR; and the sexual development of 
Neomysis integer is studied over an environmentally relevant salinity and temperature range by Fockedey 
et al. (in press -  Chapter 3). The effect of food quality on these growth parameters is dealt with in 
Fockedey etal. (submitted c -  Chapter 4) and in Fockedey etal. (submitted a -  Chapter 5).

The effect of food quantity on the growth and moulting was studied as well (De Pauw, 1998; 
Gorokhova, 2002; Fockedey, unpublished). The duration of the IMP is extended in condition of suboptimal 
food quantity. The animals mainly prolonged their late postmoult and early premoult stages at a 
suboptimal feeding regime (Gorokhova, 2002). Starvation holds up the moulting process in the intermoult 
or premoult stage. Ecdysis was observed in some individuals only and was restricted to the first week 
(Gorokhova, 2002). Temperature affects the duration of the total intermoult period, but does not influence 
the relative duration of the substages of the intermoult period, as long as food supply is high (Gorokhova, 
2002).

4.14 Effect of genotype on life history characteristics
For euphausiids (Haywood and Burns, 2003) it is demonstrated that the rate of development is 

different between siblings growing under exactly identical experimental conditions. For Neomysis integer 
this variation in growth between siblings resulted to be very small (Fockedey et al., in press -  Chapter 3) 
and thus laboratory-based studies on growth, development, physiological responses and ecotoxicological 
bio-assays can be performed with a relatively small number of replicates.

Genetically different populations of a species may differ in their growth and the response of their 
physiological processes towards salinity (Lee, 1999) and temperature (Wittmann, 1984). The 
phylogeographic patterns of Neomysis integer were examined through its distribution range by Remerie et 
al. (submitted a; submitted b), using mitochondrial cytochrome oxidase I sequencing. The N. integer 
population of the Schelde estuary was genetically homogenous along the longitudinal estuarine axis, but a 
large heterogeneity was observed between the populations from 11 estuaries. The responses of the 
distinct N. integer populations to temperature, salinity and other environmental conditions may be 
population-dependent and need further study.



5 BIOCHEMICAL COMPOSITION

5.1 Dry weight and ash content
The dry weight of Neomysis integer is 22 % of the wet weight for most of the year in Southampton 

waters (Raymont etal., 1964). A slight reduction in the percentage dry weight was found in December and 
January (20 -  21 %) (Raymont etal., 1966). Raymont and Krishnaswamy (1960) reported the dry weight 
as 19.0 -  19.9 % of the wet weight for the same population. The dry weight of N. integer from a Baltic 
population was 22 % of the wet weight (Maciejewska and Opalinski, 2002). In the Schelde estuary, the dry 
weight of N. integer is measured as around 14 -  17 % of the wet weight (Verslycke, 2003). See also Table
2 for more conversions.

Some authors use a correction factor when calculating the dry weight out of the wet weight in 
formaldehyde-preserved animals and add another 10 % to the calculated dry weight (Beattie, 1982). The 
length reduction of N. integer after a 100 days conservation in a 4 % formaldehyde-seawater solution is4 
%, corresponding to a wet weight reduction of 17.4 %. The major shrinkage occurs in the first day after 
conservation (Kuhlmann etal., 1982).

The wet weight of individual Neomysis integer is significantly dependent on the season, since 
size varies between cohorts (Verslycke et ai., 2004). Adult animals collected in spring (± 28 mg) weighed 
significantly more than adults collected in summer (± 21 mg) and winter (± 14 mg), these data ar ein 
agreement with the population biology (Mees et al., 1994). The wet weight of N. integer is dependent on 
the location along the estuarine gradient (Verslycke etal., 2004). Animals collected at the most upstream 
locations of the Schelde estuary have a significantly lower wet weight.

The ash content of Neomysis integer from the Ythan was 10.8 % of the dry weight, without sexual 
differentiation (Astthorsson, 1980). Total ash content of ovigerous females of Southampton Water 
amounts to 7.9 % of the dry weight (Raymont et ai., 1964). Ash and chitin together amounted to 14 % of 
the dry weight (Raymont etal., 1966). See also Table 2 for more conversions.

The weight of a moult shed is related to the weight of Neomysis integer according to the factor 
0.1057 (Astthorsson, 1980). For a juvenile N. integer the moult is approximately 8 % of the dry weight of 
the animal that produced it, while for mature individuals this figure is 10 % (Astthorsson, 1980). The ash 
content of shed moults equals 51.4 % of the DW (Astthorsson, 1980).

The dry weight and ash content of the eggs (remark: probably meant stage I embryos?) of 
Neomysis integer are on average 0.04 mg DW and 8.1 % (Astthorsson, 1980). Irvine etal. (1995) consider 
the dry weight of the embryos to be 10 % of their wet weight.

5.2 Chitin content
Chitin content is 7.1 % of the dry weight of ovigerous Neomysis integer from Southampton waters 

(Raymont et al., 1964). The exoskeleton of N. integer contains large amounts of protein. Moulting of N. 
integer is temperature-, salinity- and age-dependent (Fockedey etal., in press -  Chapter 3). Moulting can 
thus create large variation in the protein content of N. integer (Verslycke and Janssen, 2002).

5.3 Caloric content
The caloric content of 10 - 15 mm sized Neomysis integer is 4.95 ± 0.10 cal mgDW1 (Summers,

1980). Astthorsson (1980) obtained a somewhat smaller mean caloric conversion factor of 4.68 cal mg 
DW-1. The mean annual caloric value of adult females (4.75 cal mgDW^) was significantly larger than that 
of adult males (4.62 cal mgDW1), probably related to the (energetically rich) egg production in the ovaries 
(Astthorsson, 1980). Maciejewska and Opalinski (2002) used the conversion factors of 1.03 cal mgWW1 
(4.33 J) as the body energy equivalent for N. integer. Kaiser etal. (1992) determined the energy content of 
a N. integer individual (body length 14.5 mm) to be 0.15 KJ. In terms of ash free dry weight (ADW) the 
mean annual caloric values is 5.17 and 5.32 cal mgADW1, respectively for adult males and females 
(Astthorsson, 1980). The caloric value of N. integer shows little seasonal variation (Astthorsson, 1980).



The mean caloric content of N. integer is 19.89 J mgDW1 (12.91 J mgDW1 for juveniles and 22.65 J 
mgDW1 for adults) (Arndt and Jansen, 1986). Shed moults have a mean caloric content of 1.28 cal 
mgDW1 or 2.63 cal mgADW1 (Astthorsson, 1980). The caloric content of stage I embryos is 7.4 cal 
mgDW1 or 0.30 cal per embryo (Astthorsson, 1980).

5.4 C, N and P content; C:N ratio
Total nitrogen content of ovigerous female Neomysis integer Uom Southampton is 11.4 % of the 

dry weight (Raymont etal., 1964) and does not vary significantly over the year (Raymont etal., 1966). The 
non-protein nitrogen is equivalent to 22 % of the total nitrogen, but varies with environmental salinity 
(Raymont etal., 1966).

Total organic carbon ranges between 22 and 35 % (mean 30 %) of the dry weight in ovigerous 
females over the course of a year (Raymont et al., 1964; 1966). Parsons et al. (1977) used a general 
conversion factor of 40 %. The organic matter as the summation of the protein, lipid and carbohydrate 
content, is highly constant over the year (Raymont etal., 1966). The conversion of organic carbon to total 
organic matter in Neomysis integer is approximately 1:3 (Raymont etal., 1966).

Subadult Neomysis integer Uom the Baltic (mean DW 1.67 mg) contained 42 % carbon and 11 % 
nitrogen (Gorokhova and Hansson, 1999). No variations in the C:N ratio (3.65 -  3.95, mean 3.78) could be 
detected between the sexes or between animals from the summer generation of subsequent years 
(Gorokhova and Hansson, 1999).

The total phosphorous content of Neomysis integer is determined by Tundisi and Krishnaswamy 
(1967). Values were 53.5 pg mgWW1 for mature females, 41.0 p g mgWW1 for adult males and 128.6 pg 
mgWW1 for juvenile N. integer.

5.5 Protein and amino acids content
The total protein content of ovigerous females of Neomysis integer is 70 p g mgWW1, i.e. 70 % of 

the dry weight, 7 % of the wet weight, 80 and 90 % of the total organic matter excluding chitin. Proteins 
make up the main part of the total N content of the animals and are quantitatively the most important 
energy fraction of ± 1700 mJ mgWW1 (Raymont etal., 1964; 1966; Srinivasagam etal., 1971; Verslycke 
and Janssen, 2002; Verslycke et al., 2004). Throughout the year there are no significant changes in total 
protein levels (Raymont et al., 1966; Verslycke et al; 2004). The protein of N. integer has been found to 
contain 13 % nitrogen (Raymont et al., 1968). Therefore the total N values can be multiplied by a factor
7.7 to obtain an estimate of the protein content (Raymont etal., 1966). The protein in N. integer showed a 
wide but not unusual range of amino acids: in descending order glutamate, aspartate, leucine, serine, 
glycine, alanine and lysine (Raymont et al., 1968). The major yolk protein in eggs of N. integer is vitellin 
and it is essential to the nutritional needs of the embryo (Ghekiere etal., 2004).

Non-protein N (including free amino acids) is 20 % of the total N, but the proportion varies with 
the environmental salinity from 14 % to 23 % (Raymont etal., 1966; 1968). Free amino acids constitute up 
to 80 % of the non-protein N (Raymont et al., 1968). The non-protein amino acids mainly consist of 
glycine, alanine and glutamate (Raymont et al., 1968; Srinivasagam et al., 1971). They are more 
prominent in individuals living at higher salinities and are responsible for the osmoregulatory mechanism 
of the species (Raymont etal., 1968).

The most dominant amino acids in Neomysis integer are aspartate, glutamate and lysine 
(together accounting for 33 %), while alanine, serine, valine, glycine and praline represent a further 31 % 
(Armitage et al., 1978). Glycine, taurine, alanine, proline, aspartate, glutamate, threonine, arginine, 
tyrosine, lysine, phenyl-alanine, isoleucine, leucine, valine, serine, cysteic acid and ornithine appeared to 
be non-essential to N. integer as they could be synthesised by the species or/and its digestive micro
organisms in the gut (Armitage et al., 1981). The first 4 or 5 amino acids of this series are involved in the 
osmoregulation of the species (Armitage and Morris, 1982; Moffat, 1996).



The very high frequency of the incorporation of glycine and taurine underlines their importance to N. 
integer[Armitage etal., 1981). Methionine and histidine are not synthesised by N. integer.

Since lipid and carbohydrate reserves in Neomysis integer are small (see following paragraphs), 
and only used as short-term energy sources, the species can use its own body proteins during nutritional 
stress (Armitage et al., 1978). Starvation of 6 days (on kaolin clay) significantly decreased the protein 
content of N. integer (Morris etal., 1977). When fed on a starch diet, the total protein and most amino acid 
concentrations were also drastically reduced (Armitage etal., 1977). When fed pure protein (albumin), the 
mysids total protein was reduced as well (-39 %), probably because some nutritive requirements (e.g. 
cofactors or vitamins) were not met by the diet (Armitage etal., 1978).

Neomysis integer takes up more 14C from the food into their free and protein amino acids from a 
starch based diet (100 % glucose, aspartate or glutamate) than from a protein based diet (70 % egg yolk + 
20 % cod liver oil + 10 % starch) (Armitage et ai, 1981). Probably, in the absence of proteins the 
metabolism of tissue protein of N. integer is increased and incorporation of food 14C is more rapidly 
transferred into the tissues, while in protein-fed animals nitrogen and amino acids are supplied in the diet 
and catabolism of tissue protein is not necessary (Armitage et ai, 1981). In comparison with another 
mysid species (Gnathophausia sp.), N. integer metabolises diet proteins at a high rate and relies to a great 
extent on protein as a metabolic substrate (Armitage et ai, 1981). The differential uptake of 14C from the 
food illustrates the higher uptake efficiency across the intestine membrane when fed starch based diets in 
comparison to a protein-based diet (Armitage et a i, 1981).

5.6 Lipid content
The lipid content of ovigerous Neomysis integer is 13 % of the dry weight (Raymont et ai, 1964). 

The lipid content of adults is on average 37 p g mgWW1 or 4 % of the WW and represents an energy 
equivalent of 1600 mJ mgWW1 (Verslycke and Janssen, 2002; Verslycke et al., 2004). Mysids are 
capable of storing lipids in the R and B-cells of the digestive glands (Molloy, 1958; Raymont et al., 1968; 
Brunet et ai, 1994). In comparison to other mysids (Adare and Lasenby, 1994; Azeiteiro et al., 2001; 
Richoux et al., 2004), the lipid content of N. integer is relatively small (Raymont et a i, 1968; Morris and 
Sargent, 1973) and lipids are not a very important energy reserve for N. integer (Raymont et a i, 1964). 
The problem of food shortage in N. integer may not be so acute for an estuarine omnivore exploiting a 
wide range of feeding methods and habits and always has a choice of dietary sources.

The total lipid content varies moderately over the year -  between 8.5 and 15.6 % of the organic 
matter excluding chitin -  and shows significant decreases in winter time in Southampton waters (Raymont 
et ai, 1966; Morris, 1971), while in the Schelde estuary Neomysis integer has lower lipid contents in 
summer and winter as compared to spring (Verslycke et ai, 2004). These patterns can be associated with 
local conditions of breeding, food supply and metabolic rates. Along the estuarine gradient of the Schelde 
estuary, the average lipid concentration increases from downstream to upstream locations (Verslycke et 
ai, 2004).

The eggs of Neomysis integer contain large quantities of lipid material (Linford, 1965). Females 
have a higher lipid content than the males or juveniles, resulting from a larger triglyceride fraction (Morris,
1973). The lipid metabolism of ovigerous females is assumed to be different from males and is probably 
slower in winter when the demand for lipid for gamete production comes to halt (Linford, 1965; Verslycke 
and Janssen, 2002; Verslycke et al., 2004). It has been demonstrated that adult mysids have a lower 0:N 
ratio than juveniles, as adults rely relatively more on protein substrates, which results in a higher relative 
lipid content of the adults than juveniles (McKenney, 1998).

When held at a high temperature, high salinity and low dissolved oxygen concentration, lipid 
content of Neomysis integer decreases (Verslycke and Janssen, 2002). Morris (1971) found significant 
changes in the lipids fatty acid composition of N. integer in a series of experiments to assess the effects of 
temperature and salinity.



A decreasing temperature leads to a build-up of the long-chain polyunsaturated acids at the expense of 
short-chain low unsaturated acids. Salinity does not have an effect on the fatty acid composition.

Starvation for 96h did not show any statistically significant decrease in the total lipid level of 
Neomysis integer (Linford, 1965), although a starvation period of 6 days (on kaolin) did decrease lipid 
levels significantly (Morris et al., 1977). A diet of carbohydrate (starch) is not adequate for the 
maintenance of a normal lipid composition in N. integer on the long term, causing a reduction in the total 
lipid, triglyceride, and long-chain polyunsaturated fatty acids (Morris et al., 1977). A diet of detritus and 
phytoplankton, taken from the mysids natural marsh habitat, caused a significant total lipid loss of 25 % 
after 7 days and of 45 % after 12 days (Morris, 1971). Incorporation of dietary 14C into the lipid fraction of 
N. integerms highest on a diet of glucose and glutamate (Armitage etal., 1981).

The lipids of Neomysis integer (Linford, 1963; Raymont et al., 1968; Morris, 1971) contain 3 - 1 8  
% non-saponifiable material, 50 % phospholipids, 30 % triglycerides, hydrocarbon, diglycerides and traces 
of monoglycerides, and low levels (< 10 %) of sterols. The dominant lipid class in N. integer is thus fatty 
acids (86 %), the next abundant class is sterols. N. integer lacks sterol esters, wax esters and fatty 
alcohols (Morris, 1971; Bradshaw et ai, 1989; 1990). The fatty acid:sterol ratio in N. integer equals 1.8 -
2.7 (Bradshaw et ai, 1989; 1990). Triglycerides are thought to function primarily as an energy store, being 
metabolized fairly rapidly, whereas phospholipids are considered more as a structural lipid, its metabolism 
being slower (Morris, 1971; Morris et ai, 1977). N. integerms found to be capable of converting dietary 
starch or short-chain saturated fatty acids into long-chain polyunsaturated fatty acids and incorporating 
them mainly in the triglyceride and phospholipid fractions (Morris et al., 1973; 1977). The species' 
requirements for triglycerides are easily met by biosynthesis from a range of diets within 3 - 4  days. To 
obtain all needed phospholipids, N. integer needs more time to biosysnthesize them from diets not 
containing polyunsaturated acids (Morris etal., 1973). When starved, the lipid metabolism was maintained 
for over 1 week, but the long-chain polyunsaturated fatty acids gradually declined (Morris et ai, 1977).

The fatty acid composition is relatively constant over the year, and is dominated (51 %) by 
poly-unsaturated fatty acids or PUFAs (Morris, 1971; Bradshaw etal., 1989). The fatty acid content is 3.2 
pg mgWW1 (Bradshaw et al., 1989). In summer and autumn, these PUFAs increase in concentration at 
the expense of short-chain low unsaturated acids (Morris, 1971). An increase in short-chain fatty acids in 
early summer can be related to the feeding of Neomysis integer on the phytoplankton bloom containing 
high amounts of these fatty acids (Morris, 1971).

The fatty acid composition of Neomysis integer differs between sexes and between 
developmental stages. Mono- and long chain PUFAs are present in higher concentrations in adult 
females, mainly due by a high concentration in the triglyceride fraction (Morris, 1973). Probably these 
differences can be related to the egg production or embryo formation in females, with the high levels of 
triglycerides in ovigerous females being used as an energy source for the eggs (Morris et al, 1981). 
Saturated fatty acids remain at constant levels, irrespective of sex or age, and can be explained by their 
presence as stable fractions within glycerides and phospholipids (Morris, 1973).

The sterols of Neomysis integer are dominated by cholesterol (85 -  90 %). The fairly simple 
sterol composition is affected to some degree by the sex and the level of maturity (Morris et ai, 1981), 
with juveniles having a different composition in comparison to adult females. This may be the result of the 
juveniles having a very different diet from the adults or of the juveniles having less capacity for the 
bioconversion of their other dietary sterols to cholesterol (Morris et al., 1981). Environmental temperature 
does not have any effect on the sterol composition of N. integer, while subtle changes are observed as 
salinity changes, especially lower than 10 psu (Morris et al., 1981; 1982).

When food is passing through the gut, the amount and composition of the dietary lipids alters. N. 
integer decreases the fatty acids and increases the sterols during herbivory (Bradshaw et al., 1990). N. 
integer also significantly contributes lipids to its faecal pellets, mainly cholesterol and fatty acids when gut 
epithelium cells are added to the faecal material.



The enteric microbes also contribute to the fatty acids of the faeces of N. integer. All the contributed lipids 
are modified and/or reabsorbed by digestive processes while still in the gut system (Bradshaw et ai, 
1989).

5.7 Carbohydrate content
The amount of carbohydrates in Neomysis integer is very low: 0.20 -  0.42 % of the wet weight

(Raymont and Krishnaswamy, 1960; Verslycke and Janssen, 2002) or 1.06 -  1.30 % of the dry weight
(Raymont and Krishnaswamy, 1960). Using another technique, Raymont etal. (1964) obtained a value of
2.4 % of the dry weight for ovigerous N. integer.

Over the year the carbohydrate levels are between 2 and 3 % of the total organic matter 
excluding chitin (Raymont et ai, 1966) or 1 -  2 % of the total energy reserve (Verslycke et ai, 2004). In 
the Schelde estuary, adult Neomysis integer contains on average 2pg mgWW1 sugars (Verslycke et ai, 
2004). Sugar content is significantly lower in winter than in spring and summer (Raymont et ai, 1966; 
Verslycke et ai, 2004). This can be explained by a higher energy demand and/or reflects the lower food
availability or quality in winter (Verslycke et a i, 2004).

The carbohydrate content in fed Neomysis integer tended to be somewhat higher than in starved 
animals, indicating that carbohydrates are stored during feeding (Raymont and Krishnaswamy, 1960). 
Mysids {N. integer) are capable of storing glycogen in the R and B-cells of the digestive glands (Molloy, 
1958; Raymont et al., 1968; Brunet et ai, 1994). However, the generally low carbohydrate content of N. 
integer implicates that glycogen, making up 25 -  30 % of the total carbohydrates (Raymont et al., 1968), 
cannot be a significant energy storage material (Raymont et ai, 1964). The problem of food shortage in N. 
integer may not be so acute for an estuarine population and may explain the lack of energy reserves 
(Raymont et al., 1964). Sugars are probably only used as a short-term fast energy source (Raymont et ai, 
1968) and preferred over lipid and protein as the fuel for metabolic processes (Morris, 1999).



6 ENERGY BUDGETS
There is a general lack of information on the quantities of energy consumed by Neomysis integer 

in the field and the role of the species in the trophic web. However, it is often difficult to directly determine 
the food ration of such small organisms like N. integer, especially since they are omnivorous. Indirect 
studies which measure the respiration, production and egestion are often the only way to estimate the 
daily food ration or energy requirement of mysids (e.g. Rudstam, 1989; Thiel, 1996; Maciejewska and 
Opalinski, 2002). Bioenergetic models like 'Scope for Growth' (Roast et al., 1999b) or 'Cellular Energy 
Allocation’ (Verslycke et ai, 2003; 2004) have recently been adapted for use with N. integer and are 
relatively rapid, alternative measurements of the energy status (fitness) of a N. integer population allowing 
the evaluation of the potential for growth and reproduction or the quality of the environment the population 
is living in (e.g. food availability and quality, pollution).

Despite the role of Neomysis integer in the estuarine food web, it is surprising that very little 
information is available on the parameters which affect their food requirements and how the ingested food 
is partitioned to meet the animal's requirements (Astthorsson, 1980). Energy is acquired through feeding 
and food absorption, and lost through respiration, excretion and moulting, with the surplus energy 
available for somatic growth and reproduction. N. integer has little energy reserves and depends mainly on 
the daily food intake to meet its energy requirements (Raymont et ai, 1964; 1966; Linford, 1965; 
Verslycke et al., 2004b). This stresses the need for information on daily food consumption, daily energy 
requirements and assimilation efficiencies on different dietary items.

6.1 Energy intake -  daily ration
Few studies on Neomysis integer give data on the energy intake. Often this is the parameter 

estimated from energy budgets given all energy expenditure values (e.g. Maciejewska and Opalinski, 
2002). Generally, mysids need daily approximately 10 % of their total body carbon content to meet their 
basic metabolic requirements (Froneman, 2000).

Arndt and Jansen (1986) calculated the specific ingestion rate of Neomysis integer feeding on 
Chlorella vulgaris to be 108 pgDW d 1. The daily energy intake of a juvenile N. integer m s  estimated as 
13 % of the body weight at 10 °C and as 28 % of the body weight at 20 °C (Arndt and Jansen, 1986). 
Specific consumption rate (daily ration) was 7 -  13 % for juvenile N. integer feeding on Artemia nauplii 
(Kuhlmann, 1982) at 10 - 1 9  °C.

Astthorsson (1980) estimated energy intake over the complete life span of Neomysis integer, 
using a laboratory-derived growth curve, and a relationship between mysid size and daily food 
consumption, the latter based on laboratory experiments with N. integer feeding on Artemia nauplii. 
Maximum feeding rate was 300 -  450 Anemia nauplii for adult N. integer. In relation to the DW of the 
mysid, the intake of Artemia increased according to a log-log relation and was highest at higher 
temperatures (Astthorsson, 1980). The average daily food consumption of an immature N. integer (1mg 
DW) equals 70 and 129 Anemia d 1, at 9 °C and 16 °C respectively. This corresponds to 0.10 and 0.18 
mg DWArtemia d 1 or 10 and 18 % of the mysid's body DW. Adult mysids (6 mg DW) consumed 265 and 378 
Artemia d 1, at 9 °C and 16 °C respectively. This corresponds to 0.37 and 0.53 mg DWMemia d 1 or 6 and 9 
% of the mysid's body DW. Throughout its life from juvenile (2.4 mm TL) to a mature 15 mm sized animal 
(after 277 days), N. integer consumed 305 cal at 9 °C and 370 cal at 16 °C.

6.2 Specific dynamic action
The energetic cost to find and process food is defined as the specific dynamic action. If Neomysis 

integer is offered Anemia nauplii in a concentration beneath its maximal feeding rate, it is capable of 
capturing all available prey (Astthorsson, 1980). It is not stopping its feeding activities to minimise the 
energy loss by the increased searching effort, as was suggested for some copepod species (Frost, 1975). 
When feeding on calanoid copepodites (Eurytemora affinis) in low concentration, N. integer makes no 
attempt to hunt (Irvine et al„ 1993). Increased respiration rates, attributable to the dynamic action, usually 
occur in the first hours after feeding (Kiorboe et ai, 1985).



Results from experiments with other crustaceans give values for the specific dynamic action within the 
range of 17 -  20 % of the assimilated food (Kierboe et ai, 1985; Lampert, 1986). Rudstam (1989) 
assumes a specific dynamic action of 17 % for Mysis mixta. No measurements have been done with other 
mysids or N. integer.

6.3 Assimilation efficiency
The assimilation efficiency or absorption efficiency is the proportion of the organic matter that is 

absorbed from the ingested food through the gut membrane; thus excluding the amount of organic matter 
that is egested in the faecal pellets (Conover, 1966). The assimilation efficiency can be measured 
quantitatively in the laboratory, provided the exact amount of food offered, the amount of food remaining 
uneaten and the weight of the faecal pellets produced can be estimated (Ferguson, 1973). Often this is not 
possible and/or very time consuming. The simpler ratio-method can be used as well, were only a sample 
of the food and a sample of the faeces are needed, and their respective DW and ADW are measured. The 
latter technique assumes (1) that the faeces contain organic matter derived entirely from the food; (2) that 
all unassimilated food can be collected and (3) all fraction of the food must be ingested in the same 
proportion as contained in the food, i.e. no preferential selection of certain food items may occur. Both 
assumptions are contested by Johannes and Satomi (1967), but Ferguson (1973) found both methods to 
be in good agreement for animal food (bivalve mantle).

The assimilation efficiency of Neomysis integer feeding on dead animal food (bivalve mantle, 
crab hepatopancreas and dead mysids) is 68 -  92 % (Ferguson, 1973), and 57 -  65 % when feeding on 
Artemia nauplii (Astthorsson, 1980). When feeding on monospecific phytoplankton cultures, the 
assimilation efficiency is 73 -  90 % for dinoflagellates and diatoms, except for Skeletonema (58 -  66 %) 
(Ferguson, 1973). Assimilation efficiency on natural detritus is 9 -  10 % and on laboratory-made detritus 
(aged algal cultures) 42 -  46 % (Ferguson, 1973). A low absorption efficiency of 35 % was measured in N. 
integer when feeding on sediments with a low organic content (Roast et ai, 2000) in comparison with an 
absorption efficiency of 70 -  90 % and 60 -  90 % when feeding on Zooplankton and phytoplankton 
respectively (Astthorsson, 1980).

Juveniles had a lower assimilation efficiency than adults on animal food and on a diatom diet of 
Coscinodiscus or Skeletonema cells (Ferguson, 1973). When feeding on detritus no such trend was 
visible. The assimilation efficiencies of juvenile Neomysis integer on natural phytoplankton assemblages 
or green alga Chlorella vulgaris suspensions however, were significantly higher (respectively 70 and 90 %) 
than those of adults (respectively 62 and 80 %) (Arndt and Jansen, 1986).

The assimilation efficiency decreased when animals released their young or when they are 
moulting (Ferguson, 1973). The higher the ash content of the food, the lower the assimilation efficiency 
(Ferguson, 1973). Assimilation efficiency of Neomysis integer increases with increasing temperature 
between 5 and 25 °C when feeding on animal food (Ferguson, 1973); but is not affected by temperature 
when feeding on organically poor sediments (Roast et ai, 2000). Salinity has little or no impact on the 
assimilation efficiency of N. integer feeding on animal food or sediments; at least in the first 24 hours 
(Ferguson, 1973; Roast et ai, 2000).

Assimilation of carbohydrates by Neomysis integer is 75 -  80 %, with the highest assimilation 
efficiency on diets with the lowest carbohydrate content (Ferguson, 1973). N. integer assimilates the 
protein from animal food with an efficiency of 80 -  90 %, from diatom food with an efficiency of 75 % 
(Ferguson, 1973). Highest assimilation efficiency of carbohydrates and proteins is observed when N. 
integer is feeding on dead members of its own species, probably because identical or closely resembling 
proteins and carbohydrates are more easily absorbed (Ferguson, 1973).



6.4 Egestion: faecal pellet production
Maciejewska and Opalinski (2002) determined the daily faeces egestion of Neomysis integer, 

when feeding on frozen Zooplankton (at 14 °C), as 0.169 mgDW ind1 d 1 or 0.01 mgDW mgWW1 d 1. 
During the course of the experiment (24 h) however, 22 % of the initial weight of the faecal material is 
leached into the water and a correction factor was applied. Egestion rate of N. integer, when feeding on 
organically poor sediments, was 0.017 -  0.049 mg faeces mg-1 dry weight mysid h 1 (Roast et al., 2000). 
The egestion rate increased with increasing temperature and salinity (Roast et al., 2000). Egestion rates 
were not affected by gender (Roast et al., 2000). Egestion rate ranged between 0.022 -  0.044 mg faeces 
mg-1 dry weight mysid lr1 when feeding on laboratory-made estuarine aggregates (Fockedey et al., 
submitted d -  Addendum 2). Faecal pellet production, and thus feeding activity, slows down when the 
mysids are releasing their young from the marsupium or when they are moulting (Ferguson, 1973).

The caloric value of Neomysis integer faeces (when feeding on frozen Zooplankton) was 3.66 cal 
mgDW1 faeces or 15.37 J mgDW1 faeces (Maciejewska and Opalinski, 2002). The caloric value of faeces 
when feeding on other dietary items is not reported in literature. The organic content of the faeces is 
dependent on the organic content of the food (Ferguson, 1973). When feeding on diets with 45 -  65 % 
organic matter the organic content of faecal pellets decreased little, while feeding on organically rich food 
diminished the relative organic matter content from 40 up to 70%. When feeding on detrital food sources 
(< 45 %), the organic content of the faecal pellets contained relatively more carbon than the food 
(enrichment of organic matter). This is probably due to the preferential selection of the organic fraction of 
the food supplied (Ferguson, 1973).

6.5 Egestion: excretion of soluble excretory product (N, P)
The excretion of soluble nitrogen and phosphorous by animals is an important pathway for the 

remineralisation of nutrients in aquatic ecosystems. The measurement of N excretion can give indication 
of the level of protein turnover (Raymont et al., 1968). Also a link between osmoregulation through free 
amino acids and the nitrogen excretion has been demonstrated (Raymont etal., 1968). Nitrogen excretion 
is of significance in the disposal of excess free amino acids and is mainly done in the form of ammonia 
(Raymont etal., 1968).

Not much information is available on the excretion of soluble products by Neomysis integer. The 
weight-specific mean ammonia excretion is highly temperature dependent and amounts to 5 - 10, 5 - 15, 
10 -  25 and 15 -  35 pg NH4+ gDW1 lr1, respectively at 6,10,15 and 20 °C (Laughlin and Lindén, 1983). 
Weisse and Rudstam (1989) measured the ammonium excretion of N. integer to be 3 -  11 pmol NH4+ 
gDW1 h 1 between 6 and 16 °C. At a constant salinity (0.4 -  35 psu at 15 °C), N. integer excretes 1.0 ± 
0.5 pg NH3 mgDW1 h 1 (Raymont et al., 1968). A reduction in the environmental salinity leads to a rapid 
but temporary rise in ammonia secretion up to 6 times the basal excretion rate. A transfer from low to high 
salinity caused little to no effect on the excretion rate (Raymont et al., 1968). Weight-specific mean 
dissolved inorganic phosphorus (DIP) amounted 0.2 -1.0 pmol P043 gDW1 h 1 (between 6 and 16 °C) 
and was correlated to temperature (Weisse and Rudstam, 1989). Sex and dry weight of the mysids has no 
effect on the excretion rates of N and P (Laughlin and Linden, 1983; Weisse and Rudstam, 1989). Caloric 
conversions for ammonia-N and urea-N are respectively 0.00594 and 0.00551 cal pgN1 (Elliott, 1976).

Laboratory rearing conditions tend to increase the ammonia excretion compared to field-collected 
mysids (Laughlin and Lindén, 1983), probably due to differences in the dietary composition (N-rich food in 
excess) and feeding frequency in the experimental setup in comparison with the wild mysids.

Although some authors (Clutter and Theilacker, 1971; Lasenby and Langford, 1972; Roast etal., 
1999) considered the soluble organic excretion in mysids to be insignificant (< 5 %), Ferguson (1973) 
indirectly estimated that Neomysis integer excreted 15 % of the ingested energy in this form. By assuming 
that the excretion is a fixed percentage of the energy ingested, this value was used by Astthorsson (1980) 
to calculate the energy loss by excretion of soluble excretory products as 45 cal at 9 °C and 55 cal at 16 
°C.



6.6 Growth
The energy used for growth can be derived from the growth curve. The length can be expressed 

in terms of weight and subsequently in terms of calories. Astthorsson (1980) converted laboratory growth 
curves (in length) into energy content curves (in cal). Freshly released juveniles represent 0.19 cal, while 
mature adults contain 29.22 cal. For data on the caloric conversions factors of Neomysis integer see 
higher.

The gross growth efficiency, i.e. the percentage of the ingested food which is used for growth, is 
between 8 and 10 % for the whole life time of Neomysis integer (Astthorsson, 1980), whereas the net 
growth efficiency, i.e. the percentage of the assimilated food used for growth, equals 12 - 17 % taken over 
its whole life span (Astthorsson, 1980). The gross growth efficiency decreases from 20 -  25 % in juveniles 
to 5 -  8 % in adults and significantly larger for N. integer living at 9°C than at 16°C and feeding on Artemia 
(Astthorsson, 1980). Ferguson (1973) report gross growth efficiencies of N. integer on a diet of crab 
hepatopancreas as 28 %, 19 % and 12 % for animals with a total length of respectively 8 -  10,10 -  12 
and 12 - 14 mm. Net growth efficiencies for the same size classes are respectively, 43 %, 27 % and 17 %. 
Gross and net growth efficiencies on laboratory-made detritus (aged algal culture) are considerably lower. 
For animals with a total length of 8 -  10 and 10 -  12 mm, the gross and net growth efficiencies are very 
similar as 8 and 19 %; larger animals had the lowest gross (3 %) and net (8 %) growth efficiency. All 
experiments of Ferguson (1973) were performed at 15 °C. Growth conversion efficiencies reported from 
growth experiments with well fed N. integer juveniles on Artemia nauplii are 34 % at 10 °C and 38 % at 19 
°C(Kuhlmann, 1982).

6.7 Moulting
Organic matter, i.e. energy, is lost during moulting. The dry weight of a moult of Neomysis integer 

is linearly related to the dry weight of the animal that sheds the moult. Moults of juveniles and adult N. 
integer respectively weigh about 8 to 10 % of the dry weight of the individuals that produced them 
(Astthorsson, 1980). The caloric value of moults of N. integer is 1.28 cal mgDW1 (Astthorsson, 1980). 
Over a complete life span, N. integer moults on average 23 times (at 9 and 16 °C) and the total energy 
loss amounts to 6 cal (Astthorsson, 1980).

6.8 Reproduction
The amount of energy used by male mysids for sperm production is probably negligible (Clutter 

and Theilacker, 1971; Astthorsson, 1980). The energy used by females for egg production can be 
estimated using field derived data on the length-dependent brood size (Table 6) and knowledge on the 
number of successive broods produced by one female. The caloric content of 1 egg is estimated to be 
0.30 cal (Astthorsson, 1980). In age-dependent energy budgets one need to allocate the total number of 
energy spend in brood production over the time that females invest energy in the development of the 
ovaries.

6.9 Respiration
Weight-specific oxygen consumption rates can be used to estimate the daily oxygen consumption 

of differently sized Neomysis integer. Different methods are used (Winkler bottles, electrodes, Gilson 
respirometers, CO2 production, pH changes) and respiration is reported in a variety of units (pg-mg, pi, 
mm3 per mg-gWW, mg-gDW) over a range of time scales (h-day). A summary is given in Table 9. Nothing 
is known about the respiration of embryos and larvae during intra-marsupial development.

Using data of the laboratory growth curves of Neomysis integer, Astthorsson (1980) calculated 
the overall energy expenditure over the complete life cycle. At 9 °C it takes N. integer 277 days to grow 
from a 2.4 mm juvenile to a 15 mm adult and during this period the total energy expenditure on 
metabolism (measured as respiration) is estimated to be 95 cal. At 16 °C it takes 166 days to grow to an 
adult and metabolic cost is 127 cal.



Table 9: Weight-specific respiration rates for Neomysis integer available in literature.
Temp Sal Method measurement Source
10°C 8 psu Winkler method 3.5-11.1 pgÛ 2 mgWW day1 

15.9 and 50.4 pgCte mgDW d ay1
Raymont et al., 1966

18°C ? C 02 production, 
pH change

0.10 to 0.62 pICO? m gW W 1 tr1 Raymont and Krishnaswamy, 
1968

5°C
15°C

0.3-18.7
psu

Respirometer (Gilson) 1.4-1.7 p l0 2 mgDW h 1 
1.9-2.1 p l0 2 mgDW h 1

Vlasblom and Elgerhuizen, 1977

6°C 
10°C 
15°C 
20° C

7 psu Oxygen electrode 0.8-1.0 mgÛ2 gD W 1 h 1 
1.0-1.3 m g02 g D W 1 tv1 
1.3-1.6 m g02 gDW-1 h 1 
1.6-2.8 m g02 gD W 1 h 1

Laughlin and Lindén, 1983

5-15°C ? Winkler apparatus 1-3 p l0 2 m gDW 1 h 1 Weisse and Rudstam, 1989

5-15°C 1-30 psu Oxygen electrode 0.14-0.41 p l0 2 m gW W 1 h 1 Roast et al., 1999

5°C 
10°C 
20° C

2-24 psu 
2-24 psu 
10-15psu 
<10 -  >15

Flow through- 
Respirometer

0.7-1.8 p l0 2 m gDW 1 h 1 
1.2-1.8 pl02 m gDW 1 h 1 
± 1.7 (JIO2 mgDW-1 h 1 
3-4 p l0 2 mgDW-1 h 1

Arndt and Jansen, 1986

14°C 2 psu Oxyqen electrode 0.889 mm30? m qW W 1 h 1 Maciejeska and Opalinski, 2002

With WW: wet weight; DW: dry weight = 19 - 22% WW; density of Oxygen gas = 1.429 kg/m3)

Several oxycaloric coefficients are available. The conversion factor of 4.8 cal m l1 O2 suggested 
by Schmidt-Nielsen (1979) implies a metabolisation of equal mixtures of carbohydrate, fat and protein, as 
is the case when Neomysis integer is offered animal food (Ferguson, 1973). Maciejewska and Opalinski 
(2002) used an oxycaloric coefficient of 0.0047 cal mm3 0 2. The oxygen consumed is transformed to 
energetic equivalents using oxyenthalpic equivalents for an average lipid, protein and sugar mixture as 
484 kJ mol1 0 2 (Verslycke and Janssen, 2002). Roast et al. (1999b) used a heat equivalent of oxygen 
uptake of 0.02008 J pH O2. Also 13600 J g 10 2 can be used as oxycaloric conversion factor (Elliott and 
Davidson, 1975).

6.10 Energy budgets
A preliminary energy budget for 12 -  14 mm sized Neomysis integer has been constructed by 

Ferguson (1973). The quantity of food ingested is allocated to growth, faecal pellets, respiration and 
excretion. The quantity of food channelled into to latter two functions was found by difference. The 
allocation percentage to growth, i.e. net growth efficiency, is low (16 %) for 12 -  14 mm N. integer in 
comparison with other species (Ferguson, 1973). The growth efficiency was highest (27 %) with animal 
food (crab hepatopancreas) and lowest (7.5 %) with artificial detritus (Ferguson, 1973). Respiration and 
excretion are also higher with animal food. When considering the amount of faecal pellets produced 
however, a much lower percentage of animal food is being egested (23 -  37 %) compared with detrital 
food (63 -  66 %). Although a much greater quantity of detritus diet (max. 7.2 mgDW) was ingested per 
animal compared to the animal diet (max. 2.6 mgDW), the latter supported a higher growth efficiency. 
Thus, N. integer can feed far more economically on an animal diet than on de detrital diet.

A simple energetic budget was used to calculate the daily energy requirements of Neomysis 
integer in the Baltic (Maciejewska and Opalinski, 2002) from measurements on production, respiration and 
egestion. Daily food ration (in mg WW of microzooplankton ind1 d 1) of N. integer as a function of mysid 
size (WW, in mg) is expressed as: C = 0.66 WW061 (r2=0.9992; n=10). For example, the daily ration for an 
average individual (20mg WW) is 2.86 cal of food daily, i.e. 4.22 mg of Zooplankton (WW). All supporting 
experiments were performed at 14 °C and animals were allowed to feed on natural Zooplankton 
assemblage and/or ad libitum frozen Daphnia.



A more complicated energy budget (Parsons et al., 1977) was used to calculate the energy 
relations for the entire life span of Neomysis integer (Astthorsson, 1980). The energy ingested equals the 
energy loss due to metabolism, excretion, moulting, growth and gonad production. The energy 
expenditure in the gonad production is different between the two sexes and energy budget for males and 
females were calculated separately. In general, 14 % of the assimilated food is used for growth, 3 % is lost 
by moulting, 50 % was used for respiration and 24 % was presumed to be excreted in a soluble form. In 
adult females 10 % of the assimilated food is used for egg production. No differences were found for 
animals kept at winter or summer temperatures (9 and 16 °C).

6.11 Cellular Energy Allocation
Cellular Energy Allocation (CEA) is a relatively new methodology (De Coen and Janssen, 1997) 

to assess the individual-based energy budget and is used to assess effects of abiotic variables like 
salinity, temperature and oxygen (Verslycke and Janssen, 2002; Verslycke et al., 2004) and exposure to 
pollutants (Verslycke et al., 2003; 2004b; 2004c) on the metabolic processes of Neomysis integer. The 
ratio of the total available energy reserves used (decrease in total sugars, lipid and protein content) and 
the average energy consumption (measured as cellular respiration rate from electron transport activity) 
indicate the energy available in excess of that required for maintenance and reflects the energy available 
for growth and reproduction (Verslycke and Janssen, 2002; Verslycke et al., 2004). CEA is predictive of 
long-term effects on growth and other long-term population effects in the field (De Coen and Janssen,
1997).

Sugar, lipid and protein content is transformed into energetic equivalents using their respective 
energy of combustion, respectively 17500 mJ mg1 glycogen, 24000 mJ mg1 protein and 39500 mJ mg1 
lipid. The oxygen consumed as measured by electron transport activity (ETA) is transformed to energetic 
equivalents using oxyenthalpic equivalents for an average lipid, protein and sugar mixture as 484 kJ mol'1 
0 2.

The CEA can be influenced by a large array of factors like diet, reproductive status, sex, age, 
location, season, hence careful interpretation of the data is required (Verslycke etal., 2004). When starved 
(4 days) at a higher temperature, energy reserves and CEA of Neomysis integer decreased although not 
significantly (Verslycke and Janssen, 2002). The energetic metabolic processes of N. integer were 
relatively unaffected in the laboratory by short-time changes in salinity, temperature and dissolved oxygen 
(Verslycke and Janssen, 2002). N. integer from the Schelde estuary, on the other hand, expressed a clear 
seasonal response in their CEA with spring and summer values significantly higher than in winter 
(Verslycke etal., 2004). Also, important spatial differences were observed in the CEA along the estuarine 
gradient, with smaller CEA in the (most polluted) upstream stations (Verslycke etal., 2004).

The latter was not confirmed however by more recent CEA measurements (Ghekiere, personal 
communication). The average total energy content of adult N. integer of the Schelde estuary is on average 
3200 mJ mgWW1 and was significantly affected by the location along the estuarine gradient, but not by 
season (Verslycke et al., 2004). Protein was the most important fraction (70 pg mgWW1), followed by 
lipids (37 pg mgWW1) and sugars (2 pg mgWW1), making proteins and lipids the most quantitative 
energy sources for the species (Verslycke etal., 2004). The individual fractions were differentially affected 
by season and location along the estuarine gradient. Energy consumption of N. integer in the Schelde was 
on average 31 mJ mgWW1 h 1 (Verslycke et al., 2004) and was not affected by season but increased 
towards the more upstream sampling locations. CEA values in the Artemia fed N. integer from laboratory 
cultures (± 66) was significantly lower than in the field (± 135), since energy content was comparable 
(3200 -  3300 mJ mgWW1) but energy expenditure was significantly higher in the laboratory (54 mJ 
mgWW1 h 1) than in the field (31 mJ mgWW1 h 1) (Verslycke and Janssen, 2002; Verslycke etal., 2004).



6.12 Scope for growth
Scope for growth (SFG) is a technique where several physiological responses are integrated into 

a single bioassay originally designed for bivalves (Widdows and Salkeld, 1993). It has been adopted for 
Neomysis integer by Roast et al. (1999b). It provides a rapid, instantaneous measurement of the energy 
status of an organism, as does the Cellular Energy Allocation technique (Verslycke et ai, 2004b). 
However, SFG integrates respiration, feeding and excretion rates, rather than respiration rate and 
biochemical composition in CEA. The SFG method is used in N. integer for the evaluation of the toxic 
effect of the pesticide chlorpyrifos on the metabolic processes (Roast et ai, 1999b), not yet for the impact 
of abiotic (e.g. salinity, temperature, dissolved oxygen) and biotic variables (e.g. gender, age, size, 
developmental state, food quality and quantity).



7 PHYSIOLOGY
The upper region of the estuarine environment is characterized by strong fluctuating conditions of 

salinity and temperature. Both are considered dominant 'ecological abiotic master factors', which may act 
either singly or in concert to modify the population dynamics (survival, development and growth rates), the 
distribution and physiology and metabolism of estuarine organisms (Kinne, 1970; 1971; McKenney and 
Celestial, 1995). As a typical estuarine species, the brackish water mysid Neomysis integer experiences 
strong tidal, diel and seasonal changes in temperature and salinity (Moffat and Jones, 1992; Roast et ai,
1999).

7.1 Salinity tolerance
Neomysis integer is euryhaline and tolerates a wide salinity range of 1 to 40 psu (Mauchline, 

1971; Vlasblom and Elgershuizen, 1977; Arndt and Jansen, 1986; Roast etal., 2001), although survival is 
low in salinities greater than 35 psu (Ralph, 1965). Kuhlmann (1984) reported however, the upper salinity 
tolerance limit of adult N. integer to range between 25 -  30 psu at 10 °C. No particular preference was 
shown by N. integer within the salinity range from 2 to 12 psu (Arndt and Jansen, 1986). The species 
possesses considerable powers of adaptation to waters of low salinity (Tattersall and Tattersall, 1951), but 
is unable to maintain itself in absolute fresh water (Stammer; in Segerstrale, 1945) when summer 
temperatures become higher than 23 -  24 °C (Merker, 1928). N. integer is highly tolerant to large, acute 
salinity fluctuations between 1 and 30 psu (Moffat and Jones, 1992; Roast et al., 1998). It can attain 
osmotic balance within 2 hours of exposure to a change in salinity (Moffat, 1996).

In the field Neomysis integer can be found at salinities between 0.1 and 38 psu, although it is rare 
in waters of more than 20 psu (Tattersall and Tattersall, 1951; Vlasblom and Elgershuizen, 1977). In the 
Schelde estuary, N. integer m s  recorded at salinities ranging from 8 to 25 psu with a maximal abundance 
at around 15 psu (Mees et ai, 1994). Ongoing studies suggest that the population is shifting towards the 
more oligohaline zone of the estuary (Verslycke et a i, 2004; Fockedey, personal observation) as a 
consequence of improved oxygen conditions in the upstream reaches in winter and early spring (e.g. De 
Brabandere etal., 2002; http://waterbase.nl). In other, more oxygenated Western European estuaries such 
as the Guadalquivir (Spain), Gironde (France), Tamar (UK), Elbe (Germany) and Ems (The Netherlands) 
the abundance peak is typically found around 5 psu (Mees et al, 1995; Moffat, 1996; Drake et ai, 2002; 
Fockedey, personal observation).

7.2 Temperature tolerance
Neomysis integer is an eurythermie species that occurs in brackish waters along the Western 

European coast at longitudes between 36° N and 63° N and in the Baltic Sea (Deprez et al., 2004; 
http://intramar.ugent.be/NeMys). Within the range Elbe -  Guadalquivir, the summer water temperature of 
the brackish estuarine zone varies from 26 °C in the North to 29 °C in the South, while winter water 
temperatures range from 0 °C in the North to 10 °C in the South (Drake etal., 2002, Zimmermann, 1997).

Neomysis integer can sustain temperatures from 0 to 33 °C under laboratory conditions (Merker, 
1928; Mauchline, 1980), although its optimal resistance tend towards the lower temperature ranges (Arndt 
and Jansen, 1986). The tolerance of mysids to ambient temperatures may vary among populations of 
the same species (Mauchline, 1980). N. integer from the Baltic Sea dies within 2.5 weeks at 20 °C, 
probably because this population rarely experiences temperatures above 15 °C, and never for periods 
exceeding a few days at a time (Laughlin and Linden, 1983). No particular preference was shown by N. 
integer from the Baltic within the temperature range from 4 to 18 °C (Arndt and Jansen, 1986). The 
tolerance of mysids to ambient temperatures may vary between generations within the same population. 
Kuhlmann (1984) reports a distinct difference in the upper tolerance limit between the winter and summer 
generations of adult N. integer from Kiel Canal as respectively 10 to 12 °C and 20 to 25 °C (at 10 psu). 
Furthermore, temperature tolerance limits vary ontogenically. Juveniles seem to have a different range of 
temperature tolerance than the adults (Kinne, 1955).

http://waterbase.nl
http://intramar.ugent.be/NeMys


In the coastal water of the western Baltic Sea, the shoals are leaving the shallow littoral zone 
when water becomes too cold (< 2 °C), or too warm (> 20 °C) (Välipakka, 1992). The fact that it is easy to 
keep Neomysis integer at 0 °C for long periods shows that the species has a good resistance to cooling, 
whereas its frost resistance to freezing at -10 °C is relatively poor with all animals dying within 8 minutes 
(Arndt and Jansen, 1986). However, Jansen (1979) described some individuals of N. integer to be present 
in the shallow zone of the Darss-Zingst Peninsula when ice is present in winter time. Espeel (1979) 
mentions a 'lethargic' behaviour of N. integer in very cold winter conditions (< 1 °C) in a brackish lake, with 
the animals lying at the bottom without any movement.

Temperature is generally thought to overshadow salinity in its effects on growth and reproduction 
in crustaceans. Still, temperature can influence the salinity tolerance of a species (Vlasblom and 
Elgershuizen, 1977; Arndt and Jansen, 1986) and interaction effects of both on the survival and growth of 
a species can change with age (Kinne, 1955; McKenney, 1994; McKenney and Celestial, 1995). Neomysis 
integer is better able to tolerate both low and high salinities at the low temperature range, i.e. 
thermophobic behaviour (Arndt and Jansen, 1986). In freshwater N. integer dies rapidly when the 
temperature is 23 -  24 °C, while in water of a higher salinity they can support temperatures up to 33 °C 
(Merker, 1928).

The effect of temperature on metabolic rates is commonly expressed as the Qi0 value. 
Temperature has a significant effect on the respiration rate of Neomysis integer, with a Qio of 1.5 to 3.3 
(Clutter and Theilacker, 1971; Astthorsson, 1980; Laughlin and Lindén, 1983; Weisse and Rudstam, 1989; 
Roast etal., 1999). Temperature also has a significant effect on the ammonia and DIP excretion rate of N. 
integer, with a Qi0 of respectively 1.4 -  2.9 and 2.6 -  4.9 (Weisse and Rudstam, 1989).

Short term temperature changes of 5 °C (from 15 to 20°C) did not appear to cause an acute 
temperature chock in Neomysis integer (Laughlin and Lindén, 1983). During diel vertical migration N. 
integer can encounter temperatures from 18 °C at the surface to 5 °C at the bottom (in a 30 m deep Baltic 
station). Since metabolic rates, like respiration and excretion, are strongly affected by temperature, these 
rates can vary with a factor 2 - 3  during a 24h cycle (Weisse and Rudstam, 1989).

7.3 Oxygen tolerance
The abundance of Neomysis integer is affected by the temperature in relation to the oxygen 

content of the water (Jorgensen, 1929). The scarcity of the species in the field is particularly well marked 
when oxygen content drops below 40 %, i.e. 3.3 -  5.1 mg I 1 at 5 -  25 °C (Jorgensen, 1929; Mees etal., 
1993; 1995; Margonski and Maciejewska, 1999). Also in (organically) polluted waters the oxygen is more 
quickly depleted and has its impact on the relative abundance of N. integer. In enclosed waters where a 
permanent halocline is present under which an anaerobic stagnant water mass (hypolimnion), the N. 
integer populations are confined to the oxygenated surface layers (e.g. Parker and West, 1979). However, 
N. integer can sustain low oxygen-tensions under laboratory conditions. An oxygen saturation decreasing 
to 20 % had no influence on the survival and behaviour of adult N. integer under laboratory conditions at 
18 °C and 18 psu (Kuhlmann, 1984). From 20 % on, their behaviour became abnormal (not further 
described) and the lethal threshold of oxygen tolerance was at 13 % O2 saturation. In the complete 
absence of oxygen, N. integer can survive for 20 minutes (Arndt and Jansen, 1986).

7.4 Ammonium tolerance
The toxic threshold of adult Neomysis integer to increased ammonia concentration (at 16 °C and

16.5 psu) lies at 0.2 mg NH3 M; the 96h LC50 is measured at 1.7 mg M (Kuhlmann, 1984). This value can 
be considered as high in comparison with other crustaceans (Daphnia), freshwater fish or marine fish 
larvae (Kuhlmann, 1984).



7.5 Osmoregulation
The isosmotic point of Neomysis integer's blood is 16 psu at 15 °C (Southampton waters, Ralph, 

1965) to 19 psu at 5 °C (Loch Etive - Scotland, McLusky and Heard, 1971). Moffat (1996) described the 
isosmotic point of N. integer to be higher than 20 psu at 15 °C for a population in the Looe estuary. It is not 
unusual for the blood concentration at a given salinity to vary between different populations of the same 
species (Moffat, 1996).

Neomysis integer is an extremely efficient hyper-hypo-osmoregulator. It is capable of maintaining 
the concentration, composition and volume of its body fluids such that the metabolic functioning of the 
cells can continue normally. It can maintain its blood concentration hyperosmotic to the medium when 
living in diluted sea water environments in the range 0.5 to 20 psu and hyposmotic at salinities between 20 
and 40.6 psu (Ralph, 1965; McLusky and Heard, 1971; Moffat, 1996). In fact, the blood concentration itself 
varies between 14.5 and 24 psu (McLusky and Heard, 1971).

Neomysis integer can rapidly respond to acute changes in salinity and attains osmotic balance 
within 2 hours of experiencing a change in salinity (Moffat, 1996). This osmoregulatory ability is correlated 
with changes in (mainly non-essential) free amino acid concentrations. Glutamine, glycine, taurine and 
alanine were identified as important osmo-effectors in N. integer (Moffat, 1996), while Armitage and Morris 
(1982) report glycine, alanine and proline to be involved in the osmoregulation of this species. Armitage 
and Morris (1982) report major changes in the free amino acid concentrations within the first 4 hours after 
an abrupt salinity change. In the field, the adjustment of free amino acid concentration in N. integer to 
salinity change occurs at the changing of the tide at either high or low water (Armitage and Morris, 1982).

Alternating high and low salinity leads to a net decrease in protein in Neomysis integer (Austin, 
1965), suggesting that the proteins, relatively rich in glycine, alanine and glutamine (Raymont etal., 1968), 
are the direct, irreversible source for the free amino acids needed for osmoregulation. The proteins are 
broken down and the free amino acids excreted when no longer required. The discovery of several 
intracellular transaminases in N. integer provides another possible mechanism (by extensive amino acid 
conversion) for the mobilisation of those large quantities of free amino acids needed in function of 
osmoregulation (Raymont etal., 1967; Raymont etal., 1968).

Subtle changes in the structural membrane sterols of Neomysis integer do appear when 
environmental salinity changes, especially when salinity drops below 10 psu (Morris et al., 1982). This 
may be the result of the animal requiring to modify its membrane structure (i.e. orientation of the lipid 
layers) in order to cope with the changing external salinity. These changes occur (in the laboratory) in less 
than 48 hours. In the field such changes happen regularly during the tidal cycle and are part of N. integer's 
mechanisms to cope with it sliving in fluctuating environmental salinity (Morris etal., 1982).

The isosmotic point of Neomysis integer is a little lower in comparison with the coexisting species 
Praunus flexuosus (25 psu). N. integer is a better osmoregulator and thus better adapted to live in more 
oligohaline waters than P. flexuosus, since the range of salinities experienced by the body tissues of N. 
integer is less than in P. flexuosus over the same range of media (McLusky and Heard, 1971). The 
isosmotic point of the other coexisting species Mesopodopis slabberi is not know in literature.

7.6 Respiration
Mysids oxygen consumption is dependent on several abiotic (e.g. temperature, salinity, season) 

and biotic (like generation, gender, weight, age and reproductive status) factors. Each factor may have a 
solitary effect or several factors may act in concert to modify the oxygen consumption (Roast etal., 1999). 
The respiratory physiology of Neomysis integer is considered to be adapted for inhabiting a highly (acutely 
and longer term) variable environment (Roast etal., 1999). The specialized respiratory physiology, taken 
with the broad salinity tolerance and an efficient osmoregulatory mechanism explains the presence of N. 
integer in the upper regions of European estuaries.



The impact of salinity, temperature and adaptation salinity on the respiration rate were studied by 
Vlasblom and Elgershuizen (1977), but no firm conclusions could be made. More recently, also Verslycke 
and Janssen (2002) measured oxygen consumption by electron transport activity (ETS) at varying salinity, 
temperature and dissolved oxygen combinations in the laboratory, but the small variations in respiration 
could not be explained by a single abiotic factor within the ranges tested, suggesting that biotic factors 
such as weight, age, and gender probably have a larger influence on the respiration rates.

7.6.1 Temperature effect
Several studies (Astthorsson, 1980; Laughlin and Linden, 1983; Weisse and Rudstam, 1989; Roast etal., 
1999) proved that the weight-specific respiration rate of Neomysis integer is highly temperature 
dependent. The temperature dependency of the respiration of N. integer is moderate though (Qio between
1.5 and 3.3) in comaprsion to other species, indicating a significant degree of temperature compensation.

The oxygen consumption of Neomysis integer m s  affected more by temperature changes at high 
than at low salinity (Roast et al., 1999), as demonstrated in higher Q10 values at higher salinity. A 
temperature of 20 °C cannot be considered as optimal for Baltic N. integer (Arndt and Jansen, 1986), as 
is reflected in the high O2 consumption in comparison with 5 and 15 °C; and especially the low (2 psu) and 
high (22 psu) salinities have a striking effect on the respiration rate. It can explain why mysids migrate 
from the littoral zone to deeper (and cooler) water in the summer.

In general there was little difference between male and female oxygen consumption in response 
to temperature changes (Roast etal., 1999), with males increasing their respiration to a somewhat higher 
extent than females. Temperature has a significant effect on the 0 2 consumption of Neomysis integer from 
the same generation, but respiration is also significantly influenced between seasons or generations by 
other factors than temperature (Astthorsson, 1980).

7.6.2 Salinity effect
The respiration of Neomysis integer is susceptible to changes in salinity as well, but the effect of 

salinity on physiological processes is less predictable. After all, temperature has a stronger effect on the 
oxygen consumption than salinity (Roast et al., 1999). In experiments performed by Arndt and Jansen 
(1986), the salinity had no effect on the respiration at the low temperatures of 5 and 10 °C. At 20 °C 
respiration is generally higher, but is minimal at the intermediate salinities of 10 -  15 psu and highest at 
the low (2 psu) and high (24 psu) salinity treatments. In contrast to the former study, Vlasblom and 
Elgershuizen (1977) found the respiration of N. integer to be affected by salinity at 5 and 15°C. At any 
salinity tested (0.3 - 18 psu, except 2 psu) the respiration was always lower than at the adaptation salinity 
(12.8 psu). A change in salinity cause greater changes in the oxygen consumption at low (5 °C) than at 
high (15 °C) temperatures (Roast et al., 1999). Salinity effects were not modified by the mysid gender 
(Roast etal., 1999).

7.6.3 Body size effect
The respiration of Neomysis integer is strongly related to the body size, body surface or body 

weight (Astthorsson, 1980; Arndt and Jansen, 1986) and are therefore experessed as weight-specific 
respiration rates (Table 9). The oxygen consumption (R) increases with increasing body weight (DW) 
according to the following regression R = 3.21 DW06 (Arndt and Jansen, 1986).

7.6.4 Gender effect
At most temperature/salinity combinations, male Neomysis integer consumed significantly more 

oxygen than females (Roast etal., 1999). Gender differences in respiration rates have been reported, but 
may also result from the reproductive status of the test organisms (Raymont et al., 1966; Simmons and 
Knight, 1975) or from morphological differences between male and female mysids affecting weight-specific 
oxygen consumption rates (Smith and Hargreaves, 1985).



7.6.5 Season effect
According to Raymont et al. (1966) and Astthorsson (1980), the respiration rates of Neomysis 

integer are significantly affected by season. The weight-specific oxygen consumption, measured in the 
laboratory at 10 °C with animals from the field, showed to have a peak in March and in August, and a 
marked decline in September/October while respiration stays low during winter months. The respiration of 
similar sized animals at a specific temperature was found to be higher in summer than in winter 
(Astthorsson, 1980).

In contrast to the former studies, Verslycke et al. (2004) and Roast et al. (1999) found no 
seasonal effect (mainly temperature) in the respiration of Neomysis integer from the Schelde and East 
Looe River estuary, probably because temperature changes occur gradually and the mysids can acclimate 
to the changing conditions.

7.6.6 Other effects
In the Schelde the respiratory energy consumption of Neomysis integer increased upstream 

(Verslycke et al., 2004) and can be explained by stress caused by decreased salinity and dissolved 
oxygen or increased pollution (Verslycke etal., 2004).

Laboratory rearing conditions showed to increase oxygen consumption compared to field- 
collected mysids (Laughlin and Linden, 1983), probably due to the dietary differences and feeding 
frequency between the two situations.

7.6.7 Field validation
Laboratory measurements on the effect of salinity and temperature on respiration rate of 

Neomysis integer were related to the field conditions the species is living in (East Looe River estuary) by 
Roast etal. (1999), and where high tidal fluctuations are experienced in temperature (10 °C) and salinity 
(33 psu); in order to evaluate the adaptive nature of temperature and salinity responses in N. integer. N. 
integer disposes of relative good temperature compensation (to the moderate temperature changes 
experienced in the field over a tidal cycle). The salinity response measured in the laboratory (higher 
respiration at lower salinity) cannot be seen to have an adaptive nature, since living at the low salinity 
reaches implies high metabolic costs due to high oxygen consumption (Kinne, 1971; Roast et al., 1999). 
After all, combining the salinity and temperature responses together, the respiration is high at high water in 
comparison with low water (Roast etal., 1999). It would be worthwhile to repeat this exercise in estuaries 
with less extreme tidal fluctuations in salinity and temperature.

On a seasonal basis the oxygen consumption of Neomysis integer is predicted to be higher in 
summer, when temperatures are higher (Roast et al., 1999). At lower winter temperatures the effect of 
changing (tidal) salinity conditions are more distinct than in summer (Roast et al., 1999). On the other 
hand, the seasonal temperature increase occurs gradually over a longer period of time and a gradual 
adaptation might occur, causing a minimal effect on the respiration of N. integer (Roast etal., 1999). Also, 
Raymont et al. (1966) and Astthorsson (1980) report the respiration rates of N. integers  be significantly 
affected by season in itself. Predictions based on measurements of one sampling occasion like the one of 
Roast etal. (1999) would be invalid to extrapolate to other seasons in such a case.



8 ECOTOXICOLOGY

Mysids are sensitive to chemical contaminants at environmentally relevant concentrations and 
have been used in regulatory toxicity testing for more than 20 years (e.g. Nimmo and Hamaker, 1982; 
Gaudy etal., 1991; Harmon and Langdon, 1996; Brandt etal., 1993; Roast etal., 1998; Veslycke et al., 
2004 and references herein). The U.S. Environmental Protection Agency and the American Society for 
Testing and Materials both have adopted the subtropical Americamysis bahia (formerly Mysidopsis bahia) 
as a key testing species for coastal and estuarine monitoring, and standard guides for conducting life
cycle toxicity tests with this species have been developed (USEPA, 2002). Although a relatively large 
amount of published toxicity data is available for Americamysis species, relatively limited data are 
available on the sensitivity of other mysid species to toxicants (Roast et al., 1999c). However, the 
available evidence suggests that mysids are generally more sensitive to toxic substances than many other 
test species (Morton etal., 1997; Roast etal., 1998b; Verslycke etal., 2003b).

Ideally, chemical risk assessment should be assessed by standardized endpoints that cover the 
molecular, individual and population level. For mysids, this implies that, in addition to evaluating mortality, 
acute, chronic and multigenerational bio-assays have to be developed for testing chemical effects on 
growth and moulting, reproduction, biochemical composition, metabolism, physiological processes, 
behaviour and morphologic aberrations (as reviewed by Verslycke et al., 2004). Also, field studies and 
caging experiments with mysids have been published (Clark et al., 1986; Rand and Clark, 2000; Fossi et 
al., 2001; Verslycke, 2003). Because of their ecological importance, wide geographic distribution, year- 
round availability in the field, ease of transportation, ability to be cultured in the laboratory, and sensitivity 
to contaminants, mysids are appropriate toxicity test organisms. Clearly, field validation of the biomarkers 
is a strong research need for the future.

Recently, there has been increasing interest in using the brackish water mysid Neomysis integer 
(Leach, 1840) as a toxicological test species for estuarine systems (Emson and Crane, 1994; Roast etal., 
1998b; Verslycke et al., 2004 -  Addendum 3). It is an alternative to Americamysis bahia for use in 
European water quality testing (Roast et al., 1998a; Verslycke et al., 2004). Due to its relatively high 
temperature requirements, the subtropical species A. bahia can not be used in temperate regions and its 
low tolerance for low salinities of 0.1 to 5 psu makes it an inappropriate test species to use in the turbid 
upper reaches of estuaries or oligohaline inland water bodies (Roast et al., 2000a; 2001 ).

Next of being applied in acute toxicity tests (von Oertzen etal., 1988; Emson and Crane, 1994; 
Wildgust and Jones, 1998; Roast et al., 1999c; 2001; Verslycke et al., 2003b), Neomysis integer have 
been used successfully in various sublethal tests for evualuating swimming ability (Roast et al., 2000b; 
2000c; 2001b; 2002; 2002b), energy budget (Roast et al„ 1999b; Verslycke et al„ 2003; 2004b; 2004c), 
testosterone metabolism (Verslycke et al., 2002; 2003c; 2004c), respiration (Laughlin and Linden, 1983; 
von Oertzen etal., 1988), ammonia-excretion (Laughlin and Linden, 1983), growth and moulting (Ghekiere 
et al., submitted), vitellogenesis (Ghekiere et al., 2004), and intra-marsupial development (Ghekiere et al., 
in preparation).



9 CONCLUSIONS

The present work aims to gather all literature available on the brackish water mysid Neomysis 
integer, with focus on its distribution, feeding ecology, life history aspect, behaviour, physiology, 
biochemical composition, bioenergetics and ecotoxicology. It aims to identify gaps in our knowledge of the 
species.

Because N. integer is often used as a model species to study the ecology of brackish water 
crustaceans, and because the species is easy to sample (qualitatively) in shallow water and keep in the 
laboratory, many studies and data are available concerning the species. The older studies (< 1980) are 
often superficial or based on a limited number of observations; while their data are often unpublished (as 
Ph.D. theses or reports) or published in local journals. Information extracted from this 'grey' literature has 
been integrated in the review. In the last 10 years, quite some in-depth studies have been published 
concerning aspects of the feeding ecology, population dynamics, physiology, bioenergetics, behaviour, 
and ecotoxicological use of the species. One should consider this chapter as a reference work, to grab to 
when specific information of one of the topics is needed. The author's contributions (results presented in
this thesis and some unpublished work) are highlighted in the text.

Abundant information is available on the distribution patterns of Neomysis integer in enclosed 
brackish waters and estuaries, although on has to keep in mind that the swarming behaviour, vertical and 
horizontal migration, segregation of life stages and escape behaviour of N. integer (all not fully understood 
yet) can handicap the quantification of the density and biomass, and may hamper the calculation of the 
production and the study of the life history of the species.

There is a great need for the description of the feeding ecology of key species -  like Neomysis
integer- in estuarine environments for the development of accurate C-flux models and the description of 
detritus based food web patterns, including the quantification of transfer coefficients. Although N. integer is 
described as an important food item for many demersal and pelagic fish, larger epibenthic crustaceans 
and wading bird species, quantitative information is still lacking on its own diet, feeding rates, feeding 
patterns and selectivity (especially for populations living in estuarine conditions).

Numerous data are available on the life history of Neomysis integer over a wide geographical and 
habitat range, although southern populations (< 51 °N) are more poorly known. Variations are observed 
between these populations in the number of cohorts, size-at-maturity, fecundity and growth rate. Growth 
and reproduction are affected by prevailing environmental conditions as generally observed in Crustacea. 
However, in the eurythermie and euryhaline Neomysis integer, typically living in the highly dynamic 
estuarine environment, this is not thoroughly studied yet. Details on how intra- and post-marsupial 
development, moulting processes and reproduction are affected by a wide range in salinity, temperature, 
food quantity and quality are still lacking.

The biochemical composition and the ecophysiology of Neomysis integer are well known and 
several methodologies to calculate the energy budget have been applied to the species.

There has been an increasing interest in using the brackish water mysid Neomysis integer as a 
toxicological test species for Western European estuarine systems. Mortality, respiration, swimming 
behaviour, testosterone metabolism and energy budgets are well established endpoints for bioassays with 
the species. However, more data on its growth, moulting, development and reproductive processes are 
needed (at the individual- and population-level). The influence of prevailing environmental variables on 
these processes, as well as their optimal range have to be known in order to develop optimal laboratory 
cultures and to differentiate between chemically-induced variability and natural variability in toxicity testing.



Still, some literature published on the species Neomysis integer is not dealt with in the present 
literature review as its falls out of the scope of the present Ph.D and cover fields like environmental 
contamination, biomanipulation of brackish lakes, use of the species for drug detection, molecular, 
phylogenetic and phylogeographic work on N. integer, detailed morphologic descriptions of the cuticle, 
statocyst, sensory systems and the intra-marsupial development, visual sensitivity of the species, 
presence of intersexuality, culturing of the species, and use as food for other trophic levels. All references 
are grouped in Table 10 with an indication of the topics not treated in this review (*).

Table 10: All literature on Neomysis integer (* falling out of the scope of the present overview)

Taxonomy Mauchline and Murano, 1977; Deprez et al., 2004; 
http://www.vliz.be/vmdcdata/nemvs; www.iorbis.ora

Morphology -  External (general) Tattersall and Tattersall, 1951; Mauchline, 1980; Hayward and 
Rvland. 1995: httD://ip30.eti.uva.nl/bis/crustacea.php: 
httD://www.marlin.ac.uk/sDecies/taxon Neomvsisinteaer.htm

Morphology -  Feeding appendages and gut 
structure

Gelderd, 1909; Lucas, 1936; Molloy, 1958; Tattersall and Tattersall, 
1951; Haffer, 1965; Astthorsson, 1980; Mauchline, 1980; Armitage et 
al., 1981; Espeel, 1982; Bradshaw etal., 1989; Maciejewska, 1992; 
Brunet et at., 1994; Kobusch, 1998; Remerie, 1999; Roast et al., 
2004

* Morphology -  Cuticle Putz and Buchholtz, 1991

* Morphology -  Statocyst Lowenstam and McConell, 1968; Espeel, 1984; 1985; 1986; 1987; 
Wittmann etal., 1993

* Morphology -  Olfactory system Guse, 1979; Guse, 1983; Hallberg et al., 1992; Johansson and 
Hallberg, 1992; 1992b

* Morphology -  Sensilla Guse, 1978; 1980; 1980b

* Morphology -  Intra-marsupial development Rathke, 1839; Wagner, 1896; 1998; Needham, 1937; Kinne, 1955; 
de Kruijf, 1977; Mauchline, 1980; Scholtz, 1984; Scholtz et al., 1993; 
Fockedey etal., submitted b -  Chapter 6

Morphology -  morphometric regressions Schuchardt et al., 1989; Mees et al., 1994

Morphology -  length/weight regressions de Kruijf, 1977; Beattie and de Kruijf, 1978; Astthorsson, 1980; 
Summers, 1980; Beattie, 1982; Bremer and Vijverberg, 1982; 
Jansen, 1985c; 1985c; Arndt and Jansen, 1986; Mees et al., 1994; 
Aaser et al., 1995; Irvine et al., 1995; Gorokhova and Hansson, 
1999; Maciejewska and Opalinski, 2002; Winkler and Greve, 2004

Density & Biomass -  Estuaries Percival, 1929; Moore et al., 1979; Sorbe, 1980; O’Sullivan, 1984; 
Milner, 1986; Rodriguez and Dauvin, 1987; Schuchardt et al., 1989; 
Haesloop, 1990; Apel, 1992; Hough and Naylor, 1992; Mees and 
Hamerlynck, 1992; Moffat and Jones, 1992; Mees et al., 1993; 
1993b; San Vicente, 1993; Bamber and Henderson, 1994; Bernât et 
al., 1994; Cattrijsse et al., 1994; Mees et al., 1994; 1995; Köpke and 
Kausch, 1996; Moffat, 1996; Mouny et al., 1996; San Vicente, 1996; 
Drake et al., 1997; Mouny et al., 1998; Zouhiri et al., 1998; Cunha et 
al., 1999; Dauvin et al., 2000; Mouny et al., 2000; Drake et al., 2002; 
Hampel et al., 2003; 2003b; David et al., 2005; Fockedey, 
unpublished -  EU MATURE

Density & Biomass -  Baltic Sea Muus, 1967; Rasmussen, 1973; Kotta and Simm, 1979; Weslawski, 
1981; Arndt and Jansen, 1986; Rudstam et al., 1986; Hansson, 
1990; Köhn, 1992; Rudstam et al., 1992; Thiel, 1992; Välipakka, 
1992; Margonski and Maciejewska, 1999

http://www.vliz.be/vmdcdata/nemvs
http://www.iorbis.ora
http://www.marlin.ac.uk/sDecies/taxon


Density & Biomass -  Ponds and lakes

Diet of Neomysis in teger- description

Diet of Neomysis in teger- quantitative 
stomach analysis and fullness index

Barnes et al„ 1971; Beattie and de Kruijf, 1978; Parker and West, 
1979; Bremer, 1980; Bremer and Vijverberg, 1982; Espeel, 1982, 
Platenkamp, 1983; Bales et al., 1993; Hosper and Meijer, 1993 
Irvine et al., 1993; Jeppesen, et al., 1994; Meijer et al., 1994, 
Soselisa, 1994; Aaser et al., 1995; Irvine et ai, 1995; Verslycke et 
ai, 2000
Lucas, 1936; Tattersall and Tattersall, 1951; Vorstman, 1951; Kinne, 
1955; Mauchline, 1971; 1980; Bremer and Vijverberg, 1982; Sorbe, 
1980; Astthorsson, 1980; Jansen, 1985b; Haesloop, 1990; Uitto et 
al., 1995; Speirs étal., 2002; Vilas and Fockedey, unpublished

Astthorsson, 1980; Sorbe, 1980; Bremer and Vijverberg, 1982; 
Jansen, 1985b; Arndt and Jansen, 1986; Haesloop, 1990; Irvine et 
al., 1993; Soselisa, 1994; Remerie, 1999; Speirs et al., 2002; 
Fockedey and Mees, 1999; Fockedey, unpublished -  EU MATURE; 
Fockedey, unpublished; Vilas and Fockedey, unpublished

Diet of Neomysis in teger- isotope 
fractionation

Rolff, 1998; Gorokhova, 1999; Gorokhova and Hansson, 1999

Diet of Neomysis integer -  Feeding rate 
(ingestion, egestion, gut evacuation rate, 
assimilation efficiency)

Diet of Neomysis in teger- Selectivity and 
structuring effects on prey populations

Lucas, 1936; Molloy, 1958; Ferguson, 1973; Astthorsson, 1980; 
Kuhlmann, 1982; Arndt and Jansen, 1986; Irvine et al., 1993; 1995; 
Aaser etal., 1995; De Pauw, 1998; Viitasalo etal., 1998; Roast et 
al., 2000; Maciejewska and Opalinski, 2002; Winkler and Greve, 
2004; Bergström and Englund, 2004; Albertsson, 2004; Fockedey et 
al. submitted a -  Chapter 5; Fockedey et al„ submitted c -  Chapter 
4; Fockedey et ai, submitted d -  Addendum 2; Fockedey, 
unpublished

Espeel, 1982; Moss and Leah, 1982; Jansen et al., 1983; Jansen 
and Heerklos, 1983; Van De Vijver, 1983; Jansen, 1985b; Arndt and 
Jansen, 1986; Rudstam et ai, 1986; 1992; Hansson et al., 1990; 
Thiel, 1992; Irvine etal., 1993; 1995; Bernât etal., 1994; Jeppesen 
et ai, 1994; Aaser et al., 1995; Fockedey and Mees, 1999 -  Chapter 
2

Diet of Neomysis in teger- Feeding modes Lucas, 1936; Tattersall and Tattersall, 1951; Raymont et ai, 1964; 
Parker and West, 1979; Astthorsson, 1980; Mauchline, 1980; 
Bremer and Vijverberg, 1982; Espeel, 1982; Irvine etal., 1993; Bales 
etal., 1993; Roast, 1997; Roast etal., 2000; Roast etal., 2004

Diet of Neomysis in teger- diet overlap with 
other species

Kinne, 1955, Sanina, 1961, Jansen, 1985b; Maciejewska, 1992; 
Thiel, 1992; 1996; Remerie, 1999; Maciejewska and Opalinski, 
2002; Winkler and Greve, 2004; Vilas and Fockedey, unpublished

Diet of Neomysis in teger- Starvation Raymont and Krishnaswamy, 1960; Raymont and Conover, 1961; 
Linford, 1965; Raymont etal., 1964; 1967; 1966; 1968; Morris etal., 
1977; Vlasblom and Elgershuizen, 1977; Armitage et al„ 1977; 
1978; Parker and West, 1979; Murtaugh, 1984; Weisse and 
Rudstam, 1989; Gorokhova and Hanssen, 1999; Winkler, 2000; 
Gorokhova, 2002; Verslycke and Janssen, 2002

Diet of Neomysis in teger- Faecal pellets 
and coprophagy

Molloy, 1958; Ferguson, 1973; Parker and West, 1979; Bradshaw et 
at., 1989; Weisse and Rudstam, 1989; Roast et at., 2000; 
Maciejewska and Opalinski, 2002; Fockedey et al., submitted d -  
Addendum 2



Predation on Neomysis integer

Behaviour -  Swarming 

Behaviour -  Segregation of life stages

Behaviour -  Position maintenance

Behaviour -  Swimming

Behaviour -  Predator avoidance 

Behaviour -  Vertical migration

Behaviour -  Horizontal migration

Patterson, 1905; Kemp, 1910; Redeke, 1941; Healey, 1972; Cramp, 
1977; 1983; Kislalioglu and Gibson, 1977; Morawski, 1978; Van den 
Broek, 1978; Mauchline, 1980; Summers, 1980; Timola, 1980; 
Marchand, 1981; Sorbe, 1981; 1983b; Bremer and Vijverberg, 1982; 
Van De Vijver, 1983; Heeste, 1984; Van Densen, 1985; 1988; Arndt 
and Jansen, 1986; Janssen and Spannhof, 1987; Franek, 1988; 
1989; Debus, 1989; Kostrzewska Szlakowska and Szlakowsk, 1990; 
Costa and Elliott, 1991; Leonardsson, 1991; Assis et al., 1992; 
Costa et al., 1992; Moreira etal., 1992; Aarnio and Bonsdorff, 1993; 
Houthuijzen et al., 1993; Irvine et al., 1993; Cattrijsse, 1994; 
Cattrijsse et al., 1994; Holker and Hammer, 1994; Thiel, 1996 and 
references herein; Van Densen et al., 1996; Lazauskiene et al., 
1996; Cattrijsse et al., 1997; Larsson and Berglund, 1998; Mouny et 
al., 1998; Hostens and Mees, 1999; Thyrel et al., 1999; S0ndergaard 
et al., 2000; Thiel, 2000; Temming and Herrmann, 2001; Hostens, 
2003; Maes et al., 2003; Granqvist and Mattila, 2004; Hampel and 
Cattrijsse, 2004; Winkler and Greve, 2004; Dean et al., 2005

Percival, 1929; Mauchline, 1971c; Arndt and Jansen, 1986; 
Walesby, 1973; Parker and West, 1979; Espeel, 1982; Arndt and 
Jansen, 1986; Rudstam et al., 1986; Thiel, 1992; Kopeke and 
Kausch, 1996; Roast etal., 2004

Tattersall and Tattersall, 1951; Kinne, 1955; Ralph, 1965; Beattie 
and de Kruijf, 1978; Parker and West, 1979; Astthorsson, 1980; 
Sorbe, 1980; Platenkamp, 1983; Milner, 1986; Schuchardt et al., 
1989; Hough and Naylor, 1992; Välipakka, 1992; Cattrijsse et al., 
1994; Moffat, 1996

Hough and Naylor, 1992; Moffat and Jones, 1993; Kopeke and 
Kausch, 1996; Roast et al., 1998; 1998b; 2000b; 2000c; 2001b; 
2002; 2002b

Parker and West, 1979; Hough and Naylor, 1992; Roast etal., 1998; 
1998b; Lawrie etal., 1999; Roast etal., 2000b; 2000c; 2001b; 2002; 
2002b

Mauchline, 1971c; Debus et al., 1992; Kaiser et al., 1992b; 
Rademachers and Kils, 1996; Lindén etal., 2003

Jansson and Källander, 1968; Beattie and de Kruijf, 1978; Moore et 
al., 1979; Bremer and Vijverberg, 1982; Jansen, 1985; Arndt and 
Jansen, 1986; Rudstam etal., 1986; Debus etal., 1992; Irvine etal., 
1993; Bernât et al., 1994; Aaser et al., 1995; Kopeke and Kausch, 
1996; Zouhiri et al., 1998; Dauvin et al., 2000; Fockedey, 
unpublished -  EU project MATURE; Mees, unpublished -  EU 
Project JEEP

Vorstman, 1951; Kinne, 1955; Ralph, 1965; Muus, 1967; Kühl and 
Mann, 1969; Barnes et al., 1977; Beattie and de Kruijff, 1978; 
Jansen, 1979; Moore et al., 1979; Astthorsson, 1980; Sorbe, 1980; 
Bremer and Vijverberg, 1982; Jansen, 1985; Arndt and Jansen, 
1986; Rudstam et al., 1986; Schuchardt et al., 1989; Hough and 
Naylor, 1992; Thiel, 1992; Välipakka, 1992; Jansen, 1993; Mees et 
al., 1993b; 1994; Cattrijsse et at, 1994; Kopeke and Kausch, 1996; 
Speirs etal., 2002; Allen etal., 2003; Hampel etal., 2003; 2003b



Life history -  field data (number of cohorts, 
life span, size-at-maturity, sex-ratio)

Life history -  annual production

Life history -  fecundity (breeding season, 
brood size, number of broods, intra-marsupial 
mortality, hatching success, development 
time, size and growth, birth rate)

Life history -  mortality

Life history -  growth (field and laboratory- 
based growth curves, growth rate, moulting, )

Biochemical composition -  dry weight, ash 
content, Chitin content

Biochemical composition -  caloric content

Biochemical composition -  C, N and P
content

Biochemical composition -  proteins, amino 
acids

Vorstman, 1951; Tattersall and Tattersall, 1951; Kinne, 1955; Wiktor, 
1961; Raymont et al., 1966; Mauchline, 1971; 1971b; de Kruijff,
1977; Beattie and de Kruijf, 1978; Borghouts, 1978; Espeei, 1979; 
1982; Parker and West, 1979; Astthorsson, 1980; Bremer, 1980; 
Jansen et al., 1980; Sorbe, 1980; Bremer and Vijverberg, 1982; 
Platenkamp, 1983; Astthorsson and Ralph, 1984; Arndt and 
Janssen, 1986; Jansen, 1986; Rudstam et al., 1986; Schuchardt et 
al., 1989; Weisse and Rudstam, 1989; Haesloop, 1990; Moffat and 
Jones, 1992; Tehn, 1992; Irvine et al., 1993; 1995; Mees et al.,
1994; Soselisa, 1994; Aaser et al., 1995; Fockedey, unpublished; 
Mees et al., unpublished

Bremer, 1980; Bremer and Vijverberg, 1982; Kuhlmann, 1982; Arndt, 
1985; Arndt and Jansen, 1986; Thiel, 1992; Mees et al., 1994; 
Soselisa, 1994; Aaser et al., 1995; Irvine et al., 1995; Fockedey, 
unpublished

Vorstman, 1951; Tattersall and Tattersall, 1951; Kinne, 1955; 
Raymont et al., 1966; Mauchline, 1971; 1972; Vlasblom and 
Elgershuizen, 1977; Beattie and de Kruijf, 1978; Borghouts, 1978; 
Parker and West, 1979; Moore et al., 1979; Astthorsson, 1980; 
Bremer and Vijverberg, 1982; Arndt and Jansen, 1986; Schuchardt 
et al., 1989; Haesloop and Scheffel, 1991; Hough and Naylor 1992; 
Mees et al., 1994; Soselisa, 1994; Irvine et al., 1995; Moffat, 1996; 
Fockedey et al., submitted b -  Chapter 6; Fockedey and Mees, 
unpublished; Fockedey, unpublished; Janssen, unpublished; Mees 
et al., unpublished

Mees et al., 1994; Irvine etal., 1995

Kinne, 1955; Mauchline, 11973; 976; 1977; 1977b; 1985; Beattie 
and de Kruijf, 1978; Astthorsson, 1980; Schrotenboer, 1980; Bremer 
and Vijverberg, 1982; Astthorsson and Ralph, 1984; Kuhlmann, 
1984; Arndt and Jansen, 1986; Schuchardt etal., 1989; Mees etal., 
1994; Soselisa, 1994; Irvine et al., 1995; Aaser et al., 1995; 
Gorokhova and Hansson, 1997; De Pauw, 1998; Gorokhova, 2002; 
Maciejewska and Opalinski, 2002; Winkler and Greve, 2002; 
Fockedey etal., in press -  Chapter 3; Fockedey etal., submitted a -  
Chapter 5; Fockedey et al., submitted c -  Chapter 4; Fockedey, 
unpublished

Raymont and Krishnaswamy, 1960; Raymont et al., 1964; 1966; de 
Kruijf, 1977; Astthorsson, 1980; Summers, 1980; Jansen, 1985c; 
Arndt and Jansen, 1986; Mees etal., 1994; Irvine etal., 1995; Aaser 
et al., 1995; Gorokhova and Hansson, 1997; Maciejewska and 
Opalinski, 2002; Verslycke, 2003; Winkler and Greve, 2004

Summers , 1980; Astthorsson, 1980; Arndt and Jansen, 1986; 
Kaiser etal., 1992; Maciejewska and Opalinski, 2002

Raymont et at., 1964; 1966; Tundisi and Krishnaswamy, 1967; 
Gorokhova and Hansson, 1999

Raymont et al., 1964; 1966; 1968; Srinivasagam etal., 1971; Morris 
etal., 1977; Armitage etal., 1977; 1978; 1981; Armitage and Morris, 
1982; Moffat, 1996; Verslycke and Janssen, 2002; Verslycke et al., 
2004; Ghekiere etal., 2004



Biochemical composition -  lipids Molloy, 1958; Raymont etal., 1964; 1966; 1968; Linford, 1963; 1965; 
Morris, 1971; 1973; Morris and Sargent, 1973; Morris et al., 1973; 
1977; 1981; 1982; Armitage et al., 1981; Bradshaw et al., 1989; 
1990; Brunet et al., 1994; Verslycke and Janssen, 2002; Verslycke 
etal., 2004

Biochemical composition -  carbohydrates Molloy, 1958; Raymont and Krishnaswamy, 1960; Raymont et al., 
1964; 1966; 1968; Brunet et al., 1994; Morris, 1999; Verslycke and 
Janssen, 2002; Verslycke etal., 2004

Energy budgets Astthorsson, 1980; Rudstam, 1989; Thiel, 1996; Roast etal., 1999b; 
Maciejewska and Opalinski, 2002; Verslycke and Janssen, 2002; 
Verslycke et al., 2003; 2004; 2004b; 2004c

Physiology -  Tolerance salinity Merker, 1928; Stammer; in Segerstrale, 1945; Tattersall and 
Tattersall, 1951; Ralph, 1965; Mauchline, 1971; Vlasblom and 
Elgershuizen, 1977; Kuhlmann, 1984; Arndt and Jansen, 1986; 
Moffat and Jones, 1992; Mees et al., 1994; 1995; Moffat, 1996; 
Roast et al., 1998; 2001; Drake et al., 2002; Verslycke et al., 
2004

Physiology -  Tolerance temperature Merker, 1928; Kinne, 1955; Vlasblom and Elgershuizen, 1977; 
Espeel, 1979; Jansen, 1979; Mauchline, 1980; Laughlin and 
Lindén, 1983; Kuhlmann, 1984; Arndt and Jansen, 1986; Välipakka, 
1992

Physiology -  Tolerance oxygen Jorgensen, 1929; Parker and West, 1979; Kuhlmann, 1984; Arndt 
and Jansen, 1986; Mees etal., 1993; 1993b, 1994; 1995; Margonski 
and Maciejewska, 1999; Roast etal., 2000

Physiology -  Tolerance ammonium Kuhlmann, 1984

Physiology -  Osmoregulation Austin, 1965; Ralph, 1965; Raymont et ai, 1967; 1968; 
McLusky and Heard, 1971; Armitage and Morris, 1982; Morris 
et a i, 1982; Moffat, 1996

Physiology -  Respiration Raymont et al., 1966; Raymont and Krishnaswamy, 1968; Simmons 
and Knight, 1975; Vlasblom and Elgerhuizen, 1977; Astthorsson, 
1980; Laughlin and Lindén, 1983; Smith and Hargreaves, 1985; 
Arndt and Jansen, 1986; Weisse and Rudstam, 1989; Roast et al., 
1999; Maciejeska and Opalinski, 2002; Verslycke and Janssen , 
2002; Verslycke et a i, 2004

Physiology -  Excretion Raymont etal., 1968; Ferguson, 1973; Laughlin and Lindén, 1983; 
Weisse and Rudstam, 1989

Physiology -  Visual sensitivity Halberg, 1977; Kurnaty, 1979; Hallberg et al., 1980; Lindström, 
1992; 2000

* Culturing protocol Mauchline, 1971; Astthorsson, 1980; Kuhlmann, 1984; Arndt and 
Jansen, 1986; Haesloop, 1990; Roast et ai, 1999; Verslycke et al., 
2003b

Ecotoxicology -  General Roast et al., 1998b; Verslycke et al., 1994 -  addendum 3

Ecotoxicology -  Metals von Oertzen et al., 1988; Emson and Crane, 1994; Wildgust and 
Jones, 1998; Roast et al., 1999c; 2000b; 2001; 2002; 2002b; 
Verslycke et al., 2003b



Ecotoxicology -  Oil pollution Laughlin and Linden, 1982; 1983; Lindén et al., 1982

Ecotoxicology -  Pesticides Zmudzinski, 1975; Zandmane and Stasulane, 1987; Zandmane, 
1988; Zandmane and Zelcans, 1988; Davies et al„ 1997; Roast et 
al., 2000c

Ecotoxicology -  Endocrine disruption Verslycke, 2003; Verslycke et al., 2003; 2003c; 2004c; 2004d; 2005

’ Environmental contamination Beattie and de Kruijf, 1978; Vobach and Felt, 1981; Foekema et al., 
1998; Loizeau etal., 2001; 2001b

* Biomanipulation in lakes Dietrich and Hesse, 1990; Hosper and Meijer, 1993; Meijer et al., 
1994; Jeppesen et al., 1994; Moss et al., 1996

* Detection anabolic drugs De Wasch et al., 2002; Verslycke et al., 2002; Van Hoof, 2004; 
Poelmans et al., 2005

‘ Phylogeny & Phylogeography Kobusch, 1998; Remerie, 2005; Remerie et al., 2004

* Molecular work Suomalainen, 1954; Salemaa, 1986; Nunn et al., 1996; Remerie, 
2005; Remerie et al., 2004; Remerie et al., submitted a; submitted b

* Parasitism Tatterssal and Tattersall, 1951; Gibson, 1972; Astthorsson, 1980; 
Espeei, 1984; Koie, 1993; Marcogliese, 1996

* Intersexuality Hough et al„ 1992; Mees et al., 1995b



Appendix

Records of Neomysis integer



approx.
Latitude

approx.
Longitude Location name Sytem Source

71 °0 3 'N -
63°50'N

68°29-10'N

67°14'N -  
64°58'N

63°26'N -  
58°00'N 
6 0 °3 4 'N - 
53°40'N

54°24’N -  
53°54'N 
60°51'N - 
59°51'N

59°23'N -  
58°43'N

32°09'E -  
44°04'E

14°12E -  
15°28'E

11°50'E -  
15°43'E

4°37'E -  
10°23'E 
9°28'E -  
30°16'E

9°09'E -  
10°13'E 
2°07'W - 
0°47'W

3°26'W -  
2» 22' W

58°26'N 3°05'W

58°21-19’N 6°30-35'W

57°43-40'N 3°16'W

57°41-30'N 7°31-06’W

57°39-37'N 3°38-34'W

57°21-18'N 2°00W

? White Sea and Murman Seas

Lofoten, Norway

Helgeland coast, Norway

Wagner, 1885 (Jarzynsky); Zimmer, 
1909

Fjord -  Loch Holmquist, 1957

Fjord -  Loch Holmquist, 1957

Norwegian coast, Christiania to Trondheim Fjord - Loch

Baltic Sea (Estonian coastal waters, Baltic
Gdansk Bay, Isefjord, Mecklenburg Bay,
Vistula lagoon, Bay of Riga, Gulf of Bottnia,
Finnish coastal area, Baltic proper,
Swedish coast, Darss/Zingst Peninsula, 
coast Poland, Vislinsky Bay, Danish
estuaries and lagoons)

Nordostseekanal/ Kiel canal, Germany Brackish canal

Shetland Islands, Scotland, UK Brackish pond

The Orkneys, Scotland, UK Fjord - Loch

Loch Wester, Wick, Scotland, UK Fjord - Loch

Loch Amol, Loch Bravas and inland water, Fjord - Loch 
Island of Lewis, Outer Hebrides, Scotland,
UK

Loch of Spynie, Scotland, UK 

North Ulst, Scotland, UK 

Bay of Findhorn, Scotland, UK 

Ythan, England, UK

Wagner, 1885 (Sars); Zimmer, 1909

Wagner, 1885 (Lindström, Lilljeborg, 
Cajander, Kröyer); Blegvad, 1922; 
Dahl, 1944; Segerstrale, 1945; 
Wiktor, 1961; Järvekülg, 1965; Muus, 
1967; Rasmussen, 1973; Kotta and 
Simms, 1979; Kotta 1979; 1980; 
1984; Wiktor et al., 1980; Lumme et 
al., 1980; Salemaa, 1981; Laughlin 
and Lindén, 1983; Jansen, 1985; 
Amdt and Jansen, 1986; Chojnacki 
and Ciupinski, 1986; Rudstam et al., 
1986; Amdt, 1989; Weisse and 
Rudstam, 1989; Rudstam and 
Hansson, 1990; Tehn, 1991; 1991b; 
1992; Salemaa et al., 1990; Kohn, 
1992; Välipakka, 1992; Petryashov, 
1992; Pentti, 1992; Witek et al., 
1993; Witek, 1995; Razinkovas, 
1993; 1996; Thiel, 1996’ ; Margonski 
and Maciejewska, 1999; Lindström, 
2000; Maciejewska and Opalinski, 
2002 and references herein; Lindén 
et al., 2003; Bergström and Englund, 
2004

Kinne, 1955; Schütz, 1969; 
Kuhlmann, 1984 
Scott and Duthie, 1895

Nicol, 1939

Scott, 1891

Elton, 1937; Tattersall and Tattersall, 
1951*

Fjord - Loch Gordon, 1852

Fjord - Loch Nicol, 1936

Estuary Gordon, 1852

Estuary -  subtidal Astthorsson, 1980; Astthorsson and 
Ralph, 1984



approx.
Latitude

approx.
Longitude Location name Sytem Source

57°03'N - 
56°56'N

7°23-32'W Several lochs, Island Barra, (e.g. Loch St. 
Clair), Outer Hebrides, Scotland, UK

Fjord - Loch Scott, 1894; Crichton and Young, 
1936

56°42'N 2°28'W North Esk, Scotland, UK Estuary - subtidal Tattersall and Tattersall, 1951*

56°34-32’N 8°07-10’E Lake district (o.a. Lake Ferring), Denmark Brackish lake Aaser et al., 1995; Jeppesen et al., 
1994; Sendergaard et al., 2000

56°27'N 3°04'W Quarry near Tay, Scotland, UK Brackish pond Tattersall and Tattersall, 1951

56°34-11'N 5°03-37'W Loch Craignish, Feochan, Etive, 
Dunstaffnage Bay, Crenan, Shuna, 
Linnhen, Eil, Torridon, Ardmaddy Bay, 
Scotland, UK

Fjord - Loch Mauchline, 1971; McLusky and 
Heard, 1971; Kaiser et al., 1992

56°16’N-
55°24'N

5°28'W-
4°28'W-

Firth of Clyde, at head of lochs Striven, 
Riddon, Fyne, Gilp and Ranza; Bubh loch, 
Southannan and Hunterston sands and 
Karnes Bay, Scotland, UK

Fjord - Loch Mauchline, 1971; 1971b

56°00'N 2°51'W Aberlady, Scotland, UK Estuary -  marsh Nicol, 1936

55°23’N-
51°25’N

10°26’W - 
6°05W

Ireland (Shannon, Lee, Dodder, Cork, 
Dublin Bay, Galway, Mayo, Wicklow, 
Youghal; Loch Learn, Loch Foyle, Loch 
Furnace)

Estuary 
Brackish 
lake/pond 
Fjord - Loch

Rankin, 1907; Kemp, 1910; 
Tattersall, 1912; Thompson, 1828; 
Thompson, 1845; Thompson, 1847; 
Kinahan, 1857; Melville, 1857; 
MacDonnald and MacMillan, 1951; 
Murray, 1977; Parker, 1978; Parker, 
1979; Parker and West, 1979; 
O'Sullivan, 1984

55°21-20'N 1°36-34'W Coquet, England, UK Estuary Jorgensen, 1924

54°59-57'N 1” 36-25'W Tyne, England, UK Estuary Jorgensen, 1929

54°18-15'N 9°54-59'E Flemhuder See, Germany Brackish lake Rademacher and Kils, 1996

53°44-30’N 0° 58-04'W Humber, England, UK Estuary -  subtidal Budd, 2002

53°44-43’N 2°51-50'W Ponds on Hutton Marsh, England, UK Estuary - marsh Tattersall, 1919

53°26-17’N

53°18’N

3°12'W -
2°55'W
3°44’W

Pools in Wirral Peninsula, England, UK 

Landlocked pool at Colway Bay, Wales, UK

Brackish pond 

Brackish pond

Tattersall, 1919; Standen, 1922; 
Tattersall and Tattersall, 1951 
Walker, 1895

53°55-32’N 8°48'W-
10°00'W

Elbe, Germany Estuary -  subtidal Kraepelin, 1886; Dahl, 1891; Kraefft, 
1908; Schlienz, 1924; Caspers, 
1951; Kühl, 1964; 1972; 1973; 
Fiedler, 1991; Bernat et al., 1994; 
Mees et al., 1995b; Kopeke and 
Kausch, 1996; Winkler., 2000

53°33-05'N 8°45-34'E Weser, Germany 
+ tributaries and marsh ditches

Estuary -  subtidal 
and intertidal

Klie, 1914; Schlienz, 1922; 1924; 
Schräder, 1941; Friedrich, 1960; Kühl 
and Mann, 1969; Michaelis, 1973; 
Teufert, 1980; Vobach and Feldt, 
1981; Grotjan and Michaelis, 1985; 
Haesloop, 1990; Haesloop and 
Scheffel, 1991; Kolbe and Michaelis, 
2001



approx.
Latitude

approx.
Longitude Location name Sytem Source

53°40-28’N 8° 05-12' Jade estuary, Germany Estuary - subtidal Apel, 1992

53°33-05'N 8°45-34'E Bremen, Germany
Port and gravel pits (e.g. Hegemannsee) 
connected to the Weser, last course of 
rivers Lesum and Ochtum, Wümme 
(Borgfeld). Canals and waterways 
connected to the Ochtum (e.g. 
Krimpelfleet, Hucht-inger fleet, Arsten- 
Habenhauser-fleet,) and Kleine Wumme 
(e.g. Machinenefleet, HemmstraSSen- 
graben)

Brackish inland 
waters and ponds

Haesloop, 1990; Haesloop and 
Scheffel, 1991

53°02'N - 
52°51'N

5°25-53'E Brackish lakes in Friesland, The 
Netherlands (Tjeukemeer, Slotermeer)

Brackish lake Otto, 1934; Vijverberg, unpublished; 
Bremer and Vijverberg, 1982

53°05'N - 
52°31'N

5°02-39’E IJselmeer (Zuiderzee) en Barnegat, The 
Netherlands

Brackish
lake/pond

De Vos, 1941; Vorstman, 1951; 
Macan, 1974;

52°45-35'N 1°33-42'E Hickling and Cockshoot Broad, England, 
UK

Brackish lake Moss, 1991; Bales et al., 1993; Irvine 
et al., 1993; 1995; Moss et al., 1996

52°29-13'N 7° 35'- 
11°44E

Weser-Elbe canal, Germany Brackish canal Munkemüller and Herhaus, 1978

52°26-12’N 6°50'E-
7°24'E

Ems -  Dollard, The Netherlands & 
Germany

Estuary -  subtidal Mees et al., 1995; 1995b

52°54-45’N 1°44-24E Norfolk Broads, England, UK Brackish pond Gumey, 1904

?51°57-33'N ? 0°36E -  
1°18'E

Lagoon in Essex, England, UK Brackish lake Howes, 1939

51°57-52'N 4°05-15'E Brielse Maas, The Netherlands Brackish lake Leentvaar, 1955

51°48-31'N 3°37'E-
4°24'E

Brackish lakes and ditches in Zeeland, The 
Netherlands (Grevelingen, Veere, Den 
Ingel, Ouwerkerk)

Brackish
lake/pond

Tesch, 1911; Vlasblom and 
Elgershuizen, 1977; Borghouts, 
1978; Platenkamp, 1983

51°36-13'N 3°06’W-
2°37'W

Severn, England, UK Estuary -  subtidal Moore et al., 1979; Bamber and 
Henderson, 1994

51°33'N 0°32'E Thames, England, UK Estuary - marsh Lambert, 1930; Budd, 2002

51°18-14’N 3°48-51'W Conwy estuary, Wales, UK Estuary -  subtidal Hough and Naylor, 1992

51025-21'N 0° 28-23'E Medway, England, UK Estuary - subtidal Van den Broek, 1978*

51°26-13’N 4°00-23E Schelde, brackish part, The Netherlands & 
Belgium

Estuary -  subtidal Tesch, 1910; Mees and Hamerlynck, 
1992; Mees et al., 1993; 1993b; 
1994; 1995; 1995b; Hostens and 
Mees, 1999; Fockedey and Mees, 
1999; Maes et al., 2003*; Hostens, 
2003*; Verslycke, 2003; Verslycke et 
al., 2004; 2005

51°25-20'N 4°03-12'E Schelde, salt marshes Saeftinghe, Waarde 
and Sieperda, The Netherlands

Estuary -  salt 
marsh

Cattrijsse, 1994; Cattrijsse et al., 
1994; 1997*; Hampel et al., 2003; 
2003b; Hampel and Cattrijsse, 2004; 
Hampel, 2003



approx.
Latitude

approx.
Longitude Location name Sytem Source

51°20-13'N 3°32'E-
4°23’E

Brackish ponds, left bank Schelde estuary, 
East Flanders/Antwerpen Belgium & The 
Netherlands:
Hollandersgat (St-Margriete), Boerenkreek 
(St-Jan-in-Eremo), Kleine Geul en Rode 
Geul (Assenede), St-Elooiskreek 
(Wachtebeke), Groot Gat (Doel), 
Galgenweel, Kanaaldok, Het Grote Gat, 
Plas van Steenland, Plas aan Boutweg, 
Burchtse Weel and Blokkersdijk, 
Braakman, Schuddebeurs

Brackish pond Dumont and Gysels, 1971; Vlasblom 
and Elgershuizen, 1977; Van de 
Vijver, 1983; Soselisa, 1994; Mees et 
al., 1995b; Verslycke and Janssen, 
2002; Verslycke, 2003; Verslycke et 
al., 2002; 2003; 2003b; 2004b; 
2004c; Ghekiere et al., 2004; 
Fockedey et al., in press

51°30-06'N 2°25'E - 
3°22'E

Continental shelf, Belgium Coastal sea Kramp, 1910; Dewicke, 2002; 
Tattersall and Tattersall, 
1951 (Oostende?)

51'22-05'N 2°32’E - 
3°22'E

Sandy beaches, Belgium Sandy beach Van Beneden, 1861; Lock et al., 
1999, Beyst, 2001; Beyst et al., 2001

51°12-14'N 2°56-57'E Spuikom, Oostende, Belgium Brackish lake Polk, P., 1963

5 r0 5 'N 2°48'E Clay pits, Stuyvekenskerke, Belgium Brackish pond Espeel, 1979; Espeel, 1982

51°00'N -  
50°22’N

1°33’E -  
2°05’E

Boulonnais, France ? Wagner, 1885 (Giard)

50°55-53'N 1°23'W River Itchen, Northam Bridge, England, UK Estuary -  intertidal Raymont et al., 1964

50°53'N 1'24'W River Test, Tottem Marsh, Redbridge, 
England, UK

Estuary -  salt 
marsh

Ralph, 1965; Ferguson, 1973; 
Armitage, 1979; Raymont et al., 
1964; 1966; 1968; Morris, 1971; 
Morris et al., 1981; 1982b; Armitage 
etal., 1981

50°48'N 1°19'W Calshot, Hampshire Estuary - marsh Barnes and Jones, 1972

50-48'N 1°05'W Artificial pond near Portsmouth, England, 
UK

Brackish pond Morris etal., 1977; 1981; 1982

50°30-26'N 4°11-12'W Tamar, England, UK Estuary -  subtidal Percival 1929; Tattersall, 1938; 
Milner, 1986; Bradshaw et al., 1989; 
1990; Moffat and Jones, 1992; 1993; 
Moffat, 1996

50°25-24’N 4°17-18'W Lynher, England, UK Estuary -  subtidal Percival 1929

50°23-21'N 4°27-31’W East Looe, England, UK Estuary - intertidal Roast et al., 1998; 1999, 1999b, 
2000; Moffat, 1996

50°21'N 4°07’W Plym, Chelson Meaddows landfill, England, 
UK

Estuary Molloy, 1958

50°20-18’N 4°05-0rW Yealm Estuary Molloy, 1958

50°09'N 5°04'W Swanpool, Falmouth, England, UK Brackisch pond Barnes et al., 1971; 1977



approx.
Latitude

approx.
Longitude Location name Sytem Source

49°28-25'N 0°07-29’E Seine, France Estuary - subtidal Wagner, 1885 (Bonnier, de Kerville); 
Zouhiri et al., 1998; Mouny et al., 
1996; 1998, 2000; Dauvin et al., 
2000

48°41-38'N 1°29-21’W Mont Saint Michel Bay, France Estuary - marsh Laffaille et al., 2001*

47°52'N 3°55W Concarneau, Brittany, France Estuary Wagner, 1885 (Bonnier)

47°22-16'N 2°10'W - 
1°30'W

Loire, France Estuary Marchand, 1981*

45°15-03'N 0°38-44'W Gironde, France Estuary - subtidal Sorbe, 1980; Castel, 1993; Mees et 
al., 1995; 1995b; David et al., 2005

44°40'N r o r w Arcachon Bay -  L'Eyre, France Estuary - intertidal Bachelet and Dauvin, 1993

43°21-17'N 3°05’W -  
r 5 5 'W

Rias Guipuzcoa (Deba, Urola, Oria, 
Uremea), Spain

Estuary - subtidal San Vicente, 1993; 1996

39°06'N-
38°41’N

9°09'W-
8'42'W

Tagus, Portugal Estuary - subtidal Salgado et al., 2004*

37°09-07N 8°37-34'W Ria de Alvor, Portugal Estuary - subtidal Rodrigues and Dauvin, 1987

36°34-27N 6°10-12'W Bay of Câdiz, tidal channels, Spain Estuary - subtidal Drake et al., 1997

37°28'N-
36°46'N

6°21-00'W Guadalquivir, Spain Estuary - subtidal Drake et al., 2002

43°20-41'N 4°37-40'E ? Bouche-du-Rhone and canal d’Arles, 
Mediterranean, France

Estuary Bacescu, 1941

*: recorded from fish and decapod stomach contents.
Historical records not included (location not specified): Friedrichs, 1904; Redeke et al., 1923; Redeke, 1932; 1933; 1935; 1948; 
Dorgelo, 1928; Makings, 1977.
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Chapter 2

Feeding of the hyperbenthic mysid Neomysis integer in 
the maximum turbidity zone of the Elbe, 
Westerschelde and Gironde estuaries

A B S T R A C T  --------------------------------------------------------------------------------------------------------------------------------------

The diet o f the mysid Neomysis integer in the maximum turbidity zone (MTZ) of three 
European estuaries (Elbe, Westerschelde and Gironde) was investigated in spring 1993. The 
quality and quantity o f the diet were assessed through measurement o f the stomach fullness and 
microscopical analysis o f the stomach content combined with image analyses. N. integer was 
found to be an omnivore that mainly utilizes mesozooplankton and detritus carbon pools. The 
quality o f the diet did not differ between the sexes nor between different developmental stages, 
although smaller individuals consumed fewer items. In all three estuaries, the diet was 
dominated by Copepoda Calanoida ( 5 - 1 0  Eurytemora affmis ind'1 for adults; 2 - 5  ind'1 and 2
-  3 ind'1 for subadults and juveniles, respectively) and was supplemented with Rotifera and 
Cladocera. Phytoplankton and benthic organisms, though present in the stomachs, were 
negligible. Macrophytal detritus and amorphous material, the latter unidentifiable under the 
light microscope, were very abundant food items. The amorphous detritus was found to 
originate from the suspended sediment floes that are characteristic for the MTZ and mainly 
consist o f clay minerals. The energetic value of the floes for N. integer remains unclear.

P u b l i s h e d  a s :

Fockedey, N., Mees J., 1999. Feeding o f the hyperbenthic mysid Neomysis integer in the 
maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J. Mar. Syst., 22: 
207-228.



I N T R O D U C T I O N

Recently, an increased research interest has focused on the description o f the food web 
at the freshwater-seawater interface o f estuaries. Since these systems receive large quantities of 
allochtonous organic matter (natural inputs and discharges from various effluents), their food 
webs have been described as heterotrophic, i.e. respiratory processes exceed the in situ 
autotrophic production (e.g. Heip et al., 1995). Moreover, in the oligohaline zone at the 
freshwater-seawater interface, sediment and organic matter are accumulated by flocculation and 
sedimentation o f suspended matter (e.g. Eisma, 1986; Wolanski, 1995). These phenomena result 
in a zone of increased turbidity (maximum turbidity zone or MTZ).

The suspended particulate matter (SPM) in the brackish zone o f estuaries consists 
mainly of detritus and inorganic sediment particles next to living matter (bacteria, fungi, 
phytoplankton, and Zooplankton). The amount o f seston present in the water column o f an 
estuary depends on (1) local primary and secondary production in the estuary proper and in 
adjacent intertidal areas, (2) the import o f marine and fluvial materials and (3) the amount of 
sediment resuspended in situ (McLusky, 1989; Ketchum, 1983). In the Westerschelde estuary 
(SW-Netherlands), for example, 1.5 million tons SPM enter the brackish zone per year, 25.104 
tons of which are detritus and organic matter (Wollast, 1976). Soetaert and Herman (1995b) 
calculated that 20 % of the imported organic particles degrade or flocculate and precipitate in 
the MTZ. SPM concentrations in the water column at the MTZ o f the Westerschelde vary 
between 0.06 and 0.4 g I"1 (Soetaert and Van Rijswijk, 1993). In the MTZ o f the Elbe (NW- 
Germany) SPM concentrations vary between 0.1 and 0.2 g I'1 (Brockmann, 1992), while in the 
Gironde (SW-France) concentrations higher than 1 g I'1 at the surface and 10 g 1"' near the 
bottom are regularly recorded (Jouanneau and Latouche, 1981).

The biogeochemical cycling in heterotrophic food webs has been shown to behave 
according to distinctly specific patterns (Smith et al., 1989) and the food webs tend to be based 
on detritus (Hummel et al., 1988; Hall and Raffaelli, 1991; Hamerlynck et a i ,  1993). 
Heterotrophic bacteria are not only responsible for the remineralisation o f the nutrients (Goosen 
et al., 1992), they simultaneously constitute the basis o f the food web for higher trophic levels 
(Azam et al., 1983; Sherr and Sherr, 1988; Billen et al., 1990). Detritus and/or its associated 
bacteria are consumed, directly or indirectly, by the microzooplankton, the mesozooplankton 
and the hyperbenthos (Fenchel, 1988; Hamerlynck et al., 1993). Fish and epibenthic macro
invertebrates can then feed at this 'secondary energy level'.

There is a great need for the description of the feeding ecology o f key species in 
estuarine environments for the development o f accurate C-flux models and the description of 
detritus based food web patterns, including the quantification o f transfer coefficients. To date, 
few studies have taken medium sized hyperbenthic animals into account. Notable exceptions are 
Hall and Raffaelli (1991) and Soetaert and Herman (1995b). Still, the trophic position assigned 
to the hyperbenthos seems to be somewhat guessed rather than derived from field data. The 
structure o f the hyperbenthic community o f the freshwater-seawater interface has been 
described for quite a few Western European estuaries (Mees and Jones, 1997), but studies on the 
functional impact o f the hyperbenthos on suspended particles in the MTZ are lacking.

In the MTZ o f West-European estuaries the hyperbenthic community is dominated, both 
in terms o f density and biomass, by the brackish water mysid Neomysis integer (Mees et al., 
1993a; 1993b; 1995). This species probably has a key function in the energy transfer to higher 
trophic levels in the ecosystem (Mees et a i ,  1994).



Therefore, N. integer was chosen as a model to assess the impact of the feeding o f the 
hyperbenthic community on particles in the MTZ's o f the Elbe, the Westerschelde and the 
Gironde.

Mysidacea are generally described as omnivores, feeding on detritus, algae and 
Zooplankton (e.g. Mauchline, 1980). They can feed selectively on different Zooplankton species 
and size groups (e.g. Cooper and Goldman, 1980; Murtaugh, 1981a), and thus have the potential 
o f structuring Zooplankton communities (Fulton, 1982; Rudstam et al., 1989). The 
phytoplankton (Kost and Knight, 1975; Siegfried and Kopache, 1980) and tychoplankton (Webb 
et al., 1987; Wooldridge, 1989) are possibly also influenced through selective grazing by 
mysids. Mysid predation has even been reported as a possible control on meiofaunal densities 
(Siegfried and Kopache, 1980; Grossnickle, 1982; Johnston and Lasenby, 1982). Most mysids 
utilize organic detritus to a considerable extent and they can be responsible for the 
remineralisation o f a substantial proportion o f the non-refractory detritus (Kost and Knight, 
1975; Jansen, 1985).

Literature about the diet of Neomysis integer is scarce, and only qualitative information 
is available. According to Lucas (1936) and Tattersall and Tattersall (1951) the species is an 
efficient filter feeder, grazing on organic detritus and/or planktonic diatoms. According to these 
authors it only feeds on Zooplankton when concentrations o f other suspended food items are too 
low. More recent studies describe N. integer as an omnivore consuming detritus, algae, diatoms, 
rotifers, copepods, amphipods, and other crustaceans, carrion, fragments o f leaves and of 
macroalgae, spores and seeds, terrigenous materials and insect larvae (Kinne, 1955; Mauchline, 
1971; 1980; Jansen, 1985). Chitinases and cellulases have been found in the gut o f N. integer 
(Molloy, 1958; Zagursky and Feller, 1985), so it can be assumed that they are capable of 
digesting exoskeletons and macrophyte detritus. Still, the growth efficiency o f N. integer has 
been shown to be highest (27 %) with animal food (dead mysids) and lowest (7.5 %) with 
detritus (Ferguson, 1973; Zagursky and Feller, 1985).

This paper describes a methodology for quantitative and qualitative diet analyses of 
mysids by means o f stomach fullness measurements and microscopical stomach analyses. These 
techniques are applied for a comparison o f the diet o f Neomysis integer in the MTZ of 3 West- 
European estuaries. Sexual and ontogenic shifts in the diet are also investigated.

M A T E R I A L  A N D  M E T H O D S  

Samples

The Neomysis integer populations o f the maximum turbidity zones o f the Elbe (NW- 
Germany), Westerschelde (SW-Netherlands and Belgium) and Gironde (SW-France) estuaries 
were sampled in spring 1993. All samples were collected in a one month period. In each 
estuary, a station in the MTZ was sampled during daytime with a hyperbenthic sledge in the 
main estuarine channel (for a description o f the sampling gear and the sampling strategy see 
Hamerlynck and Mees, 1991). In the Elbe a station near Brunsbüttel (53° 52' 30" N -  09° 09' 
55" E) was sampled on April 22, 1993. In the Westerschelde the sampling point was located 
near Bath (51° 23' 40" N -  04° 12' 00" E; May 6, 1993). Since upstream o f Bath dissolved 
oxygen concentrations are too low for hyperbenthic life (e.g. Mees et al., 1995), this station -  a 
few kilometres downstream of the MTZ -  was chosen because it was characterized by highest 
mean N. integer densities in previous studies (Mees et al., 1993b; 1994). In the Gironde a 
station near Pauillac (45° 14' 15" N -  00° 44' 50" W) was sampled on May 23, 1993. The 
salinity at the time of sampling was 4.84, 11.60 and 1.20 psu in Elbe, Westerschelde and 
Gironde respectively.



Catches were immediately fixed in a 7 % neutral formaldehyde solution. In the 
laboratory, the samples were rinsed over a 1 mm sieve. Adults, subadults and juveniles of 
Neomysis integer were picked out for quantitative and qualitative diet analyses. Sexes and 
developmental stages were identified according to Mees et al. (1994). No gravid females were 
used for the diet analysis. Individuals o f N. integer were rinsed in distilled water to remove 
salts, formaldehyde crystals and other impurities. Additionally, the standard length (distance 
from the basis o f the eyestalk to the last abdominal segment) was measured for around 100 
individuals per stage and sex.

In order to obtain valuable information on the diet o f a species it is advisable to 
combine several (objective) methods o f stomach analysis: at least one method measuring the 
amounts o f the different food items (here named qualitative analysis) and one measuring the 
bulk o f the food material present (quantitative analysis). Ideally, the latter must be linked with 
the size o f the individual (Hyslop, 1980).

Qualitative diet analyses

Information on the diet composition o f Neomysis integer was obtained by light 
microscopic analysis o f the stomach contents, in combination with image-analysis techniques. 
To obtain semi-permanent microscopic slides o f the stomach contents, each mysid was first 
dehydrated (Seinhorst, 1959). A gradual dehydration series from a formaldehyde solution to 
glycerin causes no risk o f abrupt shrinkage o f the stomach or intestine: no ingested particles are 
pushed from the stomach to the intestine nor does digested material return from the intestine 
into the stomach. The carapax was then removed and the gut was cut just after the round 
stomach. The stomach (oesophagus included) was dissected out and pulled open in a drop of 
glycerine on a microscopic slide. Analysis o f the slides was performed by light microscope 
(magnification x 250) connected to an Image Analyzer (Leica Quantimet 500+). Per estuary, 15 
adult males, 15 adult females, 15 subadult males, 15 subadult females and 30 juveniles were 
processed.

The identification and processing o f the different prey categories present in the stomach 
o f Neomysis integer were made according to the following procedure:

The chitinous body of adult and copepodite stages o f calanoid copepods were usually 
found to be fragmented (Figure lb), depending on the degree o f digestion. Mandibles (Figure 
la) were found to be the most persistent parts. The number of ingested copepods and 
copepodites was estimated by counting the mandibles and dividing this figure by 2. Uneven 
counts were rounded off upwards. The width o f the mandible's cutting edge was measured with 
the image analyzer to investigate possible size selectivity o f the different ontogenic stages. The 
calanoids were identified to genus or species level based on other recognisable parts: the caudal 
rami (Figure lb), the antennae and the fifth pleopods.

Rotifera (Figure lc, f), Cladocera (Figure Id), Harpacticoida (Figure le) and nauplii of 
Copepoda (Calanoida and Harpacticoida) were usually found intact. Most specimens present 
could be identified to genus level and counted. Nauplii were noted as such. Halacaridae (Figure 
lg) and insect larvae were found occasionally, but were not used in further analyses.



Figure 1: The dom inant prey  item s found in the stom achs o f  Neomysis integer. Zooplankton: (a) 
m andible o f  Eurytemora affinis\ (b) part o f  the calanoid copepod Eurytemora affinis\ in the bottom  left 
com er the caudal ram i are recognisable; (c) Keratella species', (d) Bosmina species; (e) caudal part o f  a 
harpacticoid copepod; (f) Brachionus species-, (g) H alacaridea species. Algae: (h) F ilam ental 
Chlorophyta; (i) filam ental centricate diatom; (j) the intertidal benthic Vaucheria species-, centricate 
diatom  in frontal (k) and lateral (1) view. Pollen: (m  and o) round form s and (n) pollen o f  gymnosperm s. 
Detritus: (p and q) m acrophytal and (r) 'unidentifiable' detritus particles. Scale bar: 50 |im



Phytoplankton cells were usually found intact and were counted as such. Based on size and 
shape, a distinction between different types was made: solitary phytoplankton cells (Figure lk, 
1) and colonial cells or filamentous algae (Figure lh, i, j) were counted separately. Only a 
minority o f the specimens found could be identified to genus level. Still, a distinction could be 
made between species originating from intertidal areas, freshwater or brackish water in most 
cases (Muylaert and Sabbe, 1999).

Pollen were common in the stomachs of Neomysis integer. They were counted and 
divided into round forms (Figure lm , o) and pollen o f gymnosperms (Figure In). The round 
forms could not all be identified beyond doubt, and possibly resting stages or cysts of 
Zooplankton are included in the counts.

Large particles with a plant cell structure were denoted as 'macrophytal detritus' (Figure 
lp, q). Particles with no regular cell structure were classified as 'unidentifiable detritus' (Figure 
lr). All the detritus particles present in the stomach were counted by means o f an image 
analyzer and the surface areas and maximal lengths o f the particles were measured.

The numerical abundance o f each dietary item present in the stomachs was tested for 
differences between estuaries, ontogenic stages and sexes by means o f Kruskal-Wallis tests and 
subsequent multiple comparisons (Conover, 1980). For macrophytal and unidentifiable detritus, 
the surface areas and length-frequency distributions o f the particles were compared. The 
frequency o f occurrence o f the food items present in the stomachs was calculated as the 
proportion o f stomachs containing a certain prey item (Hyslop, 1980). Also, possible size 
selectivity o f the different ontogenic stages o f Neomysis integer on Calanoida was tested with a 
Kruskal-Wallis test and subsequent multiple comparisons. No attempt was made to determine 
the relative importance o f the various food items to the total energy intake o f the mysid 
population.

Further characterisation o f the 'unidentifiable detritus' was done by EDAX analysis, 
using a JEOL JSM-6400 scanning electron microscope with a Voyager II 2100/2110 
microanalysis system (Noran Instruments). The stomachs o f 10 adult animals per estuary were 
dissected out. The content was rinsed out in a drop o f distilled water, placed on specimen 
mounts and dried in an oven (40 °C) for 30 minutes. The mounted samples were subsequently 
coated with carbon. The elemental composition o f the detritus floes was determined, 
recalculated for the eight most abundant elements (excluding C and O), and compared between 
estuaries.

Quantitative diet analyses

The stomach of each mysid was carefully dissected out after removing the carapax. The 
stomach (and its content) and the mysid were dried separately in small aluminium weighing 
pans for 4 days at 60 °C, after which the dry weight o f both was determined with a 
microbalance to the nearest 1 (ig. For the comparison o f the three estuaries, 20 adult females and 
20 adult males from each estuary were processed. For the ontogenic diet comparison 5 times 3 
subadult and 5 times 5 juvenile individuals were pooled.

Additionally, the empty stomachs o f 30 adults per estuary were weighed after carefully 
emptying the dissected stomach. A linear regression analysis was done on the dry weight o f the 
mysids and the dry weights o f the corresponding empty stomachs. The dry weight o f the 
stomach content itself was then calculated as follows:



DWcontent DWst0mach “ DWempty

where: DWempty = a + b*DWmysid

with DWcontent the dry weight o f the stomach content, DWstomach the dry weight o f the stomach 
with its content, DWempty the dry weight o f the empty stomach derived by a regression from 
DWmysid (the dry weight o f the mysid without its stomach).

A fullness index (FI) was calculated with these data. This relative measure is frequently 
used in fisheries research for the comparison of stomach contents of fish taken from different 
size classes (e.g. Hyslop, 1980). The amount o f food present in the stomach o f Neomysis integer 
at a given time t is then expressed as the fullness index FIt:

DW  content
Fit = ------------- x \  00

DW  mysid

Latitudinal, ontogenic and sexual differences in FI's were assessed with Kruskal-Wallis tests 
and subsequent multiple comparisons (Conover, 1980).

R E S U L T S

Neomysis integer was found with densities of 36.0, 9.4 and 10.8 ind m’2 and biomasses 
o f 184.6, 39.0 and 21.5 mg ash free dry weight m"2 in the MTZ stations o f the Elbe, 
Westerschelde and Gironde, respectively. The absolute and relative density and biomass o f all 
sexes and stages o f N. integer present in the MTZ in the three estuaries (spring 1993) are shown 
in table 1. The standard length o f the mysids differed significantly between estuaries, ontogenic 
stages and sexes (ANOVA and contrast analysis).

Qualitative diet analysis: Comparison between estuaries

In the three estuaries, the diet o f all ontogenic stages o f Neomysis integer was composed 
o f Zooplankton, phytoplankton and detritus (Figure 2; Table 2). In the Westerschelde and the 
Gironde the diet o f N. integer was numerically dominated by adult and copepodite stages o f the 
calanoid copepod Eurytemora affinis (Figure la, b) with respectively 10.27 and 8.00 calanoids 
consumed per adult, 4.20 and 5.72 per subadult and 2.20 and 2.90 per juvenile mysid. In the 
Elbe rotifers were the most abundant animal prey items for the three ontogenic stages. Here, 
only 5.07 calanoid copepods were consumed per adult, 2.43 per subadult, and 1.77 per juvenile 
mysid.

T a b l e  1: A bsolute and relative density (in N /m 2 and %) and biom ass (in m g ash free dry w eight/m 2 and 
%) o f  Neomysis integer in the M TZ o f  Elbe, W esterschelde, and Gironde in spring 1993.

Elbe Westerschelde Gironde

N/m2 (%) Mg/m2 (%) N/m2 (%) Mg/m2 (%) N/m2 (%) Mg/m2 (%)

Adult female 9.4(26.1) 70.5 (38.2) 2.0(21.3) 16.9(43.3) 0.7 (6.5) 2.3(10.7)

Adult female (Gravid) 5.0 (13.9) 41.7 (22.6) 0.9 (9.6) 7.8 (20.0) 0.3 (2.8) 0.9 (4.2)

Adult male 3.6(10.0) 13.6(7.4) 1.6(17.0) 7.7(19.7) 0.1 (0.9) 0.2 (0.9)

Subadult female 12.7 (35.3) 44.6 (24.2) 1.8(19.1) 3.0 (7.7) 6.3 (58.3) 13.1 (60.9)

Subadult male 5.1 (14.2) 13.8(7.5) 1.9(20.2) 2.9 (7.4) 1.8(16.7) 3.2(14.9)

Juvenile 0.2 (0.6) 0.4 (0.2) 1.2(12.8) 0.7 (1.8) 1.6(14.8) 1.8(8.4)

Total 36.0 184.6 9.4 39.0 10.8 21.5



Adult and copepodite stages o f harpacticoids (Figure le) were rare in the stomachs. 
They were only encountered in 7 % of the adult individuals o f the Westerschelde and 3 - 7 % of 
the juveniles and adults in the Gironde. In the Elbe harpacticoids occurred in 20 - 33 % of the 
stomachs, though always in low numbers. Nauplii (of calanoids and harpacticoids) were present 
in low numbers in the stomachs from the Elbe (0.03 - 0.23 ind'1) and the Gironde (0.10 - 0.15 
ind"1); they were not consumed in the Westerschelde. Their frequency o f occurrence was low (3
- 20 % in adults and subadults o f the Elbe and 10 - 15 % in the Gironde), except for the 
juveniles in the Elbe (70 %). Cladocera o f the genus Bosmina (Figure Id) were encountered in 
33 -  76 % of the stomachs o f Elbe and Gironde, but rarely in those o f the Westerschelde (max.
7 %). Rotifers o f the genera Keratella (Figure lc) and Brachionus (Figure If) were the most 
abundant prey items for N. integer in the MTZ of the Elbe (16.10-22.17 ind"1). In the Gironde 
and the Westerschelde they were consumed in lesser numbers (1.38 - 1.93 ind"1 and 0.17 -  0.40 
ind'1 respectively). The frequency o f occurrence o f the rotifers was 100 % in the Elbe, 67 - 83 
% in the Gironde and 17-27 % in the Westerschelde.

Other Zooplankton prey were very rarely encountered and were excluded from further 
analyses. Halacaridae (Figure lg) were infrequently encountered in the Westerschelde and the 
Gironde (a total o f 6 observations) and one larval Homoptera (Insecta) was found in the 
Gironde.

For each prey item, the overall latitudinal effects were significant. The average numbers 
per stomach were tested for significant differences between the three estuaries for the three 
ontogenic stages (table 3a) by multiple comparisons. Except for copepod nauplii and 
harpacticoids in all ontogenic stages and calanoids in juveniles, most o f the differences were 
highly significant.

EIjmI ELsub ELjbv WSsub WSjuv

I unidentifiable pgjpâmacrupbytiil 
detritus 0 2 3  detritus

Plant material

« mysid 
800

Detritus (N)

J:Xad ELsub Eljuv WSad WSsub WS)uv Clad Glwb

I unidentifiable |  
detritus I

imacrophytal 
I  detritus

FXad EUub

I jCalanoidca

Animal prey

adults & cope pod 11 os ^H nauplii

'Stub WS)UV Giarl Gliub Gljuv

ifdCa (IIIH«rp«cticoide* [ jciadoccra | | | |  Routera

F i g u r e  2: Absolute com position o f  the diet o f  adult, subadult and juvenile Neomysis integer in the Elbe, 
W esterschelde and Gironde. The surface o f  the detritus particles in m m 2 per m ysid (upper left com er); 
plant material, animal prey and detrital particles in num bers per mysid. See table 2 for the explanation o f  
the abbreviations.
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Table 3b: Results of the Kruskal-Wallis tests (KW) and subsequent multiple comparisons for the 
different dietary items for adult and subadult male (mal) and female (fem) Neomysis integer of 
Elbe, Westerschelde and Gironde (sexual effect). See table 2 for the explanation of the 
abbreviations, (with: *: p < .05; **: p < .01; ***: p<.001; NS: p > .05)

SEX

KW

ELad mal
vs

ELad fem

ELsub mal
Vi

ELsub fem

WSad mal
vs

WSad fem

WSsub mal
vs

WSsub fem

Glad mal
vs

Glad fem

GIsub mal
vs

GIsub fem

Unidentifiable detritus 
Surface (mm2)

no data no data no data no data no data no data no data

Unidentifiable detritus 
Number

no data no data no data no data no data no data no data

Macrophyte detritus 
Surface (mm2)

no data no data no data no data no data no data no data

Macrophyte detritus 
Number

*** *** * *** NS * NS

Calanoidea 
Adult & copepodite

*** *** NS NS NS NS NS

Harpacticoidea 
Adult & copepodite

*** NS NS NS NS NS NS

Calanoidea & Harpacticoidea 
Nauplii

** NS NS NS NS ** NS

Cladocera *** NS NS NS NS NS NS

Rotifera *** NS NS * NS ** NS

Phytoplankton
solitary

*** NS NS NS NS NS NS

Phytoplankton
colonial

*** NS NS NS NS NS NS

Pollen *** NS NS NS NS NS NS

Also some phytoplankton was consumed by Neomysis integer in the three estuaries. 
Solitary (Figure lk, 1) and colonial phytoplankton (Figure lh, i, j)  species could be recognized 
in the stomachs with a mean frequency o f occurrence o f 82 %. Colonial and filamental algal 
strands were the most abundant (table 2). For adults, e.g. 42.5, 34.4 and 24.9 cells (i.e. 4.6, 5.1 
and 4.8 strands) were found per mysid in Elbe, Westerschelde and Gironde respectively, while 
solitary cells only amounted to 2.5, 3.4 and 6.9 counts per adult. Still, most o f the differences 
were not significant (table 3a). Similar trends were found for subadults and juveniles in the 
Westerschelde and the Gironde. In the Elbe, these ontogenic groups had consumed significantly 
higher amounts o f solitary phytoplankton cells (table 3a) as compared to the other estuaries.

Pollen was found in 90 to 100 % o f the stomachs. Average numbers per stomach were 
4.6, 11.6 and 13.8 in Elbe, Westerschelde and Gironde, respectively. Two general types were 
distinguished. Pollen with an air sac on either side (Figure In) were recognized as originating 
from gymnosperms. These were especially abundant in the Gironde (62.53 %) and the 
Westerschelde (37.3 %), while in the Elbe only 6.3 % of the pollen originated from 
gymnosperms. The round forms (Figure lm, o) could not be identified and possibly resting 
stages of mesozooplankton or cysts o f microzooplanktonic species are included in the counts.
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Figure 3: Length- (left) and surface area (right) frequency distribution o f  m acrophyte detritus (top) and 
'unidentifiable' detritus (bottom) present in the stom ach o f  adult Neomysis integer in the M TZ o f  the 
Gironde.

The frequency with which macrophytal detritus was consumed in the three estuaries 
was always higher than 60 %, although macrophyte detritus accounted for less than 5 % of the 
total number o f detritus particles consumed. The size distributions o f the macrophytal detritus in 
the stomachs (e.g. for adults in the Gironde Figure 3a, b) were comparable over the estuaries: 
the majority (> 90 %) was smaller than 0.020 mm2 for adults, 0.013 mm2 for subadults and 
0.015 mm2 for juveniles. Maximal particle sizes o f 0.039 mm2, 0.061 mm2 and 0.064 mm2 were 
recorded in Elbe, Westerschelde and Gironde, respectively. Highest numbers o f macrophyte 
detritus particles were found in adults in the Westerschelde (36.50 ind'1), while subadults and 
juveniles in the Gironde contained significantly higher numbers (12.62 and 6.57 ind'1 
respectively) as compared to the same ontogenic stages in the other estuaries.

The size frequency distributions o f the unidentifiable fraction o f the detritus (Figure 3c, 
d for adults in the Gironde) showed the same patterns in all estuaries. The bulk (90 %) of the 
particles found in adult stomachs were smaller than 85 pm (Elbe), 90 pm (Westerschelde) and 
125 pm (Gironde). In subadults and juveniles, the bulk o f the particles had smaller sizes. 
Particles with a maximal length up to 300 pm (Elbe), 500 pm (Westerschelde) and 600 pm 
(Gironde) were regularly found in the stomachs. In the three estuaries, the modes o f the size 
frequency distributions were located around 30 -  35 pm. Adult Neomysis integer o f  the 
Westerschelde consumed the highest number o f unidentifiable detrital particles (704 particles 
ind'1), while for subadults and juveniles highest numbers were found in the Gironde (496 and 
308 ind'1 respectively). Mean total numbers o f detritus particles consumed by the three 
ontogenic stages were 153, 363 and 458 ind'1 in Elbe, Westerschelde and Gironde.

A more detailed analysis o f the 'unidentifiable fraction' o f the detritus was made using a 
pétrographie optical microscope. The particles showed a high mineral content. The elemental 
composition of the detritus was assessed by EDAX analysis. In back-scattered electron (BSE) 
images o f the samples, the floes were easily identified as aggregates with much lighter grey 
values, indicating a major difference in composition between the floes and other components 
(photograph on Figure 4).



Energy (keV)

Figure 4: O utput o f  an ED AX  analysis on 'unidentifiable' detritus particles from  the stom achs o f  adult 
Neomysis integer in Elbe (a), W esterschelde (b) and G ironde (c). The X -axis was cut o ff  short o f  the 
prim ary Fe-peaks (located around 6.4 and 7.1 keV). U pper right com er: back-scattered electron (BSE) 
image o f  an analyzed floe.



Table 4: Relative elemental composition (weight percentage ± standard error) of 
the floes found in the stomachs of adult Neomysis integer from Elbe, 
Westerschelde and Gironde. Note that the relative abundance was calculated with 
the eight most abundant elements, excluding C and O.

Element ELad WSad Glad

Mg 2.65 ±0.51 1.30 ±0.48 2.09 ± 0.35

A1 15.56 ±0.82 13.52 ±0.85 20.56 ± 0.70

Si 41.87 ± 1.16 43.61 ± 1.28 44.71 ±0.99

P 4.87 ± 1.21 5.57 ± 1.38 1.45 ±0.89

S 5.05 ±0.82 1.78 ±0.90 1.71 ±0.59

K 5.59 ±0.73 5.85 ±0.93 6.76 ± 0.67

Ca 6.10 ±0.86 13.24 ± 1.20 11.13 ±0.85

Fe 18.20 ± 1.91 15.13 ±2.36 11.58 ± 1.60

For EDAX analyses, only floes with lengths of 150 -  300 pm were used. The composition of 
the floes was very similar in the three estuaries (Figure 4 and Table 4). The elemental 
composition, dominated by silicon and aluminium (around 60 % by weight) and with lower 
amounts o f magnesium, potassium and iron, demonstrate that the floes mainly consist o f clay 
minerals. Part o f the iron occurs in the form o f pyrite (FeS2), whose presence as individual 
crystals or grains was often directly observed. Because a carbon coating was used, the carbon 
content o f the floes could not be quantified, but the EDAX spectra and BSE images show that 
their carbon content is not high. No diatoms or other unicellular organisms could be found 
attached to the floes.

Qualitative diet analysis: Comparison o f  developmental stages

The diet o f subadult and juvenile Neomysis integer consisted of the same prey 
categories as that o f adults, but generally a lower number o f particles was consumed by the 
smaller mysids (Figure 2; Tables 2, 3a). Stomachs o f juveniles in the Westerschelde and 
Gironde contained significantly less detritus, calanoid copepods and colonial phytoplankton 
cells, as compared to these o f adults and subadults. In the Elbe the diet o f juveniles resembled 
that o f the subadults, whereas in the Gironde the diet o f adults rather resembled that o f the 
subadults. Ontogenic differences in the number o f solitary phytoplankton consumed were only 
found in the Elbe. The number o f pollen consumed only differed in the Elbe and the 
Westerschelde, and Cladocera only in the Elbe and the Gironde.

Adults and copepodites o f Eurytemora affinis were the most important zooplankters 
consumed by all the mysid stages, except in the Elbe where rotifers were the most abundant 
taxon in the diet. In the Westerschelde and the Gironde, the smaller mysids selected 
significantly smaller copepods, whereas in the Elbe no significant difference in copepod size 
selection was found between the ontogenic stages (Figure 5; Tables 2, 5). This is possibly 
correlated with the fact that in the Elbe the number o f mandibles measured was significantly 
lower than in the other estuaries.



m a n d ib le  w id th  (jx m )

Figure 5: Mean mandible width 
(and standard error) of the 
calanoid copepods Eurytemora 
affinis consumed by adult, 
subadult and juvenile Neomysis 
integer in Elbe, Westerschelde 
and Gironde. See table 2 for the 
explanation of the abbreviations.

Table 5: Results of the Kruskal-Wallis tests (KW) and subsequent multiple comparisons for the mandible 
width of the copepods consumed by adult, subadult and juvenile Neomysis integer of Elbe, Westerschelde 
and Gironde (ontogenic and sexual effects). See table 2 for the explanation of the abbreviations, (with: *: 
p < .05; **: p < .01; ***: p<.001; NS: p > .05)

ONTOGENY

ELad ELad ELsub WSad WSad WSsub Glad Glad GIsub
V i vs vs vs V i vs vs vs vs

KW ELsub ELjuv ELjuv WSsub WSjuv WSjuv GIsub Gljuv Gljuv

NS NS NS *** *** NS NS

SEX

ELad mal ELsub mal WSad mal WSsub mal Glad mal GIsub mal
vs vs vs vs vs vs

KW ELad fem ELsub fem WSad fem WSsub fem Glad fem GIsub fem

*** NS NS NS NS NS NS

The total number o f detritus particles consumed was comparable for adults and 
subadults in the Gironde (593 and 509 particles in d 1), while the stomachs o f juveniles contained 
significantly less particles (315 ind'1). In the Westerschelde the three ontogenic stages 
consumed different amounts o f detritus: 741, 236 and 158 particles ind"1 for adults, subadults 
and juveniles respectively. In the Elbe, adults consumed significantly higher numbers o f detritus 
particles (254.10 ind"1) than subadults and juveniles (116.90 and 105.47 ind"1). Macrophytal 
particles only accounted for a minor part o f the total detrital fraction in the diet ( 3 - 5  % for 
adults, 2 -  3 % for subadults and juveniles). The mean size of the macrophyte detritus particles 
was independent of the size of the mysid: for all ontogenic stages the mean surface area per 
macrophyte particle was around 0.004 mm2 in Elbe and Westerschelde and 0.007 mm2 in the 
Gironde. The size range of the unidentifiable detritus was comparable for the different mysid 
stages in the Gironde: all stages mainly contained particles with a surface area smaller than 
0.005 mm2 (modal length 35 pm). In the Elbe and Westerschelde the size o f the unidentifiable 
detritus particles found in the stomach decreased with the size of the mysid: modal length of 30 
pm in adults, 15 pm in subadults and 10 pm in juveniles.
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Figure 6: The mean fullness index 
FI (and standard error) for (a) adult, 
subadult and juvenile and (b) adult 
male and female Neomysis integer 
in Elbe, Westerschelde and Gironde. 
See table 2 for the explanation of 
the abbreviations.

Table 6: Results of Kruskal-Wallis tests and subsequent multiple comparisons on the fullness index (FI) 
for the latitudinal-ontogenic and latitudinal-sexual effects. See table 2 for the explanations of the 
abbreviations, (with: *: p < .05; **: p < .01; ***: p < .001; NS: p > .05)

LATITUDE: *** ONTOGENY: ** SEX (adults): NS

EL vs WS NS ad vs sub NS
EL vs GI *** ad vsjuv **

WS vs GI *** sub vs juv NS

LATITUDE & ONTOGENY: *** LATITUDE & SEX (adults): ***

ELad vs WSad NS ELad vs ELsub ** EL mal vs EL fern NS
ELad vs Glad *** ELad vs ELjuv ** WS mal vs WS fern **

WSad vs Glad *** ELsub vs ELjuv NS GI mal vs GI fem NS

ELsub vs WSsub NS WSad vs WSsub *** EL mal vs WS mal NS
ELsub vs GIsub NS WSad vs WSjuv *** EL mal vs GI mal ***

WSsub vs GIsub NS WSsub vs WSjuv NS WS mal vs GI mal ***

ELjuv vs WSjuv NS Glad vs GIsub * EL fem vs WS fem NS
ELjuv vs Gljuv *** Glad vs Gljuv NS EL fem vs GI fem ***

WSjuv vs Gljuv ** GIsub vs Gljuv ** WS fem vs GI fem ***

Qualitative diet analysis: Comparison o f  sexes

For most dietary items, no difference was found between the sexes (table 3b). An 
exception is that in all estuaries the numbers of macrophytal detritus particles were higher in the 
stomachs of adult females compared to adult males (a factor o f 2.3, 3.1 and 1.5 in the Elbe, 
Westerschelde and Gironde, respectively). Another exception is that adult males in the Elbe 
consumed only 3.0 calanoid copepods per individual versus 7.1 for the adult females.



Quantitative diet analysis

The dry weight o f the empty stomachs could be derived from the following regression 
equation, after which the dry weight o f the stomach content could be calculated by substraction.

In DWempty = 5.04722 + 0.513386 In DWmysid (N = 89; r = 0.672; p < 0.000)

The fullness indices (FI) were compared between the estuaries, ontogenic stages and 
sexes with Kruskal-Wallis tests and subsequent multiple comparisons (see Figure 6 and Table 
6). General latitudinal effects in the stomach fullness could not be demonstrated between Elbe 
and Westerschelde, while in the Gironde significantly higher fullness indices were recorded for 
adults and juveniles. In the three estuaries, adult Neomysis integer had a significantly lower FI 
than juveniles. In Elbe and Westerschelde, the FI's o f subadult N. integer were comparable to 
those o f juveniles. In the Gironde, the subadults had a lower FI than adults and juveniles. No 
sexual effect could be detected in the fullness index.

D I S C U S S I O N

Methodology

The size range o f adult, subadult and juvenile Neomysis integer used for stomach 
analysis comparison were different in the three estuaries (table 2). This is not surprising, since 
the three populations were sampled at different stages o f the annual population dynamic cycle. 
The different length-frequency distributions and population compositions (table 1) found in the 
three estuaries can be explained by a seasonal temperature effect. The average water 
temperature in Elbe, Westerschelde and Gironde at the time o f sampling was 9 °C, 15 °C and 17 
°C, respectively. Studies on the population dynamics o f N. integer in the Westerschelde (Mees 
et al., 1994) and the Gironde (Mees and Sorbe, unpublished) have shown that the adults o f the 
overwintering cohort are larger than those belonging to the summer generations and that the 
species does not reproduce when water temperature is lower than 10 °C. In the Elbe samples, 
few juveniles were found and many of the females were gravid, indicating that the population 
was still in a 'winter phase'. The relatively higher abundance of juveniles in the Westerschelde 
( 13 % of the total density) and the Gironde ( 15 %) samples was due to the fact that reproduction 
by the overwintering cohort took place before the time of sampling. Although the sampling 
campaigns in the three estuaries were executed within a one month period, the latitudinal 
temperature effect was amplified by the North to South sequence o f sampling. Also, the length 
at maturity has been found to increase with increasing latitude (Mees et al., unpublished).

For the preparation of the microscopic slides the mysids were dehydrated from a 
formaldehyde solution to glycerin, in which the stomach content was subsequently embedded. 
This procedure yields semi-permanent slides in which artifacts are avoided. The microscopic 
slides contained parts of the stomach and oesophagus tissue, but their cell structure and 
armature made them easily distinguishable from parts o f zooplanktonic prey categories.

Generally, the gut passage time of mysids has been reported to be in the order of 30 -  
90 minutes (Zagursky and Feller, 1985), so the particles present in the stomach will give a good 
idea about the recently ingested food. The frequencies o f occurrence (table 2) o f the ingested 
prey items were usually higher than 60 %, except for calanoid nauplii, harpacticoids and 
cladocerans. Therefore, the within variation o f a sample is low and the analysis o f 30 animals 
per sample sufficed to describe the diet o f Neomysis integer (Hyslop, 1980).



Figure 7: Relationship between 
the fullness index (FI) and the 
dry weight of the mysids 
(DWmysid) for adult male and 
female Neomysis integer in 
Elbe, Westerschelde and 
Gironde.

6 8 10 
DW m ysid (mg)

General latitudinal, ontogenic and sexual effects n  ’

The fullness indices of Neomysis integer from the Elbe and the Westerschelde were 
comparable (0.55 and 0.59 respectively), while in the Gironde a significantly higher FI was 
measured (2.46). The adults from the former two estuaries showed quite a wide size range 
distribution (table 2), but a rather constant FI. Adult N. integer from the Gironde had a 
significantly smaller standard length, a smaller size variation, and a large variation in their 
fullness index. This phenomenon is demonstrated graphically in Figure 7.

Irrespective o f the ontogenic stage, consumption of detritus particles and pollen by 
Neomysis integer increased from the Elbe, over the Westerschelde, to the Gironde. The numbers 
o f calanoids, harpacticoids and phytoplankton consumed were comparable in the Westerschelde 
and the Gironde. In both estuaries, calanoids were consumed in higher numbers compared to the 
Elbe, while harpacticoids and phytoplankton were found in lower quantities. No Cladocera, 
Rotifera or copepod nauplii were found in the stomachs o f N. integer o f the Westerschelde. In 
the two other estuaries, nauplii were always rare in the diet, while Cladocera were most 
important in the Gironde and Rotifera in the Elbe.

Irrespective o f the estuary, large adults had a lower fullness index than smaller 
individuals. Adults consumed significantly higher amounts o f detritus, calanoids, cladocerans, 
colonial phytoplankton cells and pollen. No ontogenic effects could be demonstrated for 
harpacticoids, copepod nauplii, solitary phytoplankton cells and rotifers.

An ontogenic shift in diet composition has been reported for Neomysis mercedis (Kost 
and Knight, 1975; Siegfried and Kopache, 1980). The main changes were found for the smallest 
juveniles ( 2 - 3  mm), a size class which was not efficiently sampled in this study (Mees et al., 
1994). The mandible widths o f the calanoids consumed decreased with the size o f the mysid in 
the Gironde and the Westerschelde. Although juvenile Neomysis integer consumed the smallest 
calanoid copepodite stages, spermatophores were frequently found in the stomachs. Since these 
are attached to the gonopores o f adult females only, this suggests that juvenile mysids at least 
hunt adult calanoid copepods. In the Elbe, N. integer did not show a size selectivity for 
Eurytemora affinis, but here the number o f mandibles measured was significantly lower than in 
the other estuaries.

(l) The tidal phase was not taken into account at the moment of sampling. Diumal and tidal feeding rhythms were 
investigated (Fockedey, unpublished) by determining stomach fullness index of Neomysis integer for several 24h 
cycles in the MTZ of the Schelde, Gironde and Elbe. Although variations in the fullness index were difficult to relate 
to diumal and tidal cycles, the results indicate a continuous feeding over the day (fullness index between 0.8 and 1.4 
in Elbe, 1.0 and 1.5 in Schelde, and between 1.8 and 2.9 in Gironde).



No sexual differences could be found in the fullness index, nor in the amount o f dietary 
items consumed. The only exceptions were calanoids and macrophytal detritus particles, which 
were sometimes consumed in significantly higher amounts by adult females.

Food items

Neomysis integer mainly fed upon mesozooplankton. Late copepodite stages and adults 
o f Eurytemora affinis were the most important prey item. On average 5.07, 10.27 and 8.00 
calanoids per adult mysid were consumed in the MTZ's o f Elbe, Westerschelde and Gironde, 
respectively. Subadults and juveniles consumed less copepods (table 2). Siegfried and Kopache 
(1980) calculated that the relative importance o f camivory amounted to 90% of the total 
nutritional uptake o f N. mercedis. 90 -  100 % of the diet of Mysis mixta consisted of copepods 
and Cladocera (Rudstam et al., 1989). In both studies, however, the detritus was not included in 
the calculations, thus overestimating the importance o f camivory.

Although the gut passage time of mysids is in the order o f one hour, it has been shown 
that rigid Zooplankton parts (e.g. mandibles) can stay in the stomachs for more than 12 hours 
(Rudstam et al., 1989). The counting o f the number o f mandibles present in the stomach can 
therefore result in an overestimation o f the actual number o f copepods consumed.

During the sampling campaigns, the densities of adult and copepodite stages o f 
Eurytemora affinis in the MTZ o f the Elbe and Westerschelde were in the order o f 10000 and 
40000 ind m"3, respectively (Castel, personal communication). No data were available on 
copepod densities in the MTZ o f the Gironde for spring 1993, although a density between 5000 
and 15000 ind m 3 can be expected in March -  April (Castel and Veiga, 1990). The results of the 
qualitative stomach analysis indicate a positive correlation between these densities and the 
predation by Neomysis integer on E. affinis. Similar results were found for other mysid species: 
the predation rate was found to increase with copepod densities (e.g. Siegfried and Kopache, 
1980; Bowers and Vanderploeg, 1982). No other calanoid copepod species were found in the 
stomachs o f N. integer, although some were recorded in the watercolumn in low densities 
(Diaptomus species in the Elbe: 25 ind m'3; Acartia species and Temora species in the 
Westerschelde: 400 ind m"3). In all three estuaries, cyclopoid copepods were abundant in the 
MTZ (300 -1000 ind m"3). Nevertheless they were never found in the stomachs o f N. integer, 
probably due to a higher escape response o f the cyclopoids as compared to E. affinis (Tackx, 
personal communication).

Although Harpacticoida were very abundant in the meiobenthos communities o f the 
subtidal sediments in the MTZ (2000 -  9000 ind m‘2) (Vincx, personal communication), they 
were rarely consumed by Neomysis integer. Other meiobenthic animals and microphytobenthic 
diatoms were rarely found in the stomachs. This indicates that the mysids feed in the 
hyperbenthic layer o f the water column and do not scrape the bottom while foraging.

In spring 1993, high densities o f calanoid nauplii were recorded in the watercolumn (23
-  79.103 ind m'3). Neomysis integer seems to show a negative selection for nauplii. Also N. 
mercedis (Murtaugh, 1981b; Siegfried and Kopache, 1980) and Mysis relicta (Siegfried and 
Kopache, 1980; Bowers and Vanderploeg, 1982) do not consume nauplii in large amounts. 
Nauplii can be underrepresented in the diet of the mysids because adult and copepodite stages of 
calanoids, which are energetically more valuable, are positively selected. Or the nauplii might 
be more successful in avoiding the mysid feeding current than are the later life stages. Another 
explanation can be the high digestion rate o f the nauplii (Rudstam et al., 1989), which can result 
in an underestimation o f the predation on this prey by means o f stomach analysis.



Neomysis integer consumed filamentous algae rather than solitary phytoplankton cells. 
Siegfried and Kopache (1980) reported a higher selectivity o f N. mercedis for larger algae and 
filamentous cells, while small phytoplankton were not consumed in high numbers although they 
were very abundant in the environment. In all estuaries, some ten algal cells per N. integer 
(Figure 2, Table 2) were consumed. Still, the quantitative importance in the diet o f the mysids is 
negligible, although phytoplankton might qualitatively be important for the provision o f oligo- 
elements. Moreover one has to keep in mind that in the turbid zone o f estuaries, where peak 
densities of N. integer are encountered, phytoplankton concentrations are generally low (Heip et 
al., 1995; Muylaert and Sabbe, 1999). In most cases, it was impossible to identify the 
phytoplankton up to genus or species level. Still, a distinction could be made between 
specimens from fresh, brackish or marine origin. In all three estuaries, mainly algae from the 
brackish and freshwater parts o f the system were consumed: Thalassiosira proschkinae, 
Nannochloris coccoides, Paralia sulcata, Pediastrum species and colonial chlorophyta (Figure 
lh) were the most common. Phytoplankton from the more marine reaches o f the estuary (e.g. 
Skeletonema species) were rarely encountered in the stomachs. Filamental phytobenthic strands 
from the brackish zone ( Voucheria species: Figure lj) could be recognised in the stomachs from 
the three estuaries, indicating a possible horizontal migration o f N. integer to intertidal areas for 
feeding.

Pollen o f gymnosperms was mainly found in the stomachs o f Westerschelde and 
Gironde individuals. The rivers Schelde and Garonne run through extensive pine forests. It is 
not known if the pollen is selectively ingested, nor if  they can be digested by Neomysis integer. 
Pine pollen was also found in the stomachs o f the euryhaline mysid My sis mixta from the Baltic 
Sea (Rudstam et a i ,  1989) and was thought to be digested. The round pollen could not be 
identified and possibly resting stages of mesozooplankton or cysts o f microzooplanktonic 
species are included in the counts.

3 -  5 % o f the total number o f detrital particles consumed by Neomysis integer in the 
three estuaries was clearly from macrophytal origin. It is possible that the mysid fragments 
larger macrophyte detritus particles to a size between 1000 and 20000 pm2 before ingestion. N. 
integer possesses cellulase enzymes (Zagursky and Feller, 1985), so the species can 
theoretically digest the macrophytal detritus. It is not known if  they are capable of deriving 
substantial nutrition directly from macrophyte detritus either via digestion with its own 
cellulases or by an associated gut microflora. My sis stenolepis has an assimilation efficiency o f 
30 -  50 % on sterile cellulose (Foulds and Mann, 1978; Wainwright and Mann, 1982). 
Artificially made macrophytal detritus o f Spartina alterniflora (Zagursky and Feller, 1985) 
contains 42.7 % C and 2.4 % N of the total dry weight. This detritus can serve as a nutritionally 
significant food item for N. americana, especially in periods o f low availability o f other 
nutritionally more valuable food items. Hence mysids can be an important link between (marsh- 
) macrophyte production and higher trophic levels.

The bulk of the 'unidentifiable detritus' originated from sediment floes suspended in the 
watercolumn. However, some of the particles counted as unidentifiable detritus probably were 
partly digested Zooplankton and phytoplankton or originated from the stomach contents of 
ingested prey species. According to Eisma (1987), two size-groups o f floes can be found 
suspended in the watercolumn in the MTZ of estuaries. Microflocs are firmly held together and 
have lengths between 1 and 125 pm. Together with single mineral particles these microflocs are 
the basic units o f the more loosely bound, fragile macroflocs. The latter can reach sizes o f 3 -  4 
mm in turbid water. The 'unidentifiable detritus' particles in the stomachs of Neomysis integer 
were within the range of 10 to 500 pm length and the fraction smaller than 125 pm was 
dominant.



EDAX did not allow for quantifications o f the relative concentration o f carbon in the 
floes (because of the carbon coating), although analysis o f the particles with diffracted 
electronic beams suggested that carbon concentration in the floes was low. The particulate 
organic carbon (POC) of the river suspended matter is on average between 1 and 5 % (Eisma,
1985). If  the carbon content o f the unidentifiable detritus is assumed to be o f the same order, the 
importance in the energy balance o f Neomysis integer is negligible. The reason why so many 
floes are present in the stomach can not be explained. The uptake might occur accidentally when 
feeding on other prey items. No associated bacteria, fungi, nanoflagelates, Protozoa or diatoms 
were found on the detritus floes in the stomachs, but this is probably due to the conservation 
method used.
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7 4 19 8 Chapter 3

Temperature and salinity effects on post-marsupial 
growth of Neomysis integer (Crustacea: Mysidacea)

A B S T R A C T  ---------------------------------------------------------------------------------------------------------------------------------------

There has been an increasing interest in using the brackish water mysid Neomysis 
integer as a toxicological test species for Western European estuarine systems. In this respect, 
more data on growth, moulting and development in this species is needed. The influence of 
prevailing environmental variables (e.g. temperature, salinity) and age on these processes, as 
well as their optimal range have to be known in order to develop optimal laboratory cultures and 
to differentiate between chemically-induced variability and natural variability in toxicity testing.

Individual post-marsupial growth (size, intermoult period, growth factor) was studied 
from first day neonates until adulthood at eight environmentally relevant temperature-salinity 
conditions. Three salinities (5, 15 and 30 psu) were tested at 15 and 20 °C, and two more 
extreme temperatures (8 and 25 °C) were tested at a salinity o f 5 psu.

Survival and growth o f Neomysis integer were detected within the whole range tested, 
but sexual maturation was only possible in the narrower range of 15 -  25 °C and 5 - 1 5  psu. The 
size at maturity o f N. integer increased with decreasing temperature and increasing salinity. 
Salinity seems to have a stronger effect than temperature on the duration o f maturation. The 
sigmoid von Bertalanffy growth model was fitted to the individual and pooled data, except for 
the 8°C experiment where growth was linear. Estimates from pooled data were comparable with 
individually-based estimates, but generally underestimated the asymptotic length. Temperature 
was negatively correlated with the asymptotic length and positively correlated with the growth 
constant K. Higher temperatures caused smaller intermoult periods but had no effect on the 
growth increment, while salinity effects were less straightforward and dependent on the water 
temperature. A tool is provided to estimate the age, moult number, intermoult period, growth 
factor and growth rate from the body standard length o f N. integer. Experimentally-derived von 
Bertalanffy parameter estimates resulted in a higher growth performance index compared with 
field-based estimates for the Schelde estuary and Galgenweel populations o f N. integer.

A c c e p t c d  f o r  p u b l i c a t i o n  a s :

Fockedey, N., Mees, J., Vangheluwe, M., Verslycke, T., Janssen, C., Vincx, M. Temperature 
and salinity effect on post-marsupial growth o f Neomysis integer (Crustacea: Mysidacea). J. 
Exp. Mar. Biol. Ecol. (inpress).



I N T R O D U C T I O N

Recently, there has been increasing interest in using the brackish water mysid Neomysis 
integer (Leach, 1840) as a toxicological test species for estuarine systems (Roast et al., 1998a; 
Verslycke et al., 2004 -  Addendum 3). It is an alternative to Americamysis bahia (formerly 
Mysidopsis bahia) for use in European water quality testing (Roast et al., 1998a; Verslycke et 
al., 2004). Due to its relatively high temperature requirements, the subtropical species A. bahia 
can not be used in temperate regions and its low tolerance for low salinities o f 0.1 to 5 psu 
makes it an inappropriate test species to use in the turbid upper reaches o f estuaries or 
oligohaline inland water bodies (Roast et al., 2000a; 2001).

Ideally, chemical risk should be assessed by standardized endpoints that cover the 
molecular, individual and population level. For mysids, this implies that, in addition to 
evaluating mortality, acute, chronic and multigenerational bio-assays have to be developed for 
testing chemical effects on growth and moulting, reproduction, biochemical composition, 
metabolism and physiological processes, behaviour and morphologic aberrations (as reviewed 
by Verslycke et al., 2004). In this respect, baseline data on growth, development and 
reproduction, and more specifically on intermoult period, size increment at moulting, age/size at 
maturity, time to the first brood release, brood size, fecundity, etc. o f  mysids is invaluable. The 
influence o f prevailing environmental variables (e.g. temperature, salinity, food quality and 
quantity) on these endpoints and their optimal range have to be known in order to develop 
optimal laboratory cultures and to differentiate between chemically-induced variability and 
natural variability in toxicity testing (a.o. De Lisle and Roberts, 1988; Verslycke et al., 2004).

The estuarine environment is characterized by strong fluctuating conditions o f salinity 
and temperature. Both are considered dominant ‘ecological abiotic master factors’, which may 
act either singly or in concert to modify the population dynamics and distribution o f estuarine 
organisms (McKenney and Celestial, 1995). As a typical estuarine species, the brackish water 
mysid Neomysis integer must be able to functionally adapt to this dynamic environment. The 
species is euryhaline and tolerates salinities o f 1 to 40 psu (Vlasblom and Elgershuizen, 1977; 
Roast et al., 2001). In the field it can be found at salinities between 0.1 and 38 psu, although it is 
rare in waters of more than 18 psu (Tattersall and Tattersall, 1951; Vlasblom and Elgershuizen, 
1977). The isosmotic point o f N. integer is described to vary between populations from 16 psu 
to higher than 20 psu (Ralph, 1965; McLusky and Heard, 1971; Moffat, 1996). N. integer is 
highly tolerant to large, acute salinity fluctuations between 1 and 30 psu (Moffat and Jones, 
1992; Roast et al., 1998b). In the Schelde estuary, N. integer was recorded at salinities ranging 
from 8 to 25 psu with a maximal abundance at around 15 psu (Mees et al., 1994). Ongoing 
studies suggest that the population is shifting towards the more oligohaline zone o f the estuary 
as a consequence o f improved oxygen conditions in the upstream reaches (Fockedey, 
unpublished). In other, more oxygenated western European estuaries such as the Guadalquivir 
(Spain), Gironde (France), Elbe (Germany) and Ems (The Netherlands) the abundance peak is 
typically found around 5 psu (Mees et al, 1995; Drake et al., 2002; Fockedey, unpublished).

Neomysis integer is a eurythermie species that occurs in brackish waters along the 
western European coast at longitudes between 36°N and 68°N and in the Baltic Sea (Deprez et 
al., 2004; http://intramar.ugent.be/NeMys). Its temperature tolerance measured under laboratory 
conditions ranges from 0 to 30 °C (Arndt and Jansen, 1986; Mauchline, 1980). Within the range 
Elbe - Guadalquivir, the summer water temperature o f the brackish estuarine zone varies from 
25 °C in the North to 29 °C in the South, while winter water temperatures range from 1 °C in 
the North to 10°C in the South (Drake et al., 2002, Zimmermann, 1997).

http://intramar.ugent.be/NeMys


Temperature is generally thought to overshadow salinity in its effects on growth and 
reproduction in crustaceans. Still, temperature can influence the salinity tolerance o f a species 
(Vlasblom and Elgershuizen, 1977; Arndt and Jansen, 1986) and interaction effects o f both on 
the survival and growth o f a species can change with age (Kinne, 1955; McKenney, 1994; 
McKenney and Celestial, 1995).

Most studies on the population dynamics o f Neomysis integer are exclusively based on 
field data (see Mees et al., 1994 and references herein). Generally, length frequency 
distributions are obtained through regular (once or twice per month) sampling o f the population 
for at least one year. Cohorts can then be segregated by modal progression analysis, but this is 
often complicated by the occurrence of overlapping generations and prolonged reproductive 
periods (Astthorsson and Ralph, 1984; Mauchline, 1985; Irvine et al., 1995). Growth curves 
have been derived from field data for several populations of N. integer, e.g. Mauchline, 1977; 
Bremer and Vijverberg, 1982; Astthorsson and Ralph, 1984; Mauchline, 1985; Mees et al., 
1994. To date, these growth parameters have rarely been validated with laboratory observations. 
Schrotenboer (1980), Astthorsson and Ralph (1984), Irvine et al. (1995) and Winkler and Greve 
(2002) all performed growth experiments with N. integer, but only at very few temperature- 
salinity combinations. Kuhlmann (1984) studied the short-term effects of 16 temperature - 
salinity combinations on the daily growth rate of juvenile N. integer, but post-juvenile growth, 
mortality, intermoult period and growth factor were not reported.

The general objectives o f the present study are (1) to describe the growth o f Neomysis 
integer under laboratory conditions and (2) to investigate the effects of salinity and temperature 
on growth in N. integer. For this purpose, mysid growth (size, intermoult period, growth factor) 
was recorded over a whole life span in individually-based experiments at 8 environmentally 
relevant temperature-salinity conditions.

M A T E R I A L  A N D  M E T H O D S  

Field sampling and stock cultures

Neomysis integer was collected from the brackish pond Galgenweel (salinity ± 5 psu), 
which is situated on the left bank o f the Schelde estuary close to Antwerpen, Belgium. A 
handnet (L x W: 0.3 x 0.2 m; mesh size 1 mm) was pushed over the bottom during short hauls 
o f 2 -  3 minutes. Mysids were transported to the laboratory within 2 hours after sampling in 15 
litre bins containing environmental water.

Stock cultures were maintained as reported by Verslycke et al. (2003). In short, mysids 
were kept in a static system in 200 1 glass aquaria equipped with a circulating under-gravel 
filter. The culture medium was filtered (1.2 |im) seawater diluted with aerated tap water until a 
final salinity o f 5 psu. Every two weeks, 50 % of the culture medium was renewed. A 12h:12h 
light-dark photoperiod was used and water temperature was kept at 20 ± 2 °C. Cultures were fed 
twice a day with 24 -  48 h old Artemia nauplii at a feeding rate o f 150 nauplii m ysid'1 d '1. Mysid 
culture density was 20 organisms per litre. The under-gravel filter was replaced every six 
months.

Gravid females were transferred at regular intervals to 10 1 aerated static incubators, in 
which the culture medium was renewed every day for 50 %. In these incubators, animals were 
fed twice a day with 24 -  48 h old Artemia nauplii ad libitum and were checked daily for the 
release o f juveniles from the marsupium. These juveniles were separated from the adult females 
using a netted brood chamber to prevent the adults from cannibalizing their young.



Growth experiment procedures

Neonates (< 24h old, standard lengths o f 2.18 to 2.86 mm) were individually placed in a 
glass container o f 400 ml filled with 350 ml o f artificial seawater (different experimental 
treatments o f salinity and temperature, see below) and reared to the late adult stage or until 
mortality occurred. These experiments lasted between 2 months for the higher temperature 
experiments and 4 months for the lower temperature experiments. No gradual adaptation from 
stock to experimental salinity and temperature was done, since it is known that estuarine mysids 
adapt within 1 . 5 - 3  hours to changes in salinity and temperature (De Lisle and Roberts, 1987; 
Dormaar and Corey, 1973). The artificial seawater (Instant Ocean®, Aquarium Systems, 
France) was diluted with distilled water to the respective test salinity and aerated for at least 24 
hours prior to being used. The experimental containers were not aerated, but at least half o f the 
content was renewed daily. The four experimental temperatures (8, 15, 20 and 25 °C) were kept 
constant by using warm-water baths in temperature-controlled climate rooms at 4 and 15 °C. 
Salinity and temperature were monitored daily with an YSI salinity meter, but variations were 
small, i.e. 8.5 ± 0.2 °C; 15.0 ±  0.4 °C; 20.1 ± 0.8 °C; 25.0 ± 0.6 °C and 5.1 ±  0.4 psu; 15.2 ± 0.5 
psu and 30.2 ± 0.7 psu.

The containers were checked daily for exuvia (moults). These were carefully harvested 
with a wide-mouthed glass pipette and transferred to a 4 % formaldehyde solution. Since mysids 
moult at night, this was preferably done early in the morning to reduce the risk o f disintegration 
or scavenging o f the moults. At the same time, freshly hatched nauplii o f Artemia were added. 
The number of < 24h nauplii were counted in a 0.2 ml subsample to calculate food 
concentration. Juveniles were fed approximately 250 nauplii mysid"1 d '1, subadults 500 to 750 
nauplii mysid'1 d 1, and adults 1000 nauplii mysid"1 d"1. This corresponded to an ad libitum 
feeding regime, without excessive accumulation o f left-over food in the containers. Every 4 to 5 
days the individuals were transferred to new, clean jars. The mysids were handled and 
transferred using a conical plastic measuring spoon to avoid physical stress.

Experimental design

Eight temperature-salinity combinations were selected based on their relevance to 
European estuarine mysid populations. For the core experiment, temperatures o f 15 and 20 °C 
and salinities o f 5, 15 and 30 psu were tested. These temperatures correspond to spring and 
summer temperatures in mid-European estuaries (Mees et al., 1994). The salinities correspond 
to the upper, middle and lower reaches o f an estuary. Originally, experiments included a 1 psu 
treatment, however, mortality was extremely high (80 % before fifth moult) in this treatment. 
An additional experiment was set up to test the more extreme lower and higher temperatures of 
8 and 25 °C at a salinity o f 5 psu. These temperatures correspond to winter temperature in the 
Schelde and summer temperature in the Gironde estuary, respectively.

Only mysids that survived at least 5 moults were used for further analyses; mysids 
dying at an earlier stage were replaced by new < 24h juveniles. An overview of the total number 
o f introduced and successful (i.e. those surviving for more than 5 moults) individuals per 
treatment is shown in Table 1.



Table 1: M ortality statistics (n.d.: not sexually differentiated)
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Gender

?  8 n.d.
15 5 123 18 28 3 25 9 16 0
15 15 123 18 30 6 24 11 13 0
15 30 122 19 29 8 21 13 8 0

20 5 62 14 36 10 26 12 14 0
20 15 98 17 34 12 22 12 10 0
20 30 98 19 34 14 20 10 7 3

8 5 122 12 43 19 24 8 16 0
15 5 123 18 28 3 25 9 16 0
20 5 62 14 36 10 26 12 14 0
25 5 61 15 46 27 19 8 10 1

Measurements

Measurement o f standard length o f exuvia is impossible because o f the elasticity o f the 
moult. Furthermore, the collected moults were generally broken into two or more parts. 
Therefore, well-defined rigid parts o f the moults were measured using a microscope with 
drawing tube (magnification 110 x), with the moult mounted temporally (in water) under a glass 
cover slip (Figure 1). Preferably, the lengths o f the left and right exopodites o f the uropod were 
used. The standard length o f the mysid was calculated from the mean length o f the exopodites 
using a linear regression (Table 2), based on measurements of 100 randomly selected 
individuals from the source population (in spring and autumn). If the exopodites were absent or 
broken, other body parts were used (length o f the endopodite of the uropod, length o f the 
antennal scale or length o f the telson) and exopodite length was derived using morphometric 
linear regressions (Table 2). These were derived from measurements made on all moults 
collected within the experiment.

Table 2: Results o f  the allom etric regression analyses to estim ate (1) the standard body length from  the 
m ean length o f  the exopodites o f  the uropods and (2) the length o f  the exopodite o f  the uropod from  the 
m ean length o f  the endopodites o f  the uropods, the m ean length o f  the antennal scales and telson length 
(X  =  a +  b*Y). For com parison w ith other data, allom etric regressions are added to calculate total body 
length and carapace length from  the standard body length (M ees et al., 1994).

X Y a b R2 P N

Standard body length Length exopodites 1.0856 4.0818 0.9569 <0.0001 97

Length exopodite Length endopodites -0.2235 1.5420 0.9939 <0.0001 1798

Length exopodite Length antennal scales - 0.0059 0.7642 0.9965 <0.0001 1660

Length exopodite Length tcisoo -0.0210 1.3320 0.9947 <0.0001 1779

Total body length Standard body length -0.080 1.165 0.997 <0.001 112

Carapace length Standard body length 0.439 0.266 0.908 <0.001 112



Figure 1: Schematic
representation of Neomysis 
integer with indication of 
the parts of the moults that 
were measured: length of 
antennal scale, lengths of 
the endopod and exopod of 
the uropod and telson 
length. Standard length 
(from the rostrum in 
between the eye stalks to 
the end of the last 
abdominal segment) and 
mean uropodal exopod 
length were measured on 
100 individuals collected in 
the field for the linear 
regression.

Description o f  growth

Growth is described as the increase in body length over time. For each experimental 
treatment, the generalized version of the von Bertalanffy growth curve was fitted to the pooled 
data points within each treatment. The model was also used to describe the growth o f each 
individual:

L ^ L h f O - e - ^ ' - V )

where Lt is the predicted standard body length (in mm) at age t (in fractions o f the year), Lmf is 
the asymptotic length, K is a growth constant and to is the (theoretical) age at a standard length 
zero. The fitting was done with the non-linear estimation module in StatisticaIM, using the least 
squares loss function and the Levenberg-Marquardt estimation method. The individually-based 
estimates o f the growth parameters were tested between the sexes with a Mann-Whitney U-test. 
Comparison o f the growth parameters between treatments and available field data (Schelde: 
Mees et a i,  1994; Galgenweel: Soselisa, 1994; Fockedey, unpublished) was approached from a 
multivariate perspective in which both K and Linf were taken into consideration. The growth 
performance index (O ’) was estimated by applying the equation derived by Munro and Pauly 
(1983) in the form of O ’ = log)0(K) + 21ogi0(Ljnf), with K in year'1 and Linf in cm.

Length ANTENNAL SCALE

Length ENDOPOD o f  uropode

Length TELSON



Growth in crustaceans is a discontinuous process, i.e. the succession o f moults (= 
exuvia, ecdyses) is separated by intermoult periods. Each time an individual moults, the old 
integument is shed and a rapid, extensive growth occurs during the short period before the new 
integument hardens (Hartnoll, 1982). The standard length at subsequent moults was tested in 
function o f both temperature and salinity using a repeated measures analysis o f variance 
(ANOVA). In addition, a repeated measure ANOVA with temperature as independent variable 
was applied to the more extended temperature experiment at 5 psu. Both tests were performed 
with a complete design until the 11th moult. Standard length was linearized by a logarithmic 
transformation.

According to Mauchline (1977), the stepwise growth o f mysids can be described as the 
duration o f the intermoult period (IMP, in days) and the increase in length at each moulting 
event (the growth factor (GF) in % o f the pre-moult length) as illustrated in Figure 2. The IMP 
and GF data were analyzed by (1) a two-way analysis o f covariance (ANCOVA) for the 
combined salinity (5, 15, 30 psu) and temperature (15, 20 °C) effect and (2) a one-way 
ANCOVA for the temperature effect (8, 15, 20, 25 °C) at 5 psu, both with standard length as the 
covariable. The intermoult period and standard length were logarithmically transformed, the 
growth factor was subjected to an arcsine transformation to fulfil the ANCOVA assumptions. 
Using moult number as the covariable in the respective ANCOVA’s yielded the same results, 
but these are not presented here.

A g e  a n d  s ize a t  m a tu r ity

Data on the size and age at sexual differentiation and maturity was collected during all 
experiments. An animal was identified as a subadult male as soon as the second ramus o f the 
fourth pleopod and the lobus masculinus could be identified on the moult. Animals were 
classified as adult males when the lobus masculinus became setose and/or the fourth pleopod 
stretched to the end o f the last abdominal segment. Females gradually develop a marsupium 
between the thoracopods. Since the oostegites were never found attached to the moult during the 
experiments, the same moult number was used as for males within the same treatment to 
classify subadult and adult females.

Figure 2: The stepwise 
growth as observed for 
‘typical’ long-living 
individuals at four 

experimental 
temperatures and a 
salinity of 5 psu, with 
indication of growth 
factor (growth rate) and 
intermoult period.
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d a y s



Figure 3: Survival
curves at the different 
salinity-temperature 
combinations. * indicate 
that the data include 
censored data with 
animals still alive at the 
end of the experiment.

R E S U L T S  

M o r ta l i ty

Only mysids that survived at least 5 moults were used for further analyses; mysids 
dying at an earlier stage were replaced by new < 24h juveniles. Per salinity-temperature 
combination 28 to 46 mysids were introduced into the experiments and between 19 and 26 
individuals were available for the description o f the growth (Table 1). Overall survival was 
markedly higher at 15 °C when compared to the other temperatures (Figure 3). The life cycle of 
Neomysis integer was shorter in the higher temperature treatments (20 and 25 °C), i.e. 
individuals reached adulthood fast and died after 6 1 - 6 2  days, but mortality was relatively high 
over the whole lifespan. At 8 °C, initial mortality was also high; a trend that stabilized after 24 
days (44 -  56 % survival).

G ro w th  curves

Generalized von Bertalanfly growth curves were fitted to the pooled data for each 
treatment (Figure 4). The growth parameters, asymptotic length (Linf), growth constant (K) and 
the theoretical age at a standard length zero (to) were calculated and presented in Table 3. The 
overall goodness-of-fit for the different growth curves was high (R2: 0.92 -  0.98). No von 
Bertalanffy growth model was fitted to the 8°C data. In this treatment, growth was slow and 
linear for the duration of the experiment (122 days) and was therefore described using a linear 
model; SL = 2.259 + 0.042*age (N = 206, R2 = 0.93, p < 0.00001). The asymptotic length (L^f) 
was larger at 15°C (Linf between 14.60 and 16.81 mm) compared to higher temperatures (10.53 - 
12.39 mm at 20 °C and 8.55 mm at 25 °C). The growth rate increased with temperature; K of 
11.95 at 25 °C; K of 5.37 -  7.30 at 20 °C and K o f 3.54 - 4.64 at 15 °C. Salinity had a less 
straightforward effect on the growth parameters L,nf and K. At 15 °C, the highest Linf was 
reached at 15 psu (16.81 ± 0.48 mm), whereas at 20 °C Linf was highest at 5 psu (12.39 ± 0.83 
mm). K values were highest at 5 psu at 15 °C (4.64 ± 0.25) and at 15 psu at 20 °C (7.30 ± 0.41).
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F i g u r e  4: The generalised von Bertalanffy growth curve (-----) fitted to the pooled data o f  fem ales ( ♦ )  and m ales (O ) o f  each salinity-tem perature com bination; ( A )  indicate
the age at sexual differentiation and ( A )  the age at sexual maturity.
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Table 3: Pooled and individually-based von Bertalanffy growth parameter estimations (± standard error) and performance index O’ (-: linear growth). Gender 
differences using Mann-Whitney U-test are shown in between brackets (ns: not significant; *: significant; °: test not allowed)

Temperature
(°C)

Salinity
(psu)

# individuals # moults T w  
(mm)

K
(day-1)

*o
(fraction o f  the year)

to
(days)

P R2 O '

15 5 pooled 24 310 14.60 ±0 .39 4.64 ±0.25 0.027 ±0.002 10±  1 <0.001 0.974 1.558
individually 15 8 - 1 8 15.93 ± 0.85 (ns) 4.55 ±  0.47 (ns) 0.029 ± 0.002 (ns) 11 ±  1 (ns) < 0.0001 0.988 - 0.999 1.625

15 15 pooled 24 258 16.81 ±0 .48 4.25 ±0.21 0.023 ±0.001 8 ± 1 <0.001 0.984 1.642
individually 10 1 0 - 1 8 18.12 ±  0.98 (ns) 4.07 ±0 .32  (ns) 0.024 ± 0.002 (ns) 9 ± 1 (ns) < 0.0001 0 .992-0 .998 1.688

15 30 pooled 21 254 16.66 ±  1.07 3.54 ±0 .38 0.030 ± 0.003 11 ± 1 <0.001 0.952 1.555
individually 5 8 - 1 8 15.75 ±  1.65(°) 4.89 ±0 .49  (°) 0.019 ±0.003 (°) 7 ± 1 (°) <0.0001 0.994 - 0.998 1.646

20 5 pooled 27 223 12.39 ±0.83 5.37 ± 0 .59 0.033 ± 0.002 12 ±1 <0.001 0.974 1.478
individually 11 7 - 1 3 12.85 ±0.91 (ns) 5.63 ± 0.49 (ns) 0.033 ± 0.002 (ns) 12 ± 1  (ns) <0.0001 0.998 - 0.999 1.531

20 15 pooled 22 261 10.88 ±0.28 7.30 ±0.41 0.028 ± 0.002 10 ±1 <0.001 0.976 1.499
individually 14 7 - 1 6 10.55 ± 0.35 (*) 7.82 ± 0.52 (ns) 0.029 ± 0.002 (ns) 11 ± 1 (ns) <0.0001 0.989 - 0.999 1.502

20 30 pooled 20 228 10.53 ± 0.52 6.85 ±0.73 0.032 ±0.003 12 ± 1 <0.001 0.922 1.443
individually 9 10- 18 10.68 ±  0.72 (ns) 7.98 ± 0.66 (ns) 0.029 ± 0.002 (ns) 11 ± 1 (ns) <0.0001 0.996 - 0.999 1.521

8 5 pooled _ _ _ _ .

individually - - - - - - - - -

15 5 pooled 24 310 14.60 ±0 .39 4.64 ±0.25 0.027 ±0.002 10 ± 1 <0.001 0.974 1.558
individually 15 8 - 18 15.93 ± 0.85 (ns) 4.55 ±  0.47 (ns) 0.029 ± 0.002 (ns) 11 ± 1 (ns) <0.0001 0 .988-0 .999 1.625

20 5 pooled 27 223 12.39 ±0.83 5.37 ±0 .59 0.033 ±0.002 12 ± 1 <0.001 0.974 1.478
individually 11 7 - 1 3 12.85 ±0.91 (ns) 5.63 ± 0 .49  (ns) 0.033 ± 0.002 (ns) 12 ± 1 (ns) <0.0001 0.998 - 0.999 1.531

25 5 pooled 19 162 8.55 ±0.43 11.95 ±1.48 0.021 ±0.003 8 ± 1 <0.001 0.920 1.504
individually 7 7 - 1 3 10.01 ± 0.52 (ns) 10.25 ±  1.25 (ns) 0.023 ± 0.004 (ns) 8 ± 1 (ns) <0.001 0.995 - 0.999 1.574



T e m p e ra tu re  (°C)

Salinity (psu)
■ Schelde M •  Schelde F □ Galg M o Galg F □ Exp M o Exp F

F i g u r e  5: Grow th perform ance 
index (<!>’) for field and 
experim entally-derived growth 
for male and fem ale Neomysis 
integer in function o f  
tem perature and salinity 
(Schelde: Schelde population, 
Galg: G algenw eel population, 
Exp: present experim ents; M: 
males, F: females).

The growth performance index O ’ (Table 3, Figure 5) showed analogue trends, with the 
highest growth performance at 15 °C in comparison with higher temperatures (Spearman Rank 
R: -0.65; p=0.02). Slightly higher values were obtained at 15 psu in comparison with other 
salinities at 15 and 20 °C, although no correlation could be demonstrated. The growth 
performance index O ’ in all our experimental treatments was significantly higher (t-test: 
p=0.000064) than in all cohorts o f the field populations o f the Schelde estuary and Galgenweel 
(Table 4, Figure 5).

T a b l e  4: Com parison o f  field and experim entally derived von Bertalanffy grow th param eter estim ations 
and growth perform ance index O ’ for m ale and fem ale Neomysis integer. M ean tem perature and salinity 
are indicated w ith their range w ithin parentheses.

"Temperature Salinity Generation Lmf K O' K O'
(°C) (psu) ________ (mm) (day-1)_______  ________ (mm) (d~‘)_______

Schelde population 9(1-22) 15 (9-21) winter 16.0 2.7 1.40 19.0 3.0 1.60
(Mees et al., 1994) 18(10-23) 16(10-19) spring 14.3 3.4 1.41 16.0 3.4 1.50

17(9-23) 16(10-21) summer 13.1 3.0 1.28 14.3 3.4 1.40

Galgenweel population 11 (4-19) 4 (3-5) winter 16.5 3.1 1.49 17.5 3.0 1.53
(Fockedey, unpublished) 19(17-23) 3 spring 15.5 2.8 1.39 15.5 2.7 1.37

19(17-23) 3 (3-5) summer 12.6 3.0 1.24 14.5 3.2 1.39

Laboratory experiments 8 5
(present study) 15 5 16.3 4.3 1.62 15.5 4.9 1.63

15 15 17.7 4.2 1.68 18.7 3.9 1.70
15 30 14.0 5.6 1.60 16.6 4.6 1.66
20 5 13.7 5.6 1.59 11.8 5.7 1.46
20 15 11.7 6.7 1.52 9.9 8.4 1.48
20 30 10.4 8.5 1.52 10.8 7.7 1.52
25 5 9.7 10.7 1.56 10.3 9.9 1.58



Individually-based estimates o f the von Bertalanffy growth parameters were only 
significant for the long living animals. The growth o f shorter living individuals, comprising 36 
to 76 % of the total o f all tested individuals, behaved linearly. The number of animals and 
moults used for the individual estimates o f Linf, K and to are presented in Table 3. The goodness 
of fit was always higher (> 0.99) for the individually-based data than for the pooled data. The 
asymptotic length was generally underestimated based on the pooled data in comparison with 
the individually-derived estimates. Overestimated K values are compensated for, however, by 
underestimated to values and vice versa. Gender had no significant effect on the estimates o f the 
growth parameters in our experiments.

S ta n d a rd  le n g th  in  fu n c t io n  o f  m o u lt  n u m b e r

Temperature, salinity and moult number were tested in a 2-way repeated measures 
ANOVA (Figure 6, Table 5a). Generally, subsequent moults resulted in significantly larger 
animals and this at least until the 11th moult. Temperature significantly affected the standard 
length of Neomysis integer and the largest individuals were found at 15 °C. This temperature 
effect on standard length was significant from the 3rd moult on. In addition, salinity had a 
significant effect on the standard length o f N. integer. At 15 psu, animals were larger than at 5 
or 30 psu, and this from the 3rd moult onwards. The combined effects o f salinity-temperature, 
salinity-moult number and temperature-moult number were all significant, whereas the effect of 
both temperature and salinity with the within-subject factor (moult number) was borderline 
significant (p = 0.049652).

The effect of a larger temperature range (8, 15, 20 and 25 °C) on mysid standard length 
at subsequent moults was tested using a repeated measures ANOVA (Figure 6; Table 5b). 
Again, temperature had a significant effect on the standard length o f Neomysis integer with 
larger individuals at 15 °C as compared to the other tested temperatures. This effect was 
significant from the 2nd -  4th moult onwards. For example, at 5 psu an average individual at its 
10th moult measured 6.64, 7.90, 6.34 and 6.26 mm at 8, 15, 20 and 25 °C, respectively.



m oult n°

•  15°C - 5psu 
■ 15°C - 15psu 
a  15°C - 30psu 
o 20°C - 5psu 
□ 20°C - 15psu 
A 20°C - 30psu

moult n°

Figure 6: Standard length (± standard error) in function o f  the m oult num ber at the different salinity and 
tem perature combinations.

Table 5a: Results o f  the 2-w ay repeated m easures A NOVA testing the effect o f  tem perature and salinity 
on the standard length at subsequent m oults (15 and 20°C -  5, 15 and 30 psu).

F p-value Description of effect

Temperature 36.21 0.000002 15°C > 20°C

Salinity 5.31 0.011091 15 psu > (30 psu = 5psu)

Moult number 4133.52 <0.0000001 log SL ~ moult number

Salinity x Temperature 4.00 0.029589
15°C: (5 psu = 15 psu) > 30  psu 
20°C: 15 psu > (5 psu = 30 psu)

Temperature x Moult number 52.23 <0.0000001
From 3rd moult: 
15°C > 20°C

Salinity x Moult number 4.84 <0.0000001
From 3rd moult:
15 psu > (5 psu = 30 psu)

Salinity x Temperature x Moult number 1.61 0.049652 . . .

Table 5b: Results o f  the repeated m easure A NOVA testing the effect o f  tem perature on the standard 
length at subsequent m oults (8, 15, 20 and 25°C at 5 psu).

F p-value Description of effect
Temperature 14.409 0.000083 15°C > (8 = 20 = 25°C)

Moult number 1086.659 <0.0000001 log SL ~ moult number

Temperature x Moult number 9.770 <0.0000001 From 2-4* moult:
15°C > (8 = 20 = 25°C)



In te r m o u lt  p e r io d

The intermoult period (IMP) is positively related to the standard length and to the moult 
number (Figure 7). The combined effect of temperature and salinity on the intermoult period at 
15 and 20 °C was tested in an ANCOVA using standard length as the covariable. Temperature 
(pcO.OOOl) and salinity (p<0.006) both had a significant effect on the IMP, although the salinity 
effect was less important. The IMP was significantly (p<0.001) shorter at the highest 
temperatures (5.35 ± 0.02 d at 15 °C; 4.28 d ±  0.03 at 20 °C). IMP was significantly (p = 
0.0016) shorter at 15 psu (4.71 ± 0.03 days) in comparison to the other tested salinities (4.92 ± 
0.03 at 5 psu and 4.81 ± 0.03 at 30 psu). The combined effect o f salinity and temperature on the 
IMP was not significant (p = 0.365).

A second ANCOVA, aimed at studying the effect o f a larger temperature range (8 -  
25°C) on mysid growth confirmed that temperature has a significant effect on growth, in this 
case the IMP (p < 0.001): the IMP was longest at 8 °C (10.61 ± 0.06 d) and gradually decreased 
at higher temperatures (5.05 ± 0.05 at 15 °C, 4.14 ± 0.06 at 20 °C and 3.42 ±  0.07 d at 25 °C). 
The intermoult period o f immature Neomysis integer was very similar ( 2 - 4  days) at 15, 20 and 
25 °C, but it was markedly longer at 8 °C (7 -  10 days). For late subadult and adults stages, the 
IMP was temperature-dependent and ranged between 7 -  10 d at 15 °C, 5 -  7 d at 20 °C and 4 -  
5 d at 25 °C.

S L  (mm class)

♦ 15°C - 5psu 
■ 15°C - 15psu 
A 15°C - 30psu 
o 20°C - 5psu 
□ 20°C - 15psu 
a 20°C - 30psu

2 3 4 5 6 7 8 9 10 11 12 13

SL (mm class)

•  8°C - 5psu
♦ 15°C - 5psu 
« 20°C - 5psu 
o 25°C - 5psu

Figure 7: Interm oult period (IM P ±  standard error) in function o f  standard length



G ro w th  f a c to r

The growth factor (GF) is inversely correlated with standard length (SL) and moult 
number (Figure 8). Temperature and salinity in combination had a significant effect on the 
growth factor o f Neomysis integer (ANCOVA: p < 0.001). The GF at 15 °C is significantly (p < 
0.0001) larger (12.31 ±0.11 %) than at 20 °C (8.82 ±0.12 %). Salinity also had a significant (p
< 0.0001) effect on the GF, but this effect was different between the two temperature 
treatments. At 15 °C, the GF was significantly higher at 15 psu (13.36 ± 0.19 %) than at 5 and 
30 psu (12.07 ± 0.17 and 11.49 ± 0.19 %, respectively). At 20 °C, the highest GF was observed 
at 5 psu (9.34 ± 0.21 %) and was subsequently lower at 15 and at 30 psu (9.08 ± 0.19 and 8.02 ± 
0.21 %, respectively).

To study the effects on mysid growth over the full range o f temperatures observed in 
the field (8 -  25 °C), a second ANCOVA was performed using 4 temperature treatments at 5 
psu (p < 0.001). In these experiments, no obvious temperature effect on the GF was observed, 
except at 25 °C where sub-optimal growth was caused by a significantly lower GF. In immature 
Neomysis integer, the GF varied between 9 and 16 %, while late subadult and adult mysids 
increased 4 -  8 % in size at each moult.

♦ 15°C - 5psu 
■ 15°C - 15psu 
» 15°C - 30psu 
o 20°C - 5psu 
□ 20°C - 15psu 
° 20°C - 30psu

2 3 4 5 6 7 8 9 10 11 12 13

SL (mm class)

I

•  8°C - 5psu
♦ 15°C - 5psu 
o 20°C - 5psu
o 25°C - 5psu

5

3
2 3 4 5 6 7 8 9 10 11 12 13

SL (mm class)

Figure 8: Grow th factor (GF ±  standard error) in function o f  standard length



A g e , M o u l t  N u m b e r , In te r m o u lt  P e r io d  ( IM P ) ,  G ro w th  F a c to r  ( G F )  a n d  G ro w th  R a te  (G R )  
p e r  1m m  le n g th  class

Generally, animals are collected from the field or a laboratory stock culture without 
knowing the exact age. Table 6 can serve as a tool to estimate the age, moult number, intermoult 
period, growth factor and intermoult growth rate o f Neomysis integer based on the standard 
length (for the 8 temperature-salinity combinations) which is useful in ecotoxicological 
experiments. Variation on these values (not shown) is small, as is also demonstrated by the good 
fit o f the von Bertalanffy growth curve on the data. The maximal size (at maturity) observed 
was 1 8 - 3 5  % lower than the asymptotic length Linf as calculated by the von Bertalanffy model 
on the pooled data and 1 6 - 4 1  % lower based on individual estimations. Therefore, additional 
data on ‘age’ was extrapolated from the respective growth models (in bold) for the largest size 
classes.

S e x u a l d eve lo p m e n t a n d  m a tu r ity

Sexual differentiation, i.e. secondary sexual characteristics appearing (A in Figure 4) 
was reached in all treatments, while sexual maturity, i.e. secondary sexual characteristics in 
adult form (A  in Figure 4) was only reached by mysids within the range 15 -  25 °C and 5 - 1 5  
psu (Figure 4, Table 7). In the different 15 and 20 °C treatments, the animals became subadult 
at a later point in their life with increasing experimental salinity. Sexual differentiation was 
observed after 15 d at 5 psu; after 15 -  17 d at 15 psu and after 18 -  24 d at 30 psu, at 15 and 20 
°C respectively. The number o f moults needed to reach subadulthood was 5 at 15 °C in all 
salinity treatments, but this number increased with salinity at 20 °C (6, 7 and 8 at 5, 15 and 30 
psu, respectively).

Maturity was not reached at all in the 30 psu treatments. The limited number of 
observations on age and size at sexual maturity in the 20 °C treatments hinders firm 
conclusions. However, some trends could be observed, i.e. at higher temperatures the age at 
maturity decreased, while at higher salinities it increased (Figure 4).

Table 7: Size of the juvenile Neomysis integer at the start of the experiment and size, age and moult 
number at sexual differentiation and maturity

T
(°C)

S
(psu)

Juvenile 

size (mm) size (mm)

Subadult 

age (days) #  m oults size (mm)

Adult

age (days) #  m oults

15 5 2.610.1 4.310.1 14.910.4 4.810.1 9 .410 .2 62.411.3 12.810.2
15 15 2.6 ±0.1 4.510.1 15.310.5 4.910.1 11.910.2 89.3 13.7 16.010.4
15 30 2.610.1 4.510.1 17.610.4 5.310.1 - - -

20 5 2.510.1 4.410.1 15.010.6 6.1 10.2 8.5 52.0 14
20 15 2.610.1 5.010.1 16.710.4 6.810.1 8.9 66.3 16.2 15.710.7
20 30 2.610.1 5.610 .2 23.611.4 8.510.1 - - -

8 5 2.610.1 4.410.1 42.011.3 5.710.1 _ _
15 5 2.610.1 4.310.1 14.910.4 4.810.1 9.4 10 .2 62.411.3 12.810.2
20 5 2.510.1 4.410.1 15.010.6 6.110.2 8.5 52.0 14
25 5 2.710.1 4.610.1 13.610.8 6.110.1 6.3 10 .2 27.013.0 10.510.50



Table 6: Estim ated age, m oult num ber, interm oult period, growth factor and interm oult grow th rate in function o f  the standard length o f  
Neomysis integer (in between brackets: less than 5 observations; in  bold: estim ated age from  von Bertalanffy grow th curve; -: no observations)

T
(°C)

S
(psu)

2.5 3.5 4.5 5.5

Standard length (mm); 1mm class 

6.5 7.5 8.5 9.5 10.5

-  m edian 

11.5 12.5 13.5 14.5 15.5 16.5

Age (days) 11 31 55 76 95 (103) (114) . . - . - - - -
Moult n° 1 4 6 8 10 (10) (11) - - - - - - - -

8 5 IMP (days) 8 9 10 11 12 (14) (14) - - - - - - - -
GF (%) 13 12 12 9 9 (8) (11) - - - - - - - -
GR (m m.day'1) 0.04 0.04 0.05 0.04 0.04 (0.04) (0.06) - - - - - - - -

Age (days) 5 12 21 28 37 46 56 70 88 1 1 2 1 4 5 1 9 4 386 - -
Moult n° 1 3 5 7 8 10 11 13 15 17 (18) - - - -

15 5 IMP (days) 4 4 4 5 6 7 8 9 10 10 (9) - - - -
GF (%) 13 14 14 15 12 10 9 7 6 4 (4) - - - -
GR (m m .day'1) 0.09 0.11 0.13 0.14 0.11 0.11 0.09 0.08 0.06 0.04 (0.05) - - - -

Age (days) 6 12 20 26 34 41 51 62 7 6 9 1 1 0 8 1 3 1 1 6 2 2 1 0 3 3 5

Moult n° 1 3 5 6 8 9 10 12 13 15 17 - - - -
15 15 IMP (days) 4 4 4 5 5 6 7 8 9 10 10 - - - -

GF (%) 16 15 15 15 14 13 10 9 7 4 4 - - - -
GR (m m.day'1) 0.10 0.12 0.14 0.15 0.15 0.13 0.11 0.09 0.08 0.05 0.05 - - - -

Age (days) 6 14 24 32 40 50 60 75 9 2 1 1 0 1 3 2 16 1 2 0 0 2 6 5 4 7 5

Moult n° 1 3 6 7 9 10 12 14 15 (16) (18) - - - -
15 30 IMP (days) 4 4 5 5 6 7 7 8 9 (11) (8) - - - -

GF (%) 13 12 12 13 12 11 9 6 6 (7) (6) - - - -
GR (mm.day ') 0.08 0.09 0.11 0.13 0.12 0.11 0.09 0.07 0.07 (0.07) (0.09) - - - -

Age (days) 5 11 19 27 38 49 6 7 87 1 1 6 1 6 7 - - - - -
Moult n° 2 4 6 8 10 12 (14) - - - - - - - -

20 5 IMP (days) 3 3 4 4 5 5 (6) - - - - - - - -
GF (%) 13 12 11 10 7 8 (7) - - - - - - - -
GR (m m .day'1) 0.14 0.13 0.13 0.12 0.08 0.10 (0.09) - - - - - - - -

Age (days) 4 9 16 25 35 48 66 9 3 1 5 8 - - - - - -
Moult n° 2 4 6 8 10 12 15 16 - - - - - - -

20 15 IMP (days) 3 3 3 4 5 6 6 7 - - - - - - -
GF (%) 12 13 11 9 8 6 5 (5) - - - - - - -
GR (m m .day'1) 0.13 0.15 0.14 0.11 0.10 0.08 0.07 (0.07) - - - - - - -

Age (days) 4 11 19 27 38 51 76 1 1 2 - - - - - - -
Moult n° 1 4 6 8 11 13 16 (18) - - - - - - -

20 30 IMP (days) 3 3 4 4 5 6 6 (6) - - - - - - -
GF (%) 10 11 10 9 7 5 3 (5) - - - - - - -
GR (m m .day'1) 0.10 0.12 0.12 0.12 0.09 0.07 0.05 (0.07) - - - - - - -

Age (days) 4 9 17 23 34 56 - - - - - - - - -
Moult n° 1 3 6 8 11 (13) - - - - - - - - -

25 5 IMP (days) 3 2 3 3 4 (5) - - - - - - - - -
GF (%) (12) 11 11 10 6 (6) - - - - - - - - -
GR (mm.day4) 0.16 0.15 0.16 0.14 0.09 (0.08) - - - - - - - - -



The age where individuals became subadult at 5 psu and 8°C was retarded (42 days) in 
comparison with the other temperatures tested at the same salinity (14 -  15 days). At 15 °C, 
subadults were observed after 5 moults, while at other temperatures generally one more moult 
was required to reach differentiation. Within 11 moults, animals at 25 °C were fully sexually 
developed, while at 15 and 20 °C animals required two to three more moults to reach maturity. 
Adulthood was not reached in any o f the animals at 8 °C within the 4 months duration o f these 
experiments. Clearly, temperature shortens the time to reach sexual maturation in mysids (62, 
52 and 27 days at 15, 20 and 25 °C, respectively).

D I S C U S S I O N

O p tim iz in g  c u ltu re  p ro to c o ls  f o r  N e o m y s is  in te g e r

Maintaining a laboratory stock culture o f Neomysis integer under standardized 
conditions (e.g. methodology according to Verslycke et al., 2003) has the advantage that all 
experimental specimens are bom from adults living at the same temperature, salinity and food 
conditions. Especially when experiments run over an extended period o f time (two years in this 
case), variation that might be caused by different stock animals are kept at a minimum. In 
addition, the exact age o f all individuals is known when cultures are checked daily for newly 
released young.

Based on the present study, some adaptations o f the culture protocol for Neomysis 
integer are suggested to enhance culture yield and/or quality. The laboratory stock culture was 
kept at 20 ± 2 °C. In the individually-based experiments, however, this relatively high 
temperature resulted in a substantially higher mortality (Figure 3). Therefore, a lower culture 
temperature is suggested for N. integer. On the other hand, lower temperatures result in slower 
growth. Animals reach maturity in about 2 months at temperatures o f 20 °C or higher. At 15 °C, 
maturity is only reached after twice that time (~ 4 months), but animals are significantly larger. 
Since size at maturity is directly linked with fecundity (e.g. Mees et al., 1994), larger females at 
maturity result in a substantially higher number o f offspring. Alternatively, when using a 
temperature lower than 20 °C, it might be advisable to increase salinity to 15 psu to increase the 
growth performance of N. integer. Culturing can also be optimized by feeding mysids at a 
higher ration. Subadult N. integer ( 5 - 9  mm) shows a growth limitation when fed with less than 
200 nauplii.mysid"1 d '1 (Fockedey, unpublished). The rations given in the individual growth 
experiments were 1.7 to 6.7 times higher than given to the stock culture and assured a good 
growth without excessive accumulation of left-over food in the containers.

O p tim iz in g  exp o su re  p ro to c o ls  f o r  N e o m y s is  in te g e r

In the present study, Neomysis integer was successfully reared form the first day of 
release from the brood pouch until adulthood under most o f the tested temperature-salinity 
combinations. Their growth was followed in detail using individually-based experiments under 
steady-state conditions in relatively small vessels of 400 ml. Clutter and Theilaker (1971), 
Gaudy and Guerin (1979) and Cuzin-Roudy et al. (1981) concluded that it is impossible to study 
individual growth o f mysids using static systems, as the IMP is highly variable and some 
individuals have indefinitely delayed moults in comparison to others. Constant renewal o f the 
water seems to be a crucial factor for maintaining normal growth and moulting in mysids. Bulk 
experiments have the disadvantage that detailed information on the IMP and GF cannot be 
obtained. Recently, Winkler and Greve (2002) published individually-based growth data o f N. 
integer with a high success rate in a flow-through construction. In our experiments, water was 
partly (50 -  80 %) renewed daily and the exposure jars were cleaned every 4-5 days.



IMP was relatively stable for individuals o f the same age within one treatment (standard error 
generally less than 5 % o f the mean value).

For a small amount of individuals (8), growth was aberrantly delayed. However, this 
could always be linked to an injury o f the exoskeleton. These animals were regenerating the 
damaged part over a few moults, but this was associated with a delayed growth. The injury- 
induced effect on growth has previously been described for euphausiids (Murano et al., 1983; 
Nicol and Stolp, 1990). The aberrant individuals were not used in further analyses in the present 
study. Injuries were generally avoided by transferring mysids in a conic measure spoon 
containing a small volume o f water.

vo n  B e r ta la n ffy  g ro w th  m o d e l

The von Bertalanffy growth model was originally used to describe fish growth, but has 
been applied to crustaceans and more specifically to mysids (Schnute and Fournier, 1980; 
Cuzin-Roudy et a l ,  1981; Mees et a l ,  1994; Fockedey, unpublished). It assumes an asymptotic 
growth and this sigmoid growth pattern has been confirmed in other studies with mysids 
(Astthorsson and Ralph, 1984; Winkler and Greve, 2002). Although the model is derived for a 
single individual, it has mostly been used to model data collected from a group o f animals. The 
growth constant K  and asymptotic length L^f vary among individuals in a group, as in most 
populations of animals for genetic, phenotypic and behavioural reasons (Xiao, 1994). However, 
as supported by the findings o f the present study, growth parameter estimations derived from 
pooled data were only moderately biased in comparison with individual estimations. More 
specifically, the Linf was underestimated when using the pooled data (by including the short 
living animals in the pooled dataset).

Temperature was negatively correlated with Lj„f and positively correlated with K. The 
effect o f salinity on the different growth parameters was less straightforward and was dependent 
on the water temperature in the treatment. Highest asymptotic lengths were achieved in the 15 
psu/15 °C treatment and in the 5 psu/20 °C treatment. The highest growth rate was found in the 
5 psu/15 °C and 15 psu/20 °C treatments.

S ta n d a rd  le n g th  in  fu n c t io n  o f  m o u lt  n u m b e r

Contrary to the findings o f Astthorsson and Ralph (1984), we found the standard length 
to be affected by temperature (and salinity) at a specific moult number. Mysids growing at 15 
°C had a larger standard length in comparison with the other temperatures from the 3rd moult 
onwards. The effect o f salinity on the standard length-moult number relation was also 
significant, however less so than the temperature effect.

In te r m o u lt  p e r io d , G ro w th  f a c t o r  a n d  G ro w th  ra te

The duration o f the first intermoult period was equal for all animals in one treatment 
and lasted 3 - 4  days after leaving the marsupium in the same night. From the second moult 
onwards, there was individual variability on the stage duration and the moults were no longer 
synchronous between different individuals in one treatment. This effect became more obvious 
with increasing moult numbers which corroborates observations by Cuzin-Roudy et al. (1981) 
for the mysid Siriella armata. Within a life cycle, when animals become larger and pass through 
a number of moults, the intermoult period generally increases while the growth factor decreases. 
Astthorsson and Ralph (1984) and Mauchline (1985) described these growth parameters as 
logarithmically for Neomysis integer and other mysids. Winkler and Greve (2002) found an 
initial increase and a later decrease o f the growth factor from maturity on.



The GF in the 8 treatments, in contrast, was almost constant for the first 5 - 6  moults before 
gradually decreasing. The IMP behaved similarly over the first 5 moults. Both GF and IMP 
responses result in a general faster growth rate than would be expected from a logarithmic 
response (Mauchline, 1985). For S. armata the IMP was constant over the first 10 moults until 
the reproductive cycle started (Cuzin-Roudy et al., 1981). However, no relationship was found 
in the present study between the variation in IMP/GF and sexual development.

The intermoult period in the experiments was strongly temperature dependent and 
became smaller at higher temperatures, similar to previous studies with mysids (Astthorsson and 
Ralph, 1984; Winkler and Greve, 2002) and other crustaceans (Nicol and Stolp, 1990). To a 
lesser degree, we also found the IMP to be salinity dependent, with the shortest IMP at 15 psu. 
The growth increment (expressed as GF) was affected by temperature, especially at 25 °C where 
the GF was substantially lower (Hartnoll, 1982). Thus the fast growth at higher temperatures is 
caused by a higher moulting frequency and not by a higher size increment at moulting as 
reported by Astthorsson and Ralph (1984).

Neomysis integer is described as thermophobic (Arndt and Jansen, 1986) with optimal 
resistance to salinities higher and lower than its isosmotic point (16 -  >20 psu) in the lower 
temperature range. Temperatures of 20 °C and higher have an adverse effect on the respiration, 
especially in juveniles (Arndt and Jansen, 1986). Largest animals, i.e. with maximal asymptotic 
length, and low mortality were indeed obtained at 15 °C in comparison with higher 
temperatures. At 15 °C, the highest growth rate was obtained at 15 psu, being the salinity closest 
to the isosmotic point. It is however difficult to explain why at 20 °C the highest growth rates 
were observed at 5 psu.

S iz e  a t  s e x u a l d iffe re n tia t io n  a n d  m a tu r ity

In contrast to male mysids, it is difficult to determine maturity or the development of 
secondary sexual characteristics in females by looking at the exoskeleton. Even in early 
subadults, it remains hard to distinguish the small marsupium on the living animal while it is 
swimming around. Therefore, the moult number at the transition from juvenile to subadult and 
from subadult to adult in females was extrapolated from the information collected for males. 
This was possible as the von Bertalanffy growth parameters were not significantly different 
between genders.

In general, increasing temperature shortens the time to reach sexual differentiation and 
maturation in general. This was very obvious in animals from the lowest temperature treatment 
which did not sexually develop during the course o f the experiment. A cessation o f growth o f 
Neomysis integer during the colder winter months was reported previously based on field data 
(Astthorsson and Ralph, 1984; Arndt and Jansen, 1986; Mees et al., 1994). From experiments 
with this species at 9°C (Astthorsson and Ralph, 1984) the duration to maturity (15 mm total 
length) was extrapolated to be at least 277 days.

Within the range 1 5 - 2 0  °C, salinity seems to have a stronger effect than temperature 
on sexual maturation. The highest tested salinity o f 30 psu retarded the development (in age and 
moult number) at 20 °C. In both the 30 psu treatments (15 and 20 °C) maturity was never 
reached. Sexual differentiation was generally reached at a length o f 4.3 -  4.5 mm, except at 
higher salinities at 20 °C (5.00 -  5.59 mm). Size at maturity is smaller at higher temperature and 
lower salinity.



In te r p o p u la t io n  e ffe c ts

Salinity-temperature conditions for optimal growth might vary between different 
populations o f the same species for genetic and phenotypic reasons (Lee, 1999). Neomysis 
integer used in the present experiments originated from the Galgenweel, a brackish pond with a 
relatively constant salinity o f 5 psu. Population genetic analysis (based on mitochondrial 
cytochrome oxidase I sequences) revealed no differentiation between N. integer from the 
experimental source population (Galgenweel) and the Schelde estuary population (Remerie et 
al., submitted a). The results o f the present experiments can therefore be considered 
representative for the N. integer population o f the Schelde estuary.

It is unknown how growth responses to temperature-salinity conditions vary between 
populations from different latitudes (temperature effect). N. integer o f the Baltic Sea population 
died within 2.5 weeks when held at 20 °C and showed increased respiration rates. These animals 
rarely experience temperatures above 15 °C in their natural environment and never for periods 
exceeding a few days at a time (Laughlin and Lindén, 1983). Kuhlman (1984) reported an 
optimal growth at 1 9 - 2 1  °C and 1 6 - 2 0  psu for juvenile N. integer from the Kiel Canal.

Winkler and Greve (2002), working with N. integer collected from the Elbe estuary, 
reported a faster maturation (110 days at 10 °C; 45 days at 15 °C -  20 psu) at a smaller size 
(standard length 8 - 9  mm at 10 °C and 7 mm at 15 °C) than our population. In our most 
comparable treatment (15 °C and 15 psu) to the Winkler and Greve study, adulthood was 
reached after 89 days at a length o f 12 mm. N. integer from the Ythan estuary cultured at 16°C 
and ± 1 0  psu (~ 30 % seawater) were mature after 188 days at a standard length o f 12.9 mm 
(Astthorsson and Ralph, 1984). This variation might indicate inter-population variation, 
although other factors (like food quality and quantity, flow regime in tanks, size o f the 
recipients, etc.) might also be at the basis of the variation between experimental results.

V a lid a tio n  o f  f ie ld -d e r iv e d  g ro w th  p a ra m e te rs

To date, field-derived von Bertalanffy growth parameters have rarely been validated 
with laboratory observations. This can be done by means o f comparing the multivariate growth 
performance index O ’ (Munro and Pauly, 1983). <J>’ is expected to be basically equal within 
different populations o f the same species and within different stocks o f the same population, but 
can differ because o f pollution, environmental stress or differences in habitat (Moreau et al.,
1986).

The growth performance index O ’ in all our experimental treatments was significantly 
higher than in all cohorts o f the field populations o f Schelde and Galgenweel. This is probably 
the effect o f the ad libitum feeding with the high-energy containing Artemia nauplii and little 
energy loss by restricted swimming activity in the static experimental conditions. Abiotic stress, 
as reflected in the growth performance, was primarily caused by temperature and only 
secondarily by salinity (both in the field and in the experimental treatments). In the highly 
dynamic estuarinc habitat tidal, daily and seasonal variation o f these environmental factors may 
have a great (adverse) effect on the growth o f N. integer.



C o n c lu s io n s

Based on the present study, it can be concluded that higher temperatures caused a 
smaller intermoult period in Neomysis integer. However, temperature does not seem to have an 
effect on the growth factor, except at 25 °C where suboptimal growth occurred. Salinity had a 
secondary effect on the growth (IMP and GF) o f N. integer in comparison to temperature, and 
was temperature dependent. At 8 °C, N. integer grew slowly because o f long intermoult periods 
and a relatively low growth factor. At 15 °C, mysids had a larger GF, but also a larger IMP in 
comparison with 20 °C. Consequently, they took longer to grow, but grew to a larger body 
length. At 25 °C, animals had the shortest IMP, but also had a significantly lower growth 
increment at moulting. At 15 °C, the optimal salinity for growth was 15 psu, whereas at 20 °C 
the shortest IMP and largest GF were found at 5 psu.

Survival and growth o f Neomysis integer was possible within the tested range of 
temperatures (8 -  25 °C) and salinities (5 -  30 psu), but maturation was only possible in a 
smaller range of 15 -  25 °C and 5 - 1 5  psu. Within this range, the size at sexual differentiation 
was constant, but the size at maturity increased with decreasing temperature and increasing 
salinity.

In comparison with field populations o f Neomysis integer of the Schelde estuary and 
Galgenweel the growth performance was higher in all the experimental treatments. Abiotic 
stress was primarily caused by temperature and only secondarily by salinity.
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1 4 2 Ot Chapter 4

Survival, growth and feeding rate of the mysid 
Neomysis integer (Crustacea: Mysidacea) on
laboratory-made estuarine aggregates

ABSTRACT --------------------------------------------------------------------------------------------------------------

Laboratory-generated aggregates (floes) made from natural estuarine water o f the 
oligohaline part o f the Schelde estuary (Belgium) were administered to the brackish water 
mysid Neomysis integer in order to determine their value as a dietary item. Survival, growth, 
intermoult period, growth factor and intermoult growth rate of subadult mysids ( 4 - 1 0  mm 
standard length) were monitored over 4.5 weeks in a roller table. In a first experiment, the effect 
o f tidal dynamics on the floe formation process, as well as on the floe size and shape was 
followed. Also, we evaluated the effect o f continuous rotation in the roller tanks on the growth 
o f N. integer to be negligible. Subsequently, we performed a growth experiment with N. integer 
reared on the laboratory-made aggregates and estimated the feeding rate.

The estuarine aggregates are a valuable food source for the mysids as they showed good 
survival (80 %) and grew substantially on this dietary item (0.08 ± 0.01 mm d '1), although 
growth is slower than on Artemia nauplii (0.11 ± 0.01 mm d '1). The high feeding rate of 
subadult Neomysis integer on the laboratory-made floes (38 floes ind'1 h '1), may compensate for 
their low energetic value. The roller table is an adequate tool for feeding experiments with N. 
integer on the fragile estuarine aggregates.

For Neomysis integer living in the maximum turbidity zone o f estuaries, the estuarine 
floes may be an important additional food source, especially in periods when mesozooplankton 
prey (mainly calanoid copepods) is scarce. The rich bacterial and protozoan communities 
associated to the floes as well as the incorporated amorphous organic matter, normally too small 
to be efficiently consumed by mysids, become part o f their diet. This pathway thus constitutes a 
short-cut in the estuarine food chain.

Subm itted for publication as:
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Neomysis integer (Crustacea, Mysidacea) on laboratory-made estuarine aggregates. Mar. Ecol. 
Prog. Ser.



I N T R O D U C T I O N

The brackish part o f estuaries is characterized by high concentrations o f suspended 
aggregates composed o f a large mass o f fine sediment particles, biogenic debris and fluffy 
organic material (Chen et al., 1994). These microflocs (< 125 pm) collide with each other, and 
with mineral grains, detritus, phytoplankton, faecal pellets and macrophytal debris to form 
subsperical macroflocs with a length up to 3 -  4 mm (Eisma, 1986; Zimmermann and Kausch, 
1996). These macroflocs are very fragile, and easily deflocculate and reflocculate in the water 
column (Eisma, 1986; Maldiney and Mouchel, 1995). The components o f estuarine micro
aggregates are strongly held together within a matrix o f exopolymers released by bacteria, algae 
and higher plants, or carbohydrates mobilized from the suspended and dissolved fractions at low 
salinity (Eisma, 1986; Zimmermann-Timm et a i ,  1998; Artolozaga et al., 2002).

The aggregates are intensively colonized by micro-organisms and sometimes metazoans 
(Alldredge and Silver, 1988; Shanks and Edmondson, 1990). In comparison with the 
surrounding water, estuarine floes are enriched with bacteria, amoebae, ciliates and rotifers and 
contain 50 -  80 % of the total densities o f these organisms in the water column (Zimmermann 
and Kausch, 1996; Zimmermann, 1997; Zimmermann-Timm et al., 1998), even though the 
living biomass contributes less than 3 % to the total organic carbon in the floes (Muylaert et a i,  
1999). Respiration o f macrofloc-associated bacteria and protozoa amounts to 84 -  94 % o f the 
total respiration in the water column o f the upper Elbe (Ploug et al., 2002). The densities o f the 
micro-organisms on floes are o f the same order as in the sediments (Wömer et al., 2000).

The number o f large macro-aggregates (> 400 -  3000 pm) in the water column of the 
Elbe estuary (Germany) was estimated with an in situ camera at 20 to 4000 floes I 1 
(Zimmermann and Kausch, 1996; Ploug et al., 2002). The aggregates sink out o f the water 
column at a faster rate than their individual components (Wolanski, 1995), thus forming a 
potentially important energetic link between pelagic and benthic communities (Eisma, 1993a). 
However, floes in a turbid estuary probably undergo several sedimentation and re-suspension 
events (Ploug et al., 2002).

The catchment basin of the Schelde estuary (The Netherlands -  Belgium) is a strongly 
industrialized and densely populated area (Wollast, 1988). As a consequence, the river is highly 
polluted by domestic and industrial waste water and agricultural run-off (Heip, 1988; Baeyens 
et al., 1998). The estuary acts as a bio-filter that changes the organic contamination qualitatively 
and quantitatively (Soetaert and Herman, 1995b). The highest turbidity in the Schelde is 
generally measured in the oligohaline and freshwater zone between Doel and Temse (Baeyens 
et al., 1998; Chen, 2003), but the maximum turbidity zone (MTZ) shifts its position along the 
longitudinal axis of the estuary depending on the tides and the freshwater run-off (Eisma, 1986).

In general, marine snow and estuarine aggregates can be considered as sediment-like, 
nutrient rich micro-patches within the pelagic environment (Silver et al., 1978; Alldredge and 
Silver, 1988). The numerous aggregates may be grazed upon directly by larger 
mesozooplankton, mysids and fish, as is demonstrated for marine snow (Lampitt et al., 1993; 
Artolozaga et al., 2002). Aggregates (< 65 pm) have been shown to be an important item 
present in the stomachs of the brackish water mysid Neomysis integer in the MTZ o f the 
Schelde, Elbe and Gironde as demonstrated by gut content analyses combined with Energy 
Dispersive Spectroscopy (EDS) X-Ray Microanalysis (EDAX) (Fockedey and Mees, 1999 -  
Chapter 2). However, it is not clear if  N. integer actively search for and feeds on the aggregates 
or if  they accidentally swallow them while preying on other prey items (mainly calanoid 
copepods).



The aim of this study was to identify the nutritional importance of floes for the brackish 
water mysid Neomysis integer by assessing their survival and possible growth when feeding 
solely on estuarine aggregates. Because estuarine macroflocs fall apart upon sampling in 
strongly bounded microflocs, we modified an experimental device (Shanks and Edmondson, 
1989) -  originally designed for the formation o f marine snow -  in which floes are continuously 
regenerated from estuarine water. We first tested effects o f tidal dynamics on the process o f floe 
formation. Also we evaluated the effect o f continuous rotation in the roller tanks on the growth 
o f N. integer. Subsequently, we performed a growth experiment with N. integer reared on the 
laboratory-made aggregates and estimated the feeding rate.

M A T E R I A L  A N D  M E T H O D S  

W a te r  s a m p lin g  a n d  s ite  d e s c rip tio n

The aggregates used in the experiments were made o f water collected from the Schelde 
estuary. The sampling station Sint-Anneke (51°14.0’ N -  4° 23.8’ E) is situated all year through 
in the MTZ of the estuary (Baeyens et al., 1998). Samples o f the 0.5 m surface layer were taken 
by bucket from a pontoon above an intertidal mud flat. Portable conductivity and oxy-meters 
(type WTW) were used for the measurement o f water temperature, salinity and dissolved 
oxygen concentration. Turbidity was measured with a portable microprocessor turbidity meter 
(type HANNA; in Formazine Turbidity Units or ftu). The collected water was transported to the 
laboratory in plastic containers o f 50 1, where it was aerated while being stored at 15 °C in the 
dark (for a maximum of 3 days).

S a m p lin g  o f  N e o m y s is  in te g e r

Due to logistical restrictions, no mysids could be sampled from the estuarine sampling 
station, but were instead collected in the brackish pond Galgenweel (51°12.7’ N -  4° 22.1’ E) 
near Sint-Anneke. The mean annual salinity o f the pond is 4 psu. A large population o f 
Neomysis integer was present in the pond and its population dynamics and production have 
been formally studied (Fockedey, unpublished). The mysids were collected from the shallow 
south-western edge o f the pond with short hauls using a hand net with a mouth o f 0.3 x 0.2 m 
and a mesh size of 1 x 1 mm. The organisms were transported and kept in the laboratory in 
ambient water with aeration at 15 °C prior to the experiments.

L a b o ra to ry -m a d e  ag g reg ates

Aggregates were generated using the adapted device o f Shanks and Edmondson (1989). 
Ten plexi-glass cylindrical containers (diameter 14 cm; depth 5.5 cm; volume 0.847 1) with 
estuarine water were placed on two parallel rotating bars on a roller table (Figure la) and rotated 
at a velocity o f 10 -  11 rpm. Before filling, the water was passed through a 250 pm sieve to 
exclude larger plankton and detritus. While filling the cylinders, the water was mixed at low 
speed with a paint mixer to homogenize the suspended matter.

The tanks were photographed while rotating (Leica camera with 1/2.8/60 mm macro
objective; diaphragm 8; closing time 1/60; distance 25 cm; indirect flash). It was impossible to 
focus on the complete depth of the rolling tank. Therefore, a movable small, white plastic plate 
(diameter 4.8 cm) was mounted in the container to use as a background to focus on a limited 
part o f the water column (Figure lb). Depending on the floe density, it was positioned at a depth 
o f 1 or 2 cm, estimates o f floe densities based on photographs taken at either depth not differing 
significantly.



Figure 1: (a) Roller table 
adapted from Shanks and 
Edmondson (1989); (b) 
detail of a plexi-glass 
cylinder photographed 
while rotating; (c) a 
movable white plastic 
plate (diameter 48 mm) 
creates a background (1 
or 2 cm deep) for the 
detailed picture used for 
counting and sizing of 
the generated floes by 
image analysis.

Before and after taking the pictures, this plate was pushed against the container wall to 
prevent interference with floc-formation. Three pictures were taken o f each tank per observation 
(Figure lc). Black and white photo film o f 100 ASA gave the best results for later measurement 
o f the number and size of the aggregates by means o f image analysis (Leica Quantimet 500+). 
The surface area, length, width and perimeter o f all individual macro-flocs, with a length larger 
than 250 pm (> 2 pixels), were measured. The number of aggregates present in the water 
volume in front o f the white plate was recalculated to number per litre.

M e a s u r in g  g ro w th

The individual growth o f the mysids was indirectly assessed from the size increments of 
successive moults shed by an individual (Fockedey et al., in press -  Chapter 3). Moulting in 
Mysidacea mainly takes place during the dark and mysids are known to eat their moults rapidly. 
Therefore, the experimental containers were checked daily at the beginning o f the light period. 
The moults produced by the mysid in the roller tanks quickly fell apart due to the rotation. The 
waste water o f the former day was sieved over a 106 p.m sieve to find the uropode exopodites, 
which were then preserved in 4 % formaldehyde. With a drawing mirror and a digitising tablet, 
the length o f the exopod (EXO) o f the uropod was measured and recalculated to pre-moult 
standard length (SL) by means o f the regression (Fockedey et al., in press):

SL = 1.085566 + 4.081793 EXO (pO.OOO 1 ; R2: 0.9569; N=97)

At the start o f each experiment, subadult animals o f a specific size range were selected 
(as specified further). This was done by laterally measuring the standard length (i.e. the 
distance between the eye bases and the basis o f the telson) under a stereomicroscope equipped 
with a drawing mirror. Little illumination was used to prevent stress during handling and 
measuring. The growth was followed for 3.5 weeks (experiment 2) or 4.5 weeks (experiment 3). 
Although the overall growth o f Neomysis integer at 15 °C is best described by the generalized 
von Bertalanffy growth model (Fockedey et al., in press), the subadult individuals o f the 
selected size classes grew linearly during the course o f the experiment. Linear regression 
analysis was applied and the slope and elevation o f the linear regression equations was tested 
between treatments (Zar, 1996).



The intermoult growth rate (GR; in mm d '), the intermoult period (IMP; in days) and the 
growth factor (GF; in %) were calculated (Mauchline, 1977) and compared between 
experimental treatments at each moult event by pairwise comparisons (Mann-Whitney U-tests).

E x p e r im e n t  I  -  E ffe c t o f t id a l  d y n a m ic s  o n  th e  f lo e  fo r m a t io n  p ro cess

Flocculation is a dynamic process with the state o f flocculation changing with time 
(Lick et al., 1992; Chen et al., 1994). The aim o f the first experiment was (1) to determine the 
time needed to obtain a stable situation in the floe formation process within the roller tanks, and 
(2) to study the effect o f the tidal phase at the moment o f water sampling on this process. 
Estuarine water was sampled on 9/4/1998 at 2 hours and 1 hour before high tide, at high tide 
(HT) and 1 and 2 hours after high tide and treated as described before. For each tidal situation, 2 
containers were set up on the roller table: one for the measurement of dissolved oxygen 
concentration during the floe formation process and another not-manipulated replicate for the 
quantification and sizing o f the aggregates (with photography and image analysis) by 
monitoring at time 0, 10 min, 20 min, 35 min, lh, 1.5h, 2h, 3h, 4h, 6h, 8h and 18h after setup. 
Next to the number o f macro-aggregates, the surface area S, length L, width W, perimeter P and 
the spherical equivalent diameter SED, the elongation L/W, circularity 47t(S/P2) and roundness 
4S/tiL2 (Billiones et al., 1999) were also calculated to describe the shape o f the floes. The 
experiment was performed in a climatized chamber at 15 °C and under constant illumination.

E x p e r im e n t  2  -  Im p a c t  o f  ro ta tio n  o n  g ro w th  o f  N e o m y s is  in te g e r

A comparison was made between the growth performance of subadult Neomysis integer 
individuals in rotating tanks (content 847 ml; 8 replicates) with individuals in glass jars under 
static conditions (content 350 ml; 10 replicates). Both treatments were performed with artificial 
seawater o f 5 psu (Instant Ocean) and were given freshly hatched (< 48 h) Artemia nauplii as 
food (4000 I'1). The selected N. integer individuals ( 4 - 6  mm standard length) were adapted for 
2 days to a diet of Artemia nauplii prior to the start o f the experiment. The experiment was 
performed at room temperature ( 1 6 - 2 2  °C) with a 14h light: 10h dark photoperiod. Salinity and 
temperature were monitored daily and any shed moults were collected. No aeration was 
provided, but the water was replaced and fresh food supplied daily. The experiment lasted for 
23 days (24/10/1997- 15/11/1997).

E x p e r im e n t  3  -  S u r v iv a l a n d  g ro w th

The survival and growth o f Neomysis integer on a diet o f laboratory-made floes were 
studied over a period o f 32 days (from 19/02/1998 till 22/03/1998). As a control, the survival 
and growth o f identically sized individuals feeding on Artemia nauplii (4000 I'1) were followed. 
The experiment was set up in a climatized chamber o f 15 ± 1 °C and a light regime of 12 h 
light: 12 h dark. The selected N. integer individuals ( 4 - 6  mm standard length) were allowed to 
adapt for 3 days to either a diet o f natural suspended matter from the maximum turbidity zone of 
the Schelde estuary or Artemia nauplii (control). Afterwards, they were put individually in 
rotating tanks (847 ml; 10 replicates) with estuarine water on the roller table or in static jars 
(content 350 ml; 15 replicates) in artificial seawater of 5 psu (control).

The water in the rolling containers was changed daily and the waste water checked for 
shed moults. Every day the salinity, temperature, dissolved oxygen, suspended particulate 
material (SPM), particulate organic material (POM) and C:N ratio (Carlo Erba CHN elemental 
analyser) were monitored. The number and size o f the floes were estimated by means o f 3 
pictures taken after at least 3 hours o f rotation.



Every two to three days, new Schelde water was collected at the predicted high tide (± 30 
minutes) and kept in the dark under stable temperature conditions (15 ± 1°C) while aerated for 
later use in the experimental units.

E x p e r im e n t  4 - F e e d in g  ra te

Using the same photographic techniques as described above, a conservative estimate of 
the feeding rate o f Neomysis integer on laboratory-made aggregates was established. The 
cylinders were filled with estuarine Schelde water collected on 29/04/1998 and floe formation 
was started. After 3 hours the generated aggregates were photographed (to) for counting and 
sizing. Five N. integer individuals with a standard length between 7 and 10 mm were then put 
into each rolling tank (845 ml; 10 replicates) and allowed to feed on laboratory-made aggregates 
for 24 hours after which the remaining aggregates were quantified and sized again (t24h). The 
animals had first been adapted to this diet for 4 days. The experiment was performed in a 
climatized room of 15 ± 1 °C and under 12h light: 12h dark conditions. The feeding rate on 
laboratory-made aggregates (in # aggregates ind"1 h"1) was estimated by:

____^  _ # aggreg ates at to - # aggregates at t24h.r eeciing rate —------------------------------------------------
24h .5 ind

The decrease in the floe concentration (overall and within each 0.2 mm length class) over the 
course o f the experiment were statistically tested using a non-parametric Wilcoxon matched pair 
test.

R E S U L T S

E x p e r im e n t  1 -  E ffe c t o f t id a l  d y n a m ic s  o n  f lo e  fo r m a t io n  in  ro l le r  ta n k s

The salinity o f the water mass sampled varied between 0.5 psu (2h before HT) and 2.6 
psu ( lh  after HT). The turbidity was maximal at high tide (66 ftu) and generally higher before 
(28 -3 4  ftu) than after (20 -  22 ftu) high tide. The water temperature recorded in the field was 
11.9 -  12.2 °C. Dissolved oxygen concentrations generally dropped by 1 to 1.5 mg I'1 during the 
course o f the experiments in comparison with the initial values at start-up (4.4 -  5.8 mg I"1).

The formation of macro-aggregates in the rolling tanks started within 20 to 120 minutes 
after the start o f the experiment. A stable situation, referring to the number of floes (Figure 2), 
floe size and shape (Figure 3), was encountered after ± 3 - 4  hours o f rotation (as indicated with 
the vertical line on all graphs). The highest number o f floes is generated with water taken at 
high tide (28000 -  38000 I'1), and generally higher with water from before (7000 -  14000 I"1) 
than from after (2000 -  6000 I"1) high tide.

Figure 2: Number of macro
aggregates generated over 18 
hours with water from 5 sampling 
occasions within the tidal cycle. 
The vertical line visualises the 
time (180 -  240 min) of obtaining 
a relative steady state.

S3o 2h before HT
1 h before HT 

-H T
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Figure 3: Size and shape factors o f  the m acro-aggregates generated over 18 hours w ith w ater from  5 
occasions w ithin the tidal cycle. The vertical line visualises the tim e (180 -  240 min) w hen a steady state 
is assumed. Legend as in F igure 2.



In steady state (> 4 h) the mean floe surface area for each treatment ranged between 
0.19 and 0.29 mm2, with a mean length between 0.61 and 0.76 mm and a mean width between 
0.36 and 0.48 mm. The mean SED varied between 0.47 and 0.58 mm, and the mean perimeter 
between 1.94 and 2.37 mm. The length o f the aggregates equalled 1.6 to 1.9 times their width 
(elongation). The circularity varied between 0.61 and 0.67 and increased with time in all 
treatments, as the aggregates rounded up. Roundness ranged between 0.63 and 0.73 and 
followed the same pattern as circularity, although not so pronounced. The variation (SE) on the 
number, size and shapes of the floes between the 3 pictures per situation was generally smaller 
than 5 % of the mean value.

The length frequency distributions o f the floes were generally unimodal with the modus 
relatively stable over time in all treatments (0.4 -  0.6 mm). Only in the situation where water 
from lh after high tide was used, the length frequency distribution became bimodal after 3h of 
rotation with modes at 0.4 -  0.7 and 0.9 -  1.0 mm length.

Despite the absence o f replication, the observed size and shape o f the generated floes 
differ only moderately according to the tide. Therefore, only high tide water was used in 
subsequent experiments, since this yielded the highest floe numbers in the roller tanks.

E x p e r im e n t  2 - Im p a c t  o f  ro l l in g  ta n k s  o n  g ro w th  o f  N e o m y s is  in te g e r

Individuals o f Neomysis integer kept in the cylinders on the roller table were constantly 
moving. They were swimming against current to keep their position or hung on the side wall of 
the tank, rotating at the same speed as the containers. In the rotating cylinders, all individuals 
except one survived the experiment. The individual growth (as the increase in standard length) 
was linear in both the rotating tanks and the static containers. The inclination and elevation of 
both linear regression equations based on all measuring points within each treatment (Figure 4) 
were not significantly different (respectively p=0.052 and p=0.071).
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■ rotation SL = 4 .26  + 0 .12  day (p<.000001; R2: 0.78; N =42) day

□ stagnant SL = 4 .36  + 0 .13  day (p< .000001; R2: 0.80; N =44)

Figure 4: Growth of Neomysis integer in the rotating cylinders and static containers. Linear regression 
analyses performed with all measurement points within each treatment.
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Figure 5: Pre-m oult standard length SL at each m oulting event (a), interm oult period IMP (b), interm oult 
growth rate GR (c) and grow th factor GF (d) in betw een successive m oults in the rotating cylinders and 
the static containers.

The animals grew on average from 4.69 ± 0.20 to 7.06 ± 0.27 mm in the rotating 
cylinders and from 4.76 ± 0.17 to 7.29 ± 0.26 mm in the static jars (Figure 5a). The pre-moult 
standard length for each moult did not differ significantly between the two treatments (all 
pairwise comparisons: NS). No significant differences were found in the IMP between the two 
treatments (all pairwise comparisons: NS) and a gradual increase in the IMP from 3.61 ±0.12 to 
4.67 ± 0.33 days was observed (Figure 5b). In between the successive moult stages the mean 
GR varied between 0.11 ± 0.02 and 0.17 ± 0.01 mm d"1 and the mean GF between 8.1 ± 0.8 and 
12.1 ± 0.37 %. No consistent patterns could be detected over the course o f the experiment, nor 
between the treatments (Figure 5c, d; all pairwise comparisons: NS).

So, the effect o f rotation on the growth performance o f Neomysis integer (size class 4 -
8 mm) is negligible. In further experiments, the static jars were used to conduct the control 
treatments.

E x p e r im e n t  3  -  S u rv iv a l a n d  g ro w th

Over the course of the experiment, the salinity of the collected estuarine water ranged 
between 1.3 and 6.5 psu, the lower values being caused by heavy rainfall between day 11 and 25 
(Figure 6a). The oxygen concentration o f the estuarine water in situ ranged between 3.4 and 5.4 
mg I'1 over the 4.5 weeks. Direct use of this 0 2-poor water in the growth experiment caused a 
100 % mortality of Neomysis individuals within 1 day (preliminary experiment). Thus, aeration 
was necessary before use (start concentrations: 6.1 -  8.7 mg I'1). After one day in the rolling 
tanks with 1 mysid, the dissolved oxygen concentration reduced maximally with 2.8 mg I'1. The 
SPM and POM concentrations o f the administered water varied according to a semi-lunar cycle 
(Figure 6b): periods after spring tides were generally associated with high SPM (> 140 mg I 1) 
and high POM values (> 26 mg I"1); periods following neap tides with lower SPM (< 100 mg I'1) 
and lower POM concentrations. Despite the high variation in suspended matter concentration, 
the ratio POM:SPM did not show a relationship with the spring-neap tide cycle and was fairly 
constant during the whole experiment; i.e. POM varied between 15 and 32 % of the SPM.



Figure 6: Environmental 
variables o f  the estuarine 
w ater sam pled over the 
course o f  the growth 
experim ent w ith Neomysis 
integer feeding on 
laboratory-m ade floes: (a) 
high tide salinity; (b) SPM 
(black dot), POM (white 
dot) and POM :SPM  ratio 
(hyphen); (c) Carbon 
content (black square), 
nitrogen content (white dot) 
and C:N ratio (sm ooth line) 
o f  the suspended particulate 
matter. Standard error 
generally less than 5 %  o f 
the m easured value.

Storage of environmental water in the laboratory (in a dark 15 °C climatized room with constant 
aeration) for up to 3 days did not affect the SPM or POM concentrations. The total carbon in the 
SPM (expressed as % of the dry weight) of the administered water varied between 4.3 and 9.2 
%, while the total nitrogen accounted for 0.45 to 0.94 % (Figure 6c). The C:N ratio stayed 
relatively stable until the 19th day o f the experiment (mean C:N = 12.9 ± 0.3). Between day 19 
and 29, the C:N ratio was substantially lower (C:N = 7.8 ± 0.8).

The number o f laboratory-made aggregates in the roller tanks varied between 744 ±101 
and 32989 ± 372 aggregates I"1 (Figure 7a) and was highly correlated with the SPM (Spearman 
R: 0.8851; N = 41; p = 0.0000) and POM values (Spearman R: 0.8727; N = 42; p = 0.0000). 
The mean size of the floes was relatively constant (Figure 7b, Table 1) and was not related to 
the amount o f suspended material. The maximal dimensions, though, were related to the SPM 
concentrations (Figure 7b) and thus to the number of aggregates I'1.
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Figure 7: Concentration (a) 
and m axim al length (large 
hyphen in b) o f  the laboratory
generated aggregates is 
strongly correlated to the SPM 
values over the course o f  the 
experim ent. M ean length 
(black line in b) and minimal 
length (sm all hyphen in b) are 
not related to SPM 
concentrations. Error bars 
indicate standard errors.

Table 1: M ean num ber (± SE) and dim ensions o f  the laboratory-m ade floes over the course o f  the growth 
experim ent

mean ± SE min max

Number o f aggregates number I'1 12349+ 1586 522 32989
Length |im 0.61510.007 0.255 3.770
Width Hm 0.369 ± 0.006 0.127 2.504
Surface area mm2 0.209 ± 0.005 0.065 3.691
Perimeter mm 1.97210.023 1.019 19.114
Spheric equivalent diameter (SED) mm 0.490 ± 0.6 0.288 2.168
Elongation 1.852 ±0.015 1.000 11.031
Circularity 0.632 ± 0.000 0.097 0.836
Roundness 0.696 ± 0.005 0.113 1.284



SL (mm)

■ floes SL = 4 .58  + 0 .06  day (p<.00001 ; R2: 0.79; N =36) day

□ Artem ia SL = 4.81 + 0 .12 day (p< .000001; R2: 0.87; N =61)

Figure 8: Growth of Neomysis integer feeding on laboratory-made floes and Artemia nauplii. Linear 
regression analyses performed with all measurement points within each treatment.

Neomysis integer fed laboratory-made floes showed a good survival over the course of 
the 32 day experiment (80 %); only at day 26 and day 28 single individuals died. Mortality in 
the controls was comparable (73 %) and appeared on day 2, 14, 20 and 23. The surviving 
individuals moulted minimally 5 times. The animals fed laboratory-made aggregates grew 
significantly, although with a slower rate compared to the control individuals fed Artemia 
nauplii (Figure 8), as indicated by a significantly lower inclination o f the linear regression (p =
0.00074). The animals grew on average from 4.84 ± 0.13 to 6.28 ±0.15  mm on floes and from 
5.36 ± 0.08 to 8.21 ±0.13 mm on Artemia.

The standard length at each moult (Figure 9a) o f Artemia fed N. integer was always 
significantly larger than the ones feeding on floes (all pairwise comparisons, except 2nd moult: p
< 0.01). Unfortunately, the initial standard length o f the selected individuals o f the Artemia 
treatment was significantly larger (5.36 ± 0.8 mm) than for the floe treatment (4.84 ± 0.13 mm), 
and was an unforeseen error within the experimental set-up. A gradual increase in the IMP was 
observed over the course of the experiment from 5.38 ± 0.10 to 6.83 ± 0.27 days (Figure 9b), 
but no significant differences were found between the two treatments (all pairwise comparisons: 
NS). In between successive moult stages, the mean GR varied between 0.064 ±0.015 and 0.095 
± 0.024 mm d"1 and 0.078 ± 0.004 and 0.130 ± 0.014 mm d '1, respectively for the treatments 
‘floes’ and ‘Artemia ' (Figure 9c). The GR o f the animals fed Artemia was significantly higher 
in the last two intermoult periods (p < 0.05). The mean GF varied between 7.0 ± 1.6 and 10.2 ± 
1.6 % in the floe treatment and between 7.8 ± 0.4 and 13.4 ± 1.3 % in the Artemia treatment. No 
patterns could be detected over the course o f the experiment, nor between the treatments (Figure 
9d).

It can be concluded that Neomysis integer can survive and substantially grow when 
feeding on laboratory-made aggregates, although with a slower growth rate than when fed 
Artemia nauplii.
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Figure 9: Pre-m oult standard length SL at each m oulting event (a), interm oult period IMP (b), interm oult 
growth rate G R (c) and grow th factor GF (d) in  betw een successive moults in the floe and Artemia fed 
Neomysis integer individuals. M ann-W hitney U -test results are indicated (*: p < 0.05; **: p < 0.01 ; ***: p
< 0.001; NS: not significant).

Experim ent 4 -  Feeding rate

In 2 out o f 10 replicates, mortality o f 1 -  2 mysids occurred in the course o f the feeding 
experiment and these were omitted from further analyses. A significant feeding o f Neomysis 
integer individuals on laboratory-made floes was demonstrated (Wilcoxon matched pair test: p 
= 0.012) with a feeding rate o f 38 ± 4 floes ind"1 h '1. In none o f the 0.2 mm size classes was 
there a significant decrease in the number o f floes I'1 observed after 24 hours o f feeding, 
indicating no size selection on aggregates by N. integer (9.6 ± 0.2 mm standard length).

DISCUSSION

C o m p a r is o n  b etw een  la b o ra to ry -m a d e  a n d  n a tu r a l  e s tu a r in e  f lo e s

The vast majority o f the laboratory-made floes were in the 0.4 to 0.8 mm length class,
i.e. the 0.4 to 0.5 mm diameter class. The maximal diameter o f in situ aggregates in the Schelde 
estuary is ± 0.8 mm (Eisma et al., 1983), with the highest frequency o f floes in the diameter 
class 0.15 -  0.5 mm (Eisma et al., 1990). Wartel and Francken (1998) however, measured a 
smaller floe diameter in the Schelde (outside the MTZ), between 0.02 and 0.25 mm. The 
maximal length (3.8 mm) o f the floes generated in the roller table is in good agreement with the 
maximal length generally reported for estuarine floes (i.e. 3 - 4  mm, Eisma, 1986). The size and 
shape of the laboratory-generated floes differ only moderately according to the tide. In the field, 
the floe size changes over a tidal cycle in relation to the current velocity and turbulence (Chen et 
al., 1994). Largest floes form at slack tide due to the reduced current velocity and turbulence 
(Chen et al., 1994; Eisma et al., 1994). These larger floes start to settle out to the bottom, 
resulting in a reduced floe size at the surface layer (Eisma, 1986). The size and firmness of 
estuarine aggregates are also much related to the nature o f the organic matter in the floes (Eisma 
etal., 1983; 1985).



Macro-aggregates reach concentrations o f 20 -  4000 floes I'1 in the Elbe estuary 
(Germany) (Zimmermann and Kausch, 1996; Zimmerman, 1997; Ploug et al., 2002). No 
comparable data are available for the Schelde estuary. In the laboratory, floe concentration was 
on average 14000 ± 1100 floes I'1, with a range o f 700 and 33000 floes I'1. The highest number 
o f aggregates was generated with water collected at high tide in the period after spring tide.

One can conclude that the size o f the laboratory-made floes is comparable with those 
naturally occurring in the Schelde. The number o f floes generated in the roller tanks is highly 
variable according to the spring-neap cycle, but exceeding the numbers reported for the upper 
estuarine zone in the Elbe estuary by one order o f magnitude. In situ floe concentration 
measurements have spatial and/or seasonal variation, as discussed by Zimmermann (1997). 
Other studies are restricted to the floe size variation over a tidal, spatial and seasonal scale 
(Chen et a i ,  1994; Eisma et al., 1994; Eisma, 1986; Wartel and Franken, 1998; Chen, 2003). 
Tidal or neap-spring tide variation on in situ floe concentration has hitherto not been considered. 
Shanks and Edmondson (1989) originally developed the roller table for the generation o f marine 
snow and compared field aggregates with laboratory made ones. The laboratory-prepared 
aggregates had a significantly greater axis and a significantly larger volume than field 
aggregates. However, they had the same density, porosity and composition. The roller table is 
therefore considered an adequate tool for feeding experiments with fragile aggregates (Larson 
and Shanks, 1996).

Im p a c t  o f  v a r ia b ility  in  s a lin ity  a n d  ra t io n  o n  th e  g ro w th  o f  N e o m y s is  in te g e r

Although the sampling o f the estuarine water was standardised according to the tide, the 
salinity decreased substantially from 6.5 to 1.3 psu due to heavy rainfall. According to Eisma et 
al. (1991), salinity does not influence the in situ macrofloc size, but it alters the firmness o f the 
floes through a differential mobilisation o f polymers.

A maximum turbidity zone occurs in the low salinity region of estuaries (< 5 psu), but 
its geographical position shows a large spring-neap tide variation (Loring et al., 1983; Syvitski 
et al., 1995). Concentrations of SPM at the MTZ can vary between 30 and 280 mg I"1 in the 
upper Schelde estuary (Baeyens et al., 1998). Turbidity is highest at high tide (Chen et al., 
1994; Baeyens et al., 1998) and is between one and two orders o f magnitude higher at spring 
tides than at neap tides (Morris et al., 1982). In the present study, the spring-neap tide variations 
in SPM and POM had respective ranges o f 33 -  207 mg I'1 and 6 - 4 5  mg I 1. The number of 
aggregates formed in the roller tanks varied greatly between 700 and 33000 floes I'1 and was 
correlated with the SPM concentrations, which in turn varied according to the semi-lunar cycle 
and to salinity. These large quantitative variations in the ration were not reflected in the growth 
performance o f Neomysis integer. Taking the estimated feeding rate of 38 floes h '1 ind"1 and 
assuming a continuous feeding over 24 hours, the maximal daily ration of 7 -  10 mm sized N. 
integer approximates ca. 1000 floes d '1. Hence, the concentration in the roller tanks provided 
ample food to the mysids, except at day 21 where less than 1000 floes I"1 were recorded.

N u tr it iv e  v a lu e  o f  th e  f lo e s  f o r  N e o m ys is  in te g e r

Wömer et al. (2000) studied the succession o f bacteria and protists within laboratory- 
made macro-aggregates generated from Elbe water. On the first day, more than 109 cells ml"1 
were counted within the aggregates. Flagellates and ciliates were also much more abundant than 
in the surrounding water. The first protozoan colonizers were small heterotrophic flagellates 
(such as choanoflagellates and euglenoids).



Per aggregate, 1 -  24.106 bacterial cells were counted (Ploug et al., 2002) in the upper 
Elbe estuary, so that bacteria on floes account for 80 -  90 % o f the total number o f bacteria in 
the water column (Zimmermann, 1997; Zimmermann and Kausch, 1996). The estimated 
biomass o f bacteria and protozoa on 0.5 -  1.5 mm sized aggregates from the Elbe was highly 
variable (20 -  400 ng C per aggregate) and showed poorly correlated with aggregate size (Ploug 
et al., 2002). Protozoa, dominated by nanoflagellates, varied between 25 and 1500 cells per 
aggregate (Ploug et al., 2002).

In a laboratory study with water from the MTZ o f the Schelde, 35 % of the bacteria, 
10% of the flagellates and 25 % of the ciliates present in the water column were associated with 
laboratory-made floes (Muylaert et al., 1999). Numbers o f micro-organisms per volume unit of 
floes were 10 (flagellates and ciliates) to 100 times (bacteria) higher than those in the 
surrounding water. 30 -  50 % of the POC in the water column o f the MTZ o f the Schelde was 
associated to the estuarine floes (Muylaert et al., 1999), but living biomass contributes only 3.2 
% o f the total particulate organic carbon in the floes. The majority o f the organic carbon in floes 
consists o f mucus and detritus particles embedding the inorganic sediment (Eisma, 1986; 
Zimmermann-Timm et al., 1998; Artolozaga et al., 2002). The volume ratio o f mineral matter 
versus organic matter in floes varies from 7:1 to 2:1 (Eisma, 1986). The organic matter content 
o f floes amounts to 5 -  15 % of the dry weight (Eisma 1986) or 1 0 - 2 0  mg POC I'1 aggregates 
(Muylaert eta l., 1999).

Fockedey and Mees (1999 -  Chapter 2) demonstrated that Eurytemora affinis and 
estuarine aggregates are the main items in the stomachs o f Neomysis integer in the MTZ of 
Elbe, Schelde and Gironde estuaries. The size o f the unidentifiable detritus particles 
encountered in the stomachs o f the mysids is an order o f magnitude smaller than the aggregates 
administered in the present experiment and the ones found in situ (Eisma et al., 1990). The 
macro-aggregates (0.4 -  0.8 mm) possibly fall apart or are broken down (mechanically or 
enzymatically) into micro-aggregates (< 65 (im) during uptake or/and digestion.

The mean dimensions of the laboratory-made macro-aggregates are comparable with 
those of calanoid copepods (Billiones et al., 1999): length, width, surface area, SED, elongation, 
roundness and circularity are all in the same order as in this prey. An aquatic animal generally 
feeds on items 1 -  10 % its own body size (Kiorboe, 1993). For Neomysis integer used in the 
feeding experiment ( 9 - 1 0  mm), this means between 10 and 100 ^.m. In experiment 4 no size 
selectivity could be detected, however.

F e e d in g  ra te

The present study is the first to make a direct estimate o f the feeding rate on estuarine 
floes, as expressed in number o f floes consumed per unit time. Other studies determine 
ingestion rate on estuarine aggregates or marine snow indirectly by measuring either egestion, 
decrease in POC concentrations in the experimental units, natural tracers like chlorophyll or 
artificial tracers like dyes or polystyrene beads (Bochdansky and Hemdl, 1992; Lampitt et al., 
1993; Larson and Shanks, 1996; Dilling et al., 1998).

The consumption rate o f Neomysis integer on estuarine floes (38 floes h ’) is one order 
o f magnitude higher in comparison with the experimentally derived feeding rate on similar sized 
mesozooplankton (Billiones et al., 1999). Eurytemora affinis copepodites and adults are preyed 
upon at a rate o f 0.2 -  8 ind h '1 (Irvine et al., 1993; Aaser et al., 1995; Winkler and Greve, 
2004). The higher feeding rate on floes may compensate for their comparatively lower energetic 
value.



As the gut passage time o f N. integer is only 30 minutes when feeding on estuarine 
floes (Fockedey et al., submitted d -  Addendum 2), the mysids must have produced a large 
amount o f faecal pellets during the course o f the feeding experiment (24h). These pellets mixed 
and coagulated with the floes. As no correction was performed for this increase, one should 
consider the feeding rate estimate as a minimal estimate.

Selectivity experiments were not performed here, but one can assume that when 
mesozooplankton is available it is more beneficial to N. integer to feed on calanoid copepods 
than on the energetically less valuable floes. On the other hand, the availability o f the 
aggregates is high in comparison with the calanoid prey (<10 -  250 I'1; Tackx et al., 2004) and it 
is not known how the energy requirements for catching the calanoid prey compare to those for 
feeding on the suspended floes.

Estuarine aggregates suspended in the water column (present study) or deposited on the 
sediment surface (Roast et al., 2000b; 2004) may be an important additional food source to 
Neomysis integer, especially in periods or areas with low densities in mesozooplankton food 
sources. The present study provides first direct evidence that N. integer can indeed survive and 
grow on a diet o f estuarine macro-aggregates only, although growth is slower than on Artemia 
nauplii. Larson and Shanks (1996) found that juvenile mullets consumed both marine 
aggregates and Artemia nauplii in the laboratory, although marine snow alone was not sufficient 
to allow growth.

E s tu a r in e  f o o d  web

Feeding by Neomysis integer on aggregates has implications for understanding the 
heterotrophic estuarine food webs described in the low saline region of estuaries (Hummel et 
al., 1988; Hall and Raffaelli, 1991; Soetaert and Herman, 1995b). The estuarine microbial food 
web plays an important role in nutrient cycling, as well as in the transfer o f nutrients to higher 
trophic levels via bacterivorous protists towards the metazoan Zooplankton and subsequent 
higher trophic levels (Azam et al., 1983; Crump and Baross, 1996; Gasparini and Castel, 1999; 
Muylaert et al., 2000b).

The rich bacterial and protozoan communities as well as the incorporated amorphous 
organic matter in the relatively large macro-aggregates (>250 pm) makes them a highly edible 
food source (Alldredge and Silver, 1988). In this way the organic material, normally too small 
to be efficiently consumed by mysids and considered to constitute the diet o f the protist 
community, becomes part of the diet o f organisms higher up in the food-chain (Silver et al., 
1978; Lampitt et al., 1993). The uptake o f macro-aggregates by Neomysis integer thus 
constitutes a short-cut in the estuarine microbial food chain. The process is also likely to play a 
role in the bio-sedimentology (Uncles, 2002) by the biodeposition o f the suspended organic 
matter and sediment into faecal pellets numerously produced by the mysids when feeding on the 
estuarine aggregates (Fockedey et al., submitted d -  Addendum 2).
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Addendum 1

Composition of estuarine macro-aggregates and their 
importance as concentration sites for micro-organisms 
in the Schelde estuary (Belgium)

A B S T R A C T  --------------------------------------------------------------------------------------------------------------------------------------

In November 1997 and June 1998, the composition o f estuarine macro-aggregates in the 
Schelde estuary was investigated at 4 sites situated in the estuarine turbidity maximum. The 
flocculation process was simulated in vitro using rolling cylinders and macro-aggregates were 
separated from the surrounding water by sedimentation and décantation. 47 -  90 % of the 
suspended particulate matter, 29 -  67 % of the particulate organic carbon, 6 -  57 % o f the 
chlorophyll a, 1 - 3 9  % of the bacteria, 5 -  14 % o f the heterotrophic nanoflagellates and 5 - 2 5  
% o f the ciliates in the water column were found to occur in association with the macro
aggregates. The fraction of total chlorophyll a that was associated with the macro-aggregates 
was at all sites lower in June when compared to November. The fraction of total bacteria that 
was associated with the macro-aggregates was highest in the freshwater tidal reaches and tended 
to decrease in downstream direction. Concentrations o f bacteria, heterotrophic nanoflagellates 
and ciliates in the macro-aggregates were generally one to two orders o f magnitude higher than 
in the surrounding water. Despite high concentrations o f micro-organisms in the macro
aggregates, living biomass contributed at most to 3.2 % of total organic carbon o f the macro
aggregates.

P u b l i s h e d  a s  a n d  m a n u s c r i p t  i n  p r e p a r a t i o n :

Muylaert, K., Fockedey, N., Mees, J., Vijverman, W., 1999. Association o f microorganisms 
with estuarine floes. In: Muylaert, K., 1999. Distribution and dynamics o f protist communities 
in a freshwater tidal estuary. Ph.D. Thesis, Ghent University: 137-147.



I N T R O D U C T I O N

Macro-aggregates in aquatic systems are sites o f intense microbial activity. The 
presence o f particulate organic carbon within the aggregates makes them attractive substrates 
for bacteria (Vetter et al., 1998). Attached bacteria are in turn a food source for heterotrophic 
protists, nanoflagellates and ciliates (Albright et al., 1987; Caron, 1987; Sibbald and Albright, 
1988). In addition, attachment to aggregates may also be advantageous to heterotrophic protists 
feeding on freely suspended bacteria: an attached lifestyle has been shown to result in increased 
contact rates with suspended prey items (Shimeta et al., 1995) or it may provide them with a 
refuge from grazers (Laybom-Parry et al., 1994). Macro-aggregates can be seen as parcels in 
which a large part o f the total suspended particulate organic matter is concentrated into a small 
volume. They may thus constitute nutritious food particles for metazoan organisms (Silver et 
al., 1978; Alldredge and Silver, 1988). Fish (Larson and Shanks, 1996; Grossart et al., 1998), 
mysids (Fockedey and Mees, 1999 -  Chapter 2), euphausiids (Dilling et al., 1998) and calanoid 
copepods (Lampitt et al., 1993; Dilling et al., 1998) have recently been shown to ingest and 
digest macro-aggregates.

Since the discovery of 'marine snow' in the 1950's (Suzuki and Kato, 1953), macro
aggregates have been observed in a wide range o f pelagic ecosystems including the open ocean 
(e.g. Silver et al., 1984), lakes (e.g. Grossart and Simon, 1993) and estuaries (e.g. Eisma, 1986). 
In estuaries, macro-aggregates are often referred to as 'estuarine floes'. Estuarine macro
aggregates are formed by coagulation o f sediment particles and organic matter (Eisma, 1993b). 
This process is greatly enhanced by the resuspension o f sediment by strong tidal currents and 
the high concentrations o f allochtonous and in situ produced organic matter in estuarine water 
columns (Eisma, 1993b; Kies, 1995; Herman and Heip, 1999). Estuarine macro-aggregates 
contain a large fraction o f inorganic material which is embedded in an organic matrix derived 
from phytoplankton or terrestrial macrophytes (Zimmerman, 1997). They are highly unstable 
and are formed from and decompose into smaller particles called microflocs at a time-scale of 
hours during each tidal cycle (Eisma et al., 1991; Eisma et al., 1994). Due to their large size and 
their high inorganic sediment content, sedimentation rates o f estuarine macro-aggregates are 
high (10 -  100 m d"1, Largier, 1993; Pejrup and Edelvang, 1996). These high sedimentation 
rates together with the specific hydrodynamics o f estuaries result in their accumulation in 
estuarine turbidity maxima (Largier, 1993).

Both hydrodynamic trapping in non-tidal circulation at the freshwater salt water 
interface (Postma and Kalle, 1955; Schubel, 1968) and periodic settling and resuspension during 
ebb and flood currents ('tidal pumping', Salomons et al., 1988; Wolanski, 1995; Guézennec et 
al., 1999) are important in the formation of these estuarine turbidity maxima. The result o f these 
processes is an increased residence time of sediment, organic matter and organisms associated 
with macro-aggregates in the estuary. As macro-aggregates accumulate in the turbidity maxima, 
densities o f macro-aggregates in estuaries are much higher than in other aquatic systems.

In this paper we describe the composition o f estuarine macro-aggregates in the turbidity 
maximum of the Schelde estuary in terms o f living biomass and non-living organic and 
inorganic particulate matter. We also evaluate the importance of estuarine macro-aggregates as 
concentration sites for micro-organisms, organic carbon and suspended matter in the estuarine 
water column.



Figure 1: Map o f  the 
Schelde estuary showing 
the position o f  the 
sampling stations.

M A T E R I A L  A N D  M E T H O D S  

S tu d y  site

The Schelde estuary is a macro-tidal coastal plain estuary situated in Western Europe 
(Figure 1). River runoff is low compared to the total volume of the estuary and, as a result, 
residence time is relatively long and the salinity gradient is gradual and stable in time and space 
(Soetaert and Herman, 1995a). This study focuses on the mesohaline to freshwater tidal reaches 
o f the Schelde estuary where the estuarine turbidity maximum is situated (Herman and Heip, 
1999) and where the largest macro-aggregates or estuarine floes are observed (Eisma et al., 
1991). In this part o f the estuary, tidal range is about 5 m and the water column is vertically well 
mixed. Dense phytoplankton blooms dominated by centric diatoms (mainly Cyclotella spp. and 
Actinocyclus normannii) and coccoid green algae (Scenedesmus spp.) occur in spring and 
summer when chlorophyll a concentrations exceeding 50 pg 1' are observed (Muylaert et al., 
2000a). The Schelde estuary is heavily antropogenically influenced and inputs o f inorganic 
nutrients and organic matter are very high (Heip, 1988). As a result, bacterial abundance and 
production are very high (5 -  25.106 cells m l'1 and 96 -  600 pg C I"1 d '1 respectively). Bacterial 
respiration often results in periods o f anoxia in the water column in summer (Goosen et al., 
1997). Annual average abundance o f heterotrophic flagellates and ciliates is 2100 and 65 cells 
ml"1 respectively (Muylaert et al., 2000b). Biomass o f phytoplankton, bacteria and heterotrophic 
protists is generally maximal in the freshwater tidal reaches and declines towards the 
mesohaline reaches.

S a m p lin g

Samples were collected at four different stations along the longitudinal estuarine axis in 
autumn 1997 (November 17th: sites A and C, and November 28th: sites B and D) and summer 
1998 (June 10th: sites C and D; June 12th: sites A and B) (Figure 1). All samples were stored 
overnight at ambient temperature (November) or were processed within 3 hours o f sampling 
(June). Salinity and temperature were measured in situ. Salinity in stations A and B varied 
between 0.2 and 0.4 psu and these stations can therefore be considered to be entirely freshwater. 
In stations C and D, salinity was respectively 4.9 and 9.7 psu in November and 3.8 and 9.2 psu 
in June. Temperature varied little between the sites and was on average 10 °C in November and 
18 °C in June.



I n  v itro  fo r m a t io n  o f  e s tu a rin e  m a c ro -a g g re g a te s

Macro-aggregates are very fragile particles and are notoriously difficult to sample and 
study. In estuaries, as in other aquatic systems, the use o f traditional sampling methods to 
collect macro-aggregates results in their almost immediate disintegration. Upon sampling or 
during slack tide each tidal cycle, estuarine macro-aggregates o f up to 3 -  4 mm in size break up 
into microflocs with a size o f about 125 pm. During ebb or flood tide, when current velocities 
and suspended matter concentrations are maximal, macro-aggregates are formed again from 
microflocs (Eisma et al., 1991; Eisma and Li, 1993; Chen et al., 1994; Eisma et al., 1994).

We used a roller table described by Shanks and Edmondson, (1989) to simulate in situ 
flow conditions in order to artificially re-create macro-aggregates from microflocs in estuarine 
water samples under controlled circumstances. Estuarine water was transferred to a series o f 900 
ml Plexiglas cylinders which were rotated at a speed o f 10 rounds per minute. Macro-aggregates 
were rapidly formed and appeared to be stable in size and abundance after 3 hours of 
incubation. As flocculation and de-flocculation occurs within the same time-scale under natural 
circumstances in the estuary, we assumed that our artificially created macro-aggregates are 
representative for those present in the estuarine water column (Fockedey et al., submitted c -  
Chapter 4).

After 3 hours o f incubation, the macro-aggregates were allowed to settle for 5 min and 
were separated from the supernatant by careful décantation until about 10 ml o f suspension 
containing the macro-aggregates was retained. The exact volume of concentrate containing the 
macro-aggregates was measured and the concentrate, as well as the supernatant, was used in 
subsequent analyses. As the cylinders used had a diameter o f 14 cm, our method will 
quantitatively collect particles with settling rates o f 40 m d"1 or more in the concentrate. This is 
within the range of sedimentation rates of particles accumulating in estuarine turbidity maxima 
(10 -  100 m d"1, Largier, 1993; Peijup and Edelvang, 1996). In this study, we separated the 
macro-aggregates from other suspended matter based on differences in sedimentation rates, 
which is ecologically meaningful as it is their sedimentation rate which determines the 
behaviour o f macro-aggregates in estuaries, i.e. their accumulation in estuarine turbidity 
maxima.

A n a ly s e s

All analyses were performed on three replicate incubations unless stated otherwise in 
the graphs. The suspended particulate matter (SPM) concentration in both fractions was 
determined gravimetrically after filtration o f subsamples on preweighed GF/F filters. For 
determination o f particulate organic carbon (POC) content, samples were filtered on pre weighed 
and precombusted GF/F filters; percentage carbon content o f SPM was measured using a Carlo 
Erba CN analyser after removal o f carbonates under acid atmosphere. For chlorophyll a 
analyses, subsamples were filtered onto GF/C filters. Filters were stored at -80°C until 
extraction in acetone and subsequent analysis by High Performance Liquid Chromatography 
(protocol according to Mantoura and Llewellyn, 1983).

Subsamples for quantification o f bacteria and heterotrophic protists were fixed 
according to the lugol, formalin and sodium thiosulphate method (Sherr et al., 1989). Bacteria 
were separated from sediment and detrital particles by means o f pyrophosphate and sonication 
treatment (Velji and Allbright, 1986). Bacteria were stained with acridine orange and filtered 
onto 0.2 pm pore size Nuclepore polycarbonate filters (Hobbie et al., 1977). Bacteria were 
counted using epifluorescence microscopy with blue light illumination; a minimum o f 150 
bacteria was counted in at least 10 random fields.



For quantification o f heterotrophic nanoflagellates and ciliates in the supernatant, 
subsamples were stained with DAPI (4',6'-diamidino-2-phenylindole, 1 |ig m l1 final 
concentration, Sherr et al., 1993) and filtered onto 2 (im pore size Nuclepore polycarbonate 
filters. Heterotrophic protists were counted using epifluorescence microscopy with UV 
illumination; at least 50 ciliates and 100 heterotrophic nanoflagellates were counted along radial 
transects on the filter. Heterotrophic protists in the concentrate with macro-aggregates were 
separated from sediment and detrital particles using isopycnic density gradient centrifugation (in 
Percoll, Starink et al., 1994) before staining with DAPI and counting.

A n a ly s e s

The concentration o f measured variables associated with macro-aggregates in the 
incubated water sample will be referred to as the bulk concentration in the macro-aggregates. 
This concentration was calculated as:

with Cconc being the concentration in the macro-aggregate concentrate, Cwater the concentration 
in the supernatant, Vconc the volume of the macro-aggregate concentrate and Vmcuh the volume 
incubated in the cylinders. This calculation takes into account the concentration o f measured 
variables in the amount o f supernatant left in the macro-aggregate concentrate and in the pore- 
water o f the macro-aggregates. As this calculation assumes that the macro-aggregates have no 
volume, our results provide a conservative estimate for the bulk concentrations o f the macro
aggregates.

The concentration o f bacteria, heterotrophic nanoflagellates and ciliates per unit volume 
o f the macro-aggregates will be referred to as the specific concentration in the macro
aggregates. This concentration was calculated as:

V (C  - Cconc \  conc water ,
'V“ggr

with Vaggr being the volume of the macro-aggregates. This volume was estimated at 5 ml, which 
is about half o f the average volume o f concentrate obtained during fractionation o f macro
aggregates and supernatant. This volume is a high-range estimate so that our estimates 
concerning the specific properties o f the macro-aggregates should be treated as conservative. 
Nevertheless, they should give information on the order o f magnitude o f bacteria, heterotrophic 
nanoflagellate and ciliate concentrations per volume unit of macro-aggregates. A similar 
approach to estimate the specific concentration o f micro-organisms in macro-aggregates was 
used by Caron et al. (1982).

We also estimated the contribution of living micro-organisms to total POC in the 
macro-aggregates. Chlorophyll a was converted to C assuming a C to chlorophyll a ratio o f 50 
mg C (mg chi a)A (Geider, 1987). For bacteria, a conversion factor o f 2 .1 0 11 mg C cell'1 was 
used (Lee and Fuhrman, 1987). Heterotrophic protistan biomass was estimated from biovolume 
measurements using a volume to carbon conversion factor o f 0.15 pg C |o.m'3, which is within a 
range o f values given for heterotrophic flagellates and ciliates (Fenchel, 1982; Sheldon et al., 
1986; Borsheim and Bratbak, 1987; Putt and Stoecker, 1989).



For heterotrophic nanoflagellates and ciliates, conversion factors o f 39 and 3000 pg C 
cell"1 respectively were used, which are based on measurements o f at least 200 cells o f each 
group from different samples collected during the course of 1996 (Muylaert et al., 2000b). 
Given the large interspecific differences in biomass among ciliates, heterotrophic protistan 
biomass estimates should be interpreted with caution. High numbers o f ciliates are often caused 
by a dominance o f small forms, which have a cellular biomass significantly lower than the 
conversion factor used.

R E S U L T S

In general, measurements carried out on separate incubations yielded similar results, 
indicating a good reproducibility o f our incubation and measurement techniques. In November, 
total SPM concentration (Figure 2) was maximal in station B. Between 47 and 90 % o f the total 
SPM was contained in the macro-aggregates. In June, total SPM concentrations were generally 
much higher in all stations but maximal SPM concentrations were observed in station D. In 
June, 47 to 67 % of the total SPM was associated with the macro-aggregates. Total POC 
concentrations were highest in June, and, at that time, did not show much variation among the 
different stations.
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Figure 2: Bulk concentrations o f  SPM (A) and POC (B) in macro-aggregates (grey bars) and the 
surrounding water (white bars) at the different sampling stations in November and June. Black dots 
connected by line indicate the percentage o f  the total that is associated with the macro-aggregates. The 
organic carbon content o f  suspended matter in the macro-aggregates (grey bars) and the surrounding 
water (white bars) is shown in (C). N o data on POC were collected for stations A  and C in November. 
Unless indicated otherwise (in brackets above the data), data on SPM and POC are averages o f  three 
measurements; error bars indicate standard deviation.



In November, POC data were only available for two stations and total POC levels were 
highest in the freshwater station B. The percentage contribution o f POC to total SPM was on 
average 15 % in November but only 6.5 % in June. Except for station D in November, the POC 
content of the macro-aggregates was substantially lower than that of the SPM in the supernatant.

Total chlorophyll a concentrations (Figure 3) were slightly higher in November than in 
June. While in November, 39 to 57 % of total chlorophyll a was associated with the macro
aggregates, this was always less than 12 % in June. Total bacterial densities were comparable in 
November and June and, in both seasons, a similar fraction of the bacterial population (about 30 
%) was associated with the macro-aggregates. The total numbers o f bacteria as well as the 
fractions associated with the macro-aggregates decreased in seaward direction; this effect was 
much more pronounced in November than in June.

593 ± 60

Station Station

Figure 3: Bulk concentrations o f  chlorophyll a (A), bacteria (B), heterotrophic nanoflagellates (C) and 
ciliates (D) in macro-aggregates (grey bars) and the surrounding water (white bars) at the different 
sampling stations in November and June. Unless indicated otherwise (in brackets above the data), data are 
averages o f  three measurements; error bars indicate standard deviation. Black dots connected by line 
indicate the percentage o f  the total that is associated with the macro-aggregates.



In November, large differences in heterotrophic nanoflagellate abundance were observed 
between the sampling stations: high heterotrophic nanoflagellate numbers were observed in 
stations A and C while numbers in stations B and D were very low. In June, heterotrophic 
nanoflagellate densities were relatively low at all stations.

Despite the large variations in total heterotrophic nanoflagellate abundance, the fraction 
o f the total heterotrophic nanoflagellate population associated with the macro-aggregates was 
fairly constant, fluctuating around 10 %. In station D in June, ciliate densities were too low to 
produce reliable counts with the method used (< 5 ciliates ml’1). Ciliate numbers were highest in 
November, especially in station A. Ciliate densities decreased towards the brackish stations. 
Overall, less than 20 % of the ciliate population was associated with the macro-aggregates.

Specific concentrations o f bacteria in the macro-aggregates were 1 to 2 orders of 
magnitude higher than in the surrounding water (Table 1). For heterotrophic nanoflagellates and 
ciliates, differences were smaller (1 order o f magnitude). The bulk biomass attained by different 
groups o f organisms and their contribution to total POC in the macro-aggregates and the 
surrounding water is given in Table 2. The contribution of phytoplankton, bacteria and 
heterotrophic protists to total living organic matter was comparable. Only in November in 
station A, the biomass attained by heterotrophic protists was atypically high. This observation, 
however, should be treated with caution as the high biomass could largely be attributed to the 
high numbers o f ciliates, the biomass o f which is only roughly approximated by our methods. 
Bacteria and auto- or heterotrophic protists contributed only 0.2 to 3.2 % to total POC in the 
macro-aggregates. In November, living micro-organisms contributed more to total POC than in 
June. The contribution of living micro-organisms to total POC was highest in the suspended 
matter in the supernatant and always lower in the macro-aggregates.

DISCUSSION

Bulk properties o f  the macro-aggregates

47 to 90 % of total SPM in our water samples was found to be associated with macro
aggregates. In the Elbe estuary, Kemer et al., (1995) used a specially designed sedimentation 
funnel in which, like in our study, fast sinking SPM was separated from slow sinking SPM 
based on differences in sedimentation rates. In that study, a comparable fraction o f total SPM 
was found in the fast-settling SPM fraction. 29 -  67 % o f total POC was incorporated in the 
macro-aggregates. This fraction was usually slightly lower than the fraction o f SPM associated 
with the macro-aggregates, meaning that the macro-aggregates have a relatively low organic 
matter content when compared to suspended matter in the surrounding water. This is in 
agreement with measurements from marine snow (Alldredge, 1979) and the fast-settling fraction 
o f suspended matter in the Elbe estuary (Kemer et al., 1995).

T a b l e  1: Range o f  specific concentrations o f  bacteria, heterotrophic 
nanoflagellates (HNAN) and ciliates (in log cells ml"1) in the supernatant and 
macro-aggregates o f  the Schelde estuary.

plankton

water macro-aggregates

bacteria 6.29 - 6.83 6.73 - 8.82
HNAN 2.24 - 3.80 3.34 - 4.98

ciliates 1.42-2.77 2.61 - 3.74



T a b l e  2: Bulk biomass (in pg C I"1) o f  different groups o f  micro-organisms in the 
supernatant (water) and macro-aggregates (aggr.). The percentage contribution o f  
micro-organisms to total POC in the supernatant or macro-aggregates is also given.

November June

water aggr. water aggr.

phytoplankton

station A 157 100 106 15

B 235 310 169 17

C 255 84 186 12

D 70 31 60 8

bacteria

station A 116 73 103 59

B 140 70 103 68

C 135 30 71 26

D 68 1 40 14

heterotrophic protists

station A 2026 112 235 13

B 345 77 111 27

C 242 59 153 10

D 101 24 33 2

percentage contribution of micro-organisms to total POC

station A - - 2.3 0.4

B 10.1 3.2 2.1 0.8

C - - 1.8 0.5

D 5.3 1.2 0.8 0.2

The fraction o f total chlorophyll a associated with macro-aggregates varied between 25 
and 57 % in November and between 6 and 12 % in June. In the Elbe estuary, the majority o f the 
chlorophyll a was part o f the slow-sinking fraction o f the SPM (Wolfstein and Kies, 1995) and 
was thus not associated with macro-aggregates. In the Elbe estuary, however, most green algae 
were found in the slow sinking SPM while diatoms appeared to be enriched in the fast-settling 
fraction o f SPM. Several estuarine diatoms are known to occur in association with sediment and 
detritus particles (Emissee and Abbot, 1975; Smetacek, 1985; Muylaert and Sabbe, 1996) and 
may, therefore, easily become incorporated in estuarine macro-aggregates. Previous studies 
have shown that, in the Schelde estuary, green algae become relatively more important towards 
the summer while diatoms dominate phytoplankton biomass throughout the rest o f the year 
(Muylaert et al., 2000a). This might explain why a larger fraction o f total chlorophyll a was 
associated with the macro-aggregates in November when compared to June.

On average 28 % o f the bacterial community was associated with the macro-aggregates. 
In other turbid estuaries, this fraction was similar or slightly higher (Goulder, 1976; Boetcher et 
al., 1995; Crump and Baross, 1996; Zimmermann and Kausch, 1996; Crump et al., 1998). 
Although this trend was most pronounced in November, the fraction o f bacteria associated with 
macro-aggregates tended to decrease in downstream direction and in station D in November, 
only 1 % of the bacterial population was found associated with the macro-aggregates.



This may indicate that during downstream transport, macro-aggregates become depleted in 
carbon and are thus no longer a suitable substrate for bacteria. Although previous observations 
indicate a decrease in organic matter content o f the total SPM when going from the freshwater 
tidal to the brackish reaches (Billiones, 1998), this was not apparent from our measurements. 
More important than the total organic matter content, however, is the quality of organic matter 
and its bio-availability, which in estuaries may change significantly during downstream 
transport (Hollibaugh and Wong, 1999).

Heterotrophic protists (ciliates and heterotrophic nanoflagellates) are known to be the 
dominant grazers on bacteria in planktonic environments (Azam et al., 1983). Although a large 
part o f the bacterial population was associated with the macro-aggregates, only 5 -  14 % of the 
heterotrophic nanoflagellates and 5 -  25 % of the ciliates were found in the macro-aggregates. 
In the Elbe estuary, Zimmermann and Kausch (1996) found the majority o f ciliates but only 10 
% o f heterotrophic nanoflagellates to be associated with macro-aggregates. On the contrary, in 
the Clyde estuary, 80 % of all heterotrophic nanoflagellates were closely associated with macro
aggregates while ciliates were only transient visitors (Rogerson and Layboum-Parry, 1992). The 
reason why we found a larger fraction o f the bacterial population to occur in association with 
the macro-aggregates when compared to the heterotrophic protists may be related to the 
methodology we used. We assume that during sampling, all macro-aggregates in the samples 
had disintegrated into microflocs o f about 125 pm in size (Eisma et al., 1991; Eisma and Li, 
1993; Chen et al., 1994; Eisma et al., 1994). These microflocs are probably large enough to 
provide a bacterium with enough carbon to support growth during several generations and as 
such represent a stable substrate for bacteria to attach to. We can therefore assume that they 
were colonized by bacteria prior to the incubation. During the incubation in the rotating 
cylinders, the microflocs coagulated to form macro-aggregates. The majority o f the bacteria that 
were found on the macro-aggregates after the 3-hour incubation were presumably bacteria that 
were already attached to the microflocs.

The same microflocs, however, are probably too small to serve as sites for permanent 
attachment for heterotrophic protists and most o f the heterotrophic protists that were in our 
study found on the macro-aggregates had probably colonized these macro-aggregates during the 
course o f the incubation. It is therefore likely that after a longer incubation time, a larger 
fraction o f the protistan population would become associated with the macro-aggregates. Under 
natural circumstances, however, estuarine macro-aggregates disintegrate into and are formed 
from microflocs within a similar time span as the incubation time used in our experiment. 
Therefore, it is conceivable that, in the estuary like in our experimental incubations, a larger 
fraction o f the bacteria is associated with the macro-aggregates when compared to heterotrophic 
protists as the macro-aggregates constitute a relatively stable substrate for the bacteria but an 
unstable micro-environment for the protists.

S p e c if ic  p ro p e rtie s  o f  th e  m a c ro -a g g re g a te s

Concentrations o f bacteria and heterotrophic protists in the macro-aggregates were 1 to
2 orders o f magnitude higher than in the surrounding water, which corresponds to enrichment 
factors o f 10 to 100. These enrichment factors are generally lower than those reported in studies 
o f non-estuarine macro-aggregates (Silver et al., 1978; Caron et al., 1982; Grossaert and Simon, 
1993; Artolozaga et al., 1997). In contrast to lake and marine snow, estuarine macro-aggregates 
are relatively unstable (see above). This instability may prevent the colonisation and 
development o f dense microbial communities on the macro-aggregates.



Organic carbon content o f macro-aggregates in the Schelde estuary ranged between 3.5 
and 16 %. This is within the range found for marine snow (Alldredge, 1979), lake snow 
(Grossart and Simon, 1993) and macro-aggregates in the Elbe estuary (Zimmermann, 1997).

Macro-aggregates in lakes or marine environments represent micro-patches where 
organic matter concentrations are much higher than in the surrounding water. In estuaries in 
general and in the Schelde estuary in particular, organic matter concentrations are already high 
in the water surrounding the macro-aggregates while organic carbon content o f the macro
aggregates is similar to that o f marine or lake snow. This greater discrepancy in organic matter 
concentrations between the macro-aggregates and the surrounding water in marine or lake snow 
when compared to estuarine macro-aggregates may provide an alternative explanation to the 
lower enrichment factors for bacteria and heterotrophic protists in macro-aggregates o f estuaries 
as opposed to those found in lakes or marine systems.

Despite the high concentrations o f organisms in the macro-aggregates, they only 
contributed marginally to the organic carbon in the aggregates. Phytoplankton, bacteria and 
heterotrophic protists all contributed a comparable fraction to living biomass in the macro
aggregates but at most 3.2 % of all organic carbon in the macro-aggregates was attributable to 
living organisms. Most of the POC in the macro-aggregates can thus be considered to be detrital 
material. In the Elbe estuary, phytoplankton was on some occasions found to contribute 
significantly to the organic matrix o f estuarine macro-aggregates (Kies, 1995; Zimmermann, 
1997). In the Schelde estuary, however, POC is generally mainly composed o f detritus while 
phytoplankton rarely contributes significantly to the total POC pool (Hellings et al., 1999). It 
should be noted that chlorophyll a concentrations measured during this study were relatively 
low (< 11 |xg chi a I'1). In spring and summer, chlorophyll a concentrations exceeding 50 |ig I 1 
are frequently observed (Muylaert et al., 2000a) and during those blooms phytoplankton may be 
a more important component o f estuarine macro-aggregates.
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4202 Chapter 5

Effect of food quality on the growth of the brackish 
water mysid Neomysis integer (Crustacea: Mysidacea)

ABSTRACT --------------------------------------------------------------------------------------------------------------

The growth o f the brackish water mysid Neomysis integer can be described in three 
alternative ways: (1) by the increase in standard length (SL), (2) by the intermoult period (IMP) 
and growth factor (GF), or (3) by the intermoult growth rate (GR). Individual variation o f these 
growth parameters in growth experiments is small. These endpoints can thus be used to evaluate 
the effects o f environmental variables, food quality and quantity, and toxic substances on the 
growth o f the mysid species.

The present study evaluates to what extent diets o f Artemia salina (nauplii), Eurytemora 
affinis (copepodites and adults), laboratory-made estuarine floes and macrophytal detritus 
(Scirpus maritimus and Spartina anglica), all administered ad libitum , influence the survival 
and somatic growth o f subadult Neomysis integer.

Detritus originating from non-leached Spartina anglica was toxic to Neomysis integer, 
leading to morphologic aberrations and a high mortality. The growth o f N. integer individuals 
was slower on a diet o f Scirpus maritimus detritus than on a diet o f animal food items or 
laboratory-made floes. Artemia nauplii were the highest quality food for N. integer, a relatively 
smaller IMP and higher GF and GR resulted in a significantly higher SL at the end of this 
experiment. When fed with laboratory-made floes, N. integer moulted as frequently as when fed 
Artemia, but GR decreased over the course of the experiment. A Eurytemora affinis diet 
resulted in a significantly elongated IMP from the first moult onwards as compared to mysids 
fed Artemia or floes. The mean associated growth rate however, was comparable with the floes 
treatment and significantly lower than fed Artemia.

Subm itted for publication as:

Fockedey, N., De Pauw, N., Mees, J., Vincx, M. Effect o f food quality on the growth o f the 
brackish water mysid Neomysis integer. Estuar. Coast. Shelf Sei.



INTRODUCTION

Neomysis integer is a typical inhabitant o f the oligohaline, turbid reaches o f European 
estuaries (Mees et al., 1995). It plays a key role in the local food web as food for fish and 
macrocrustaceans (e.g. Hostens and Mees, 1999). In this part o f the estuary, the food web is 
based on detritus, and heterotrophic processes dominate (Hamerlynck et al., 1993; Soetaert and 
Herman, 1995b; Muylaert et al., 2000b). Due to a shallow euphotic zone in the highly turbid 
water column, the local primary production is limited, despite the high nutrient concentrations 
(Hummel et al., 1988; Relexans et al., 1988). Except for a dense diatom bloom in summer 
(Muylaert et al., 1997), autotrophic phytoplankton is not considered to play a substantial role in 
the food web in this part o f the estuary (Bernât et al., 1994; Irigoien and Castel, 1997). Still the 
upper estuary is highly productive and characterised by high abundances o f Zooplankton, 
hyperbenthos, epibenthic macrocrustaceans and fish (Hummel et al., 1988; Soetaert and Van 
Rijswijk, 1993; Hamerlynck et al., 1993; Mees et al., 1995; Hostens and Mees, 1999; Maes et 
al., 2003).

Suspended sediment and particulate organic matter flocculate in the presence o f specific 
dissolved organic compounds (e.g. polysaccharides, humic acids and fluvic acids) to estuarine 
aggregates (Eisma et al., 1991). Due to the estuarine circulation, these aggregates accumulate at 
the head o f the estuary (at the freshwater-brackish water interface), and form a so called 
maximum turbidity zone (MTZ) or estuarine turbidity maximum (ETM) (Eisma, 1986). Biota 
can also contribute to the turbidity in this zone through active re-suspension of sediments or 
increased sediment erosion due to burrowing and feeding behaviour (Widdows and Brinsley, 
2002; Roast et al., 2004). Because o f the entrapment and associated increased residence time in 
the MTZ (Siegfried et al., 1979; David et al., 2005), the reactive organic detritus (in suspension 
or aggregated in the floes) is quickly remineralised by bacterial activity and/or is directly grazed 
upon by higher trophic levels (Heinle and Flemer, 1975; Hummel et al., 1988; Fockedey et al., 
submitted c -  Chapter 4). As a result, little material is exported to the downstream reaches o f the 
estuary and the coastal zone and it consists o f a large refractory fraction (Soetaert and Herman, 
1995b).

The brackish water mysid Neomysis integer is known to be omnivorous. Populations 
living in the MTZ o f Western European estuaries predominantly feed on the calanoid copepod 
Eurytemora affinis, estuarine aggregates and macrophytal detritus (Fockedey and Mees, 1999 -  
Chapter 2). Also, aggregations o f sediment collected at the substratum surface have been 
demonstrated to be a relevant food item in the shallow estuarine areas (Roast et al., 2000b). In 
laboratory experiments, Eurytemora affinis is an adequate prey item to fulfil the species’ energy 
requirements (Irvine et al., 1993; Aaser et al., 1995; Winkler and Greve, 2004), but the impact 
o f this mono-specific diet on growth and reproduction o f N. integer is not known. Macrophytal 
detritus, imported from the fluvial part of the estuary and/or from the local tidal marshes, is also 
hypothesized to be an important food source in the oligohaline food web, especially in periods 
when mesozooplankton is scarce (Sorbe, 1980; Irvine et al., 1993; Fockedey, unpublished). The 
nutritional and energetic value o f this material for N. integer is still uncertain, but the species 
possibly represents a trophic link between salt marsh macrophyte production and higher trophic 
levels (Zagursky and Feller, 1985; Cattrijsse et al., 1994). Estuarine macro-aggregates seemed 
to be an adequate food item for N. integer as demonstrated by laboratory growth experiments 
(Fockedey et al., submitted c -  Chapter 4).



Studies with euphausiids, gammarid amphipods and copepods demonstrate that the 
growth and reproduction rates are determined by environmental variables (mainly temperature 
and salinity), food quantity, food quality and genotype (e.g. Willoughby and Sutcliffe, 1976; 
Heinle et al., 1977; Koski et al., 1998; Haywood and Bums, 2003). The relationship between an 
animal’s production and the food concentration in the field is often obscured by variations in the 
food quality (Koski et al., 1998). Until now, few studies have examined the survival and growth 
rates of mysids in relation to food quality (Lehtiniemi et al., 2002) and little information is 
available on the impact of food quality on their reproduction (Domingues et al., 2002). For 
Neomysis integer, only Ferguson (1973) performed experiments comparing growth efficiencies 
o f selected size classes o f mysids feeding them an animal diet and two detrital diets.

In the present study it was evaluated to what extent diets o f Eurytemora affinis 
(copepodites and adults) and macrophytal detritus, administered ad libitum, are able to support 
the survival and somatic growth o f subadult Neomysis integer. The growth is described by the 
increase in standard length over time, and by the intermoult period, the growth factor and the 
intermoult growth rate (Fockedey et al., in press -  Chapter 3). The obtained values o f the 
growth parameters are compared with results from (simultaneously performed) experiments on 
N. integer growth performance when feeding on Artemia salina nauplii and laboratory
generated estuarine aggregates (Fockedey et al., submitted c -  Chapter 4). In addition, a 
starvation experiment was conducted to observe the effect on the survival and the growth 
parameters o f N. integer when deprived from food.

M ATERIAL AND M ETHODS 

N e o m y s is  in te g e r

Specimens o f Neomysis integer were collected with a handnet (opening: 29.0 x 18.5 cm; 
mesh size o f 1 x 1 mm) in the brackish water pond Galgenweel (4 psu; 5 °C) situated at the left 
bank o f the Schelde estuary. Short hauls were taken using a handnet. The animals were 
transported to the laboratory in environmental water within 2 hours, where they were gradually 
adapted to a water temperature o f 15 °C (over 2 days) under continuous aeration. Before the 
start of the experiments they were kept for 2 days in artificial seawater (Instant Ocean®, 
Aquarium Systems, France) o f 5 psu and given the food that they would be exposed to in the 
growth experiments (see later).

The standard length o f Neomysis integer individuals was determined as the distance 
from the tip o f the rostrum to the end of the last abdominal segment measured laterally on 
individuals using a drawing mirror mounted on a stereomicroscope. For each treatment, 15 
individuals (10 in the case o f estuarine floes) with a standard length between 4 and 6 mm were 
selected. During the experiments the animals were kept individually in 400 ml glass jars with 
350 ml aerated artificial seawater o f 5 psu, except for the experiments with estuarine aggregates 
where the rolling experimental containers have a volume of 845 ml. Fockedey et al. (submitted 
c -  Chapter 4) demonstrated that the growth performance o f individual N. integer was 
comparable in the two experimental setups. All experiments were performed in a climate- 
controlled room at 15 °C with a light regime o f 12h light: 12h dark. Each day the mysids were 
gently transferred to a new jar using a conical measuring spoon and they were offered daily 
fresh food ad libitum.



Table 1: Food items and ration administered to subadult Neomysis integer individuals.

Food type Food concentration (I1)
Administered daily mysid'1

N
DW (mg) C (mg)

Artemia nauplii (<24h) 5700 2.41 1* 15
Eurytemora affinis (copepodites + adults; > 
250jxm)
Macrophytal detritus

143 2.1 1 ** 15

Scirpus maritimus (<400nm) -  fresh 70 mg DW 25 29 *** 15
Spartina anglica (<400|im) -  fresh 115 mgDW 40 48° 15

Laboratory-made estuarine aggregates * 16000 ±2000 30-175 2 -1 1  *** 10

f: conversion factor according to Paffenhöfer (1967); * conversion according to Evjemo and Olsen (1999); ** conversion 
according to Parsons et al. (1984); *** conversions according to Fockedey et al., submitted d -  Appendix 2; ° conversion 
according to De Mesel (personal communication)

F o o d  q u a lity

To study the effect o f the food quality on the growth o f Neomysis integer, 5 different 
food items were supplied at an excess concentration (Table 1): Artemia salina nauplii, adults 
and copepodite stages o f the calanoid copepod Eurytemora affinis, laboratory-made estuarine 
floes, and detritus o f two species of estuarine macrophytes (Spartina anglica and Scirpus 
maritimus). An additional treatment was set up where N. integer was starved (no food added). 
Except for the Artemia nauplii, the food items chosen are relevant in the diet o f N. integer, as 
demonstrated by Fockedey and Mees (1999 -  Chapter 2) by stomach content analyses and by 
Gorokhova and Hansson (1999) by isotopic composition analysis. No attempt was made to 
estimate feeding rates on the different food items. The food was offered ad libitum and the 
growth performance (see later) was monitored for 32 days (4.5 weeks).

Artemia salina cysts (San Fransisco Bay) were hatched daily in a 2 litre conical glass 
container (25 psu; 28 -  32 °C) under continuous aeration. Less than 36 hours old Artemia 
nauplii (ART) were supplied to the mysids in a concentration o f 2000 ± 200 Artemia ind'1 d"1 (± 
2.4 mg DW). Adult and large copepodite stages o f Eurytemora affinis (Copepoda, Calanoidea) 
were collected in the pond Galgenweel by filtering surface water through a 250 pm sieve. The 
copepods were transferred to the laboratory in environmental water and kept in the laboratory 
without additional feeding for maximally 3 days. We assumed that the environmental water 
contained enough phytoplankton to keep the copepods in optimal condition in this period. Every
3 days new copepods were sampled in the field. Daily, 50 copepods (EURY) were supplied to 
the mysids (± 2.1 mg DW). They were counted according to the spotting technique o f Reeve 
(1970).

Macrophyte detritus was artificially made in the laboratory using two plant species that 
are abundant in the marshes o f the brackish water zone o f the Schelde. Spartina anglica (living 
plant) and Scirpus maritimus (died-off plant) were collected from the banks of the Schelde river 
at Doel. After washing off the sand and epiphytes, the plants were oven dried (60 °C) for 2 days 
and ground to 400 pm particles. Each detritus type was supplied daily as a constant volume 
corresponding to 40.1 ± 2.6 mg DW for S. anglica (SP-0) and 24.6 ± 2.4 mg DW o f S. 
maritimus (SC-0).

The estuarine aggregates (FLOC) administered to Neomysis integer in the experiment 
were re-assembled in the laboratory, out o f filtered (250 pm) water that was collected from the 
Schelde river at Antwerpen, by rotation on a roller table (for a detailed description see Fockedey 
et al., submitted c -  Chapter 4). The mysids were kept individually in the rolling tanks (1 0 -1 1  
rpm). The water was changed daily. The floe formation process was in equilibrium after three to 
four hours.



M e a s u r in g  th e  g ro w th  p e r fo rm a n c e

Survival and growth o f the Neomysis integer individuals were followed as described by 
Fockedey et al. (in press -  Chapter 3; submitted c -  Chapter 4). The containers were checked 
daily at the start o f the light period. Moults were collected and the length o f the uropodal 
exopods (EXO) measured. Standard body length (SL) was calculated using the regression

SL = 1.085566 + 4.081793 EXO (p < 0.0001; R2 = 0.9569; N = 97).

The overall growth o f Neomysis integer can be described by the von Bertalanffy growth 
curve (Fockedey et al., in press -  Chapter 3), but the growth o f individuals o f the size class 4 -  
6 mm SL over a period o f 4.5 weeks is linear. Thus, linear regression analysis was applied to the 
results. The slopes of the linear regression equations were tested between treatments using an 
ANCOVA and subsequent multiple comparison with a Tukey test (Zar, 1996). Growth was 
expressed as intermoult period (days), growth factor (%) and intermoult growth rate (mm d '1) 
according to Fockedey et al. (in press -  Chapter 3). Differences between experimental 
treatments were tested at each consecutive moult event by using a Kruskal-Wallis test and 
multiple comparisons (Conover, 1980).

RESULTS

S u rv iv a l

All Neomysis integer survived the experiment when feeding on Eurytemora affinis 
(Figure 1). Survival on Artemia nauplii, estuarine floes and on Scirpus detritus ranged from 73 -  
80 % at the end o f the experiment. When feeding on Spartina detritus, and when administered 
no food (STARV), mortality was 100 % after 26 and 20 days respectively.

The animals fed Spartina detritus moulted 0 to 2 times during the experiments, but 
morphological deformations o f the uropods and the presence o f external spherical tumours 
could be observed. The muscles became white coloured and mysids had a copious growth o f an 
epizootic protozoan on their exoskeleton. Occasionally, the starved individuals moulted twice 
(13 %), but most o f the individuals died after 15 days after moulting only once (40 %) or 
without having moulted (46 %). The individuals surviving the 32 day time span o f the 
experiment in the other treatments moulted 3 - 5  times when feeding on Scirpus detritus, 4 - 5  
times on Artemia or Eurytemora, and 5 - 6  times on laboratory-made floes.

Figure 1 : Survival
functions o f  all treatments 
over the course o f  the 
experiment (ART: Artemia 
salina nauplii; EURY :
Eurytemora affinis\ FLOC: 
laboratory-made estuarine 
floes; SC-0: Scirpus
maritimus detritus; SP-0: 
fresh Spartina anglica
detritus; STARV: starved).

----------ART -----------EURY - - -FLOC

---------SC-0 ------------SP-0 STARV

0 5 10 15 20 25 30 35 days



Table 2: Linear regression analyses performed with all measurement points within each treatment.

Food type Regression #moults R2 P

Artemia nauplii ART SL = 4.8127+ 0.1162 day 61 0.87 p <  0.00001
Eurytemora EURY SL = 4.9035 +0.0615 day 52 0.76 p <  0.000001
Laboratory-made floes FLOC SL = 4.4778 + 0.0623 day 36 0.79 p < 0.000001
Scirpus detritus SC-0 (SL = 5.2472+ 0.0216 day) 41 0.19 p < 0.00473
Spartina detritus SP-0 (SL = 5.7156+ 0.0224 day) 31 0.18 p <  0.01627
Starvation STARV - 17 0.08 p <  0.28618

In c re a s e  in  S L  o v e r tim e

All individuals within one treatment grew linearly and a linear regression analysis was 
applied to all data points for each treatment (Figure 2; Table 2). A significant regression could 
be fitted to all treatments, except for STARV (p < 0.05). The regressions for Neomysis integer 
feeding on both macrophyte detritus types gave a relatively low R2 value (0 .1 8 -  0.40). In the 
other three regression equations, the R2 ranged between 0.76 and 0.87. The data on the growth 
o f N. integer feeding on Spartina detritus and when starved are not considered further.

The slopes o f the 4 remaining significant linear regression equations were significantly 
different (p < 0.001). The Fisher post-hoe test indicated that the mean length o f Neomysis 
integer during the experiment was significantly higher on a diet o f ART than respectively 
EURY, FLOC and SC-0 (all pairwise comparisons with p < 0.001). The mean length in the 
EURY treatment was also significantly higher than on FLOC and SC-0 (all pairwise 
comparisons with p < 0.001), while the latter two did not significantly differ.

Figure 2: Linear regressions representing the growth o f  Neomysis integer in the six treatments over the 
course o f  the experiment (ART : Artemia salina nauplii; EURY : Eurytemora affinis; FLOC: laboratory- 
made estuarine floes; SC-0: Scirpus maritimus detritus; SP-0: fresh Spartina anglica detritus; STARV: 
starved).



IMP (days)

GF (%)

GR(mm d'1) 
0.12

ART EURY FLOC SC-0 SP-0 STARV

Figure 3: Mean (a) intermoult 
period IMP, (b) growth factor 
GF and (c) growth rate GR o f  all 
treatments. Different letters 
indicate statistically significant 
different groups (multiple 
comparison p<0.05).

O v e ra ll  I M P ,  G F  a n d  G R

Neomysis integer moulted most frequently (Figure 3) when feeding on ART and 
FLOCS (mean IMP of 6.07 ± 0 .1 0  days). The longest IMP was measured when feeding on 
EURY, both types o f macrophyte detritus and when starved (7.71 ± 0 .17  days). The mean GF 
was highest when given an animal diet or estuarine floes (9.97 ± 0.42 %) and was significantly 
smaller when feeding on macrophyte detritus or when being starved (5.06 ± 0.60 %). When 
expressed as mean length increase per day within an intermoult period, the growth was highest 
in ART (0.106 ± 0.006 mm d"1), followed by EURY and FLOC (0.070 ± 0.005 mm d '1), and 
SC-0, SP-0 and STARV (0.031 ± 0.004 mm d 1).
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S L  a t  each  m o u lt  e ven t

Within a period o f 32 days, subadult Neomysis integer grew on average 2.79 ± 0.13, 
1.90 ± 0.24, 1.44 ± 0.15 and 0.65 ± 0.01 mm when feeding on Artemia nauplii, Eurytemora, 
floes and Scirpus detritus, respectively. This means a relative length increase o f 51.7 ± 2.7, 38.0 
± 5.7, 30.4 ± 3.2 and 13.2 ± 0.5 %, respectively. The mean initial standard length o f the 
individuals (Figure 4a) selected for the FLOC treatment was biased and significantly smaller 
(4.48 ±0.13 mm) than for the other treatments (5.35 ± 0.05 mm).

Significant differences in SL (Figure 4a; p < 0.05) between the different diets were 
observed from the 3rd moult onwards, when the standard length o f ART fed Neomysis integer 
became significantly larger compared to all other treatments. From the 4th moult onwards, a 
significant gap between the individuals feeding on animals prey (ART and EURY) and 
individuals feeding on FLOC and macrophyte detritus (SC-0) became apparent. At the fifth 
moult, a significantly lower SL was observed in the SC-0 treatment in comparison to FLOC as 
well.

I M P  a t  each  m o u lt  e v e n t

Neomysis integer moulted most frequently (Figure 4b) in the treatments ART (6.2 ± 0.2 
days) and FLOC (5.9 ± 0.1 days); while the mean IMP was subsequently longer in EURY (7.0 ± 
0.1 days) and SC-0 (7.8 ± 0.2 days). The intermoult period generally increased during the 
course o f the experiment in ART (+34 %), FLOC (+18 %), and SC-0 (+24 %), but it remained 
more or less constant in EURY (+2 %). From the first IMP onwards, the frequency in moulting 
is significantly different (p < 0.05) between the diets although these differences disappeared 
after the 4th moult.

G F  a t  e a c h  m o u lt  e v e n t

Over the course o f the experiment, the GF (Figure 4c) increased in EURY and SC-0 by 
35 % and 65 %, respectively. In the ART treatment, the GF increased over the first 3 moults 
(+71 %) and then decreased again (-44 %). In Neomysis integer feeding on FLOC, the GF 
generally decreased by 31 % according to the initial GF.

From the first moult onwards, the GF was different between ART, EURY and FLOC on 
the one hand and in SC-0 on the other hand. After the second moult, the GF of ART-fed mysids 
increased to 13.38 %, while the other 2 groups remained at a value similar to the first moult 
(respectively 9.33 and 3.67 % for ART -  FLOC and SC-0). After the 3rd moult, the GF of all 
treatments became more and more alike.

G R  a t  e a c h  m o u lt  e v e n t

Over the course o f the experiment, the mean growth rate during each intermoult period 
(Figure 4d) generally increased in ART (from 0.078 to 0.130 mm d '1), EURY (from 0.056 to 
0.091 mm d 1) and SC-0 (from 0.023 to 0.033 mm d '1). Only in the FLOC treatment the GR 
decreased over time (from 0.095 mm d 1 to 0.064 mm d 1), mainly due to the short IMP in this 
treatment.

From the first moult onwards the GR differed between ART, EURY and FLOC on the 
one hand and a lower valued GR in SC-0 on the other hand. After the 3rd moult the GR was 
significantly larger in ART and significantly lower in SC-0 than EURY or FLOC. After the 4th 
moult the GR on an animal diet was significantly higher than on the detrital diets.



DISCUSSION

S ta rv a tio n

The capacity to withstand starvation in Neomysis integer is dependent on salinity, 
temperature and size (Vlasblom and Elgershuizen, 1977; Winkler, 2000). At 9 °C, juvenile and 
subadult Neomysis integer survived starvation for maximally 7 weeks (Gorokhova and Hansson, 
1999). Armitage et al. (1978) starved N. integer on kaolin and obtained a mortality o f 60 % 
after 6 to 8 days (8 psu at 15 °C). In the present experiment, the subadult N. integer survived 
starvation for maximally 20 days at 15 °C (5 psu), with 50 % mortality occurring after 14 days. 
In experiments performed under identical conditions as the ones presented here, subadult N. 
integer could survive for at least 4.5 weeks when fed only 10 Artemia nauplii per day 
(Fockedey, unpublished).

The mysids produced faecal pellets until the last day o f their survival. The water was 
renewed daily, so animals were prevented from eating their cast exuvia and faecal pellets. 
However, Neomysis integer has been described to feed directly on its own faecal string (Molloy, 
1958; Ferguson, 1973; Parker and West, 1979) and this could have provided a source o f energy 
for some time. Faecal pellets derived from organically rich food sources still have a carbon 
content of 40 -  60 % (Ferguson, 1973).

Starvation in Neomysis integer causes a decrease in dry weight and a reduction in total 
body carbon (Gorokhova and Hansson, 1999), indicating a substantial loss of organic reserves. 
The actual amount o f sugars in N. integer is small, and allows the mysid to live for only a few 
hours (Raymont et al., 1968). The low amount o f lipid reserves o f N. integer is enough to 
maintain respiration rates and activity levels for at least up to 48 h (Weisse and Rudstam, 1989). 
When starved for a longer period, the species can deaminate body proteins (Raymont et al., 
1968). In their natural estuarine habitat, N. integer probably never have to overcome periods of 
food shortage, as the omnivorous mysids can easily take advantage o f a wide range o f food 
items in the estuary (Winkler, 2000; Fockedey and Mees, 1999 -  Chapter 2).

E x cess  fo o d  c o n c e n tra tio n

The Neomysis integer individuals were offered food ad libitum, so the mysids were 
assumed to feed at a maximum feeding rate in all treatments. Food quality, as measured in the 
present experiment by the ability o f N. integer to grow and moult on a certain food item, 
actually reflect the ability o f N. integer to assimilate that food item and thus, its nutritional value 
to the mysid.

The maximum feeding rate o f subadult and adult Neomysis integer on Artemia nauplii, 
is respectively 200 and 600 -  800 nauplii d '1 (Astthorsson, 1980; Fockedey, unpublished). Thus, 
N. integer was fed Artemia nauplii well in excess in the current experiment (2000 d 1).

Neomysis integer is known to prey very efficiently on Eurytemora affinis. Laboratory 
experiments in relatively small beakers and with a copepod density an order o f magnitude 
higher than in the field resulted in a maximal daily feeding rate o f 20 -  40 E. affinis copepodites 
per mysid (Winkler and Greve, 2004). When fed E. affinis nauplii as well (Irvine et al., 1993; 
Aaser et al., 1995), predation rates were even higher (up to 55 nauplii and 44 copepodites). In 
the present experiment we did not aim to study predation rates, however, the remaining number 
o f copepods was counted daily.



Over the course o f the experiment only 18 % o f the supplied copepods were consumed on 
average (6 -  37 %) and therefore assumed to be administered ad libitum. Since feeding rates 
were substantially smaller ( 3 - 1 8  mysid 1 d '1) than the ones reported in literature for subadults 
(20 -  40 mysid 1 d '1), it is possible that some food limitation occurred.

Each subadult Neomysis integer received 50 copepodite per 350 ml daily (143 I 1). This 
food concentration is double the maximal density in the Schelde estuary (61 ind I'1; Soetaert and 
Van Rijswijk, 1993), but smaller than natural E. affinis concentrations in the Elbe estuary (220 
ind l '1; Kopeke, 2002). During the day, no replacement o f eaten prey was done and prey 
concentration decreased gradually over time. As N. integer does not attempt to hunt at low 
concentrations of calanoid copepod prey (Irvine et al., 1993), this could have had an impact on 
the ingestion rate and subsequently on growth.

The concentration o f floes produced in the roller tanks varied according to the neap- 
spring tide cycle with an average o f 16000 ± 2000 aggregates I"1 (Fockedey et al., submitted c -  
Chapter 4). Considering a feeding rate o f ± 40 floes h"1 ind"1 (Fockedey et al., submitted c) and a 
continuous feeding intensity over 24 hours, the maximal daily ration o f Neomysis integer on 
floes approximates 1000 floes. Hence, the concentration in the roller tanks provided ample food 
to the mysids.

In the present experiments, the mysids survived and grew when feeding on detritus from 
Scirpus maritimus. The macrophytal detritus was administered well in excess (25 mg DW ind'1 
d"1) and a large fraction o f the ration was left each day. Generally, detritivory is associated with 
low assimilation and is be partly compensated by a high ingestion rate (Marchant and Hynes, 1981; 
Zagursky and Feller, 1985).

G ro w th  p e r fo rm a n c e

Although survival was comparable, the growth o f subadult Neomysis integer individuals 
was slower on a diet of macrophytal detritus {Scirpus maritimus) than when feeding animal 
food or laboratory-made floes. This difference reflects the poor nutritional value o f the 
macrophytal detritus. Artemia nauplii were the best quality food for subadult N. integer, as a 
combination o f relatively small IMP and relatively high GF and GR gave rise to a significantly 
higher standard length at the end o f the experiment. When fed laboratory-made floes, N. integer 
moulted as frequently as in Artemia-fed mysids, but GR decreased relatively over the course of 
the experiment. A Eurytemora affinis diet resulted in a significantly elongated IMP from the 
first moult onwards in comparison with mysids fed Artemia or floes, and was associated with a 
significantly lower growth rate in comparison with the Artemia treatment.

The individual variation on the growth parameters (SL, IMP, GF, and GR) was small, 
thus making it easy to distinguish the effects o f food quality (Fockedey et al., submitted c -  
Chapter 4; present study), food quantity (Fockedey, unpublished) and toxicological effects 
(Ghekiere et al., submitted) on these endpoints. IMP, GR and GF were affected by the food 
quality from the first moult onwards. In the present experiment, the IMP increased significantly 
and hence growth rate (GR, GF) decreased significantly with decreasing food quality, as 
demonstrated for gammarid amphipods (Willoughby and Sutcliffe, 1976; Delong et al., 1993; 
Pöckl, 1995). At 15 °C and 5 psu (conditions o f the present experiment), Neomysis integer 
feeding ad libitum on Artemia nauplii needs 13 moults to become mature (Fockedey et al., in 
press -  Chapter 3). Any increase in the IMP due to poor food quality, will result in a 
considerable prolongation o f the maturation time at this temperature and salinity. A decreased 
growth rate at moulting, associated with the consumption of low quality food, resulted in a



smaller size at the end o f the experiment and probably a smaller size-at-maturity associated with 
a lower fecundity.

F ie ld  re le v a n c e

The intertidal salt marshes on the margins o f the Schelde estuary are massively 
occupied by Neomysis integer at flood during each tidal cycle (e.g. Mees et al., 1993a; Cattrijsse 
et al., 1994; Hampel et al., 2003; 2003b). The areas are favoured by the estuarine mysids for 
reproductive purposes (Cattrijsse et al., 1994; Mees et al., 1993a), even though residence in the 
marsh is coupled to a high predation pressure by fish and shrimp (Cattrijsse et al., 1994; Dean et 
al., 2005). The large amounts of macrophytal detritus available inside the marsh creeks are also 
assumed to attract the mysids (Zagursky and Feller, 1985; Cattrijsse et al., 1994).

Spartina anglica and Scirpus maritimus are abundant vascular plants in the brackish 
marshes o f the Schelde estuary (Beeftink, 1977; Adam, 1990). Gut contents o f animals living in 
marshes often include large quantities o f vascular plant detritus, although there is little evidence 
that a strict diet o f this material can sustain the populations o f the high-order consumer-species 
like fish (Zagursky and Feller, 1985; Kneib, 1997). Neomysis integer could survive on a diet of 
S. maritimus detritus in the present experiment, although the somatic growth was low. The S. 
anglica detritus caused a high mortality and morphologic aberrations to N. integer. The latter 
detritus was made from living plants and the leaves were not leached before application. Some 
chemical constituents {e.g. polyphenols or tannins) released in the water by living macrophytes 
are toxic for N. integer (Lindén and Lehtiniemi, 2005).

Generally, the retractile macrophyte detritus can be digested by detritivore crustaceans 
through the presence o f cellulolytic bacteria in the intestine (Plante et al., 1990) or the 
availability o f specific enzymes in the gut. Cellulases have been identified in Neomysis integer 
(Molloy, 1958), but it is not known if the enzyme is produced by the mysids themselves or with 
the aid of an associated gut microflora (Foulds and Mann, 1978; Wainwright and Mann, 1982). 
Although microflora residing in the alimentary track o f N. integer has been demonstrated 
(Bradshaw et al., 1989), specific cellulolytic bacteria have not yet been found for the species. 
Other authors (e.g. Hargrave, 1970) suggest that the main energy value o f the macrophyte 
detritus for crustaceans lies in the associated bacteria and protozoans (trophic upgrading), while 
the detritus itself is egested unchanged. Observations o f the faecal pellets produced when 
feeding on Scirpus maritimus detritus showed that the plant remains were digested themselves 
(Fockedey et al, submitted d -  Addendum 2).

The detritus was supplied without aging. The extensive growth o f fungi, bacteria and 
protozoans on decaying plant remains makes the resistant detritus acceptable to shredders by 
softening the leaves and by raising their protein content (Hargrave, 1970) and result in a higher 
growth performance in gammarid amphipods and copepods (Willoughby and Sutcliffe, 1976; 
Heinle et al., 1977). Preliminary results (Fockedey, unpublished), however, showed that a 
relatively short decay o f this detritus for 3 -  5 days did not alter the growth rate o f the mysid 
Neomysis integer in comparison with the unconditioned detritus.

In the subtidal reaches of the MTZ o f the estuary, the availability o f estuarine floes is 
high in comparison with calanoid prey. Neomysis integer encounters at best one Eurytemora 
affinis copepodite or adult per 10 macro-flocs (Soetaert and Van Rijswijk, 1993; Zimmerman, 
1997; Tackx et al., 2004). The escape reaction o f the copepods makes them a less easily preyed 
item than floes. The lower energetic value o f the floes is compensated for by a higher



consumption rate as demonstrated by egestion rates (Fockedey et al., submitted d -  Addendum 
2), but still resulted in a significantly lower growth rate in comparison with a diet o f E. affinis.

Food selection experiments were not in the scope o f the present study and nothing is 
known about the in situ preference o f N. integer. Also we did not aim to perform growth 
experiments with mixed diets. It is possible that a combination o f animal and plant food 
stimulates growth more than given one type of diet (Heinle et al., 1977; Roman, 1984). Some 
items may not be consumed massively, but do deliver essential nutrients like essential fatty 
acids and vitamins necessary for optimal growth, development and/or reproduction (Koski et 
al., 1998).
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Addendum 2

Some experimental observations on gut passage time, 
egestion rate and faecal pellet production of the 
brackish water mysid Neomysis integer (Mysidacea: 
Crustacea) feeding on different food iems

ABSTRACT --------------------------------------------------------------------------------------------------------------

Gut passage times in Neomysis integer were calculated by measuring voided faecal 
pellets when feeding ad libitum on a variety o f environmentally relevant food types and a 
reference diet o f Artemia salina nauplii. When feeding on A. salina nauplii, gut passage times 
were variable (from 4.1 to 12.9 h), but significantly longer than when feeding on the post- 
naupliar stages o f the calanoid copepod Eurytemora affinis (2.6 h). Estuarine floes passed 
through the intestine within 0.5 hour after ingestion, and N. integer produced daily up to twice 
its own body length in compact faecal material. The gut residence time o f macrophytal detritus 
was 1.9 h and no difference was found between fresh and aged detritus.

The egestion rate of Neomysis integer feeding on estuarine floes (0.163 ± 0.001 mm3 h‘ 
') was significantly higher than in all other treatments (0.011 ± 0.001 mm3 h"1). The faecal pellet 
production rate, when feeding on floes, amounted to 0.044 mgDW mgDW 1 h

Preliminary results on the C:N ratio o f food and faecal pellets demonstrated a general 
enrichment in nitrogen in the faecal pellets, probably due to bacterial growth on the pellets, the 
peritrophic membrane and disintegrating cells of the mysids intestine. The faecal pellets 
produced by Neomysis integer are still potential sources of energy themselves. Scanning 
electron micrographs o f faecal pellets produced on the different food types give details about the 
peritrophic membrane and pellet content.

Subm itted for publication as:

Fockedey, N., Mees, J., Vincx, M. Some experimental observations on gut passage time, 
egestion rate and faecal pellet production o f the brackish water mysid Neomysis integer 
(Mysidacea: Crustacea) feeding on different food items. J. Exp. Mar. Biol. Ecol.



INTRODUCTION

Stomach fullness data and quantitative gut content analyses o f Neomysis integer living 
in the maximum turbidity zone o f several European estuaries were presented by Fockedey and 
Mees (1999 -  Chapter 2). In this zone of the estuary, N. integer is a consumer of 
mesozooplankton, estuarine aggregates and macrophytal detritus (Fockedey and Mees, 1999). In 
laboratory studies, these food items were tested on their nutritive value for N. integer using the 
growth performance of the animals (Fockedey et al., submitted a and submitted c -  Chapters 4 
and 5). Additional in situ stomach fullness analyses were performed for N. integer sampled 
during several 24h cycles in the Elbe, Westerschelde and Gironde estuaries (Fockedey, 
unpublished - MATURE). However, feeding rate and daily ration could not be calculated, since 
information on the gut residence time was lacking.

In any study concerning the feeding ecology o f a species, there is a need to estimate the 
gut passage time (also called gut residence or retention time or gastric evacuation rate), i.e. the 
time that a food particle needs to pass through the complete length o f the intestine. Especially 
when estimating in situ feeding rates based on the gut fullness, one cannot make firm 
interpretations without the knowledge o f the gut passage time (Heyraud, 1979; Murtaugh, 1984; 
Perissinotto and Pakhomov, 1996).

Previous studies have shown that invertebrates can exercise some kind o f control over 
their gut passage time, and adapt the retention to the nature and abundance o f the food particles 
(Stâlberg, 1933; Murtaugh, 1984). A poor quality food or a small number o f ingested prey may 
be retained for a longer period in the gut to maximize food assimilation (Murtaugh, 1984). High 
quality or abundant food can pass through the gut quickly with a limited extraction in the gut 
(Willoughby and Eamshaw, 1982). Gut passage time is also inversely related to the 
environmental temperature (e.g. Welton et a i ,  1983; Chipps, 1998) and the size o f the animal 
(Zimmerman and Wissing, 1978; Uye and Kaname, 1994).

A method often used for determining gut passage times in invertebrates is to starve 
animals taken from the field and measure the time to empty their gut (Moore, 1977; Marchant 
and Hynes, 1981; Murtaugh, 1984). Another method is to starve the animals in order to empty 
their gut, where after the animals are fed a specific dietary item at a specific concentration in the 
laboratory and to monitor the time to the first faecal pellet production (Foulds and Mann, 1978). 
However, starvation increases the retention time o f the food (Murtaugh, 1984) and results in a 
non-linear emptying o f the gut (Marchant and Hynes, 1981). Also, feeding rates may be 
artificially high after a period o f starvation by compensatory feeding.

In the case o f the brackish water mysid Neomysis integer, gut clearance experiments are 
difficult since the mysid retains food in its stomach for at least 7 days under starvation 
conditions (Molloy, 1958). Furthermore, the species becomes coprophagous and/or cannibalistic 
when there is shortage o f food (Raymont and Krishnaswamy, 1960; Parker and West, 1979; 
Weisse and Rudstam, 1989; Roast et al., 2000b). Alternative methods are the use o f coloured 
food as a marker to follow its passage in the intestine through the translucent cuticle (Monk, 
1977; Zimmerman and Wissing, 1978; Murtaugh, 1984; Chipps, 1998) or the use o f the “faecal 
pellet production method” (Willoughby and Eamshaw, 1982). This latter method measures the 
length of the faecal pellets, produced by the animals within a certain time span, in relation to the 
length o f the intestine.



The aim of the present study was to measure and compare the gut passage time of 
Neomysis integer for different environmentally relevant dietary items and a reference diet of 
Artemia salina nauplii. Egestion rates were estimated (as volume or dry weight o f faeces 
produced per time unit). Additionally, preliminary data are presented on (1) the carbon and 
nitrogen content o f the food and the faecal pellets, and (2) scanning electron microscopic 
observations on the different types o f faecal pellets produced.

M ATERIAL AND M ETHODS

G u t p a s s a g e  t im e  e x p e r im e n t

Neomysis integer was sampled in the brackish water pond Galgenweel situated on the 
left bank o f the Schelde estuary. Short hauls were taken with a 1 x 1 mm meshed handnet (0.3 
by 0.2 m) and the animals were taken to the laboratory in environmental water within 2 hours 
sampling. Subadult N. integer individuals (standard length between 7 and 11 mm) were adapted 
for 2 to 4 days on the following experimental diets: Artemia salina nauplii (< 36 h old), adult 
and copepodite stages o f the calanoid copepod Eurytemora affinis, estuarine floes, fresh Scirpus 
maritimus detritus and aged S. maritimus detritus (Table 1).

Experiments were performed in artificial seawater of 5 psu, except for the treatment 
with estuarine floes. The methodology for the formation o f the floes in the laboratory with 
natural estuarine water is described in detail in Fockedey et al. (submitted c -  Chapter 4). In 
short, surface water was collected in the maximum turbidity zone o f the upper part o f the 
Schelde estuary (10 and 14/4/1998), sieved (250 |im) and rotated (11 rpm) in cylindrical 
containers (0.85 1) to allow floe formation. After 3 hours a steady state in floes numbers and size 
was obtained and 1 mysid was added per container.

Died-off plant material o f Scirpus maritimus was collected from the banks o f the 
Schelde. After carefully washing off the sediments and epiphytes, the S. maritimus was air-dried 
( 1 5 - 2 0  °C) for 2 days and ground to 400 pm particles. The mysids were fed with 40 ± 3 mg 
DW of this powder (further named fresh detritus SC-0) that was suspended in the medium (350 
ml o f artificial seawater per container). To age the detritus (SC-A), the same DW of particles 
was suspended in artificial seawater o f 5 psu, and was allowed to decompose for 3 -  5 days in a 
climate room (25 °C) with aeration before being administered to Neomysis integer.

Artemia salina nauplii (San Francisco Bay Brand) were hatched from cysts in the 
laboratory. After harvesting, an aliquot was quantified, and 2000 nauplii were administered to 
the experimental jars (350 ml).

Table 1: Set-up and results o f  the experiments to determine gut passage time (GPT) o f  subadult Neomysis 
integer feeding on different food items.

Concentration N Duration SL mysids Length
Egestion rate

length volume '  GPT (h)

Food ( I1) (h) (mm) intestine (mm) (mm h '1) (mm3 h '1) Mean ± SE

Artemia sp. 5700 10 18.0 8 .5 -10 .8 7 .6 -9 .7 0 .6 -2 .3 0 .001-0.016 6.8 ±1.1

Eurytemora affinis 143 9 20.17 7 .2 -9 .2 6 .4 -8 .2 2 .0 -3 .7 0.008-0.015 2.6 ±0.1

Estuarine floes * 16000 ±2000 10 21.0 7 .5 -1 0 .0 6.3 -  9.3 6 .9 -20 .3 0.057-0.217 0.5 ±0.1

Fresh detritus 115 g DW 8 6.67 7 .5 -8 .9 6 .6 -7 .9 2 .2 -5 .9 0.005-0.027 2.0 ±0.3

Aged detritus 115 g DW 8 6.0 8 .1 -9 .6 7 .2 -8 .5 1.7-14 .4 0.004-0.023 1.8 ±0.5

* See Fockedey et al. (submitted) for a detailed description of the floe formation and quantification methodology



Copepodites and adults o f the calanoid copepod Eurytemora affinis were collected in 
Galgenweel by filtering surface water through a 250 (im sieve. A ration o f 50 post-naupliar 
stages was quantified using the spot method o f Reeve (1970) and transferred to each 
experimental unit (350 ml).

The gut passage time, defined as the time a food item needs to pass through the intestine 
channel, was measured according to the technique o f Willoughby and Eamshaw (1982) 
developed for gammarids. The faecal pellets are considered to be cylindrical. Before the start of 
each experiment the following parameters were measured for each mysid using a drawing 
mirror mounted on a stereomicroscope: standard length SL (as the length between the base of 
the eye stalks and the base of the telson), the length o f the intestine (posterior o f the stomach 
until the anus) and the length and width of the faecal pellets present in the intestine. One mysid 
was introduced per experimental unit ( 8 - 1 0  replicates per treatment) and was allowed to feed 
ad libitum. The duration o f the experiments was adapted for each dietary item according to the 
amount o f faecal material produced (Table 1). All experiments were performed in a climate- 
controlled chamber at 15 °C under continuous lighting. At the end o f each experiment the faecal 
pellets present in the intestine and the faecal pellets that were produced during the course o f the 
experiment were measured (length of all pellets, width o f 30 pellets randomly selected). No 
attempt was made to sort the pellets out from between the remaining food, as it was too time- 
consuming to collect all faecal material (especially in the detritus and floes trials). It was 
assumed that the mysids were not feeding on the pellets. The gut passage time GPT (h) was 
calculated as:

GPT = duration o f  the experim ent (h) x ----------- length o f  the intestine (mm)-----------
total length o f  faecal pellets produced (mm)

The GPT and the egestion rate (as mm3 faecal pellets produced h"1) when feeding on the 
different diets was compared with an ANOVA and the Fisher post-hoc test (log transformed 
data).

E g e s tio n  ra te : f a e c a l  p e lle t  p ro d u c tio n  m e th o d

An additional experiment was set-up with Neomysis integer feeding on laboratory-made 
floes with the aim to collect all faecal pellets produced and measure egestion rate (as dry 
weight). Estuarine water was sampled on 5/5/1998 and N. integer was adapted for 2 days to a 
diet o f laboratory-made floes. Groups o f mysids o f a specific size class were selected and 
allowed to feed on the (not-quantified) aggregates for 24 hours (Table 2). All faecal pellets were 
collected from between the remaining aggregates with needle and pipette. However, it was a 
very time consuming process as pellets were often coagulated within the aggregates and had to 
be washed in distilled water for several times. Pellets were oven-dried (60°C, 48h). Mysid 
standard length was measured with a drawing mirror mounted on a stereomicroscope and 
converted to dry weight (Irvine et al., 1995). Egestion rate was calculated as mg dry weight of 
faecal pellets produced per mg mysid dry weight per hour.

C : N  in  th e  fo o d  a n d  fa e c a l  p e lle ts

Additional experiments were set up for the analysis o f the C and N content o f the food 
and faecal pellets produced by Neomysis integer feeding on the 5 diets. Faecal pellets were 
collected with a needle under stereomicroscope. Special attention was paid not to collect food 
remains together with the pellets.
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Since this process is very time consuming the experimental units were placed at 8 °C 
until processing (maximally 6 h), to avoid the formation o f bacteria or other micro-organisms. 
At regular time intervals (± each 15 min) the picked faecal pellets were frozen (in bulk per 
treatment). The numerous faecal pellets produced when feeding on estuarine floes were first 
concentrated (with loss) by sieving the medium over a 106^m sieve. No attempt was made to 
collect all faecal pellets produced by N. integer, but a sample large enough to perform a C:N 
analysis with the Carlo Erba elemental CHN elemental analyser (N1500), i.e. minimally 2 mg 
dry weight was collected. The samples of faecal pellets (1 replicate) and food ( 2 - 3  replicates) 
were weighed with a microbalance (METTLER M3). The C and N content are expressed as a % 
of the dry weight. Additional samples o f floe food material were collected to compare total 
carbon content and the organic carbon content o f the floes after acidification.

S c a n n in g  e le c tro n  m ic ro s c o p e  (S E M )

Some individual faecal pellets were picked out for scanning electron microscopy (SEM, 
JEOL840). They were carefully washed with distilled water, critical point dried from liquid 
C 0 2, and coated with gold. Some pellets were broken prior to coating to examine its content at 
the fractured surface.

RESULTS

G u t p a s s a g e  tim e  e x p e r im e n t

The gut passage time o f Neomysis integer (Table 1, Figure 1) feeding on Artemia salina 
nauplii varied between 4.1 and 12.9 h (mean 6.8 ± 1.1 h), and only a small amount o f faecal 
pellets was produced per hour (< 2.3 mm or < 0.016 mm3). When feeding on post-naupliar 
Eurytemora affinis, the mysids had a significantly lower gut passage time (2.6 ± 0 . 1  h). This
was comparable to the gut residence time when the mysids were feeding on fresh and aged
macrophytal detritus (respectively 2.0 ± 0.3 h and 1.8 ± 0.5 h). Aging o f the macrophyte detritus 
did not result in different egestion rates or gut passage times. Estuarine floes passed the intestine 
o f N. integer at a significantly higher speed (0.5 ±0.1 h). The mysids produced a large amount 
o f faecal pellets up to 20.3 mm, or 1 to 2 times their own body length per hour, corresponding to
an egestion rate o f 0.06 -  0.22 mm3 h '1.

The cross section area of faecal pellets varied between 0.002 and 0.007 mm2 (average of 
0.004 mm2) when feeding on animal diets or macrophyte detritus. The diameter o f the pellets 
was substantially larger when feeding on estuarine floes (0.008 -  0.013 mm2; mean 0.010). The 
egestion rate (Figure 2) o f Neomysis integer feeding on floes (0.163 ± 0.001 mm3 h"1) was 
significantly higher than in all other treatments (0.011± 0.001 mm3 h 1).

Figure 1: Gut passage time (GPT ±  
standard error) o f  subadult Neomysis 
integer feeding ad libitum on 5
different diets. Different letters
indicate significant differences 
(multiple comparison p<0.05). ART: 
Artemia salina nauplii, EURY: post- 
naupliar stages o f  Eurytemora affinis, 
FLOC: laboratory-made estuarine
floes, SC-0: fresh macrophyte detritus 
and SC-A: aged macrophyte detritus o f  

a r t  EURY FLOC sc-0 SC-A Scirpus maritimus.



Figure 2: Egestion rate (± 
standard error) o f  subadult 
Neomysis integer feeding ad 
libitum on 5 different diets. 
Different letters indicate 
significant differences
(multiple comparison p<0.05).
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E g e s tio n  ra te

The method described to collect all faecal pellets from between the remaining 
aggregates was a very time consuming process (1 sample processed per 6 hours!). Pellets were 
often coagulated within the aggregates and had to be washed in distilled water for several times, 
with the risk o f damaging the pellets. The technique was too impractical to perform on a large 
scale and in a statistically robust way. However, some results are presented in Table 2. The 
egestion rate ranged between 0.30 and 0.57 mg DW mysid'1 d '1 in small subadults and 1.67 and 
1.84 mg DW mysid'1 d '1 in larger subadults. Weight-specific egestion rates were estimated as 
0.035 -  0.044 mgDW mgDW '1 h '1 for small subadults and 0.022 -  0.029 mgDW mgDW'' h"1 for 
larger subadults.

C : N  in  th e  fo o d  a n d  fa e c a l  p e lle ts

The carbon content (Figure 3) o f animal food (6 -  7 %) was lower than that of 
macrophytal detritus (41 %). The nitrogen content o f animal food (1.2 -  1.4 %) was double the 
value of the macrophyte detritus (0.7 %). No effect o f aging could be observed in the C or N 
content o f the plant remains. The carbon content o f estuarine floes was 6.4 % and mainly 
consisted o f organic carbon, as acidification caused the C content to decrease only moderately 
to 5.1 %. The nitrogen content o f the floes was very low (0.4 %).

Although measurements of faecal pellets are based on one sample only, some trends in 
the C and N ratio between food and faecal pellets could be observed. When feeding on Artemia 
salina and Eurytemora affinis, the mysids produced faecal pellets that were clearly enriched in 
C (+13 % and +10 %) and N (+1.6 % and +1.9 %).

Table 2: Set-up and results o f  the experiment to determine egestion rate o f  subadult Neomysis integer 
feeding on floes. SS: small subadult; LS: large subadult. r> According to standard length -  dry weight 
conversion o f  Irvine et al., 1995.

Mysids Egestion rate

# ind Stage SL mysid 

(mm)

DW mysid r)

(mg)

mgDW ind'1 d'1 mgDW mgDW'1 h'1

8 SS 5.48 ± 0.30 0.56 ±0.07 0.57 0.044

10 SS 4.74 ±0.17 0.36 ±0.04 0.30 0.035

2 LS 10.54 ±0.40 3.48 ±0.38 1.84 0.022

3 LS 9.22 ±0.21 2.37 ±0.15 1.67 0.029
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The faecal pellets produced when feeding on estuarine floes are also enriched, though 
more moderately (+5% C and +0.5% N). When feeding on fresh and aged macrophyte detritus, 
the faecal pellets are enriched in N as well (+0.5 % and +0.7 %), but depleted in carbon (-14 % 
and -9 %).

S c a n n in g  e le c tro n  m icro sco p e  ( S E M )

When feeding on animal food, the faecal pellets were closed units surrounded with a 
firm and elastic peritrophic membrane (Figure 4a). Pellets produced when feeding on the other 
food types were longer and fragile. The peritrophic membrane o f the pellets produced on 
macrophyte detritus was not so firm and the membrane was ruptured on several locations 
(Figure 4c). When the mysids fed on estuarine floes, the peritrophic membrane was completely 
lacking (Figure 4e).

ART EURY FLOC FLOC(acid) SC-0 S C -A

ART EURY FLOC FLOC(acid) SC-0 S C A

ART EURY FLOC FLOC(acid) SC-0 SC-A

Figure 3: Carbon (% C) and nitrogen 
(% N) content, and C:N fraction o f  
food and faecal pellets produced by 
Neomysis integer when feeding on the 
different diets. The error bars indicate 
standard error.



Figure 4: Scanning
electron micrographs of 
faecal pellets produced 
after feeding post-naupliar 
stages of Eurytemora 
affinis (a, b), artificially 
made macrophyte detritus 
of Scirpus maritimus (c, d) 
and laboratory-made floes 
(e, f). Left side: general 
appearance of the pellet; 
right side: detail of the 
fractured surface of a 
broken pellet. Arrows in b: 
extending copepod remains.

Within the pellets produced on animal food, one could recognize undigested parts o f the 
exoskeleton of Artemia salina or Eurytemora affinis (indicated with arrows in Figure 4b). The 
faecal pellets produced on estuarine floes were made up o f very fine sediment material closely 
packed together (Figure 4f). In some cases mineral grains or remains o f diatom frustules could 
be recognised at the fractured surface (not shown). The content o f pellets produced on 
macrophyte detritus was not that compact, and remains o f the detritus were visible, although no 
tracheae were recognisable as was the case in macrophyte detritus recuperated from stomach 
contents o f the mysids (Fockedey and Mees, 1999 -  Chapter 2). Micro-organisms were not 
observed on or within quickly recuperated faecal pellets, but the peritrophic membrane o f older 
faecal pellets (> 24 h) was intensively colonized with bacteria which started to biodegrade the 
membrane (Figure 5).

Figure 5: Peritrophic
membrane of an older 
faecal pellet (> 24h)
produced after feeding on 
Artemia salina nauplii. The 
pellet’s surface is colonized 
by bacteria beginning to 
biodegrade the peritrophic 
membrane.



DISCUSSION 

G u t p ass a g e  tim e

Several studies have confirmed that macrophytal detritus, especially when conditioned 
with micro-organisms, is an excellent food to detritivorous invertebrates that results in high 
growth rates (e.g. Sutcliffe et al., 1981). The gut passage times o f Neomysis integer on 
macrophyte detritus are in line with those calculated for detritivorous amphipods (Bärlocher and 
Kendrick, 1975; Marchant and Hynes, 1981; Willoughby and Eamshaw, 1982). The laboratory- 
made detritus o f Scirpus maritimus proved to be a nutritive food for N. integer (Fockedey et al., 
submitted a -  Chapter 5). Preliminary results (Fockedey, unpublished) showed that aging o f this 
detritus for 3 -  5 days did not alter the growth rate o f the mysids in comparison with the 
unconditioned detritus. Although not quantified, microscopic observation o f the aged detritus 
revealed abundant micro-organisms to be present on the pieces o f plant material after 3 - 5  days 
conditioning at 25 °C. In the present study, administering fresh and aged detritus did not cause a 
significant difference in the gut passage time of N. integer. Other studies offering laboratory- 
made macrophytal detritus as food to invertebrates often use a longer incubation time of several 
weeks or work with already decaying material collected in the field (Marchant and Hynes, 1981; 
Willoughby and Eamshaw, 1982; Gorokhova and Hansson, 1999). A time span o f 3 to 5 days is 
probably too short to develop extensive aquatic bacteria and/or fiingi, as reflected in the 
unaltered nitrogen and carbon content o f the aged detritus.

Murtaugh (1984) found the gut residence time o f the mysid Neomysis mercedis to be 
highly variable and negatively related with the ingestion rate, and concluded that stomach 
fullness data are completely unreliable as an indicator o f in situ feeding rates. The highly 
variable gut residence time observed may have been caused by the very low prey 
concentrations. In the current study the dietary items were offered ad libitum. Whether a 
negative relationship o f gut passage time and ingestion rate also holds for Neomysis integer 
(when offering more realistic food densities), remains to be tested.

Highly variable gut passage times, like in the treatment with Artemia salina nauplii in 
this study, are indicative o f an intermittent rather than a continuous feeding (Willoughby and 
Eamshaw, 1982). In this case the gut is not kept full and the gut passage time is possibly 
overestimated. It is possible that the actual rate o f passage o f material through the gut, once it 
has been ingested, is as rapid as with the other dietary items (Willoughby and Eamshaw, 1982).

The extremely short gut passage time o f only 30 minutes when feeding on estuarine 
floes is comparable with amphipods feeding on sediments (Hargrave, 1970). Molloy (1958) 
noted that carmine particles require 30 -  40 min to pass along the complete length o f the 
alimentary track o f Neomysis integer.

E g e s tio n  ra te

The egestion rate on a variety o f diets is quantified as mm3 pellets produced per hour. 
Egestion rates on Daphnia sp. by Neomysis mercedis (Murtaugh, 1984) are comparable with the 
egestion rates measured in the current study, except for the egestion rate on estuarine floes that 
is on average one order o f magnitude higher.



The egestion rate o f Neomysis integer, when feeding on laboratory-made aggregates, 
was additionally estimated with a quantitative recovery o f faecal pellet produced (expressed in 
DW). The egestion rates obtained (0.022 -  0.044 mgDW mgDW"1 h"1) are comparable with the 
ones described for N. integer feeding on organically poor sediments (0.017 -  0.049 mgDW 
mgDW '1 h"1; Roast et al., 2000b). The method however, was too impractical and time- 
consuming to perform a statistically robust experiment.

Although gut residence time is variable, egestion rates have been used to calculate 
feeding rates o f mysids (Murtaugh, 1984; Roast et al., 2000b). The present study demonstrated 
that Neomysis integer needed to consume estuarine aggregates at a much faster rate than when 
feeding on animal food. N. integer fed rapidly on the estuarine floes, with mysids passing up to 
two times their own length in faecal material in one hour. These faecal pellets are significantly 
wider than on other food types, resulting in a production o f 0.163 ± 0.015 mm3 faecal material 
per hour.

The biodeposition effect o f Neomysis integer, compacting suspended macro-flocs by 
consumption and depositing them in C-enriched faecal pellets is hard to quantify. Assuming 
maximal reported densities of N. integer in the MTZ of the Schelde o f 240 ind m 2 (Mees and 
Jones, 1997), and a continuous feeding o f the mysid uniquely on estuarine floes without any 
food limitation, the total faecal pellet production was estimated to be 1 0 - 5 0  mg C m"2 d '1.

P e r itro p h ic  m e m b ra n e

The ingested food passes from the stomach into the lumina o f the digestive glands and 
is digested and absorbed there (Molloy, 1958). Neomysis integer has a single, large dorsal 
diverticulum that arises as an extension of the midgut in the posterior dorsal area o f the 
stomach. It continuously secretes the peritrophic membranes into the intestine and packs up the 
faecal material (Molloy, 1958), that consists o f indigestible food remains and cellular 
components of disintegrating epithelial cells o f the intestine and gut microflora. The function of 
this chitinous peritrophic membrane in crustaceans remains unclear (Brunet et al., 1994).

When feeding on macrophyte detritus and on estuarine floes, the faecal pellets of 
Neomysis integer have an incomplete to lacking peritrophic membrane. Therefore, the pellets 
break apart more easily into smaller pieces after egestion. Shortage o f specific dietary proteins 
or amino-acids in the detrital food may result in this poor quality membrane. On the other hand, 
the digestion o f chitinous material (Artemia salina, Eurytemora affinis) probably involves 
chitinases (Molloy, 1958). Possibly, the peritrophic membrane is a protection against enzymatic 
abrasion o f the chitinous lining o f the endgut o f N. integer when enzymatically active faecal 
material passes (Brunet et al., 1984). This mechanism is not needed in the case o f a chitin-free 
detrital consumption. Molloy (1958) however, assumed that some kind o f inhibitor must also be 
present to prevent digestion o f the chitinous lining o f the hindgut and the chitinous peritrophic 
membrane surrounding the faeces.

Chitinases and cellulase were identified in whole animal extracts o f Neomysis integer 
and Molloy (1958) expected these to be present in the intestinal channel. In the pellets produced 
when feeding on a crustacean diet (Artemia, Eurytemora), the chitinases were not very active, as 
the exoskeleton of the prey is still easily recognisable in the faecal pellets. Large macrophyte 
detritus is not recognisable any more as such in the pellets, except for some fibres (not shown). 
One can assume that cellulases were active in the gut o f N. integer in the experiments and 
substantially digested the macrophyte pieces.



C : N  in  th e  fo o d  a n d  f a e c a l  p e lle ts

The general enrichment in nitrogen in the faecal pellets is probably due to the secretion 
o f proteins and lipids o f the peritrophic membrane and cellular components o f disintegrating 
epithelial cells o f the intestine and gut microflora (Bradshaw et al., 1989; Brunet et al., 1994). 
The nitrogen enrichment can be caused by an external bacterial growth on the peritrophic 
membrane in our experiments (Turner and Ferrante, 1979), as can be observed on the SEM 
observations o f aged (> 24h) pellets.

The depletion o f carbon in the faecal pellets when feeding on macrophyte detritus 
indicates the actual digestion o f the carbon of the plant remains. Carbon enrichment in faecal 
pellets is generally explained by the preferential selection o f the organic fraction o f the food 
source supplied (Ferguson, 1973) and might explain the (possible) increase in the carbon 
content of the faecal pellets on estuarine floes. The carbon enrichment in the pellets when 
feeding on Artemia or Eurytemora cannot be explained.

The faecal pellets produced by Neomysis integer are potential sources o f energy 
themselves (for N. integer and other coprophagous invertebrates); especially when derived from 
organic rich food sources the faecal pellets still have a high carbon content (Ferguson, 1973). N. 
integer feeds on its own faeces when shortage o f food is apparent (Molloy, 1958; Weisse and 
Rudstam, 1989; Roast et al., 2000b) with an assimilation efficiency o f 10 -  25 %. Although this 
is not particularly high, it indicates that some nourishment can be derived from the faecal pellets 
(Ferguson, 1973).

The carbon and nitrogen content o f the animal food items, measured in the present 
study, are much lower than those found generally in literature (e.g. Parsons et al., 1984; Eyjemo 
and Olsen, 1999). The carbon content o f Eurytemora affinis and Artemia sp. is reported by the 
other authors as respectively 48 and 45.5%; while the nitrogen content amounts respectively 
12.5% and 10.1%. Our measurements are considerably lower (6.9% and 6.0% for carbon and 
1.4% and 1.2% for nitrogen). The measurements o f fresh Scirpus detritus though, are 
realistically (as compared to fresh Spartina detritus -  De Mesel, personal communication). For 
floes the values compare to the POC values o f Muylaert et al. (1999 -  Addendum 1). We do not 
know what artefacts caused these low results in the case o f animal dietary items.
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Effect of salinity and temperature on the intra
marsupial of the brackish water mysid Neomysis 
integer (Crustacea: Mysidacea)

ABSTRACT --------------------------------------------------------------------------------------------------------------

The brackish water mysid Neomysis integer has been proposed as a toxicological test 
species for the low saline reaches o f Western European estuaries and brackish inland water 
bodies. The embryonic/larval development is a critical time window within the life history o f an 
organism and has high potential to serve as a tool for assessing endocrine disruptive effects. A 
protocol is developed to examine the intra-marsupial development o f Neomysis integer in vitro 
and a morphological description o f the embryonic and larval developmental stages was made. 
Daily survival percentage, percentage survival days, hatching success, total development time, 
duration o f each developmental stage and the size increment of the embryos and larvae were 
evaluated as potential endpoints, and their response to temperature and salinity was 
investigated.

The survival and hatching success are highly dependent on the salinity conditions, while 
the development time is strongly affected by temperature. High temperatures (21 °C) shorten 
the development time in comparison with low temperatures ( 11 °C) from 22 to 10 days, but 
have an opposite effect on survival. Optimal salinity for in vitro embryonic/larval development 
o f Neomysis integer is 14 -  17. Living in lower or higher salinities thus implies suboptimal 
conditions for the juvenile recruitment to the population, unless the species can actively regulate 
the concentration o f its marsupial fluid.

The developed in vitro technique may be used for testing the effect o f both abiotic 
factors and (endocrine) disrupting chemicals on the intra-marsupial development o f N. integer. 
Survival, hatching success and development time appeared to be adequate endpoints, while size 
and growth increment o f the embryos/larvae seemed to be unsuitable.

Subm itted for publication as:

Fockedey, N., Ghekiere, A., Bruwiere, S., Janssen, C.R., Vincx, M. Effect o f salinity and 
temperature on the intra-marsupial development o f the brackish water mysid Neomysis integer 
(Crustacea: Mysidacea). Mar. Biol.



INTRODUCTION

In the last decades concerns have been expressed about the potential effects o f low 
levels o f (natural and anthropogenic) endocrine disrupting chemicals to man and the 
environment. The effects on wildlife and especially on invertebrate species might have far 
reaching adverse consequences for biodiversity and the sustainability o f natural ecosystems (e.g. 
Guillette and Guillette, 1996; Edmunds et al., 2000; Santos et al., 2002). Industry and 
environmental management agencies urgently need new tools to assess the potential o f effluents 
and chemicals to perturb the hormonal system (Depledge and Billinghurst, 1999). Because of 
the high contamination loads in estuaries, the need to use estuarine organisms in 
ecotoxicological studies is stressed (Lawrence and Poulter, 2001). Through their adaptation to 
the dynamic estuarine environment, these animals may either be pre-adapted to tolerate 
pollution stress or be more susceptible to any additional stress (Lawrence and Poulter, 1996).

The brackish water mysid Neomysis integer has been put forward as a test organism for 
the evaluation of environmental endocrine disruption in the brackish reaches o f Western 
European estuaries and inland water bodies (Verslycke et al., 2004). Since N. integer has a key 
function in the estuarine ecosystem (Mees et al., 1994; Hostens and Mees, 1999; Maes et al., 
2003), an alteration in the intra-marsupial development due to changing abiotic environmental 
conditions or pollution, might have an impact at the population level on the species’ recruitment 
and thus on the sustainability o f the estuarine ecosystem (e.g. Depledge and Billinghurst, 1999; 
Lawrence and Poulter, 2001).

As reproduction and embryonic/larval development are critical time windows within the 
life history o f an organism (Depledge and Billinghurst, 1999; Lawrence and Poulter, 2001), they 
have high potential to serve as sensitive indicators o f endocrine disruption (Wittmann, 1984). 
They are the critical stages in the hierarchical levels o f response by an organism to pollution that 
link molecular, sub-cellular and physiological responses to population and community impact. 
The number of endocrine disrupting chemicals identified to specifically affect the development, 
fecundity and reproductive output of aquatic invertebrates is increasing (a.o. Sundelin and 
Eriksson, 1998; Lawrence and Poulter, 2001; Billinghurst et al., 2001; Kast-Hutcheson et al., 
2001; Nice et al., 2003; Roepke et al., 2005; Forget-Leray et al., 2005).

Neomysis integer, like all other mysid species, carries its embryos in a marsupium 
where the entire larval development takes place from oviposition to the release o f free 
swimming juveniles (Wittmann, 1984). It allows the embryos/larvae some degree o f protection 
against predation. The marsupium is a chamber formed by thin-walled, concave plates fringed 
with long setae that interlock ventrally to form a closed chamber (Mauchline, 1980). Studying 
the intra-marsupial development in vivo, i.e. through the semi-transparent oostegites, is difficult 
(Fockedey, personal observation) or requires anaesthetization o f the test specimens (Irvine et al., 
1995). These difficulties emphasize the need for the development o f a protocol to study intra
marsupial development in vitro. Although some in vitro data are available on the development 
time and the hatching success o f N. integer embryos at a salinity range o f 0.4 to 16 at 15°C 
(Vlasblom and Elgershuizen, 1977), detailed information is lacking for a wider salinity range in 
combination with a wide temperature range. N. integer is known to be euryhaline, tolerating 
salinities of 1 to 40 (Vlasblom and Elgershuizen, 1977), and eurythermie, tolerating 
temperatures between 0 and 30°C under laboratory conditions (Amdt and Jansen, 1986; 
Mauchline, 1980).



The combined influence o f temperature and salinity on the intra-marsupial development 
as well as their optimal range have to be known in order to develop optimal laboratory cultures 
and to differentiate between chemically-induced variability and natural variability in toxicity 
testing. The in vitro embryogenesis and larval development have been described in other mysids 
and pericaridans and the technique is used as a bioassay to evaluate changing environmental 
conditions (Vlasblom and Bolier, 1971; Morritt and Spicer, 1996a), toxicity and endocrine 
disruption (Lawrence and Poulter, 2001).

The aim o f this study was to develop and optimize a methodology to study the intra
marsupial development o f Neomysis integer in vitro. A detailed description o f the embryonic 
mortality, morphology and the duration o f subsequent developmental stages are presented. The 
combined impact o f salinity and temperature on the intra-marsupial development was studied on 
endpoints like survival, hatching success, duration of development and size o f the embryos and 
larval sub-stages. These results are essential for the development of a bioassay to assess the 
effects o f endocrine disrupting chemicals on the intra-marsupial development o f N. integer.

M A T E R I A L  A N D  M E T H O D S  

S a m p lin g

The brackish water mysid Neomysis integer used in the experiments originates from 
dock B3 in the harbour o f Antwerp (Belgium), situated at the right bank o f the Schelde river and 
connected to it through the Berendrecht and Zandvliet sluices. A chemical factory pumps up 
water from the dock for use as cooling water. Animals and debris are extracted from this 
incoming water by sieving over a lx l  mm sieve and collected in a reservoir. Living N. integer 
were collected with a hand net (2x2 mm mesh size) from this reservoir and transported to the 
laboratory within 2 hours. Salinity and temperature conditions in the reservoir during the 
sampling period (weekly from 16 March to 20 April 2004) were on average 5 psu and 11 °C. In 
the laboratory the animals were kept in a 16 °C climatized room for < 7 days at a density o f ± 50 
ind 1' . They were fed ad libitum on <24h old Artemia nauplii and the culture water was replaced 
every 2 - 3  days (5 psu artificial seawater - Instant Ocean®, Aquarium Systems, France).

D e s c rip t io n  o f  th e  e m b ry o lo g y

Detailed descriptions o f the histology o f successive larval stages o f Neomysis integer 
are given by Wagner (1896) and Needham (1937). External morphological descriptions o f the 
intra-marsupial development are available by Kinne (1955) and de Kruif (1977). Although these 
papers give the morphological descriptions, they do not contain any pictures or drawings which 
could be useful tools for ecotoxicological evaluation. Gravid females, with embryos/larvae at 
different stages, were selected from the field samples. Using a stereomicroscope, the animals 
were decapitated and the embryos/larvae were removed from between the lamellae o f the 
marsupium with a fine spatula while submerged. The embryos/larvae were then individually 
transferred using a Pasteur pipette to a Petri dish (diameter 38 mm, height 4 mm) containing 4 
ml o f aerated artificial seawater (salinity 5) at 16 °C. Preliminary experiments indicated a 
significantly higher survival o f the embryos when placed on an orbital shaking table (80 rpm); 
this approach was used for all subsequent testing. Daily, half o f the water was renewed and 
photographs were taken to aid in the description o f the intra-marsupial development.



Figure 1 : The ripe ovary fills the 
posterior dorsal lateral regions of 
the thorax (white arrow) and can 
easily be observed under a 
stereomicroscope (12x) as a 
white mass with clear egg 
contours.

S h o rt- te rm  s u rv iv a l

To select the adequate temperature and salinity range for the experimental design, a 
multi-factorial experiment was performed to evaluate the embryo’s survival during a 3 day 
period. Spherical shaped (stage I) embryos o f 24 field-collected gravid females were taken from 
the brood pouches (between 18 and 105 embryos per brood) and randomly distributed to Petri 
dishes (25 embryos per dish) containing 4 ml aerated artificial seawater. Embryo survival was 
monitored for 3 days. The following test-design was used: 13, 16 and 19°C; each o f these 
temperatures was tested at salinity 2.5, 5, 10, 15, 20 and 25 (2 replicates per treatment). Petri 
dishes were placed on an orbital shaking table (80 rpm). No prior acclimation to the 
experimental salinity or temperature was done. H alf o f the culture medium was renewed daily 
and dead (i.e. white and/or shrivelled) embryos removed. After 72h, survival was noted and 
expressed as the mean percentage survival.

M a t in g  a n d  fe r t i l iz a t io n

Non-gravid females, with a standard length (from the tip o f the rostrum in between the 
eye stalks to the end of the last abdominal segment) o f 11 -  15 mm and with a large ovary, were 
selected from the field samples. The mature ovary fills the posterior dorsal lateral regions o f the 
thorax (Mauchline, 1980, Figure 1). The whitish eggs present in the ovary can easily be 
observed through the carapace. Mature males (standard length 1 1 - 1 3  mm) were distinguished 
by their elongated 4th pleopods that are stretched to the end o f the last abdominal segment and 
the paired penes.

To allow fertilization, one female was placed with 2 males in a 400 ml glass container 
filled with 350 ml artificial seawater (salinity 5). The jars were placed in a climatized room at 
16 °C under a 12h light: 12h dark light regime. The following was performed daily: excess food, 
faeces and possible moults were removed, dead mysids taken away and replaced by new 
individuals; 80% of the medium was renewed and fresh food was added (1000 Artemia nauplii 
mysid"1).

Mating takes place at night (Mauchline, 1980) and coincides with the moulting o f the 
female (Wittmann, 1984). Females with full marsupia were isolated for 2 days prior to removal 
o f the embryos from the marsupium on day 3.



Table 1: Percentage survival days (± standard error), median percentage survival, mean percentage 
hatching (± standard error) and percentage of replica leading to hatching for all treatments of the Central 
Composite Design.

Block Temp (°C) Sal (psu)

Percentage 
survival days 

(% day')

Median 
percentage 
survival (days)

Hatching 
success (%)

Replica 
hatched (%)

A 1 16.0 15.0 55.6 ±7.7 7.3 52.2 ±9.1 83.3
F 1 16.0 15.0 29.3 ± 7.5 5.1 37.5 ± 14.5 41.7
I 2 16.0 15.0 64.5 ± 5.5 14.6 53.9 ±4.6 91.7
J 2 16.0 15.0 71.7 ±5.0 16.0 48.4 ±4.6 100.0
Average
control 16.0 15.0 55.3 ±3.9 15.6 49.5 ±3.6 79.2

B 1 13.0 8.0 24.1 ±3.3 5.8 25.8 ±7.6 16.7
C 1 19.0 22.0 28.1 ±4.2 4.7 16.0 ±4.3 28.6
D 1 13.0 22.0 38.3 ±9.5 5.9 49.9 ± 12.0 46.2
E 1 19.0 8.0 21.2 ±2.2 4.5 20.0 ±0.0 6.3
G 2 16.0 5.1 40.9 ± 1.8 4.2 0 0
H 2 16.0 24.9 33.8 ±2.8 6.4 0 0
K. 2 11.7 15.0 71.6 ± 6.1 25.4 57.4 ±6.2 100.0
L 2 20.2 15.0 66.6 ±3.9 10.3 36.4 ±4.5 100.0

E ffe c t o f s a lin ity  a n d  te m p e ra tu re  o n  e m b ry o n ic  d e v e lo p m e n t

The evaluation o f the effects o f salinity and temperature on the in vitro intra-marsupial 
development o f Neomysis integer was made using a (circumscribed) ‘Central Composite 
Design’ (STATISTICA 6.0). For the two independent factors -  i.e. salinity and temperature -  
12 treatments were tested in two blocks o f 6 with each block comprising 2 central points (Table 
1). Subsequently, a response surface model was fitted to the data and the optimal 
temperature/salinity combination for the different endpoints tested was derived.

To achieve randomization, the three day old embryos o f one brood were distributed in 
as many treatments as possible and transferred to the 5 ml wells o f a 12-cell multiwell plate. All 
treatments were performed in 12 replicates; each replicate containing 7 to 17 embryos. No 
adaptation period to the experimental salinity or temperature was made prior to the test, but 
animals surviving < 3 days were excluded from the analyses. Multiwell plates were placed on 
an orbital shaking table (80 rpm) and covered from the light. The following was performed 
daily: the survival and developmental stage were noted, dead embryos/larvae were removed, 
half o f the medium was replaced with freshly prepared medium and the salinity and temperature 
was monitored. Every day (maximally 8) embryos/larvae were measured per replicate using a 
drawing mirror mounted on a stereomicroscope (25 -  50x). The following measurements were 
performed with ImageJ 1.32e (http://rbs.info.nih.gov/ii/Java 1.3.1 03 public domain): the 
maximum diameter (i.e. Feret’s diameter) o f stage I embryos, the total length (TL) excluding 
the abdominal setae in stage II larvae and the total length (from the eye basis to the tip o f the 
uropods) in stage III larvae. Hatched juveniles were fixed in 4 % formaldehyde and their 
standard length (SL), from the eye basis till the last abdominal segment, measured dorsally.

S ta tis tics

The cumulative survival function was plotted as percentage survival. The percentage 
survival days (Jones, 1972) and the median survival time (50 % survival) were calculated for 
each treatment. Survival percentage data o f the 4 control treatments were submitted to a two- 
factor ANOVA (treatment x age of embryo/larvae) without meeting the normality assumptions 
(Mann and Harding, 2003). Other endpoints, like percentage survival days, hatching success 
and development time, were tested between treatments using a one-factor ANOVA. Fisher’s 
multiple comparison test was used for post-hoc comparison when appropriate.

http://rbs.info.nih.gov/ii/Java
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The size o f the embryos, larvae and juveniles, and their relative growth (in % day ') was 
tested at each substage using a two-way ANOVA taking age into account. All replicate values 
o f the dependent variables (percentage survival at a certain day, percentage survival days, 
hatching percentage, duration o f stages I, II, III and total development time and standard length 
of the offspring) were used to fit a response surface model including the linear and quadratic 
main effect and the two-way interactive effects (STATISTICA 6.0). The significance of the 
effects (including the factor ‘block’) was tested with an ANOVA. Since in each block the 
control treatments were replicated, the pure (random) error could be quantified and the residual 
variance tested using a Lack o f Fit test.

R E S U L T S

D e s c rip t io n  o f  th e  e m b ry o lo g y

The intra-marsupial development o f Neomysis integer was divided into 3 substages in 
the present study, while generally for mysids a subdivision into 3 to 12 substages is common 
(Berrill, 1969; Mauchline, 1973; de Kruif, 1977; Wittmann, 1981). Table 2 and Figure 2 
summarize the terminology used by the different authors, including the one used in the present 
study, and applied to the observed morphology in the intra-marsupial development o f Neomysis 
integer (with supporting pictures).

The early embryos (stage I) are spherical or sub-spherical (Figure 2a). Rudiments of 
antennae and abdomen are developing (Figure 2b) and observable under low magnification 
(25x) as a lighter coloured disk. The abdominal rudiment is ventrally bent and develops 
anteriorly towards the cephalic appendix. Stage I ends with the hatching from the egg 
membrane by puncturing it with the developing abdomen. The shed egg membrane quickly 
disintegrates, but is sometimes visible in the wells.

The stage II larvae are dorsally bent and have a comma-like appearance. Initially, a 
rudimentary abdomen with a clear distinction between the rounded anterior and the pointed 
posterior of the larva can be observed together with two thoracic appendages (Figure 2c). In a 
later phase, the abdomen shows the clear beginning o f segmentation, however, without any 
appearance of appendages (Figure 2d). Later on, the body is further extended and the thoracic 
appendages more elongated (Figure 2e). The larvae have globules o f the yolk protein vitellin 
within their tissues. These globules are homogeneously distributed throughout the body in stage 
I embryos and early stage II larvae, but as the yolk volume decreases relative to the body 
volume, the yolk becomes more concentrated in the anterior dorsal regions at the end o f stage II. 
Dorsally the optical rudiment is visible as an anterior cleft (Figure 2f). As the larva grows, the 
naupliar cuticle is stretched and the uropods and telson are formed. Eight abdominal segments 
are clearly visible. Lateral chromatophores appear, mainly in the anterior part (Figure 2g). The 
optical lobes are visible with pigmented eye rudiments (Figure 2h). A rhythmic beating o f the 
heart and contractions o f the gut are visible. The naupliar stage II terminates with the moulting 
from the naupliar cuticle.





Figure 2: Embryonic and larval stages of Neomysis integer, stage I (a and b), stage II (c to h), stage III (i and j) and the 
free-living juvenile (k). (an: antennae; ar: abdominal rudiment; as: abdominal setae; car: carapace; c: naupliar cuticle; 
cr: cephalic rudiment; ch: thoracic chromatophore; er: eye rudiment; em: egg membrane; g: gut; m: mouth parts; nc: 
naupliar cuticle; or: optic rudiment; ol: optic lobe; pi: pleopods; t: telson; ta: thoracic appendages; ts: thoracic 
segmentation; u: uropods; y: yolk granules). Scale bar = 250|j.m.



Table 3: Mean survival percentage (± standard error) of stage I embryos after 72h.

2.5 psu 5.0 psu 10.0 psu 15.0 psu 20.0 psu 25.0 psu

13.0 °C 10 ± 6 20 ± 4 32 ± 4 60 ± 8 58 ± 2 48 ± 0

16.0 °C 8 ± 0 16 ± 8 46 ± 10 64 ± 4 40 ± 0 28 ± 4

19.0 °C 2 ± 2 8 ± 8 26 ± 10 28 ± 4 26 ± 6 20 ± 12

The post-naupliar stage III larvae (Figure 2i) have stalked eyes, a developed telson and 
uropods without lith in the statocyst o f the inner ramus. The thoracic appendages, mouth parts 
and antennae are developing. All over the body, darkly pigmented chromatophores appear. Near 
the end o f this stage a carapace can be observed (Figure 2j). The larvae are very actively moving 
by a longitudinal dorsal flexing and stretching o f the body. Also an active rhythmic moving of 
the thoracic appendages is observed. Stage III terminates in a moult, leading to free-living 
young juveniles (Figure 2k) that are, except for the sexual characteristics, morphologically 
similar to the adults. The gradually disintegrating yolk is completely consumed.

S h o r t  te rm  s u rv iv a l e x p e r im e n t

The mean percentage survival o f the stage I embryos after 72h at all tested salinity and 
temperature combinations is shown in Table 3. At all temperatures tested, the survival was < 1 0  
% at salinity 2.5 and < 20 % at salinity 5.0. At the other salinities, survival was substantially 
higher and was maximal at 15 and 16 °C (64 %). These results inferred the selection o f the 
temperature range ( 1 3 - 1 9  °C, centred at 16 °C) and the salinity range (8 -  22, centred at 15) 
used in the Central Composite Design (Table 1).

S u r v iv a l

The cumulative survival functions were plotted as percentage survival (Figure 3). Table
1 shows the percentage survival days and the median survival time o f the 12 treatments. The 
percentage survival days o f treatment F was significantly lower than in the other control 
treatments (p < 0.0001). However a two-factor ANOVA (treatment x age) o f the percentage 
survival did not show a significant interactive effect (p = 0.960). For comparative purposes the 
survival o f the 4 centre points were therefore treated as equal and plotted as the average 
percentage survival (grey line in Figure 3).

In the treatments G (salinity 5.1) and H (salinity 24.9) at 16 °C, an extreme high 
mortality was noted and all embryos/larvae had died at the age o f 6 and 13 days, respectively. 
Note that treatment G has salinity and temperature conditions that were identical to the 
conditions in which the adults were kept at and mating took place. At 19 °C, both at salinity 8 
(E) and 22 (C), a high initial mortality occurred.

....  average control

—■— B (13°C-8psu)
—°— D (13°C - 22psu) 

— — E (19°C - 8psu)
C (19°C - 22psu) 

—* -G (1 6 ° C -5 p s u )  
- < 5—  H (16°C -24.9psu) 
—* -K (1 1 .7 °C -1 5 p su ) 
—o -L (2 0 .2 °C -1 5 p su )

Figure 3: Survival
functions o f all 
treatments (temperature 
°C -  salinity). In grey: 
mean o f the centre point 
treatments.

a g e  (days)



However, some larvae in a low number o f replicates did survive and hatched (respectively 6 and 
29 %). At 13 °C a higher survival was observed at the higher salinity (salinity 22, D) in 
comparison with the low salinity treatment (salinity 8; B). In general, the highest mortality 
occurred within the first 6 days o f the embryonic development, i.e. during stage I. An ANOVA 
demonstrated significant differences in the percentage survival days within all treatments (p < 
0.0001). A significantly higher mean value (> 55 % d"1) o f the percentage survival days was 
observed at salinity 15 at temperatures between 11.7 and 20.2 °C (centre points, K and L). This 
is reflected in the higher median percentage survival (>10 days).

Figure 4a to 4i plots the response profiles of the age-specific survival at day 4 through day 12 
(beyond this latter later age the dataset became too incomplete as a result o f hatching or 
mortality). The number of temperature and salinity combinations with the highest survival (> 60 
%, indicated in the darkest colours) decreases with increasing age. Figure 5 shows the response 
surface o f the survival at age 6, 9 and 12 days and the percentage survival days. Highest 
survival was associated with the lowest temperatures ( <1 4  °C) and medium salinities (salinity 
12 -  22). The regression coefficients and the ANOVA effect estimates (Table 4) indicate a 
relatively poor fit o f the response surface models (R2 = ± 0.5). Note the highly significant effect 
o f the block (p < 0.0001). For the survival at day 6 significant variation is observed which is due 
to unexplainable error. Despite the relatively poor fit, the models indicate that the survival is 
mainly affected by the quadratic salinity effect and to a lesser degree by the linear effect of 
salinity and temperature (especially at the beginning o f the incubation period).

Figure 5: Response surface plot o f  the fitted models for survival at age 6 days (a), 9 days (b), 12 days (c) 
and percentage survival days (d).
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Table 4: Regression coefficients (± standard error) of the response surface model fitted to the survival at 
age 6, 9 and 12 days and the percentage survival days with their p-values; ANOVA effect estimates with 
their p-values for the fitted model including the Lack of Fit test (T: temperature; S: salinity; ns: not 
significant).

Regression
coefficient SE p-value

Anova
F-value p-value R2

Intercept 26.469 101.974 ns
T -6.287 11.570 ns 15.927 <0.001
T2 0.032 0.349 ns 0.008 ns
S 13.582 3.483 < 0.001 21.329 < 0.001

Survival age 6 days S2 -0.451 0.064 < 0.001 50.139 <0.001 0.461
TxS 0.108 0.177 ns 0.374 ns
Block 33.956 <0.001
Lack of fit 4.585 <0.001

Intercept 49.773 73.703 ns
T -19.084 10.987 ns 5.822 <0.05
T2 0.594 0.334 ns 3.154 ns
S 21.207 3.754 <0.001 3.437 ns

Survival age 9 days S2 -0.609 0.077 < 0.001 63.021 <0.001 0.493
TxS -0.129 0.163 ns 0.629 ns
Block 17.595 <0.001
Lack of fit 1.221 ns

Intercept -49.215 97.690 ns
T -7.927 12.108 ns 6.664 <0.05y 2 0.290 0.379 ns 0.585 ns
s 22.810 3.636 <0.001 3.268 ns

Survival age 12 days S2 -0.597 0.076 <0.001 62.142 <0.001 0.519
TxS -0.255 0.155 ns 2.699 ns
Block 18.404 <0.001
Lack of fit 1.660 ns

Intercept -6.125 73.541 ns
T -1.749 8.344 ns 1.865 ns
T2 -0.061 0.252 ns 0.058 ns

Percentage survival 
days

S
S2

10.771
-0.312

2.512
0.046

<0.001
<0.001

0.735
46.182

ns
<0.0001 0.446

TxS -0.073 0.128 ns 0.329 ns
Block 61.390 <0.0001
Lack of fit 1.383 ns



Table 5: Regression coefficients (± standard error) of the response surface model fitted to the hatching 
percentage with their p-values; ANOVA effect estimates with their p-values for the fitted model 
including the Lack of Fit test (T: temperature; S: salinity; ns: not significant)

Regression
coefficient SE p-value

Anova
F-value p-value R2

Intercept -78.913 73.546 ns
T 0.069 8.344 ns 10.296 <0.01
T2 0.014 0.252 ns 0.003 ns
S 17.519 2.512 < 0.001 2.194 ns

Hatching percentage S2 -0.477 0.046 < 0.001 108.010 < 0.001 0.524
TxS -0.174 0.128 ns 1.865 ns
Block 25.794 <0.001
Lack of fit 0.855 ns

H a tc h in g  success

The centre point treatments at 16 °C and salinity 15 (A, F, I and J) did not differ in their 
hatching success (ANOVA, p = 0.569) and were further treated as one (Table 1): 79 % o f the 
control treatments replica resulted in hatching and 49.5 ± 3.6 % of the initial embryos led to free 
living juveniles. Note that in treatment G and H no hatching was observed due to complete 
mortality. Significant differences in the hatching percentage between all treatments were noted 
(p = 0.010). This was mainly due to the significant lower hatching in the C treatment (19 °C -  
salinity 22) o f only 16 % of the larvae. Hatching at a salinity o f 15 was significantly affected by 
temperature as demonstrated by a hatching success at 11.7 °C and 20.2 °C o f 57 % (K) and 36 
% (L), respectively.

Regression coefficients and the ANOVA results o f the response surface modelling 
indicate a poor fit (Table 5, Figure 6). The hatching success was significantly affected by the 
quadratic salinity effects and the linear temperature effect. Hatching percentage was highest at
the moderate salinity ( ± 1 6  psu) and low temperature ( < 1 5  °C) combinations (Figure 6).
Hatching success was 10 to 20 % lower at higher temperatures (>15 °C).

Figure 6: Response
surface plot of the fitted 
model for hatching 
success.



Table 6: Mean duration of the embryonic development and sub-stages (in days, ± standard error) for all 
treatments of the Central Composite Design.

Temperature (°C) Salinity (psu) Total Stage I Stage II Stage III

A 16.0 15.0 15.3 ± 0 .2 5.0 ± 0.3 7.0 ± 0 .0 3.6 ± 0 .2

F 16.0 15.0 15.8 ± 0 .2 4.4 ± 0.2 7.4 ± 0.2 3.2 ± 0 .2

I 16.0 15.0 15.8 ±0.1 5.3 ± 0 .3 7.2 ±0.1 3.8 ±0.1

J 16.0 15.0 16.2 ±0.1 4.8 ± 0.2 7.8 ± 0 .2 3.6 ± 0 .2

Average control 16.0 15.0 15.8 ±0.1 4.9 ± 0.2 7.4 ±0.1 3.6 ±0.1

B 13.0 8.0 18.0 ± 0 .0 5.0 ± 0 .3 9.5 ± 0 .5 4.0 ± 0 .0

C 19.0 22.0 12.0 ± 0 .0 4.8 ± 0.2 4.4 ± 0 .2 2.8 ± 0 .3

D 13.0 22.0 19.7 ± 0 .2 5.5 ± 0 .3 9.3 ± 0.2 4.2 ± 0.2

E 19.0 8.0 12.0 ± 0 .0 4.0 ± 0.0 5.0 ± 0.0 3.0 ± 0 .0

G 16.0 5.1 — — — —

H 16.0 24.9 — 6.8 ± 0 .7 — —

K 11.7 15.0 21.8 ±0.1 5.8 ± 0 .2 10.7 ±0.1 5.3 ±0.1

L 20.2 15.0 11.2 ±0.1 4.3 ± 0.2 4.2 ±0.1 2.4 ± 0 .2

D u ra t io n  o f  d eve lo p m e n t

The duration of the intra-marsupial development varied between 11 and 22 days, of 
which stage I took on average 31 % o f the time, stage II 45 % and stage III 23%. Again the 
centre point treatments were further considered as one (Table 6). Due to the extremely poor 
survival in treatments G and H, these data were excluded from the analyses. ANOVA revealed 
significant differences between the treatments for the stages I, II and III, and the total duration 
o f the development (all at least with p < 0.001). In general, the duration o f the intra-marsupial 
development decreased with increasing temperature as demonstrated in the 15 psu treatments: at 
20.2 °C (L), 16 °C (Control) and 11.7 °C (K), total development duration was 11.2, 15.8 and 
21.8 days, respectively. This was mainly due to a reduction o f stage II with increasing 
temperature from 11 to 4 days (61 %) at the lowest and highest tested temperature, while stage I 
reduces on average from 6 to 4 days (26 %) and stage III from 5 to 2 days (55 %).

The response surface models (Table 7 and Figure 7) revealed a good fit for the total 
development time (R2 = 0.984) and the duration o f stage II (R2 = 0.951) and III (R2 = 0.701). It 
was mainly the linear temperature component that controlled the duration o f the intra-marsupial 
development, although salinity also had some minor influence in the observed patterns (Table 
7). Note that the factor ‘block’ also had a significant effect.

1 2  1 3  14  1 5 1 7  18  19  20  2 1

Figure 7: Response
profiles for the total 
development time (a), 
and duration of stage I 
(b), stage II (c) and 
stage III (d)

Temperature (°C) Temperature (°C)

1 5  16  1 7  18

Temperature (°C) Temperature (°C)



Table 7: Regression coefficients (± standard error) o f  the response surface model fitted to the total 
developm ent tim e and the duration o f  stages I, II and III w ith their p-values; the A N OV A  effect estim ates 
w ith their p-values for the fitted model including the Lack o f  Fit test (T: tem perature; S: salinity; ns: not 
significant).

Regression
coefficient SE p-value

Anova 
F-value p-value R2

Intercept 37.098 2.272 <0.001
T -1.967 0.246 < 0.001 3989.548 <0.001
T2 0.028 0.007 < 0.001 16.002 < 0.001
S 0.501 0.153 <0.01 10.703 <0.01

Total development time S2 -0.008 0.004 <0.05 4.202 <0.05 n 084
TxS -0.012 0.006 ns 3.804 ns \}.y OH

Block 13.779 < 0.001
Lack of fit 4.596 <0.05

Intercept 6.833 3.730 ns
T 0.094 0.417 ns 24.190 <0.001
T2 -0.010 0.012 ns 0.608 ns
S -0.231 0.180 ns 4.720 <0.05

Duration stage I S2 0.008 0.004 <0.05 4.120 <0.05 0.354
TxS 0.003 0.009 ns 0.110 ns
Block 7.459 <0.01
Lack of fit 1.381 ns

Intercept 16.987 2.584 <0.001
T -0.492 0.283 ns 1151.915 <0.001
T2 -0.005 0.008 ns 0.441 ns
S 0.085 0.173 ns 1.523 ns

Duration stage II S2 -0.0002 0.005 ns 0.002 ns 0.951
TxS -0.007 0.007 ns 0.998 ns
Block 5.459 <0.05
Lack of fit 0.124 ns

Intercept 10.586 2.959 <0.001
T -0.591 0.321 ns 156.135 <0.001
y2 0.006 0.009 ns 0.479 ns
s 0.029 0.199 ns 0.085 ns

Duration stage III S2 -0.003 0.005 ns 0.367 ns 0.701
TxS 0.005 0.008 ns 0.324 ns
Block 1.498 ns
Lack of fit 3.851 ns

Size and growth rate o f the embryos

Stage / :  T h e  F e r e t ’ s  d i a m e t e r  o f  t h e  s t a g e  I  e m b r y o s  ( F i g u r e  8 )  w a s  t e s t e d  w i t h i n  t h e  2  

s u b s e q u e n t l y  p e r f o r m e d  b l o c k s ,  t a k i n g  a g e  i n t o  a c c o u n t .  A l t h o u g h  t h e  t w o - f a c t o r  A N O V A  

i n d i c a t e d  t h a t  t h e r e  w a s  n o  s i g n i f i c a n t  i n t e r a c t i v e  e f f e c t  ( F e r e t  x  a g e ;  p  =  0 . 0 7 1 ) ,  t h e  s i z e  o f  

e a r l y  e m b r y o s  i n  b l o c k  1 w a s  a l w a y s  l a r g e r  t h a n  t h e  e m b r y o s  t h a t  h a d  c o n t r i b u t e d  t o  t h e  2 nd 

b l o c k  ( p  <  0 . 0 0 0 1 ) .  A g e  d i d  n o t  h a v e  a n  e f f e c t  o n  t h e  F e r e t ’ s  d i a m e t e r  o f  t h e  s p h e r i c a l  e m b r y o s  

( p  >  0 . 0 5 ) .  T h e  s t a g e  I  e m b r y o s  d i d  n o t  m e a s u r a b l y  i n c r e a s e  i n  s i z e  ( T a b l e  8 ) ,  e x c e p t  f o r  t h o s e  

i n  t h e  t r e a t m e n t s  L ,  G  a n d  H .  T h e  l a t t e r  s a l i n i t y - t e m p e r a t u r e  c o m b i n a t i o n s  d i d  e x h i b i t  h i g h  

m o r t a l i t y .  P r o b a b l y  t h e  s i z e  i n c r e a s e  o f  >  1 0  %  i n  t h e  e g g - l i k e  e m b r y o s  w a s  a n  i n d i c a t i o n  o f  a  

n e a r  d e a d .

T h e  c e n t r e  p o i n t  t r e a t m e n t s  o f  t h e  s e c o n d  b l o c k  ( I  a n d  J )  r e s u l t e d  i n  e m b r y o s  w i t h  

s m a l l e r  s i z e  t h a n  t h o s e  i n  t h e  t r e a t m e n t s  c o v e r i n g  c e n t r e  p o i n t s  A  a n d  F  o f  t h e  f i r s t  b l o c k  ( p  =

0 . 0 0 0 1 ) .  H o w e v e r ,  a m o n g  c e n t r e  p o i n t  t r e a t m e n t s  w i t h i n  o n e  b l o c k  d i f f e r e n c e s  w e r e  a l s o  

o b s e r v e d ,  w i t h  t h e  F  e m b r y o s  b e i n g  l a r g e r  t h a n  t h e  A  o n e s  ( F i g u r e  8 ) .
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Figure 8: Embryo size related to age o f  the 4 centre point treatm ents (left); Em bryo size related to age in 
all treatm ents o f  the central com posite design w ith the m ean o f  the centre point treatm ents in grey (right). 
S tandard errors are generally sm aller than 0.05 mm. (TL: total length; SL: standard length).

D e s p i t e  t h e  r a n d o m i z a t i o n  p r o t o c o l  u s e d  i n  t h e  t e s t  d e s i g n ,  t h e  i n i t i a l  s i z e  o f  t h e  

e m b r y o s  w a s  n o t  i d e n t i c a l  i n  a l l  t r e a t m e n t s .  T o  a v o i d  m i s i n t e r p r e t a t i o n  o f  t h e  d a t a ,  t h e  r e l a t i v e  

g r o w t h  ( i n  %  d a y " 1)  w a s  u s e d  a s  a n  e n d p o i n t  t o  e v a l u a t e  t h e  s i z e  o f  s t a g e  I  e m b r y o s  b e t w e e n  t h e  

1 2  t r e a t m e n t s ,  a s s u m i n g  t h i s  p a r a m e t e r  i s  n o t  a f f e c t e d  b y  t h e  i n i t i a l  s i z e  d i s c r e p a n c y .  F r o m  t h i s  

a n a l y s i s  i t  a p p e a r s  t h a t  t h e  m e a n  s i z e  o f  s t a g e  I  e m b r y o s  o f  o n e  r e p l i c a  w a s  e i t h e r  i n c r e a s i n g  o r  

d e c r e a s i n g  ( u p  t o  + 1 5  t o  - 1 5  %  d a y ' 1) ,  i n d i c a t i n g  t h a t  t h e  F e r e t ’ s  d i a m e t e r  i s  a n  u n s u i t a b l e  s i z e  

m e a s u r e  o f  s t a g e  I  e m b r y o s .

Stage II: T h e  l e n g t h  o f  s t a g e  I I  l a r v a e  o f  a  c e r t a i n  a g e  d i d  n o t  s i g n i f i c a n t l y  d i f f e r  

b e t w e e n  t h e  c o n t r o l  t r e a t m e n t s  A ,  F ,  I  a n d  J  ( A N O V A ;  p  =  0 . 3 7 0 )  a n d  w e r e  f u r t h e r  t r e a t e d  a s  

o n e  c o n t r o l  ( F i g u r e  8 ) .  S t a g e  I I  l a r v a e  i n c r e a s e d  i n  s i z e  s u b s t a n t i a l l y  w i t h  t i m e  ( p  =  0 . 0 0 0 1 ;  

T a b l e  8 ) ;  c o m p a r e d  t o  t h e i r  i n i t i a l  s i z e  a n  i n c r e a s e  o f  4 6  %  w a s  n o t e d .  A t  t h e  l o w e s t  

t e m p e r a t u r e s  ( B ,  D ,  K )  t h e  g r o w t h  o f  s t a g e  I I  l a r v a e  w a s  h i g h e r  ( 5 0  -  6 8  % )  t h a n  t h a t  i n  

t r e a t m e n t s  C ,  E  a n d  L  a t  1 9  a n d  2 0 . 2  ° C  ( 1 7  -  3 2  % ) .  H o w e v e r ,  a t  l o w e r  t e m p e r a t u r e s  t h e  

d e v e l o p m e n t  l a s t e d  l o n g e r ,  r e s u l t i n g  i n  a  r a t h e r  u n i f o r m  g r o w t h  r a t e  b e t w e e n  t h e  t r e a t m e n t s  

( 0 . 0 4  -  0 . 0 8  m m  d a y " ' ) .  T h e  l a r v a e  a t  t h e  h i g h e s t  s a l i n i t y  o f  ( 2 4 . 9  p s u ;  H )  d i d  n o t  s u r v i v e  s t a g e

I I  a n d  a  s u b o p t i m a l  g r o w t h  w a s  o b s e r v e d .



Stage III: T h e  t o t a l  l e n g t h  o f  s t a g e  I I I  l a r v a e  a t  a  c e r t a i n  a g e  w a s  n o t  d i f f e r e n t  b e t w e e n  

a l l  c o n t r o l  t r e a t m e n t s  ( p  =  0 . 6 3 5 ) .  A  s i g n i f i c a n t  i n c r e a s e  i n  s i z e  ( 2 0 % )  a s  a  f u n c t i o n  o f  t i m e  w a s  

o b s e r v e d  ( p  <  0 . 0 0 0 1 ) .  A g a i n  t e m p e r a t u r e  h a d  a  p r o n o u n c e d  e f f e c t  o n  t h e  s i z e  o f  t h e  s t a g e  I I I  

l a r v a e .  H o w e v e r ,  h e r e  w e  n o t e d  t h a t  l o w e r  t e m p e r a t u r e s  ( B ,  D  a n d  K )  r e d u c e d  t h e  g r o w t h  r a t e  

( 0 . 0 3  -  0 . 0 6  m m  d a y ' 1)  i n  c o m p a r i s o n  w i t h  t h e  w a r m e r  t e m p e r a t u r e s  ( C ,  E  a n d  L ;  0 . 1 1  -  0 . 2 1  

m m  d a y ' 1) .

Juveniles: T h e  f r e e  l i v i n g  j u v e n i l e s  i n  t r e a t m e n t s  A  a n d  I  w e r e  s i g n i f i c a n t l y  s m a l l e r  

t h a n  t h o s e  i n  F  a n d  J  ( p  <  0 . 0 0 0 1 ) .  A l s o  i n  t h e  c o m p a r i s o n  w i t h  t h e  o t h e r  t r e a t m e n t s ,  s o m e  

d i f f e r e n c e s  w e r e  o b s e r v e d  ( A N O V A ,  p  <  0 . 0 0 0 1 ) ,  b u t  n o  t r e n d  w i t h  s a l i n i t y  o r  t e m p e r a t u r e  

c o u l d  b e  d e m o n s t r a t e d .  T h e  f i t  o f  t h e  r e s p o n s e  s u r f a c e  w i t h i n  t h e  c e n t r a l  c o m p o s i t e  d e s i g n  i s  

l o w  ( T a b l e  9 ) ,  a n d  o n l y  t e m p e r a t u r e  a n d  t h e  f a c t o r  ‘ b l o c k ’ h a d  a n  a d v e r s e  e f f e c t  o n  t h e  s t a n d a r d  

l e n g t h  o f  t h e  h a t c h i n g  o f f s p r i n g .

D I S C U S S I O N

Methodology

T h e  e g g s  w e r e  e x t r u d e d  f r o m  t h e  o v i d u c t s  i n t o  t h e  m a r s u p i u m  a n d  c l o s e l y  p a c k e d  

t o g e t h e r  i n  t w o  ( a  l e f t  a n d  r i g h t )  p a c k a g e s ,  w h i c h  a r e  e n c l o s e d  t o g e t h e r  w i t h  t h e  s p e r m  w i t h i n  a  

v e r y  t h i n  m e m b r a n e  ( a s  d e s c r i b e d  b y  K i n n e ,  1 9 5 5  a s  t e r t i a r y  e g g  m e m b r a n e s ) .  S i n c e  t h e  j a g g e d 

s h a p e d  e m b r y o s  d o  n o t  h a v e  a  f i r m  c o n s i s t e n c y  a t  t h i s  t i m e ,  r e m o v a l  o f  t h e  e g g s  f r o m  t h e s e  

m e m b r a n e s  i s  i m p o s s i b l e  w i t h o u t  d a m a g i n g .  T h i s  i s  t h e  r e a s o n  w h y  t h e  in vitro e x p e r i m e n t  

s t a r t s  3  d a y s  a f t e r  d e p o s i t i o n  i n  t h e  m a r s u p i u m ,  w h e n  t h e  t h i n  m e m b r a n e s  a r e  d i s s o l v e d  a n d  t h e  

e m b r y o s  a r e  s p h e r i c a l  a n d  f i r m .  A n  a d d i t i o n a l  a d v a n t a g e  i s  t h a t  u n f e r t i l i z e d  e g g s ,  d i s i n t e g r a t i n g  

w i t h i n  2 4 h ,  a r e  n o t  i n c l u d e d  i n t o  t h e  b i o a s s a y s .

I n  a  p r e l i m i n a r y  e x p e r i m e n t ,  i m p r o v e d  s u r v i v a l  a n d  a  s h o r t e r  d e v e l o p m e n t  t i m e  w e r e  

o b s e r v e d  w h e n  t h e  m u l t i w e l l  p l a t e s  w e r e  p l a c e d  o n  a n  o r b i t a l  s h a k i n g  t a b l e  ( 8 0  r p m ) .  T h e  

c o n t i n u o u s  m o v e m e n t  o n  a  r o l l e r  t a b l e  p r o b a b l y  s i m u l a t e s  t h e  r h y t h m i c  l a t e r a l  m o v i n g  o f  t h e  

b r o o d  l a m e l l a e  b y  t h e  g r a v i d  f e m a l e  t o  i r r i g a t e  a n d  p r o v i d e  o x y g e n  t o  t h e  e m b r y o s / l a r v a e  a n d  

p o s i t i v e l y  a f f e c t s  t h e  h a t c h i n g  s u c c e s s  a n d  s h o r t e n s  t h e  d e v e l o p m e n t  t i m e  ( M a u c h l i n e ,  1 9 8 0 ;  

F e r n a n d e z  e t  a l . ,  2 0 0 2 ) .  T h i s  p h e n o m e n o n  w a s  e s p e c i a l l y  a p p a r e n t  i n  s t a g e  I I I  a s  t h e  o x y g e n -  

d e m a n d  o f  c r u s t a c e a n  e m b r y o s / l a r v a e  i n c r e a s e s  a s  t h e y  d e v e l o p  ( S m i t h  a n d  K l i e b e r ,  1 9 5 0 ;  

F e r n a n d e z  e t  a l . ,  2 0 0 3 ) .

Number and size o f embryos in the marsupium

T h e  n u m b e r  o f  e m b r y o s / l a r v a e  i n  t h e  m a r s u p i u m  o f  f e m a l e  m y s i d s  d e p e n d s  u p o n  t h e  

b o d y  s i z e  o f  t h e  f e m a l e ,  t h e  s i z e  o f  t h e  i n d i v i d u a l  e g g s ,  t h e  s e a s o n  o f  t h e  y e a r  a n d  g e o g r a p h i c  

l o c a t i o n  ( l a t i t u d e )  o f  t h e  m y s i d  p o p u l a t i o n s  ( M a u c h l i n e ,  1 9 8 0 ) .  F o r  Neomysis integer, t h e  b r o o d  

s i z e  i s  d e m o n s t r a t e d  t o  b e  h i g h l y  d e p e n d e d  o n  f e m a l e  b o d y  s i z e ,  w h i c h  v a r i e s  s e a s o n a l l y  

( K i n n e ,  1 9 5 5 ;  P a r k e r  a n d  W e s t ,  1 9 7 9 ;  M e e s  e t  a l . ,  1 9 9 4 ) :  l a t e  s u m m e r  a n d  a u t u m n  b r e e d i n g  

a n i m a l s  u s u a l l y  h a v e  a  s m a l l e r  s i z e - a t - m a t u r i t y  c o m p a r e d  t o  t h o s e  b r e e d i n g  i n  s p r i n g  a n d  e a r l y  

s u m m e r .  T h e  s i z e  o f  t h e  e a r l y  e m b r y o s  a l s o  v a r i e s  s e a s o n a l l y  ( f o r  Neomysis integer. M a u c h l i n e ,  

1 9 7 3 ;  I r v i n e  e t  a l . ,  1 9 9 5 ) ,  w i t h  w i n t e r  e m b r y o s  b e i n g  l a r g e r  t h a n  i n  s p r i n g  o r  s u m m e r .

T h e  i n i t i a l  s i z e  o f  t h e  s t a g e  I  e m b r y o s  f r o m  b l o c k  1 a n d  2  ( f r o m  d a y  3  t o  d a y  6 - 7 )  w a s  

c l e a r l y  d i f f e r e n t ,  w i t h  t h e  b l o c k  1 e m b r y o s  a l w a y s  b e i n g  s i g n i f i c a n t l y  l a r g e r .  D u e  t o  l o g i s t i c  

l i m i t a t i o n s  2  s u b s e q u e n t  b l o c k s  w e r e  s e t  o f f ,  w i t h  e m b r y o s  f r o m  f e m a l e s  c a u g h t  r e s p e c t i v e l y  

b e t w e e n  1 6  a n d  3 0 / 0 3 / 2 0 0 4  a n d  b e t w e e n  6  a n d  2 0 / 0 4 / 2 0 0 4 .



T h e  w a t e r  t e m p e r a t u r e  h a d  i n c r e a s e d  f r o m  9 . 8  ° C  t o  1 2 . 2  ° C  d u r i n g  t h i s  p e r i o d .  Neomysis 
integer h a s  a  g r o w t h  s t o p  i n  w i n t e r  t i m e  ( M e e s  e t  a l . ,  1 9 9 4 ) .  F r o m  t h e  m o m e n t  w a t e r  

t e m p e r a t u r e  r i s e s  a b o v e  1 0  ° C ,  g r o w t h  a n d  d e v e l o p m e n t  i s  t r i g g e r e d .  L a r g e r  ( s p r i n g )  a n i m a l s  

h a v e  a  h i g h e r  f e c u n d i t y  a n d  t h e  s i z e  o f  t h e  e m b r y o s  i s  n e g a t i v e l y  r e l a t e d  w i t h  t h e  b r o o d  s i z e  

( M a u c h l i n e ,  1 9 7 3 ) .  T h i s  m a y  e x p l a i n  t h e  d i f f e r e n c e  i n  t h e  i n i t i a l  s i z e  o f  t h e  2  b l o c k s  u s e d  i n  o u r  

d e s i g n .  T h e  o b s e r v e d  s i z e  d i f f e r e n c e  c l e a r l y  h a d  a n  i m p a c t  o n  t h e  o t h e r  m e a s u r e d  e n d p o i n t s  ( a s  

d e m o n s t r a t e d  b y  a  s i g n i f i c a n t  e f f e c t  o f  ‘ b l o c k ’ i n  t h e  A N O V A ’ s  w h i l e  f i t t i n g  t h e  r e s p o n s e  

s u r f a c e  m o d e l s ) .  F o r  f u t u r e  e x p e r i m e n t s ,  i t  i s  r e c o m m e n d e d  t o  u s e  N. integer f r o m  a  c o n t i n u o u s  

a n d  w e l l  s t a n d a r d i z e d  l a b o r a t o r y  c u l t u r e .  I f  t h i s  i s  n o t  p o s s i b l e  w e  a d v i s e  n o t  w o r k i n g  w i t h  

d i f f e r e n t  b l o c k s  i n  t h e  d e s i g n ,  o r  t o  k e e p  t h e  t i m e  d i f f e r e n c e  b e t w e e n  t h e  b l o c k s  t o  a  m i n i m u m .  

T h e  s i z e  o f  n e w l y  r e l e a s e d  j u v e n i l e s  w a s  s i g n i f i c a n t l y  d i f f e r e n t  b e t w e e n  t r e a t m e n t s .  R e d u c e d  

s i z e  o r  w e i g h t  a t  b i r t h  m a y  h a v e  i m p l i c a t i o n s  f o r  t h e  f u t u r e  s u r v i v a l  a n d  b r e e d i n g  p o t e n t i a l  o f  

t h e  o f f s p r i n g  ( K o l d i n g  a n d  F e n c h e l ,  1 9 8 1 ;  W e h r t m a n n  a n d  L o p e z ,  2 0 0 3 ) .

T h e  s i z e  a n d  g r o w t h  o f  t h e  e m b r y o s  a n d  l a r v a e  d o  n o t  s e e m  t o  b e  u s e f u l  f o r  e v a l u a t i n g  

t h e  i n f l u e n c e  o f  e n v i r o n m e n t a l  v a r i a b l e s  o n  t h e  i n t r a - m a r s u p i a l  d e v e l o p m e n t  o f  Neomysis 
integer. T h i s  s e e m s  t o  b e  e s p e c i a l l y  t r u e  f o r  t h e  e l l i p s o i d  s t a g e  I  e m b r y o s .  V a r i a t i o n  o n  t h e  

m e a s u r e m e n t  o f  t h e  F e r e t ’ s  d i a m e t e r  i s  h i g h  b e c a u s e  o f  t h e  e l l i p s o i d  f o r m .  H o w e v e r ,  W i t t m a n n  

( 1 9 8 1 )  a n d  L a w r e n c e  a n d  P o u l t e r  ( 2 0 0 1 )  f o u n d  t h e  m a x i m a l  w i d t h  a n d  l e n g t h  o f  o v a l i n e  s h a p e d  

e m b r y o s  t o  b e  a  g o o d  e n d p o i n t .  T h e  s u b - s p h e r i c a l  e m b r y o s  w e r e  m e a s u r e d  w i t h  a  l a r g e r  

a c c u r a c y  ( l i g h t  m i c r o s c o p e )  t h a n  t h e  c u r r e n t  s t e r e o m i c r o s c o p e  m e a s u r e m e n t s  ( 5 0 x ) .  T h e  s t a g e  I  

e m b r y o s  o f  t r e a t m e n t s  G  a n d  H  s h o w e d  a  s i g n i f i c a n t  i n c r e a s e  i n  t h e  F e r e t ’ s  d i a m e t e r .  T h i s  w a s  

p r o b a b l y  d u e  t o  o s m o t i c  s w e l l i n g  o f  t h e  e m b r y o s  p r i o r  t o  t h e i r  e v e n t u a l  d i s i n t e g r a t i o n  ( M o r r i t t  

a n d  S p i c e r ,  1 9 9 6 b ) .

Intra-marsupial mortality -  Hatching success

T h e  h a t c h i n g  s u c c e s s  w a s  h i g h e s t  ( m a x .  5 8  % )  i n  t r e a t m e n t s  w i t h  a n  i n t e r m e d i a t e  

s a l i n i t y  o f  1 4  -  1 7  p s u  c o m b i n e d  w i t h  a  l o w  t e m p e r a t u r e  ( <  1 5  ° C ) .  E s p e c i a l l y  t h e  e a r l i e s t  s t a g e s  

( f i r s t  6  d a y s )  a r e  s u s c e p t i b l e  t o  u n f a v o u r a b l e  s a l i n i t y  a n d  t e m p e r a t u r e  c o n d i t i o n s .  T h e  m o r t a l i t y  

o f  t h e  e m b r y o s  a n d  l a r v a e  d u r i n g  t h e  in vitro e x p e r i m e n t  r a n g e d  f r o m  4 0  t o  1 0 0  % .  M a u c h l i n e  

( 1 9 7 3 )  r e p o r t s  a  m a r s u p i a l  m o r t a l i t y  o f  a b o u t  1 2  -  1 3  %  f o r  Neomysis integer, w h i l e  I r v i n e  e t  a l .  

( 1 9 9 5 )  e s t i m a t e d  i n t r a - m a r s u p i a l  m o r t a l i t y  o f  N. integer t o  b e  i n  e x c e s s  o f  5 0  % ,  a n d  m a i n l y  

o c c u r r i n g  a t  t h e  b e g i n n i n g  o f  t h e  d e v e l o p m e n t .  I n  t h e  f i e l d ,  m o r t a l i t y  m i g h t  a l s o  b e  c a u s e d  a t  t h e  

e n d  o f  t h e  d e v e l o p m e n t  b y  a c c i d e n t a l  l o s s  o f  l a t e  s t a g e  I I  a n d  I I I  l a r v a e ,  w h e n  g r a v i d  f e m a l e s  

h a v e  d i s t e n d e d  m a r s u p i a l  l a m e l l a e  t o  c o n t a i n  t h e  l a r g e  l a r v a e  a n d  m o v e  t h e  m a r s u p i a l  l a m e l l a e  

t o  i r r i g a t e  t h e  l a r v a e  ( M a u c h l i n e ,  1 9 8 0 ) .

Intra-marsupial development time

T h e  d u r a t i o n  o f  t h e  i n c u b a t i o n  p e r i o d  i s  a  k e y  f a c t o r  i n  t h e  u n d e r s t a n d i n g  o f  t h e  

p o p u l a t i o n  b i o l o g y  o f  a  s p e c i e s  a n d  i s  r e l a t e d  t o  t h e  t i m i n g  o f  t h e  b r e e d i n g  s e a s o n ,  a g e  a t  

m a t u r i t y ,  f r e q u e n c y  o f  b r o o d s ,  n u m b e r  o f  y o u n g  p e r  b r o o d ,  e g g  s i z e  a n d  a d u l t  b o d y  s i z e  

( W i t t m a n n ,  1 9 8 4 ) .  I n t r a - m a r s u p i a l  d e v e l o p m e n t  t i m e ,  i . e .  f r o m  a p p e a r a n c e  i n  t h e  b r o o d  p o u c h  

t o  t h e  r e l e a s e  o f  y o u n g ,  i s  h i g h l y  r e l a t e d  t o  t h e  e n v i r o n m e n t a l  t e m p e r a t u r e  ( M a u c h l i n e ,  1 9 8 0 ;  

W i t t m a n n ,  1 9 8 4 )  a n d  n o t  o r  m i n i m a l l y  a f f e c t e d  b y  s a l i n i t y  ( V l a s b l o m  a n d  E l g e r s h u i z e n ,  1 9 7 7 ;  

G r e e n w o o d  e t  a l . ,  1 9 8 9 ) .  I n  t h e  p r e s e n t  e x p e r i m e n t ,  t h e  d e v e l o p m e n t  t i m e  v a r i e d  r e s p e c t i v e l y  

b e t w e e n  2 2  a n d  1 0  d a y s  a t  t e m p e r a t u r e s  b e t w e e n  1 1  a n d  2 1  ° C ,  r e s p e c t i v e l y .  I r v i n e  e t  a l .  ( 1 9 9 5 )  

p r o v i d e  i n d i r e c t  e s t i m a t e s  o f  t h e  i n t r a - m a r s u p i a l  d e v e l o p m e n t  t i m e  o f  N. integer f r o m  H i c k l i n g  

B r o a d ,  U K  ( s a l i n i t y  ±  3 ) :  5 6  d a y s  ( a t  7 - 1 6 . 5  ° C ) ,  2 9  d a y s  ( a t  1 6 . 5  -  1 8  ° C ) ,  a n d  1 3 - 1 4  d a y s  

( a t  1 9 . 5  -  2 0  ° C ) .  F r o m  t h e i r  e x p e r i m e n t s ,  t h e  s a m e  a u t h o r s  c o n c l u d e d  t h a t  t h e  d e v e l o p m e n t  

t i m e  w a s  4 2  d a y s  a t  6  ° C  a n d  6  d a y s  a t  2 0  ° C  a t  a  s a l i n i t y  o f  3 .



T h e  l a t t e r  d e v e l o p m e n t  t i m e  i s  e x t r e m e l y  s h o r t  i n  c o m p a r i s o n  w i t h  t h e  p r e s e n t  r e s u l t s  a n d  t h e  

a u t h o r s ’ f i e l d  d e r i v e d  e s t i m a t e  a t  t h e  s a m e  t e m p e r a t u r e .  K i n n e  ( 1 9 5 5 )  p e r f o r m e d  l a b o r a t o r y  

e x p e r i m e n t s  a t  1 0  p s u  a i m e d  a t  e s t a b l i s h i n g  t h e  t o t a l  i n t r a - m a r s u p i a l  d e v e l o p m e n t  t i m e  o f  N. 
integer a n d  r e p o r t s  2 0  d a y s  a t  1 1  ° C  a n d  1 4 - 1 5  d a y s  a t  1 9  ° C .  V l a s b l o m  a n d  E l g e r s h u i z e n  

( 1 9 7 7 )  o b t a i n e d  ( e x p e r i m e n t a l l y )  a  c o n s t a n t  d u r a t i o n  o f  1 6  -  1 8  d a y s  a t  v a r y i n g  s a l i n i t i e s  ( 0 . 4  -  

1 6  p s u )  a t  1 5 ° C .  T a k i n g  t h e  a g e - a t - m a t u r i t y  i n t o  a c c o u n t  ( F o c k e d e y  e t  a l . ,  i n  p r e s s ) ,  t h e  i n t r a 

m a r s u p i a l  d e v e l o p m e n t  o f  N. integer t a k e s  1 5  t o  1 7  %  o f  t h e  g e n e r a t i o n  t i m e  a t  2 0  ° C  a n d  1 6  t o  

2 1  %  o f  t h e  g e n e r a t i o n  t i m e  a t  1 5  ° C  ( r e s p e c t i v e l y  a t  1 5  a n d  5  p s u ) .  T h e s e  v a l u e s  a r e  c o n s i d e r e d  

a s  t y p i c a l  f o r  t e m p e r a t e  m y s i d  s p e c i e s  ( W i t t m a n n ,  1 9 8 4 ) .

S t a g e  I I  i s  m a i n l y  r e s p o n s i b l e  f o r  t h e  p r o l o n g a t i o n  o f  t h e  t o t a l  d e v e l o p m e n t  t i m e  a t  

l o w e r  t e m p e r a t u r e s .  A t  t h e  e x t r e m e s  o f  t h e  t e m p e r a t u r e s ,  s t a g e  I I  i s  d e l a y e d  f r o m  4  d a y s  a t  2 1  

° C  t o  1 1  d a y s  a t  1 1  ° C .  T h e  g r o w t h  o f  l a r v a l  s t r u c t u r e s  i s  p o s s i b l e  t h r o u g h  t h e  c o n v e r s i o n  o f  e g g  

p r o t e i n s ,  m a i n l y  v i t e l l i n .  A  d e l a y  i n  s t a g e  I I  i n d i c a t e s  t h a t  t e m p e r a t u r e  h a s  a  s t r o n g  i n f l u e n c e  o n  

t h e  d e v e l o p m e n t a l  p r o c e s s e s  a n d  t h u s  e g g  p r o t e i n  m e t a b o l i s m .  R e c e n t l y ,  G h e k i e r e  e t  a l .  ( 2 0 0 4 )  

p u r i f i e d  a n d  c h a r a c t e r i z e d  v i t e l l i n  f r o m  N. integer w i t h  t h e  a i m  t o  d e v e l o p  a n  e n z y m e - l i n k e d  

i m m u n o s o r b e n t  a s s a y  ( E L I S A )  t o  q u a n t i f y  t h e  y o l k  p r o t e i n .  F u t u r e  l a b o r a t o r y  a n d  f i e l d  s t u d i e s  

w i l l  e v a l u a t e  t h e  u s e  o f  t h i s  i m m u n o a s s a y  f o r  i n v e s t i g a t i n g  e f f e c t s  o f  a b i o t i c  v a r i a b l e s  a n d  

x e n o b i o t i c s  o n  N. integer v i t e l l o g e n e s i s .

I n  g e n e r a l ,  a  p r o l o n g a t i o n  o f  t h e  i n t r a - m a r s u p i a l  d e v e l o p m e n t  t i m e  m a y  r e d u c e  s u r v i v a l  

b y  p r o l o n g i n g  a  s e n s i t i v e  a n d  v u l n e r a b l e  l i f e  s t a g e .  I n  M y s i d a c e a ,  t h i s  i s  c o m p e n s a t e d  f o r  b y  t h e  

p r o t e c t i o n  p r o v i d e d  b y  t h e  i n t r a - m a r s u p i a l  d e v e l o p m e n t  o f  t h e  o r g a n i s m s .  I n d e e d ,  a t  l o w e r  

t e m p e r a t u r e s  ( c o m b i n e d  w i t h  a  m e d i u m  s a l i n i t y )  t h e  f i n a l  s u r v i v a l  a n d  h a t c h i n g  s u c c e s s  i s  e v e n  

b e t t e r .  W e  f o u n d  t h e  e x p e r i m e n t a l  s a l i n i t y  t o  h a v e  a  m i n o r  i m p a c t  o n  t h e  d u r a t i o n  o f  l a r v a l  

d e v e l o p m e n t  o f  N. integer. E a r l i e r  f i n d i n g s  o f  V l a s b l o m  a n d  E l g e r s h u i z e n  ( 1 9 7 7 )  i n d i c a t e  t h a t  

t h e  e x p e r i m e n t a l  s a l i n i t y  d o e s  n o t  i n f l u e n c e  t h e  i n t r a - m a r s u p i a l  d e v e l o p m e n t ,  b u t  t h a t  a n i m a l s  

a d a p t e d  t o  a  h i g h e r  s a l i n i t y  g e n e r a l l y  t a k e  l o n g e r  t o  d e v e l o p .  I n  t h e  p r e s e n t  s t u d y ,  t h i s  

a d a p t a t i o n  f a c t o r  w a s  n o t  t a k e n  i n t o  a c c o u n t  ( a l l  a n i m a l s  o r i g i n a t e d  f r o m  a  s a l i n i t y  o f  ±  5 ) .

A l l  t h e  l a r v a e  w i t h i n  a  s i n g l e  m a r s u p i u m  a r e  a t  t h e  s a m e  s t a g e  o f  d e v e l o p m e n t  

( M a u c h l i n e ,  1 9 8 0 ) .  T h e  o c c a s i o n a l  p r e s e n c e  o f  y o u n g e r  l a r v a e  a m o n g  a  b r o o d  i s  u s u a l l y  

a t t r i b u t e d  t o  a d o p t i o n  ( W i t t m a n n ,  1 9 7 8 ;  M a u c h l i n e ,  1 9 8 0 ) .  H o w e v e r ,  i n  o u r  e x p e r i m e n t s  s o m e  

v a r i a t i o n  i n  t h e  t i m e  o f  t r a n s i t i o n  f o r m  o n e  s t a g e  t o  a n o t h e r  o c c u r r e d  a n d  m a y  e x p l a i n  t h e s e  

o b s e r v a t i o n s .  A  1 o r  2  d a y s  d e l a y  i n  t r a n s i t i o n  f r o m  s t a g e  I  t o  s t a g e  I I  o c c u r r e d  i n  4 8  %  a n d  1 8  

%  o f  t h e  o r g a n i s m s ,  r e s p e c t i v e l y .  I n  t h e  m o u l t i n g  o f  s t a g e  I I  t o  s t a g e  I I I  o r  f r o m  s t a g e  I I I  t o  t h e  

j u v e n i l e ,  a  1 d a y  d e l a y  o c c u r r e d  i n  2 1  %  a n d  1 4  %  o f  t h e  c a s e s ,  r e s p e c t i v e l y .

Salinity optimum

T h e  s a l i n i t y  r a n g e  a t  w h i c h  t h e  e m b r y o s  a n d  l a r v a e  d e v e l o p  i s  m o r e  r e s t r i c t e d  t h a n  t h e  

s a l i n i t y  r a n g e  a t  w h i c h  t h e  f e m a l e  m y s i d s  c a n  s u r v i v e  ( V l a s b l o m  a n d  E l g e r s h u i z e n ,  1 9 7 7 ;  

G r e e n w o o d  e t  a l . ,  1 9 8 9 ) .  A l t h o u g h  f e r t i l i z a t i o n  i n  t h e  l a b o r a t o r y  o c c u r r e d  a t  a  s a l i n i t y  o f  5  a n d  

1 6  ° C ,  t h e  e m b r y o s  c u l t u r e d  in vitro a t  t h i s  s a l i n i t y  a n d  t e m p e r a t u r e  c o m b i n a t i o n  ( G )  n e v e r  

d e v e l o p e d  t o  f r e e - l i v i n g  j u v e n i l e s .  C o m p l e t e  m o r t a l i t y  o c c u r r e d  a f t e r  6  d a y s .  V l a s b l o m  a n d  

E l g e r s h u i z e n  ( 1 9 7 7 )  f o u n d  a  s u r v i v a l  o f  0  t o  3 0  %  o f  t h e  e a r l y  e m b r y o s  a t  a  c o m p a r a b l e  s a l i n i t y .

I n  t h e  s u b t i d a l  o f  G i r o n d e ,  W e s e r ,  T a m a r  a n d  S c h e l d e  e s t u a r i e s  ( S o r b e ,  1 9 8 0 ;  

S c h u c h a r d t  e t  a l . ,  1 9 8 9 ;  M o f f a t ,  1 9 9 6 ;  F o c k e d e y ,  u n p u b l i s h e d ) ,  o v i g e r o u s  f e m a l e s  m a i n l y  o c c u r  

i n  t h e  l o w  s a l i n i t y  z o n e  ( s a l i n i t y  3  -  1 0 ) ,  i n d i c a t i n g  t h a t  n o  m i g r a t i o n  f r o m  t h e  a d v e r s e  s a l i n i t y  

c o n d i t i o n s  o c c u r s  i n  Neomysis integer.



A l s o ,  p e r m a n e n t  p o p u l a t i o n s  a r e  d e s c r i b e d  i n  e n c l o s e d  l o w  s a l i n e  b r a c k i s h  p o n d s  a n d  l a k e s  ( e . g .  

I r v i n e  e t  a l . ,  1 9 9 5 ) .  O u r  e x p e r i m e n t a l  (in vitro)  r e s u l t s  o n  t h e  i n t r a - m a r s u p i a l  s u r v i v a l  a n d  

h a t c h i n g  s u c c e s s  o f  N. integer a t  t h i s  l o w  s a l i n i t y  s u g g e s t  t h a t  t h e  r e c r u i t m e n t  s u c c e s s  o f  

j u v e n i l e s  t o  t h e  p o p u l a t i o n  m a y  t h u s  b e  s e r i o u s l y  a f f e c t e d ,  u n l e s s  t h e  g r a v i d  f e m a l e  i s  a b l e  t o  

a c t i v e l y  r e g u l a t e  t h e  s a l i n i t y  w i t h i n  i t s  m a r s u p i u m  a n d  i n  t h i s  w a y  i n c r e a s e  t h e  s u r v i v a l  a n d  

h a t c h i n g  s u c c e s s  o f  i t s  o f f s p r i n g .  T h e  a c t i v e  r e g u l a t i o n  o f  t h e  m a r s u p i a l  f l u i d  s a l i n i t y  i s  

d e s c r i b e d  f o r  i s o p o d s  ( C h a r m a n t i e r  a n d  C h a r m a n t i e r - D a u r e s ,  1 9 9 4 ) ,  a m p h i p o d s  ( a m o n g  o t h e r s  

M o r r i t t  a n d  S p i c e r ,  1 9 9 6 b )  a n d  m y s i d s  i n c l u d i n g  N. integer ( R a l p h ,  1 9 6 5 ;  M c L u s k y  a n d  H e a r d ,  

1 9 7 1 ) ,  a l t h o u g h  t h e  t e c h n i q u e  o f  f r e e z i n g  p o i n t  a n a l y s i s  u s e d  b y  t h e  l a t t e r  a u t h o r s  h a s  b e e n  

c r i t i c i z e d  b y  M o r r i t t  a n d  S p i c e r  ( 1 9 9 6 b ) .  T h e  m e a s u r e m e n t  o f  h a e m o l y m p h  a n d  m a r s u p i a l  f l u i d  

c o n c e n t r a t i o n  o f  N. integer o v e r  a  r a n g e  o f  s a l i n i t i e s  w i t h  m o r e  m o d e m  t e c h n i q u e s  ( e . g .  d i r e c t -  

r e a d i n g  n a n o l i t r e  o s m o m e t e r )  i s  r e q u i r e d  t o  c o n f i r m  o r  r e j e c t  t h e  h y p o t h e s i s  o f  a c t i v e  m a r s u p i a l  

s a l i n i t y  r e g u l a t i o n  f o r  t h e  s p e c i e s .

T h e  m e c h a n i s m  f o r  t h e  ( p o s s i b l e )  r e g u l a t i o n  o f  t h e  m a r s u p i a l  f l u i d  s a l i n i t y  i n  m y s i d s  

r e m a i n s  u n k n o w n  a n d  n e e d s  f u r t h e r  s t u d y .  A  p a i r  o f  t u b e s  e x t e n d i n g  v e n t r a l l y  f r o m  t h e  f e m a l e ’ s  

t h o r a x  i n t o  t h e  m a r s u p i u m  i s  d e s c r i b e d  f o r  Neomysis integer ( V o r s t m a n ,  1 9 5 1 ;  K i n n e ,  1 9 5 5 ) .  

A l t h o u g h  t h e i r  f u n c t i o n  i s  u n k n o w n  ( M a u c h l i n e ,  1 9 8 0 ) ,  t h e y  m a y  h a v e  a  s e c r e t i n g  f u n c t i o n  

( K i n n e ,  1 9 5 5 )  a n d  m a y  h e n c e  h a v e  a  r o l e  i n  t h e  r e g u l a t i o n  o f  t h e  i o n i c  c o m p o s i t i o n  o f  t h e  

m a r s u p i a l  f l u i d .  M o r r i t t  &  S p i c e r  (  1 9 9 6 b )  s u g g e s t e d  t h a t  t h e  m a r s u p i a l  s a l i n i t y  c a n  b e  a c t i v e l y  

r e g u l a t e d ,  a s  d e s c r i b e d  f o r  a m p h i p o d s ,  b y  r e d i r e c t i n g  u r i n e  f r o m  t h e  a n t e n n a r y  e x c r e t o r y  g l a n d  

i n t o  t h e  b r o o d  p o u c h .

Population differences

G e n e t i c a l l y  d i f f e r e n t  p o p u l a t i o n s  o f  a  s p e c i e s  m a y  d i f f e r  i n  t h e  w a y  t h e i r  i n t r a 

m a r s u p i a l  d e v e l o p m e n t  i s  a f f e c t e d  b y  s a l i n i t y  ( L e e ,  1 9 9 9 )  a n d  t e m p e r a t u r e  ( W i t t m a n n ,  1 9 8 4 ) .  

T h e  in vitro d e v e l o p m e n t  t i m e  o f  e m b r y o s  o f  a  Neomysis integer i n d i v i d u a l s  a d a p t e d  t o  h i g h e r  

s a l i n i t i e s  ( s a l i n i t y  2 3 )  i s  l o n g e r  t h a n  t h a t  o f  e m b r y o s  t a k e n  f r o m  a  l o w  s a l i n i t y  ( s a l i n i t y  7 )  

p o p u l a t i o n  ( V l a s b l o m  a n d  E l g e r s h u i z e n ,  1 9 7 7 ) .  T h e  N. integer i n d i v i d u a l s  u s e d  i n  t h e  p r e s e n t  

e x p e r i m e n t  w e r e  s a m p l e d  f r o m  a  d o c k  a l o n g  t h e  S c h e l d e  e s t u a r y .  A l t h o u g h  t h e  d o c k  i s  

c o n n e c t e d  t o  t h e  e s t u a r y ,  p o p u l a t i o n  g e n e t i c  a n a l y s i s  b a s e d  o n  m i t o c h o n d r i a l  c y t o c h r o m e  

o x i d a s e  I  s e q u e n c e s  r e v e a l e d  t h i s  p o p u l a t i o n  t o  b e  s i g n i f i c a n t l y  d i s t i n c t  f r o m  t h e  p o p u l a t i o n  

l i v i n g  i n  t h e  s u b t i d a l  o f  t h e  S c h e l d e  e s t u a r y  ( R e m e r i e  e t  a l . ,  s u b m i t t e d  a )  o r  o t h e r  e s t u a r i e s  

( R e m e r i e  e t  a l . ,  s u b m i t t e d  b ) .  T h e  r e s p o n s e s  t o  t e m p e r a t u r e  a n d  s a l i n i t y  d i f f e r e n c e s  r e p o r t e d  i n  

t h i s  p a p e r  m a y  b e  p o p u l a t i o n - d e p e n d e n t  a n d  n e e d  f u r t h e r  s t u d y .

A C K N O W L E D G E M E N T S

T h i s  r e s e a r c h  w a s  s u p p o r t e d  b y  t h e  B e l g i a n  F e d e r a l  S c i e n c e  P o l i c y  O f f i c e  ( O S T C )  i n  t h e  
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Addendum 3

Mysid crustaceans as potential test organisms for 
the evaluation of environmental endocrine disruption: 
a review

ABSTRACT -------------------------------------------------------------------------------------------------------------------

A n t h r o p o g e n i c  c h e m i c a l s  w h i c h  d i s r u p t  t h e  h o r m o n a l  s y s t e m s  ( e n d o c r i n e  d i s r u p t o r s )  o f  

w i l d l i f e  s p e c i e s  h a v e  r e c e n t l y  b e c o m e  a  w i d e l y  i n v e s t i g a t e d  a n d  p o l i t i c a l l y  c h a r g e d  i s s u e .  

I n v e r t e b r a t e s  a c c o u n t  f o r  r o u g h l y  9 5  %  o f  a l l  a n i m a l s ,  y e t  s u r p r i s i n g l y  l i t t l e  e f f o r t  h a s  b e e n  

m a d e  t o  u n d e r s t a n d  t h e i r  v a l u e  i n  s i g n a l l i n g  p o t e n t i a l  e n v i r o n m e n t a l  e n d o c r i n e  d i s r u p t i o n .  T h i s  

o m i s s i o n  l a r g e l y  c a n  b e  a t t r i b u t e d  t o  t h e  h i g h  d i v e r s i t y  o f  i n v e r t e b r a t e s  a n d  t h e  s h o r t a g e  o f  

f u n d a m e n t a l  k n o w l e d g e  o f  t h e i r  e n d o c r i n e  s y s t e m s .  I n s e c t s  a n d  c r u s t a c e a n s  a r e  e x c e p t i o n s  a n d ,  

a s  s u c h ,  a p p e a r  t o  b e  e x c e l l e n t  c a n d i d a t e s  f o r  e v a l u a t i n g  t h e  e n v i r o n m e n t a l  c o n s e q u e n c e s  o f  

c h e m i c a l l y  i n d u c e d  e n d o c r i n e  d i s r u p t i o n .  M y s i d  s h r i m p s  ( C r u s t a c e a :  M y s i d a c e a )  m a y  s e r v e  a s  a  

v i a b l e  s u r r o g a t e  f o r  m a n y  c r u s t a c e a n s  a n d  h a v e  b e e n  p u t  f o r w a r d  a s  s u i t a b l e  t e s t  o r g a n i s m s  f o r  

t h e  e v a l u a t i o n  o f  e n d o c r i n e  d i s r u p t i o n  b y  s e v e r a l  r e s e a r c h e r s  a n d  r e g u l a t o r y  b o d i e s  ( e . g .  t h e  

U . S .  E n v i r o n m e n t a l  P r o t e c t i o n  A g e n c y ) .  D e s p i t e  t h e  l o n g - s t a n d i n g  u s e  o f  m y s i d s  i n  t o x i c i t y  

t e s t i n g ,  l i t t l e  i n f o r m a t i o n  e x i s t s  o n  t h e i r  e n d o c r i n o l o g y ,  a n d  f e w  s t u d i e s  h a v e  f o c u s e d  o n  t h e  

p o t e n t i a l  o f  t h e s e  a n i m a l s  f o r  e v a l u a t i n g  t h e  e f f e c t s  o f  h o r m o n e - d i s r u p t i n g  c o m p o u n d s .  

T h e r e f o r e  t h e  q u e s t i o n  r e m a i n s  a s  t o  w h e t h e r  t h e  c u r r e n t  s t a n d a r d i z e d  m y s i d  e n d p o i n t s  c a n  b e  

u s e d  o r  a d a p t e d  t o  d e t e c t  e n d o c r i n e  d i s r u p t i o n ,  o r  i f  n e w  p r o c e d u r e s  m u s t  b e  d e v e l o p e d ,  

s p e c i f i c a l l y  d i r e c t e d  a t  e v a l u a t i n g  h o r m o n e - r e g u l a t e d  e n d p o i n t s  i n  t h e s e  a n i m a l s .  T h i s  r e v i e w  

s u m m a r i s e s  t h e  e c o l o g i c a l  i m p o r t a n c e  o f  m y s i d s  i n  e s t u a r i n e  a n d  m a r i n e  e c o s y s t e m s ,  t h e i r  u s e  

i n  t o x i c i t y  t e s t i n g  a n d  e n v i r o n m e n t a l  m o n i t o r i n g ,  a n d  t h e i r  e n d o c r i n o l o g y  a n d  i m p o r t a n t  

h o r m o n e - r e g u l a t e d  p r o c e s s e s  t o  h i g h l i g h t  t h e i r  p o t e n t i a l  u s e  i n  a s s e s s i n g  e n v i r o n m e n t a l  

e n d o c r i n e  d i s r u p t i o n .
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INTRODUCTION

Anthropogenic chemicals that disrupt the hormonal systems (endocrine disruptors) of wildlife species 
recently have become a widely investigated and politically charged issue [1-3]. Invertebrates account for 
roughly 95% of all animals [4], yet surprisingly little effort has been invested to understand their value in 
signaling potential environmental endocrine disruption [5-12], Although growth, reproduction, 
development, and other aspects of invertebrate physiology are known to be under hormonal control, the 
endocrine systems and hormones produced and used in invertebrates are not directly analogous to those 
of vertebrates [13]. In invertebrates, the selection of suitable test methods and species for evaluating 
endocrine disruption is confounded by diversity. The use of a limited number of species as representative 
of this diversity is a naive approach destined to failure in the absence of suitable safeguards [2,9], Hence, 
the key challenge for environmental assessment is to find invertebrate species, selected from multiple 
levels of ecosystem function, to efficiently monitor and evaluate the complexity of potential environmental 
effects of endocrine-disrupting chemicals at a reasonable financial cost [14].

Many anthropogenic pollutants have the world's oceans and seas as a final sink, and are carried 
there through riverine and estuarine conduits [12,15]. Estuaries are intrinsically and commercially 
important ecosystems and are amongst the first recipients of endocrine disruptors in their seaward 
transport. Of the estuarine organisms that could be adversely affected by these compounds, crustaceans 
are good candidates for the study of potential impacts. Crustaceans are common in freshwater, estuaries, 
and shallow coastal waters and form vital links in aquatic food webs [16-21]. In addition, crustaceans are 
susceptible to the effects of endocrine disruptors [13]. An international Society of Environmental 
Toxicology and Chemistry workshop on endocrine disruption in invertebrates held in The Netherlands in 
1998 [7] identified insects and crustaceans as potential organisms for evaluating chemically induced 
endocrine disruption by virtue of the wealth of information available on their endocrinology compared with 
other invertebrates [9,12,22-24],

Of the crustaceans, mysid shrimp have been put forward as suitable test organisms for the 
evaluation of endocrine disruption [7,9,25]. The U.S. Environmental Protection Agency established the 
Endocrine Disruptor Screening and Testing Standardization and Validation Task Force to coordinate and 
conduct the scientific and technical work necessary to validate the screens and tests recommended by the 
Endocrine Disruptor Screening and Testing Committee. The Standardization and Validation Task Force 
recommended a two-tiered approach for determining whether a chemical is an endocrine disruptor, and 
mysids were proposed as a suitable invertebrate assay in the tier 2 testing (in vivo testing) 
(http://www.epa.gov/scipoly/ oscpendo) for a two-generation reproductive and developmental toxicity test. 
Recently, a draft review paper was com piled on mysid life-cycle toxicity testing [13], and the two 
generation mysid life-cycle assay was proposed to the Organization for Economic Cooperation and 
Development as a new Organization for Economic Cooperation and Development test guideline. Despite 
the long-standing use of mysids in toxicity testing, little information on their endocrinology has been pub
lished and few studies have focused on the potential of these animals for evaluating the effects of 
hormone-disrupting compounds. Therefore, the question remains as to whether the current standardized 
mysid endpoints can be used or adapted to detect endocrine disruption, or if new procedures must be 
developed, specifically directed at evaluating hormone-regulated endpoints in these animals.

This present review provides an overview of the available information on mysids relevant to the 
issue of endocrine disruption, including their ecological role in marine and estuarine ecosystems, their use 
in toxicity testing and environmental monitoring, and their endocrinology. A case is made for their potential 
use in assessing the environmental consequences of endocrine-disrupting chemicals.

MYSID BIOLOGY AND ECOLOGY

Mysids (Malacostraca: Peracarida: Mysidacea) are relatively small (with the majority of the 
species being between 5 and 25 mm in length), shrimp like crustaceans, often referred to as opossum 
shrimp because the oostegites form a ventral female marsupium for carrying the developing embryos. The 
latter feature distinguishes mysids from other shrimplike crustaceans.

http://www.epa.gov/scipoly/


Mysids are identified from other peracarids (Amphipoda, Isopoda, Cumacea, and Tanaidacea) by the 
presence of a statocyst (containing large endogenous statoliths, the primary equilibrium organs for 
mysids) on the proximal part of the uropodal endopod. Mysids are distributed from 800N to 800S and 
occur in various aquatic environments, including freshwater, groundwater, brackish, estuarine, coastal, 
and oceanic habitats [26-28], Mauchline and Murano [28] published a world list of mysids in 1977 (765 
species distributed between -  120 genera); however, this number is ever increasing through improved 
sampling techniques and exploration of new habitats. The present count is more than 1,000 species be
longing to approximately 160 genera (http://crustacea.neU). A comprehensive database on the world 
mysid fauna (Nemys, http://intramar.ugent.be/nemys), containing links to relevant information (i.e., 
taxonomical, morphological, ecological, biogeographic, literature, pictorial, and molecular information), on 
the species level presently is being constructed (T. Deprez, Ghent University, Section Marine Biology, 
Ghent, Belgium, personal communication).

In general, mysids are regarded as omnivores and feed on phytoplankton, Zooplankton, and 
organic detritus [26,27,29-31]. Pelagic forms filter particles during swimming, whereas benthic species 
have been observed actively hunting and grabbing small particles [27], Mysids form important links in the 
food webs of aquatic ecosystems and often feed selectively for size or species (or both) of prey [26,32]. 
Consequently, they have the potential for structuring Zooplankton communities [33,34] and influencing the 
structure of phytoplankton, tychoplankton, and meiofaunal communities [32,35-41], Most mysids utilize 
organic detritus to a considerable extent and are capable of remineralizing a substantial portion of the 
nonrefractory detritus suspended in the water column or buried in the surface sediments [29,37,42,43], 
Mysid size is intermediate between mesozooplanktonic (pm) and endobenthis or epibenthic (cm) prey 
items, and mysids often progressively replace copepods in the diet of many postlarval and juvenile 
commercial fish species [19,26,44,45], In addition, mysids may serve as prey for larger crustaceans, 
marine mammals, or wading birds [26,27,32,46-48].

Estuarine mysids have a flexible physiology that responds to a host of dynamically changing 
environmental variables, characteristic of the complex chemistry of estuaries. Temperature and salinity are 
the dominant ecological variables, and may act either singly or in combination to modify the physiological 
and ecological properties of estuarine organisms as well as responses to xenobiotic exposure. Therefore, 
empirical determination of the optimal salinity and temperature conditions of estuarine mysids is essential 
for the development of optimum laboratory culture of these organisms and their use in toxicity and hazard 
assessment. For example, the optimal salinity and temperature conditions for growth of Americamysis 
bahia (formerly Mysidopsis bahia) through its entire life cycle [49] are correlated with resistance patterns to 
these dominant environmental variables [50] and distribution of this species in estuaries. Moreover, 
temperature and salinity interact to modify the reproductive capacity of this species [51].

MYSIDS AND TOXICOLOGY

Mysids are sensitive to some chemical contaminants at environmentally relevant concentrations 
and have been used in regulatory toxicity testing for more than 20 years [15,43,52-66], The U.S. 
Environmental Protection Agency and the American Society for Testing and Materials both have adopted 
the subtropical A. bahia as a key testing species for coastal and estuarine monitoring, and standard 
guides for conducting life-cycle toxicity tests with this species have been developed [13,67-72], Although a 
relatively large amount of published toxicity data is available for Americamysis species, relatively limited 
data are available on the sensitivity of other mysid species to toxicants [64], However, the available 
evidence suggests that mysids are generally more sensitive to toxic substances than many other test 
species [43,73-75], Toxicity test procedures have been published for Neomysis mercedis [52,76], 
Mysidopsis in tii[59], Holmesimysis costata [62], Americamysis b igelow i[ll], Neomysis integer [64,75,78], 
Tenagomysis novae-zealandiae [79], Praunus flexuosus [80,81], Neomysis americana [82,83], and 
Neomysis awatschensis [84] (Table 1). In addition, methods for maintaining viable populations of different 
mysid species under laboratory conditions have been described by several researchers [46,59,75,79,85- 
89], Recently, a strong correlation was reported between the toxic response of daphnids and mysids (R2 =
0.941, n = 28; 96-h median lethal concentrations for A. bahia and 48-h median lethal concentrations for 
Daphnia magna) for pesticides and organics, emphasizing the use of mysids in future toxicity testing [90],

http://crustacea.neU
http://intramar.ugent.be/nemys


Mysids have been used successfully to measure various sublethal toxicant effects, such as 
growth, swimming capability, feeding behaviour, moulting, energy budget, reproduction, sexual maturity, 
and vitellogenesis (described in detail in the following paragraphs and summarized in Table 2). Also, field 
studies and caging experiments with mysids have been published [17,91-94],

Because of their ecological importance, wide geographic distribution, year-round availability in the 
field, ease of transportation, ability to be cultured in the laboratory, and sensitivity to contaminants, mysids 
are appropriate toxicity test organisms. Clearly, field validation of the biomarkers is a strong research need 
for the future.

CANDIDATE MYSID TEST SPECIES FOR ENDOCRINE DISRUPTION RESEACH

General selection criteria for the most appropriate mysid species for toxicological testing are 
given by Nimmo and Hamaker [15] and Roast et al. [43]. These criteria include available when required; 
already adapted to laboratory conditions, eliminating an (expensive) conditioning phase; collection for 
laboratory testing will not decimate field populations (or destroy habitat during collection); easily 
transported; life history is short, making it possible to study the effects of a pollutant on various aspects of 
reproduction; diet is known and readily controlled; and ecologically important. In addition, the important 
characteristics for the selection of a suitable test species for identifying the effects of endocrine disruption 
in the environment are given by DeFur et al. [7] and include primary mode of reproduction, culture in the 
laboratory, generation time, size, knowledge of endocrinology, and standard methods available. Some 
attributes described in the latter publication (e.g., mode of reproduction or knowledge of endocrinology) do 
not allow for discrimination among candidate mysid species. A very useful document in this context is a 
draft review paper on life- cycle toxicity testing with mysids in which several species (A. bahia, 
Americamysis almyra, A. bigelowi, H. costata, M. intii, N. mercedis, and N. integer) are considered for their 
potential utility in endocrine-disruption testing [13]. From this review, it may be concluded that, although A. 
bahia has many strengths, limited ecological relevance for high-latitude and low-saline systems preclude 
its general utility. However, given the high degree of standardization in A. bahia, progress in development 
of standardized test protocols for endocrine-disruption testing should be fastest in this species. Table 1 
summarizes the distribution, habitat description, and available culture protocols for other candidate mysid 
test species.

MYSID ENDOCRINOLOGY AND HORMONE-REGULATED ENDPOINTS

The use of hormones to regulate biological processes is a strategy common to vertebrates and 
invertebrates. Although the endocrine systems of invertebrates regulate many of the same processes in 
vertebrates (development, growth, and reproduction), some endocrine-regulated processes are unique to 
specific groups of invertebrates. For example, moulting, diapause, and limb regeneration are endocrine- 
regulated processes associated with some invertebrate groups that are rare or absent among vertebrates 
[7].

Most of the current knowledge of crustacean endocrinology is based upon studies with decapods 
such as crabs, lobsters, crayfish, and shrimp, and has been reviewed previously [7,95-100]. The main 
biological processes, such as growth, moulting, and reproduction, are cyclic and fairly well understood in 
benthic and terrestrial malacostracans, such as decapods, isopods, and amphipods [22,101,102], These 
biological processes are regulated by a complex endocrine system [96,101], Basically, inputs from the 
environment are integrated by the central nervous system; neurotransmitters and neuromodulators govern 
the release of neuropeptides, which control the production of hormones by the endocrine glands [103], 
The main crustacean endocrine centers include the Y-organ, mandibular organ, androgenic gland, X- 
organ, and sinus gland [7,97], Unfortunately, endocrine glands or sites of hormone production in mysids 
are largely undecided.



Table 1: Candidate mysid test species for toxicity testing with details on their natural habitat and culturing.

Species name Distribution Habitat description Commercial
culture Culture protocol

Americamysis bahia 
(= Mysidopsis bahia)

Coastal estuaries and embayments 
ranging from the G ulf o f M exico to 
Narragansett (RI, USA) [250]

Marine (> 15%o), <  20-34°C 
[49-51]

Yes [46, 89,251]

Americamysis bigelowi 
(= Mysidopsis bigelowi)

Eastern coast o f  the USA from MA 
(Georges Bank) to FL often together 
w ithÆ  bahia [250]

Marine (30-35%o), 2-30°C No [46]

Americamysis almyra 
(= Mysidopsis almyra)

Eastern coast o f  the USA, inshore waters 
along the entire coast o f  G ulf o f Mexico 
and northward along Atlantic coast to 
Patapsco River (MD) [250]

Marine (10-20%o), > 20°C Yes [85,88,252]

Holmesimysis costata 
(= Acanthomysis sculpta)

Principal species o f  the genus, from 
southern California (USA) to British 
Columbia (Canada) [122, 253]

Marine, planktonic, lives within 
surface canopy o f kelp

No, field-collected 
animals available 
(USEPA, 2002)

[122,253]

Mysidopsis intii Eastern Pacific from South America to 
the southern California coast o f  the USA 
[59, 250]

Marine, epibenthic, optimal 
temperature 20-22°C, optimal 
salinity 28-3 5%o

No [59]

Mysis mixta Eastern (from White Sea to Iceland) and 
Western (Greenland coastal waters down 
to Cape Cod) Atlantic regions [26]

Brackish, low salinity, cold water No [114]

Neomysis awatschensis Pacific coast o f  Japan, Korea, and USA 
[115]

Marine, estuarine No [115]

Neomysis mercedis Northeastern Pacific coast o f the USA 
(southern Alaska to Goviota Bay, CA) 
[52]

Freshwater, estuaries, and coastal 
lakes, planktonic/epibenthic, 
euryhaline <0.5 to >  25%o), 6- 
22°C

No [52]

Neomysis integer Northern European estuaries and coastal 
waters; oligohaline and freshwater lakes 
[20,43]

Marine, estuarine, freshwater, 
hyperbenthic, euryhaline < 0.5 to > 
25%o), cold water < 20°C) [116]

No [75]

Praunus flexuosus Northern European coastal waters Hyperbenthic/planktonic, eury
haline, eurytherm [254, 255]

No [123]

The effects of organic and inorganic contaminants on crustacean functions regulated by 
hormones are being investigated with increasing frequency and several show promise as biomarkers of 
environmental contamination and endocrine disruption [7,8,104,105]. Unfortunately, relatively few data are 
available on the hormonal control of biological processes in mysids. Having said that, certain endpoints 
relevant to the testing of suspected endocrine disruptors, such as survival, fecundity, sexual maturation, 
and biomass increase, are already standardized procedures for some mysids, such as A. bahia, A. 
bigelowi (partly), A. almyra, H. costata, and N. mercedis, and many other endpoints or species are 
promising [7]. The use of potential mysid hormone-regulated endpoints as biomarkers of exposure or 
effects of endocrine disruptors are discussed in detail in the following paragraphs and are summarized in 
Table 2. Although many, if not all, of these endpoints may indicate a response to an endocrine disruptor, 
most also vary in response to exposure to other stressors and this is further confounded by the 
interrelatedness (i.e., nonindependence) of some of these endpoints [13]. The key to the interpretation of 
these endpoints as indicators of endocrine disruption will be to create for each species a large database of 
what constitutes the normal unstressed response, and what constitutes a normal reference site or 
population when working under field conditions.

Growth and moulting
Most commonly, growth is measured either by increases of dry weight or body length per time 

interval [59,106-108] and, for crustaceans, is often expressed in terms of intermoult period and growth 
factor (percentage increase in body size at the moult) [26]. Growth curves (such as the von Bertalanffy 
equation) can be fitted to the growth data [20,109,110], allowing comparisons of the different growth 
parameters between treatments. Although several studies have focused on growth and moulting in mysids 
under natural conditions [49,107,111-123], exposure experiments also have confirmed the sensitivity of 
these endpoints in toxicology [52,56,61,84,92,106,108,124131]. For mysids, reduced growth is the most 
common sublethal response to toxicant exposure and this has important implications for reproductive 
success because fecundity is related directly to female body size [20,84,118,123]. In crustaceans, 
significant growth occurs only as a result of moulting; therefore, disruption of moulting may result in 
alterations in growth [13,132].



Ecdysteroids (the moulting hormones in crustaceans) also function in the control of reproduction 
and embryogenesis [97,133]; therefore, the crustacean moult cycle has profound effects on many aspects 
of organismal function, including physiology, behaviour, and changes in biochemical composition 
[134,135], Moulting is regulated by a multihormonal system but is under the immediate control of moult- 
promoting steroid hormones (ecdysteroids) secreted by an ecdysial gland, called the Y-organ (the 
homologue of the prothoracic gland in insects [103,136], The Y-organ secretes ecdysone, which, on 
release in the hemolymph, is converted into active 20-hydroxyecdysone (synonyms: crustecdysone and 
ecdysterone). Circulating titers of 20-hydroxyecdysone vary impressively during the moult cycle [103,134], 
The Y-organ produces two other ecdysteroids, 3-dehydroecdysone and 25-deoxyecdysone, with he latter 
forming the immediate precursor to the active ponasterone A [133], More studies have been done on the 
effects of contaminants on moulting and limb generation than on any other hormone-mediated process in 
crustaceans [8,135,137],

Moult staging, based on changes in the integument, has been developed for various crustaceans 
and is generally divided into four major periods: postmoult, intermoult, premoult, and moult (ecdysis). 
Mysid moult stages have been described for Siriella armata [138,139], Mysis mixta [140], and N. integer 
[140], In mysids, ecdysis is instantaneous, with the entire carapace lifting up and the mysid sliding out of 
the old cuticle while swimming. For female mysids, integumental development during moult preparation, 
marsupial brood development, and development of new eggs in the ovary are synchronized, facilitating 
moult staging [101]. To date, only one study has quantified ecdysteroid titers during the mysid moult cycle 
and this study was with S. armata [101]. However, both ecdysone and 20-0H ecdysone have been 
identified in N. integer (Ghekiere et al., unpublished data) and A. bahia (Tuberty and McKenney, 
unpublished data).

As mentioned previously, moulting is controlled by ecdysteroids [136], Ecdysteroids control the 
activity of specific genes at the transcriptional level by interacting with the intracellular ecdysteroid receptor 
[103,135,141], In arthropods, the ecdysone receptor is in the same gene family as the vertebrate thyroid 
receptor but, interestingly, steroidal estrogens do not agonize or antagonize the ecdysteroid receptor 
[142], Evidence exists [142] that some nonsteroidal environmental estrogens are ecdysteroid antagonists 
(e.g. lindane, bisphenol A, diethylphthalate, and p,p'-DDT). In addition, several classes of phytochemicals 
antagonize ecdysone activity [137], The apparent ubiquity of the antiecdysteroidal activity of environmental 
chemicals necessitates investigation into their potential effects on crustaceans [143,144], Many pesticides, 
generally classed as insect growth regulators, function as ecdysone agonists [7,11],
As suggested by Zou and Fingerman [136], future investigations of moulting in crustaceans should have 
two emphases, one examining interactions between potential endocrine disruptors and the ecdysone 
receptor, and one focusing on the possible impairment of ecdysteroidogenesis by these agents. In vitro 
assays can determine quickly whether a chemical has (anti)ecdysteroidal activity [145,146]. Given the cur
rent methods for quantifying ecdysteroids by using immunoassay [139,144,147] and the available methods 
for moult staging [138,140], it should be possible to evaluate the potential interaction of these chemicals 
with the process of moulting in mysids.

Because ecdysteroids are used as major endocrine-signaling molecules in crustaceans [7], and 
little is known of their other functions, it may be expected that a chemical with (anti)ecdysteroidal activity 
also will affect other hormone-regulated processes in crustaceans. Support for this hypothesis is provided 
by Mu and LeBlanc [144], who demonstrated that the fungicide fenarimol altered embryo development in 
daphnids by interfering with ecdysteroid metabolism. However, one major advantage of using ecdysteroid 
metabolism as an endpoint is that it provides a means of evaluating the impact of environmental chemicals 
on crustaceans (and potentially other arthropods), while not necessarily affecting vertebrates. Because 
(anti)ecdysteroidal activity has been proven in vitro for certain chemicals [145], and disruption of moulting 
has been observed as a result of chemical exposure, these chemicals should be tested in exposures with 
mysids. In these exposures, endpoints such as intermoult period, growth, morphological aberrations, 
ecdysone titers, protein concentrations, integument development, as well as related endpoints such as 
vitellogenesis, should detect in vivo effects of chemicals on ecdysteroid metabolism and moulting in 
mysids. In vitro assays should aid the mechanistic understanding of chemical action to better allow 
distinction between endocrine-specific and pharmacological effects.



Energy metabolism
Biomarkers linked with physiological energetics provide information on key processes in the 

organism’s energy acquisition and expenditure, and possibly also elucidate the mode of action of the 
toxicant. Under normal conditions, specific amounts of energy are allocated to basal metabolism, growth, 
and reproduction and therefore, theoretically, changes in metabolic turnover and specific allocations 
should be linked to effects at higher levels of ecological organization [148]. A large body of information is 
available on the neuroendocrine pathways of physiological regulation in macrocrustaceans. Although 
typical and well-studied challenges to endogenous energy metabolism include environmental hypoxia, 
functional (internal) hypoxia, changing energetic requirements, disturbance to water balance and ion 
homeostasis and changes in temperature (for review, refer to Morris and Airriess [149]), exposure to 
toxicants also will result in an energetic challenge. Because energetic processes are hormone-regulated, 
they are, by definition, sensitive to hormone disruption and several measurements of energy reserves and 
consumption may serve as useful biomarkers of endocrine-disrupting substances in crustaceans [11]. 
However, once again, the utility of bioenergetic endpoints will depend strongly on establishment of a 
consensus database of what the normal bioenergetic state is for mysids.

Alterations to the energy metabolism of mysids have been used successfully as an indicator of 
stress to toxicant exposure in A. bahia [63,125,126,129,130], P. flexuosus [81], N. awatschensis [ISO- 
152], and N. integer [153-156]. In A. bahia, P. flexuosus, and N. awatschensis, weight-specific respiration, 
ammonia excretion rates, and oxygen to nitrogen ratios have been measured after toxicant exposure. In 
N. integer, Roast et al. [153] used scope for growth [157], whereas Verslycke and Janssen [155] and 
Verslycke et al. [156] used the cellular energy allocation assay [158]. Both methods are promising and 
were recently validated in N. integer after exposure to the pesticide chlorpyrifos (Verslycke et al., 
unpublished data). The cellular energy allocation assay also was recently validated in the field (Scheldt 
estuary, The Netherlands) [94], The ecological relevance and utility of short -term bioindicators of met
abolic processes in A. bahia have been demonstrated after chronic exposure to pesticides 
[63,125,126,129,130]. In these studies, pesticide-exposed juvenile mysids had a greater reliance on the 
more energy-rich lipid substrates during maturation to support elevated metabolic demands, resulting in 
less lipid material available for gamete production and reduced reproductive success. Unexposed mysids 
shift toward more proteinaceous substrates during maturation, as demonstrated for A. bahia [63] and N. 
integer [155,159]. These changes in metabolic substrate usage can be measured by monitoring the 
oxygen to nitrogen ratio [125,160], the lipid and protein content [155], or the carbon to nitrogen ratio of the 
test organism [114], On the other hand, hyperglycemia is a common response to environmental or 
functional hypoxia and contaminant exposure in numerous decapods, and it is thought to be triggered by 
the action of crustacean hyperglycemic hormone on various target tissues [8,149], The amino acid 
sequence of crustacean hyperglycemic hormone is highly homologous with that of the moult-inhibiting 
hormone, another product of the sinus glands in crustaceans, indicating possible involvement in the 
control of moulting and reproduction [149]. Several investigators have examined the effects of metals and 
organic contaminants on blood glucose concentrations and crustacean hyperglycemic hormone titers in 
crustaceans [8]. Changes in blood glucose levels in mysids exposed to potential endocrine disrupters may 
indicate disruption of hormonal activity other than that associated with moulting or reproduction [13],

The methods described above are transferred easily to other mysid species. Endpoints related to 
energetic processes are relatively easy to measure, but a better and holistic understanding of the role of 
the different hormones involved in energy metabolism, such as crustacean hyperglycemic hormone, is 
needed to evaluate the potential impact of hormonemimicking substances on mysids. In this context, new 
immunoassays for determination of circulating hormones in the hemolymph, such as crustacean 
hyperglycemic hormone, are promising [161],

Other endpoints related to metabolism in mysids have been studied. High acetylcholinesterase 
activity in Siriella clausi, indicating a high metabolic rate, identified this mysid as particularly suited for 
research based on biomarkers in the marine environment [17], In addition, N. integer has been used as a 
viable alternative model for the partial replacement of vertebrate animals in metabolic studies with illegal 
growth promoters and veterinary drugs [162], Finally, respiratory responses have been studied in mysids 
in relation to a variable environment and toxic exposure [63,81,84,115,125,160,163-165],



Table 2: List of potential endpoints for evaluating the effects of endocrine disruptors and their use in mysids

Endpoint Use in mysids References/comments

Survival (acute) Americamysis bahia (S)a [69,253]
Americamysis bigelowi (S) [69]
Americamysis almyra (S) [69]
Holmesimysis costata (S) [62,67,253]
Neomysis mercedis (S) [52,67,76]
Mysidopsis intii [55,59]
Neomysis integer [53,64,75,78]
Other species [79,80-84]

Life-cycle testing A. bahia (S) [68,70,72,253]
A. bigelowi (S), A. almyra (S) [68]
H. costata (S) [56,68,71]
M. intii [55,59]
N. integer [160]

Two-generation testing A. bahia, A. bigelowi, A. almyra (S in prep) [13,219,256]
M. intii Method should be developed
H. costata, N. mercedis, N. integer Probably impractical because of long generation time

Fecundity (brood size) A. bahia, A. bigelowi, A. almyra (S) [68,70]
H. costata (S) [71,122]
N. mercedis [257]
M. intii [55,59]
N. integer, Praunus flexuosus [123,258]
Mysis mixta [114]
Neomysis awatschensis [115]

Embryonic development A. bahia [205]
Mesopodopsis slabberi [208]

Sexual maturity A. bahia (S) [51,58,60,68,218]
Time to first brood release H. costata [122]
Egg development time N. integer, P. flexuosus [123]

M. mixta [114]
M. intii [55,59]

Sex ratio and intersexuality A. bahia (S) [68,219,253]
N. integer [223-225]

Growth, biomass A. bahia, A. bigelowi, A. almyra (S) [68,70]
H. costata (S) [56,71,122]
N. mercedis [52]
M. intii [55,59]
M. mixta [124]
N. integer [107,116]
N. awatschensis [84,115,150,151]
P. flexuosus [114]
Tenagomysis novae-zealandiae [79]
Other species [117,119-121,132]

Molt time and success A. bahia [259]
N. integer [111,140]
M. mixta [140]
Siriella annata [138]
N. awatschensis [115]

Energy metabolism A. bahia [63]
0:N  ratio, C:N ratio N. mercedis [260]
Respiration N. integer [153,155,164-167,169-175,178-181]
Biochemical composition M. mixta [114,182]

N. awatschensis [150-152]
P. flexuosus [81]
Leptomysis lingyura [54]
Mysis relicta [176,261]
Gastrosaccus brevifissura [163]

Ecdysteroid metabolism A. bahia S.R. Tuberty1’ and C.L. McKenney0, unpublished data
N. integer A. Ghekiere et al.d , unpublished data
S. armata [139]

Steroid metabolism N. integer [162,185,198,199]
P450 enzymes N. integer [162,185,198]
Vitellogenesis A. bahia [215]

S. armata [139]
N. integer A. Ghekiere et al.d , unpublished data



Table 2 (cont)

Endpoint Use in mysids References/ comments

Osmoregulation A. bahia [259,262,263]
N. integer [264]
P. flexuosus [265]
Other species [248]

Morphology, histology A. bahia, A. bigelowi [77]
N. integer [225]

Swimming behavior N. integer [43,226-230,232]
Feeding behavior A. bahia [231,241]

M. mixta [239,242]
Other behavioral endpoints Mating, grooming, swarming, 

burrowing ability, predator-prey 
dynamics

[233-238,243-247]

aS = method is standardized.
b Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, USA. 
c U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Gulf Breeze, FL, USA. 
d Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium.

Although undoubtedly having environmental relevance and being fairly easily extrapolated to 
higher levels of biological organization, the major disadvantage of endpoints related to energy metabolism 
is their difficulty in mechanistically explaining hormone-regulated responses as can be expected from 
exposure to endocrine disruptors. Many abiotic and toxic stressors affect the energy metabolic processes 
of organisms [114,127,152-156,164], while not necessarily being related to disruption in normal hormonal 
regulation. Therefore, the successful use of biomarkers for the evaluation of endocrine disruption will be 
limited by the amount of background data on natural variation and normal levels of the endpoints in ques
tion, and also by the fundamental understanding of the toxicant action at the (sub-)cellular level. In this 
regard, many studies containing background information on the biochemical composition (e.g., proteins, 
lipids, and sterols) of mysids have been published [166-182], but information on neuropeptide and 
hormonal levels in mysids needs development.

Steroid metabolism and cytochrome P450
Pollutants may exert reproductive effects through interference with normal steroid metabolism 

[183-187], For invertebrates, several studies have focused on pollutant-induced alterations in steroid 
metabolism. These chemicals often interfere with the microsomal P450 mono oxygenase system, also 
called the mixed-function oxygenase system. The mixed-function oxygenase system is involved not only in 
the metabolism of organic toxicants but also in steroid metabolism; consequently, induction or inhibition of 
the mixed-function oxygenase system also may have repercussions for the hormonal control of 
reproduction. In sea stars, a linkage was demonstrated between impaired reproductive success, pollution- 
modulated endocrine function, and induction of the mixed- function oxygenase system [187], In 
gastropods, much work on steroid metabolism has been initiated by the observation of tributyltininduced 
imposex, a state of pseudohermaphrodism in which females exhibit functional secondary male 
characteristics. Although the underlying mechanism by which tributyltin causes imposex in gastropods has 
not been elucidated conclusively, the weight of evidence is in favour of the cytochrome P450dependent 
aromatase inhibition hypothesis [187-192],

Alterations in steroid metabolism have been studied in D. magna [186,193-197] and in the blue 
crab Callinectes sapidus [191], In daphnids, changes in steroid metabolism could provide an early 
indication of potential reproductive toxicity after sublethal exposure to suspected endocrine disruptors 
[186,193,194,197], Verslycke et al. [185] reported testosterone metabolism and the presence of 
vertebrate-type steroids in N. integer and demonstrated the presence of a complex steroid hydroxylase 
system consisting of different P450 isozymes. The remarkable diversity of testosterone hydroxylation 
exhibited should stimulate further studies on the induction, stereospecificity, and regulation of the enzyme 
systems of N. integer and other mysids. More recently, alterations in the phase I and II testosterone 
metabolism in N. integer after acute exposure to tributyltin have been demonstrated [198], In addition, 
metabolic studies with N. integer have been used recently in exposure experiments with other chemicals, 
such as nonylphenol and methoprene, and also in the field [199],



The presence of sex hormones has been suggested in many, if not all, arthropods [183]. 
Vertebrate-type steroids (such as l7ß-estradiol, testosterone, and progesterone) have been measured in 
several malacostracan crustaceans [7,184], Although the lack of a role for vertebrate sex steroid 
hormones in arthropods has been highlighted [7,183], fragmented evidence suggests that some of these 
compounds may function as hormones in crustaceans [7,143,185], Endogenous androgens may be the 
precursors for other hormones; therefore, exposure to exogenous androgens (or androgen mimics) could 
elicit activity through receptors other than the androgen receptor. Although this has not been determined in 
crustaceans, Verslycke et al. [185] found evidence of a sex-specific production of androgens, such as 
testosterone and androstenedione, in N. integer. Similarly, LeBlanc and McLachlan [200] reported various 
rates of testosterone conversion to androstenedione in daphnids. Future studies are needed to reveal if 
these conversions are affected by age, gender, reproductive state, or changes in the abiotic environment. 
Note that an androgen receptor has not been found or cloned in crustaceans. Therefore, identification and 
characterization of the androgen receptor should be a priority for research to explore the usefulness of sex 
steroids for evaluating endocrine disruption in crustaceans and other invertebrates.

Studies over the last 30 years have established the important role of cytochrome P450 in the 
biotransformation of xenobiotics and endogenous compounds (such as ecdysteroids) in crustaceans (for a 
review on crustacean P450, refer to James and Boyle [184]). Although no structural information on cy
tochrome P450 in crustaceans is available, it is clear that they are involved in several steps in the 
biosynthesis of ecdysteroids and other physiologically important substrates in crustaceans [201], More 
studies are needed to understand the effects, if any, of various classes of environmental and other 
chemicals that are known modulators of cytochrome P450 expression or activity. New molecular tools, 
such as primer-based reverse transcription-polymerase chain reaction procedures and expression of 
P450s in heterologous systems, should result in better insights into the function and expression of P450s 
in the context of endocrine disruption. In addition, in vivo metabolic studies with different substrates 
(testosterone and ecdysone) will provide valuable tools for evaluating the effects of toxicant exposure, 
particularly when linked with effects on higher levels of biological organization. Although information on the 
identity of P450s and their functional role in mysids is, to our knowledge, nonexistent, mysids should be a 
good model to study these mechanisms. From the preliminary studies with N. integer by Verslycke et al. 
[185,198,199], sufficient information is available to suggest that mysids have an enzymatic 
biotransformation system that rivals that of other invertebrates and vertebrates. Metabolic studies with 
physiologically relevant substrates that also measure hormone-regulated effects at a higher level of 
biological organization (i.e., reproductive success) would be valuable in evaluation of environmental 
endocrine disruption.

Reproduction and vitellogenesis
Although the main neurosecretory centers and the sinus gland in mysids resemble these from 

decapods, sexual differentiation in juveniles and mysid reproduction are more like those of amphipods and 
isopods and are strictly linked to the moult cycle [101], In mysids, embryonic and postembryonic 
development occurs in the female marsupium and includes five consecutive stages from oviposition to the 
juvenile stage [26,118,202-205], Juveniles are liberated immediately before ecdysis of the mother, shortly 
after which she lays a new batch of eggs in the marsupium. A secondary vitello genic cycle starts for a 
new batch of oocytes on the second day of the moult cycle. Secondary vitellogenesis is not only cyclical, 
as in other crustaceans [206], but also strictly linked to the moult cycle, offering an example of the type 2 
pattern (e.g., Amphipoda, Isopoda, and Decapoda) for the regulation of simultaneous gonadal and somatic 
growth in crustaceans [206,207], Cuzin-Roudy and Saleuddin [101] published an excellent review on the 
use of the mysid S. armata as a biological model for the study of hormonal control of moult and 
reproduction, which should be extended for other mysid species. In addition, Wortham and Price [205] and 
Greenwood et al. [208] published studies on the in vitro culture of mysid marsupial developmental stages 
at different temperatures. These assays should be evaluated further as a means of detecting effects of 
contaminants on marsupial development in mysids.



In general, few studies have been conducted on the effects of contaminants on gonadal 
maturation of crustaceans [8]; however, much attention has been given recently to vitellogenin, the 
precursor to the yolk protein vitellin in egg-laying invertebrates and vertebrates, as an indicator of 
exposure to estrogenic xenobiotics [5,209-216], Control of vitellogenesis is being studied intensively 
because yolk is an excellent model for studying mechanisms of hormonal control at the cellular and 
molecular levels [5,215], To assess the potential adverse effects of xenobiotics on crustacean 
reproduction, it is important to measure accurately vitellogenin and vitellin in crustacean models (an 
overview of crustacean species from which vitellin, vitellogenin, or lipovitellin has been isolated or partially 
characterized is given by Tuberty et ai. [215]). Recently, a quantitative enzyme-linked immunosorbent 
assay was developed for the mysid A. bahia by using polyclonal antisera [215], In addition, studies are 
under way to characterize and purify vitellin of the mysid N. integer (A. Ghekiere et a l„ Laboratory of 
Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium, unpublished data). 
Future laboratory and field studies with mysids are needed to evaluate the use of these immunoassays for 
investigating effects of xenobiotics on crustacean vitellogenesis. A good example of this is given by 
Oberd6rster et ai. [213,214], who reported the effects of chronic pyrene exposure on moulting and 
reproduction assessed in the grass shrimp Palaemonetes pugio by using a monoclonal enzyme-linked 
immunosorbent assay for vitellin. Other studies also have found an impact of xenoestrogens on the 
production of crustacean proteins (e.g., vitellin and cypris major protein), which are thought to be under 
estrogen control [5,217], Future work on sequence determination of vitello genic genes and their hormonal 
activity will provide interesting insight into the vitellogenic process in mysids. Study of genomic and 
nongenomic effects of ecdysteroids on ovarian maturation is another potential area of work. Synergistic 
and antagonistic actions of the different neuropeptides, and the mandibular organ control over moulting 
and reproduction, are other areas requiring further study as a basis for use of crustaceans for endocrine- 
disruption testing in the future [13].

Life-cycle testing and population and field studies
Despite superficial resemblance to decapod shrimps, mysids are more closely related to 

amphipods and isopods, and are grouped together in the superorder Peracarida. All three orders are good 
candidates for toxicological testing, and amphipods and mysids are used routinely. However, for 
endocrine-disruption testing, especially for life-cycle tests, mysids offer clear advantages over amphipods. 
Most marine amphipods used in toxicological testing must be collected from their natural habitats before 
use in tests. Although they can be held for a few weeks before testing, they generally are not cultured for 
tests. Conversely, several mysid species have been cultured in the laboratory and used in life-cycle tests 
[13]. Several measures of reproductive performance can be used to assess sublethal response in life
cycle testing, including sexual maturity, the time to first brood release, the time required for egg 
development (and its separate phases), fecundity, brood success, and alterations in reproductive 
characteristics in popu lations [11,58,60,63,108,125,126,128,130,218,219] (Table 2). Inhibited 
reproduction is the most sensitive, sublethal population response of A. bahia chronically exposed to 
pesticides [63]. Numerous studies have described the use of reproductive endpoints in mysids after toxic 
exposure and changes in the abiotic environment [15,123,131,220]. Although standard chronic assays, 
including reproductive endpoints, are described for A. bahia, these should be applicable to other mysids, 
although the longer life cycle in other species may restrict their use in routine testing.

The life history of A. bahia is very amenable to demographic modelling because of rapid growth, 
early sexual differentiation (at 14 d) and reproduction (commencing around 17 d), and frequency of brood 
production (average of five to seven per female) over the full life span of 90 d [221,222], These endpoints 
provide useful information for predicting population-level effects of reproductive toxicants. However, further 
validation is needed in multigenerational laboratory studies as well as incorporation of other population 
growth parameters such as density dependence, predation, migration, and competition, before 
conclusions can be formulated that are relevant for natural environmental conditions. Preliminary 
transgenerational responses of A. bahia to a pesticide acting as a juvenile hormone agonist have been 
reported [219], Survival, growth, development, and reproduction of this estuarine mysid were monitored 
through an entire life-cycle exposure to fenoxycarb and during the second generation without additional 
exposure. Juvenile mysid growth, and carbon and nitrogen accumulation, as well as mysid survival 
through the first brood production, were significantly affected by fenoxycarb.



On the other hand, maturation time, sex determination, and young production were not significantly altered 
during the life-cycle exposure. However, second-generation adults, exposed to fenoxycarb only as 
developing embryos and juveniles, produced fewer young and contained significantly fewer males. These 
results demonstrate clearly the need for transgenerational studies with mysids to fully understand the po
tential chronic impact of endocrine disruptors.

Detailed information and the short life cycle of A. bahia clearly favour the use of this species in 
the initial development and further validation of population models based on reproductive endpoints. A 
concise draft of a detailed review paper has been produced by U.S. Environmental Protection Agency [13] 
on a recommended protocol and additional data needs for a two-generation life-cycle test with A  bahia in 
the context of endocrine disruptors. In this review, the following endpoints and their preferred methods for 
quantification are given: survival, moulting frequency, reproduction (sexual maturity, time to first brood 
release, brood size, and number of offspring produced), metabolic disruption, disruption in steroid metab
olism, vitellogenin induction, cytochrome P450 levels, and blood glucose levels. Table 2 summarizes the 
potential endpoints for evaluating environmental endocrine disruption in mysids.

The use of mysids in field studies has been extremely limited. McKenney et al. [92] and Clark et 
ai. [91] performed experiments with caged mysids to evaluate the lethal and sublethal responses of A. 
bahia during field applications of fenthion, an organophosphate insecticide. To our knowledge, these are 
the only published studies on in situ exposures with caged mysids. In addition, studies that have 
investigated biomarker responses in field-exposed mysids also are very limited [17,94], Clearly, field 
validation of the biomarkers described in this review is a strong research need for the future.

Morphology and histology
Morphological changes resulting from exposure to contaminants have been documented for 

many taxa, including arthropods, but have not been considered widely in mysid toxicological studies as a 
measurable endpoint [13], Gentile et al. [77] reported morphological aberrations at the onset of sexual 
maturity in A. bahia and A. bigelowi exposed to cadmium in the laboratory. In addition, field observations 
of intersexuality and variable telson morphology were reported in N. integer from different European 
estuaries and the Baltic Sea [223-225]. Most of the telson differences may be explained by regeneration of 
parts damaged by predation and cannot be related directly to physiological perturbations during moulting. 
Still, a genetic or epigenetic basis cannot be ruled out completely [225]. The degree of fluctuating 
asymmetry in mysids has been proposed as a quantifiable measure of morphological aberrations and is 
thought to arise from environmental or genetic stress during development [13]. Because the results from 
earlier studies on morphological aberrations could not give a clear mechanistic explanation for the 
observed effects, preliminary studies examining different potential characteristics would first have to be 
performed in mysids, before further considering this endpoint.

Behavioural and other endpoints
Disruption of mysid swimming and position maintenance behaviour has been investigated in 

laboratory studies with N. integer exposed to sublethal concentrations of chlorpyrifos (an 
organophosporous pesticide) and cadmium [226-230], Although the mode of action of the toxicant on 
swimming remains unknown, the authors speculated that the disruption in chlorpyrifos-exposed mysids 
was probably due to the inhibitory action on acetylcholinesterase. In addition, Cripe etal. [231] reported a 
reduction in the maximum sustained swimming speed of A. bahia after exposure to sublethal levels of two 
pesticides. Other authors have investigated the swarming behaviour of mysids in laboratory or field studies 
[232-238], For mysids, disruption of swimming and swarming behaviour may lead to increased predation 
or displacement from optimum sites in the estuary [43],

Other behavioural responses that have been measured in mysids include feeding activity 
[39,239-242], grooming behaviour [243], burrowing ability [244] and predator-prey dynamics [245], The 
use of behavioural responses as a monitoring tool, however, has little utility unless behavioural changes 
are understood within an ecological context; that is, how well the patterns are understood within the 
context of an animal's natural life habits and ecological requirements [246] and if the changes can be 
related clearly to internal residue levels or environmental levels of specific contaminants [247],



Several studies have been published on osmotic regulation in mysids (Webb et al. [248] and 
references therein) and the interaction between osmoregulation and chemical exposure [66,249]. Other 
hormonal responses and disturbances in crustaceans, such as color changes (one of the earliest studied 
phenomena that provided definite proof of a hormone- mediated process in a crustacean), retinal 
pigments, and limb regeneration are discussed in a review by Fingerman et al. [8]. Flowever, the use of 
these endpoints in mysids awaits further study.

CONCLUSIONS
This review clearly demonstrates the ecological relevance and the potential use of mysid shrimp 

as test species for the evaluation of environmental endocrine disruption and as a potential surrogate for 
many other crustaceans. The highly standardized use of mysids in toxicity testing is an important ad
vantage and research should be directed at evaluating the current standardized endpoints, such as 
survival, growth, and reproduction, preferably through an entire life cycle, with a number of endocrine 
disrupters. In this context, a number of reference chemicals, chosen for their possible mode of action (i.e., 
ecdysone agonist, estrogen antagonist, juvenile hormone agonists, and others) was proposed by DeFur et 
al. [7] for evaluating relative endpoint sensitivity to potential endocrine disrupting compounds. In addition, 
evidence of trans-generational effects has been published and presently a two-generation life-cycle 
protocol is being investigated with the standard species A. bahia. However, an extensive list of 
nonstandardized endpoints has been published and should be investigated further. Some of these 
endpoints, such as disruption of ecdysteroid metabolism and embryonic development, might differentiate 
for invertebrate-specific effects of chemicals. The selection of which mysid species to use will be a 
balance of its ecological relevance and its ease of use for measuring the selected endpoints. Clearly, the 
amount of available information and the relatively short life cycle of A. bahia favour the use of this species, 
but its narrow salinity and temperature range limit its use in colder water or low-salinity testing. Various 
other mysid species are proposed in this review, together with a list of potential endpoints to evaluate the 
effects of endocrine disrupters in these animals. These should stimulate the scientific community to 
explore further the use of mysid shrimp as an invertebrate model for the evaluation of environmental 
endocrine disruption.
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Conclusions

T h e  c o n c l u s i o n s  o n  e a c h  o f  t h e  s p e c i f i c  a i m s  o f  t h e  p r e s e n t  w o r k ,  a s  p r e s e n t e d  i n  t h e  p r e f a c e ,  

a r e :

1 . A n  e x t e n s i v e  l i t e r a t u r e  r e v i e w  o n  Neomysis integer i s  p r e s e n t e d ,  f o c u s s i n g  o n  

i t s  f e e d i n g  a n d  l i f e  h i s t o r y  a s p e c t s ,  p h y s i o l o g y ,  b e h a v i o u r ,  b i o c h e m i c a l  

c o m p o s i t i o n  a n d  e n e r g y  b u d g e t s .  A l l  d i s t r i b u t i o n  r e c o r d s  o f  t h e  s p e c i e s  a r e  

a d d e d  a s  a n  a p p e n d i x .

2 .  Neomysis integer l i v i n g  i n  t h e  t u r b i d  r e a c h e s  o f  e s t u a r i e s  i s  o m n i v o r o u s ,  a n d  

m a i n l y  f e e d  o n  c a l a n o i d  c o p e p o d s  ( .Eurytemora affinis), m a c r o p h y t a l  d e t r i t u s  

a n d  e s t u a r i n e  s e d i m e n t  a g g r e g a t e s .  S o m e  v a r i a t i o n  i n  t h e  d i e t  w a s  o b s e r v e d  

b e t w e e n  t h e  d i f f e r e n t  i n v e s t i g a t e d  p o p u l a t i o n s  f r o m  E l b e ,  S c h e l d e  a n d  

G i r o n d e .  T h e  q u a l i t y  o f  t h e  d i e t  d i d  n o t  d i f f e r  b e t w e e n  t h e  s e x e s  o r  b e t w e e n  

d i f f e r e n t  d e v e l o p m e n t a l  s t a g e s ,  a l t h o u g h  s m a l l e r  i n d i v i d u a l s  c o n s u m e d  f e w e r  

i t e m s .

3 .  I n d i v i d u a l l y - b a s e d  l a b o r a t o r y  g r o w t h  e x p e r i m e n t s  o v e r  t h e  e n t i r e  l i f e  s p a n  o f  

Neomysis integer l e a r n e d  u s  t h a t  i t s  p o s t - m a r s u p i a l  g r o w t h  i s  p o s s i b l e  o v e r  a  

w i d e  t e m p e r a t u r e -  a n d  s a l i n i t y  r a n g e ,  b u t  i t s  m a t u r a t i o n  i s  o n l y  l i k e l y  w i t h i n  

t h e  n a r r o w e r  r a n g e  o f  1 5  -  2 5  ° C  a n d  5 - 1 5  p s u .  A l t h o u g h  s u r v i v a l  i s  l o w e r ,  

t h e  p o s t - m a r s u p i a l  g r o w t h  a n d  d e v e l o p m e n t  o f  Neomysis integer a r e  b o t h  

a c c e l e r a t e d  a t  a  h i g h e r  t e m p e r a t u r e ,  m a i n l y  d u e  t o  a  m o r e  f r e q u e n t  m o u l t i n g  

o f  t h e  a n i m a l s .  T h e  s i z e - a t - m a t u r i t y  d e c r e a s e d  a t  a  h i g h e r  t e m p e r a t u r e .  

S a l i n i t y  h a d  a  s t r o n g e r  e f f e c t  t h a n  t e m p e r a t u r e  o n  t h e  t i m e  n e e d e d  t o  b e c o m e  

m a t u r e .

4 .  D i e t s  o f  Eurytemora affinis, m a c r o p h y t a l  d e t r i t u s  o r  e s t u a r i n e  a g g r e g a t e s  

p r o v e d  t o  b e  o f  s u f f i c i e n t l y  h i g h  q u a l i t y  t o  p r o v i d e  a  g o o d  s u r v i v a l  f o r  t h e  

m y s i d ,  a l t h o u g h  g r o w t h  r a t e s  w e r e  s i g n i f i c a n t l y  h i g h e r  w h e n  Neomysis 
integer f e d  o n  a n i m a l  f o o d  i n  c o m p a r i s o n  t o  d e t r i t a l  f o o d .  F o r  N. integer 
l i v i n g  i n  t h e  m a x i m u m  t u r b i d i t y  z o n e  o f  e s t u a r i e s ,  t h e  e s t u a r i n e  f l o e s  a n d  

m a c r o p h y t a l  d e t r i t u s  m a y  b e  i m p o r t a n t  a d d i t i o n a l  f o o d  s o u r c e s ,  e s p e c i a l l y  i n  

p e r i o d s  w h e n  m e s o z o o p l a n k t o n  p r e y  i s  s c a r c e .

5. In vitro e x p e r i m e n t s  w i t h  e m b r y o s  o f  Neomysis integer l e a r n e d  u s  t h a t  t h e  

e m b r y o n i c  s u r v i v a l  a n d  d e v e l o p m e n t  a r e  c o n f i n e d  t o  a  r e s t r i c t e d  s a l i n i t y  

r a n g e  o f  1 4  -  1 7  p s u ,  u n l e s s  f e m a l e  m y s i d s  c a n  a c t i v e l y  r e g u l a t e  t h e  s a l i n i t y  

o f  t h e i r  m a r s u p i a l  f l u i d .  T h e  d u r a t i o n  o f  t h e  e m b r y o n i c  d e v e l o p m e n t  

( b e t w e e n  1 1  -  2 2  d a y s )  i s  a c c e l e r a t e d  a t  a  h i g h e r  t e m p e r a t u r e .

I n  c o n c l u s i o n ,  Neomysis integer l i v i n g  i n  t h e  t u r b i d  r e a c h e s  o f  e s t u a r i e s  i s  o m n i v o r o u s ,  

a n d  m a i n l y  f e e d s  o n  c a l a n o i d  c o p e p o d s ,  m a c r o p h y t a l  d e t r i t u s  a n d  e s t u a r i n e  s e d i m e n t  

a g g r e g a t e s .  T h e  q u a l i t y  o f  a l l  o f  t h e s e  f o o d  i t e m s  i s  s u f f i c i e n t l y  h i g h  t o  p r o v i d e  a  g o o d  s u r v i v a l  

f o r  t h e  m y s i d ,  b u t  g r o w t h  r a t e s  a r e  s i g n i f i c a n t l y  h i g h e r  w h e n  N. integer f e e d s  o n  a n i m a l  f o o d  i n  

c o m p a r i s o n  t o  d e t r i t a l  d i e t s .  F o r  N. integer l i v i n g  i n  t h e  m a x i m u m  t u r b i d i t y  z o n e  o f  e s t u a r i e s ,  

t h e  e s t u a r i n e  f l o e s  a n d  m a c r o p h y t a l  d e t r i t u s  m a y  b e  i m p o r t a n t  a d d i t i o n a l  f o o d  s o u r c e s ,  

e s p e c i a l l y  i n  p e r i o d s  w h e n  m e s o z o o p l a n k t o n  p r e y  ( m a i n l y  c a l a n o i d  c o p e p o d s )  i s  s c a r c e .



Conclusions

U n d e r  e x p e r i m e n t a l  c o n d i t i o n s ,  t h e  f o l l o w i n g  c o n c l u s i o n s  o n  t h e  e f f e c t  o f  

e n v i r o n m e n t a l  v a r i a b l e s  ( t e m p e r a t u r e  a n d  s a l i n i t y )  o n  t h e  g r o w t h  a n d  d e v e l o p m e n t  o f  Neomysis 
integer c a n  b e  p r e s e n t e d :  t h e  p o s t - m a r s u p i a l  g r o w t h  o f  N. integer i s  p o s s i b l e  o v e r  a  w i d e  

t e m p e r a t u r e  a n d  s a l i n i t y  r a n g e ,  b u t  s e x u a l  m a t u r a t i o n  i s  o n l y  p o s s i b l e  w i t h i n  t h e  n a r r o w e r  r a n g e  

o f  1 5  -  2 5  ° C  a n d  5 - 1 5  p s u .  I n t r a - m a r s u p i a l  s u r v i v a l  ( >  5 0  % )  a n d  d e v e l o p m e n t  a r e  c o n f i n e d  

t o  a n  e v e n  m o r e  r e s t r i c t e d  s a l i n i t y  r a n g e  o f  1 4  -  1 7  p s u ,  u n l e s s  f e m a l e  m y s i d s  c a n  a c t i v e l y  

r e g u l a t e  t h e  c o n c e n t r a t i o n  o f  t h e i r  m a r s u p i a l  f l u i d .  T h e  d u r a t i o n  o f  t h e  i n t r a - m a r s u p a i l  

d e v e l o p m e n t  o f  N. integer i s  s t r o n g l y  a f f e c t e d  b y  t e m p e r a t u r e ,  w h i l e  s u r v i v a l  a n d  h a t c h i n g  

s u c c e s s  a r e  d e p e n d e n t  o n  t h e  s a l i n i t y  c o n d i t i o n s .  A l t h o u g h  s u r v i v a l  i s  l o w e r ,  t h e  p o s t - m a r s u p i a l  

g r o w t h  a n d  d e v e l o p m e n t  o f  N. integer a r e  b o t h  a c c e l e r a t e d  a t  a  h i g h e r  t e m p e r a t u r e ,  m a i n l y  d u e  

t o  a  m o r e  f r e q u e n t  m o u l t i n g  o f  t h e  a n i m a l s .  T h e  s i z e - a t - m a t u r i t y  d e c r e a s e d  a t  a  h i g h e r  

t e m p e r a t u r e .  S a l i n i t y  e v e n  h a d  a  s t r o n g e r  e f f e c t  t h a n  t e m p e r a t u r e  o n  t h e  t i m e  n e e d e d  t o  b e c o m e  

m a t u r e .

T h e  r e s u l t s  o f  t h e  e x p e r i m e n t a l  r e s e a r c h  p r e s e n t e d  i n  t h i s  t h e s i s  c o n t r i b u t e  t o  o u r  b a s i c  

k n o w l e d g e  o f  t h e  e c o l o g y  o f  t h e  m y s i d  Neomysis integer, a  k e y  s p e c i e s  i n  t h e  b r a c k i s h  w a t e r  

z o n e  o f  t e m p e r a t e  E u r o p e a n  e s t u a r i e s .  M o r e  s p e c i f i c a l l y ,  w e  c o n t r i b u t e  t o  t h e  u n d e r s t a n d i n g  a n d  

q u a n t i f i c a t i o n  o f  t h e  s p e c i e s ’ f e e d i n g  e c o l o g y  a n d  p o p u l a t i o n  d y n a m i c a l  c h a r a c t e r i s t i c s ,  i.e. t h e  

i m p a c t  o f  e n v i r o n m e n t a l  v a r i a b l e s  ( t e m p e r a t u r e ,  s a l i n i t y  a n d  f o o d  q u a l i t y )  o n  p r o c e s s e s  l i k e  

g r o w t h ,  m o u l t i n g  a n d  p r e -  a n d  p o s t - m a r s u p i a l  d e v e l o p m e n t .  T h e s e  d a t a  a r e  r e l e v a n t  f o r  

e c o l o g i c a l  m o d e l l i n g ;  a n d  t h e  t e c h n i q u e s  d e v e l o p e d  a n d  d e s c r i b e d  f o r  a s s e s s i n g  t h e  e f f e c t s  o f  

e n v i r o n m e n t a l  c o n d i t i o n s  o n  i n d i v i d u a l  g r o w t h ,  m o u l t i n g ,  a n d  in vitro e m b r y o l o g y  a r e  c u r r e n t l y  

u s e d  i n  b i o a s s a y s  f o r  t h e  e v a l u a t i o n  o f  t h e  e f f e c t s  o f  t o x i c  s u b s t a n c e s  ( m a i n l y  e n d o c r i n e  

d i s r u p t i n g  c h e m i c a l s )  i n  t h e  e s t u a r i n e  e c o s y s t e m  ( V e r s l y c k e  e t  a l . ,  2 0 0 4  -  Addendum 3 ;  

B r u w i e r e ,  2 0 0 4 ;  K r e g e r s m a n ,  2 0 0 5 ;  G h e k i e r e  e t  a l . ,  s u b m i t t e d ;  G h e k i e r e  e t  a l . ,  i n  p r e p a r a t i o n ) .
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5 3 2 - 5 4 6 .
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a b n o r m a l i t i e s  i n  w i l d l i f e :  I m p l i c a t i o n s  f o r  p u b l i c  h e a l t h ?  T o x i c o l .  I n d .  H e a l t h ,  1 2 :  5 3 7 - 5 5 0 .
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( C r u s t a c e a ,  M y s i d a c e a )  f r o m  t h e  F r a s e r  R i v e r  E s t u a r y ,  B r i t i s h  C o l u m b i a .  C a n .  J .  Z o o l . ,  6 0 :  8 1 3 -  
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J o u a n n e a u ,  J . M . ,  L a t o u c h e ,  C . ,  1 9 8 1 .  T h e  G i r o n d e  e s t u a r y .  I n :  F ü c h t b a u e r ,  H . ,  L i s i t z y n  A . P . ,  
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K i o r b o e ,  T . ,  1 9 9 3 .  T u r b u l e n c e ,  p h y t o p l a n k t o n  c e l l  s i z e  a n d  t h e  s t r u c t u r e  o f  p e l a g i c  f o o d  w e b s .  
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w i t h  e s t u a r i n e  f l o e s .  I n :  M u y l a e r t ,  K . ,  1 9 9 9 .  D i s t r i b u t i o n  a n d  d y n a m i c s  o f  p r o t i s t  c o m m u n i t i e s  

i n  a  f r e s h w a t e r  t i d a l  e s t u a r y .  P h . D .  t h e s i s ,  G h e n t  U n i v e r s i t y ,  B e l g i u m :  1 3 7 - 1 4 7 .

M u y l a e r t ,  K . ,  S a b b e ,  K . ,  V y v e r m a n ,  W . ,  2 0 0 0 a .  S p a t i a l  a n d  t e m p o r a l  d y n a m i c s  o f  

p h y t o p l a n k t o n  c o m m u n i t i e s  i n  a  f r e s h w a t e r  t i d a l  e s t u a r y  ( S c h e l d e ,  B e l g i u m ) .  E s t u a r .  C o a s t .  

S h e l f  S e i . ,  5 0 :  6 7 3 - 6 8 7 .

M u y l a e r t ,  K . ,  V a n  M i e g h e m ,  R . ,  S a b b e ,  K . ,  T a c k x ,  M . ,  V i j v e r m a n ,  W . ,  2 0 0 0 b .  D y n a m i c s  a n d  

t r o p h i c  r o l e s  o f  h e t e r o t r o p h i c  p r o t i s t s  i n  t h e  p l a n k t o n  o f  a  f r e s h w a t e r  e s t u a r y .  H y d r o b i o l o g i a ,  

4 3 2 ( 1 - 3 ) :  2 5 - 3 6 .

N e e d h a m ,  A . E . ,  1 9 3 7 .  S o m e  p o i n t s  i n  t h e  d e v e l o p m e n t  o f  Neomysis vulgaris. Q u a r t e r l y  J .  

M i c r o s c .  S e i . ,  7 9 :  5 5 9 - 5 8 8 .

N i c e ,  H . E . ,  M o r r i t t ,  D . ,  C r a n e ,  M . ,  T h o m d y k e ,  M . ,  2 0 0 3 .  L o n g - t e r m  a n d  t r a n s g e n e r a t i o n a l  

e f f e c t s  o f  n o n y l p h e n o l  e x p o s u r e  a t  a  k e y  s t a g e  i n  t h e  d e v e l o p m e n t  o f  Crassostrea gigas. 
P o s s i b l e  e n d o c r i n e  d i s r u p t i o n ?  M a r .  E c o l .  P r o g .  S e r . ,  2 5 6 :  2 9 3 - 3 0 0 .

N i c o l ,  S . ,  S t o l p ,  M . ,  1 9 9 0 .  A  r e f i n e m e n t  o f  t h e  m o u l t - s t a g i n g  t e c h n i q u e  f o r  A n t a r c t i c  k r i l l  

(Euphausiasuperba). M a r .  B i o l . ,  1 0 4 :  1 6 9 - 1 7 3 .

P a r k e r ,  M . ,  W e s t ,  B . ,  1 9 7 9 .  T h e  n a t u r a l  h i s t o r y  o f  Neomysis integer ( L e a c h )  i n  L o u g h  F u r n a c e ,  

C o .  M a y o ,  a  b r a c k i s h  l o u g h  i n  t h e  w e s t  o f  I r e l a n d .  E s t u a r .  C o a s t .  M a r .  S e i . ,  8 :  1 5 7 - 1 6 7 .

P e j r u p ,  M . ,  E d e l v a n g ,  K . ,  1 9 9 6 .  M e a s u r e m e n t s  o f  in situ s e t t l i n g  v e l o c i t i e s  i n  t h e  E l b e  e s t u a r y .  

J .  S e a  R e s . ,  3 6 :  1 0 9 - 1 1 3 .

P e r i s s i n o t t o ,  R . ;  P a k h o m o v ,  E . A . ,  1 9 9 6 .  G u t  e v a c u a t i o n  r a t e s  a n d  p i g m e n t  d e s t r u c t i o n  i n  t h e  

A n t a r c t i c  k r i l l  Euphausia superba. M a r .  B i o l . ,  1 2 5 :  4 7 - 5 4 .

P l a n t e ,  C . J . ,  J u m a r s ,  P . A . ,  B a r o s s ,  J . A . ,  1 9 9 0 .  D i g e s t i v e  a s s o c i a t i o n s  b e t w e e n  m a r i n e  d e t r i v o r e s  

a n d  b a c t e r i a .  A n n .  R e v .  E c o l .  S y s t . ,  2 1 :  9 3 - 1 2 7 .



P l o u g ,  H . ,  Z i m m e r m a n n ,  H . ,  S c h w e i t z e r ,  B . ,  2 0 0 2 .  M i c r o b i a l  c o m m u n i t i e s  a n d  r e s p i r a t i o n  o n  

a g g r e g a t e s  i n  t h e  E l b e  e s t u a r y ,  G e r m a n y .  A q u a t .  M i c r o b .  E c o l . ,  2 7 :  2 4 1 - 2 4 8 .

P ö c k l ,  M . ,  1 9 9 5 .  L a b o r a t o r y  s t u d i e s  o n  g r o w t h ,  f e e d i n g ,  m o u l t i n g  a n d  m o r t a l i t y  i n  t h e  

f r e s h w a t e r  a m p h i p o d s  Gammarus fossarum a n d  G. roeseli. A r c h .  H y d r o b i o l . ,  1 3 4 :  2 2 3 - 2 5 3 .

P o s t m a ,  H . V . ,  v o n  K a l l e ,  K . ,  1 9 5 5 .  D i e  E n t s t e h u n g  v o n  T r ü b i n g s z o n e n  i m  U n t e r l a u f  d e r  F l ü s s e ,  

s p e z i e l l  i m  H i n b l i c k  a u f  d i e  V e r h ä l t n i s s e  i n  d e r  U n t e r e l b e .  D e u t s c h e  H y d r o g r .  Z . ,  8 :  1 3 7 - 1 4 4 .

P u t t ,  M . ,  S t o e c k e r ,  D . K . ,  1 9 8 9 .  A n  e x p e r i m e n t a l l y  d e t e r m i n e d  c a r b o n : v o l u m e  r a t i o  f o r  m a r i n e  

" o l i g o t r i c h o u s "  c i l i a t e s  f r o m  e s t u a r i n e  a n d  c o a s t a l  w a t e r s .  L i m n o l .  O c e a n o g r . ,  3 4 :  1 0 9 7 - 1 1 0 3 .

R a l p h ,  R . R . ,  1 9 6 5 .  S o m e  a s p e c t s  o f  t h e  e c o l o g y  a n d  o s m o r e g u l a t i o n  o f  Neomysis integer L e a c h .  

P h . D .  t h e s i s ,  U n i v e r s i t y  o f  S o u t h a m p t o n ,  U K .  1 4 9  p p .

R a y m o n t ,  J . E . G . ,  K r i s h n a s w a m y ,  S . ,  1 9 6 0 .  C a r b o h y d r a t e s  i n  s o m e  m a r i n e  p l a n k t o n i c  a n i m a l s .  

J .  M a r .  B i o l .  A s s .  U . K . ,  3 9 :  2 3 9 - 2 4 8 .

R a y m o n t ,  J . E . G . ,  A u s t i n ,  J . ,  L i n f o r d ,  E . ,  1 9 6 8 .  B i o c h e m i c a l  s t u d i e s  o n  m a r i n e  Z o o p l a n k t o n .  V .  

T h e  c o m p o s i t i o n  o f  t h e  m a j o r  b i o c h e m i c a l  f r a c t i o n s  i n  Neomysis integer. J .  M a r .  B i o l .  A s s .  

U . K . ,  4 8 :  7 3 5 - 7 6 0 .

R e e v e ,  M . R . ,  1 9 7 0 .  G r o w t h  e f f i c i e n c y  i n  Artemia u n d e r  l a b o r a t o r y  c o n d i t i o n s .  B i o l .  B u l l . ,  1 2 5 :  

1 3 3 - 1 4 5 .

R e l e x a n s ,  J . C . ,  M e y b e c k ,  M ,  B i l l e n ,  G . ,  B r e u g e a i l l y ,  M . ,  E t c h e b e r ,  H . ,  S o m v i l l e ,  M . ,  1 9 8 8 .  

A l g a l  a n d  m i c r o b i a l  p r o c e s s e s  i n v o l v e d  b y  p a r t i c u l a t e  o r g a n i c  m a t t e r  d y n a m i c s  i n  t h e  L o i r e  

e s t u a r y .  E s t u a r .  C o a s t .  S h e l f  S e i . ,  2 7 :  6 2 5 - 6 4 4 .

R e m e r i e ,  T . ,  P e e l a e r s ,  D . ,  V i e r s t r a e t e ,  A . ,  V a n f l e t e r e n ,  J . ,  V a n r e u s e l ,  A . ,  S u b m i t t e d  a .  P a t t e r n s  

o f  g e n e t i c  d i v e r s i t y  o f  t h e  b r a c k i s h  w a t e r  m y s i d  Neomysis integer ( C r u s t a c e a ,  M y s i d a )  w i t h i n  

t h e  W e s t e r s c h e l d e  e s t u a r y :  l o w  e f f e c t i v e  p o p u l a t i o n  s i z e ,  a n d  p a n m i c t i c  p o p u l a t i o n  o r  l o c a l  

d i f f e r e n t i a t i o n  i n  a  h i g h l y  v a r i a b l e  e n v i r o n m e n t ?  E s t u a r .  C o a s t .  S h e l f .  S e i .

R e m e r i e ,  T . ,  V i e r s t r a e t e ,  A . ,  P e e l a e r s ,  D . ,  V a n f l e t e r e n ,  J . ,  V a n r e u s e l ,  A . ,  S u b m i t t e d  b .  P a t t e r n s  

o f  g e n e t i c  d i v e r s i t y ,  c o n t e m p o r a r y  g e n e  f l o w  a n d  p o s t g l a c i a l  c o l o n i s a t i o n  h i s t o r y  o f  a  l o w  

d i s p e r s a l  m y s i d ,  Neomysis integer ( C r u s t a c e a ,  M y s i d a ) ,  a l o n g  t h e  n o r t h e a s t  A t l a n t i c  c o a s t s .  

M o l .  E c o l .

R o a s t ,  S . D . ,  T h o m p s o n ,  R . S . ,  W i d d o w s ,  J . ,  J o n e s ,  M . B . ,  1 9 9 8 a .  M y s i d s  a n d  e n v i r o n m e n t a l  

m o n i t o r i n g :  a  c a s e  f o r  t h e i r  u s e  i n  e s t u a r i e s .  M a r .  F r e s h w a t e r  R e s . ,  4 9 :  8 2 7 - 8 3 2 .

R o a s t ,  S . D . ,  W i d d o w s ,  J . ,  J o n e s ,  M . B . ,  1 9 9 8 b .  T h e  p o s i t i o n  m a i n t e n a n c e  b e h a v i o r  o f  Neomysis 
integer ( P e r a c a r i d a :  M y s i d a c e a )  i n  r e s p o n s e  t o  c u r r e n t  v e l o c i t y ,  s u b s t r a t u m  a n d  s a l i n i t y .  J .  E x p .  

M a r .  B i o l .  E c o l . ,  2 2 0 :  2 5 - 4 5 .

R o a s t ,  S . D . ,  W i d d o w s ,  J . ,  J o n e s ,  M . B . ,  2 0 0 0 a .  M y s i d s  a n d  t r a c e  m e t a l s :  d i s r u p t i o n  o f  s w i m m i n g  

a s  a  b e h a v i o u r a l  i n d i c a t o r  o f  e n v i r o n m e n t a l  c o n t a m i n a t i o n .  M a r .  E n v i r o n .  R e s . ,  5 0 :  1 0 7 - 1 1 2 .

R o a s t ,  S . D . ;  W i d d o w s ,  J . ;  J o n e s ,  M . B . ,  2 0 0 0 b .  E g e s t i o n  r a t e s  o f  t h e  e s t u a r i n e  m y s i d  Neomysis 
integer ( P e r a c a r i d a :  M y s i d a c e a )  i n  r e l a t i o n  t o  a  v a r i a b l e  e n v i r o n m e n t .  J .  E x p .  M a r .  B i o l .  E c o l . ,  

2 4 5 :  6 9 - 8 1 .

R o a s t ,  S . D . ,  W i d d o w s ,  J . ,  J o n e s ,  M . B .  2 0 0 1 .  E f f e c t s  o f  s a l i n i t y  a n d  c h e m i c a l  s p é c i a t i o n  o n  

c a d m i u m  a c c u m u l a t i o n  a n d  t o x i c i t y  t o  t w o  m y s i d  s p e c i e s .  E n v i r .  T o x i c o l .  C h e m . ,  2 0  ( 5 ) ,  1 0 7 8 -  

1 0 8 4 .



R o a s t ,  S . D . ,  W i d d o w s ,  J ,  P o p e ,  N ,  J o n e s ,  M . B ,  2 0 0 4 .  S e d i m e n t - b i o t a  i n t e r a c t i o n s :  m y s i d  

f e e d i n g  a c t i v i t y  e n h a n c e s  w a t e r  t u r b i d i t y  a n d  s e d i m e n t  e r o d a b i l i t y .  M a r .  E c o l .  P r o g .  S e r ,  2 8 1 :  

1 4 5 - 1 5 4 .

R o e p k e ,  T . A ,  S n y d e r ,  M . J ,  C h e r r ,  G . N ,  2 0 0 5 .  E s t r a d i o l  a n d  e n d o c r i n e  d i s r u p t i n g  c o m p o u n d s  

a d v e r s e l y  a f f e c t  d e v e l o p m e n t  o f  s e a  u r c h i n  e m b r y o s  a t  e n v i r o n m e n t a l l y  r e l e v a n t  c o n c e n t r a t i o n s .  

A q u a t i c .  T o x i c o l ,  7 1 :  1 5 5 - 1 7 3 .

R o g e r s o n ,  A ,  L a y b o u m - P a r r y ,  J ,  1 9 9 2 .  A g g r e g a t e  d w e l l i n g  p r o t o z o o p l a n k t o n  c o m m u n i t i e s  i n  

e s t u a r i e s .  A r c h .  H y d r o b i o l ,  1 2 5 :  4 1 1 - 4 2 2 .

R o m a n ,  M . R ,  1 9 8 4 .  U t i l i z a t i o n  o f  d e t r i t u s  b y  t h e  c o p e p o d  Acartia tonsa. L i m n o l .  O c e a n o g r ,  

2 9 ( 5 ) :  9 4 9 - 9 5 9 .

R u d s t a m ,  L . G ,  D a n i e l s s o n ,  K ,  H a n s s o n ,  S ,  J o h a n s s o n ,  S ,  1 9 8 9 .  D i e l  v e r t i c a l  m i g r a t i o n  a n d  

f e e d i n g  p a t t e r n s  o f  Mysis mixta ( C r u s t a c e a ,  M y s i d a c e a )  i n  t h e  B a l t i c  S e a .  M a r .  B i o l ,  1 0 1 :  4 3 -

5 2 .

S a l o m o n s ,  W ,  S c h w e d h e l m ,  E ,  S c h o e r ,  J ,  K n a u t h ,  H . D ,  1 9 8 8 .  N a t u r a l  t r a c e r s  t o  d e t e r m i n e  t h e  

o r i g i n  o f  s e d i m e n t s  a n d  s u s p e n d e d  m a t t e r  f r o m  t h e  E l b e  e s t u a r y .  W a t e r  S e i .  T e c h n o l ,  2 0 :  8 9 -

102.

S a n t o s ,  M . M ,  H a l l e r s - T j a b b e s ,  C . C ,  S a n t o s ,  A . M ,  V i e i r a ,  N ,  2 0 0 2 .  I m p o s e x  i n  Nucella 
lapillus, a  b i o i n d i c a t o r  f o r  T B T  c o n t a m i n a t i o n :  r e - s u r v e y  a l o n g  t h e  P o r t u g u e s e  c o a s t  t o  m o n i t o r  

t h e  e f f e c t i v e n e s s  o f  E U  r e g u l a t i o n .  J .  S e a  R e s ,  4 8 :  2 1 7 - 2 2 3 .

S c h n u t e ,  J ,  F o u r n i e r ,  D ,  1 9 8 0 .  A  n e w  a p p r o a c h  t o  l e n g t h - f r e q u e n c y  a n a l y s i s :  g r o w t h  s t r u c t u r e .  

C a n .  J .  F i s h .  A q u a t .  S e i ,  3 7 :  1 3 3 7 - 1 3 5 1 .

S c h r o t e n b o e r ,  G . J ,  1 9 8 0 .  C i t e d  i n :  B r e m e r ,  P ,  V i j v e r b e r g ,  J ,  1 9 8 2 .  P r o d u c t i o n ,  p o p u l a t i o n  

b i o l o g y  a n d  d i e t  o f  Neomysis integer ( L e a c h )  i n  a  s h a l l o w  F r i s i a n  l a k e  ( T h e  N e t h e r l a n d s ) .  

H y d r o b i o l o g i a ,  9 3 :  4 1 - 5 1 .

S c h ü b e l ,  J . R ,  1 9 6 8 .  T u r b i d i t y  m a x i m u m  o f  t h e  n o r t h e r n  C h e s a p e a k e  B a y .  S c i e n c e ,  1 6 1 :  1 0 1 3 -  

1 0 1 5 .

S c h u c h a r d t ,  B ,  B u s c h ,  D ,  S c h i r m e r ,  M ,  1 9 8 9 .  Z u r  P o p u l a t i o n s d y n a m i k  v o n  Neomysis integer 
( L e a c h )  ( C r u s t a c e a ,  M y s i d a c e a )  i n  d e r  U n t e r w e s e r .  D r o s e r a ,  8 9 :  1 - 1 0 .

S e i n h o r s t ,  J . W ,  1 9 5 9 .  A  r a p i d  m e t h o d  f o r  t r a n s f e r  o f  n e m a t o d e s  f r o m  f i x a t i v e  t o  a n h y d r o u s  

g l y c e r i n .  N e m a t o l o g i c a ,  4 :  6 7 - 6 9 .

S h a n k s  A . L ,  E d m o n d s o n  E . W ,  1 9 8 9 .  L a b o r a t o r y - m a d e  a r t i f i c i a l  m a r i n e  s n o w :  a  b i o l o g i c a l  

m o d e l  o f  t h e  r e a l  t h i n g .  M a r .  B i o l ,  1 0 1 :  4 6 3 - 4 7 0 .

S h a n k s ,  A . L ,  E d m o n d s o n ,  E . W ,  1 9 9 0 .  T h e  v e r t i c a l  f l u x  o f  m e t a z o a n s  ( h o l o p l a n k t o n ,  

m e i o f a u n a ,  a n d  l a r v a l  i n v e r t e b r a t e s )  d u e  t o  t h e i r  a s s o c i a t i o n  w i t h  m a r i n e  s n o w .  L i m n o l .  

O c e a n o g r ,  3 5 :  4 5 5 - 4 6 3 .

S h e l d o n ,  R . W ,  N i v a l ,  P ,  R a s s o u l z a d e g a n ,  F ,  1 9 8 6 .  A n  e x p e r i m e n t a l  i n v e s t i g a t i o n  o f  a  

f l a g e l l a t e - c i l i a t e - c o p e p o d  f o o d  c h a i n  w i t h  s o m e  o b s e r v a t i o n s  r e l e v a n t  t o  t h e  l i n e a r  b i o m a s s  

h y p o t h e s i s .  L i m n o l .  O c e a n o g r ,  3 1 :  1 8 4 - 1 8 8 .

S h e r r ,  B . F ,  S h e r r ,  E . B ,  P e d r ó s - A l i ó ,  C ,  1 9 8 9 .  S i m u l t a n e o u s  m e a s u r e m e n t s  o f  b a c t e r i o p l a n k t o n  

p r o d u c t i o n  a n d  p r o t o z o a n  h e r b i v o r y .  M a r .  E c o l .  P r o g .  S e r ,  5 4 :  2 0 9 - 2 1 9 .



S h i m e t a ,  J . ,  J u m a r s ,  P . A . ,  L e s s a r d ,  E . J . ,  1 9 9 5 .  I n f l u e n c e s  o f  t u r b u l e n c e  o n  s u s p e n s i o n  f e e d i n g  

b y  p l a n k t o n i c  p r o t o z o a ;  e x p e r i m e n t s  i n  l a m i n a r  s h e a r  f i e l d s .  L i m n o l .  O c e a n o g r . ,  4 0 :  8 4 5 - 8 5 9 .

S i b b a l d ,  M . J . ,  A l b r i g h t ,  L . J . ,  1 9 8 8 .  A g g r e g a t e d  a n d  f r e e  b a c t e r i a  a s  f o o d  s o u r c e s  f o r  

h e t e r o t r o p h i c  m i c r o f l a g e H a t e s .  A p p l .  E n v i r .  M i c r o b i o l . ,  5 4 :  6 1 3 - 6 1 6 .

S i e g f r i e d ,  C . A . ,  K o p a c h e ,  M . E . ,  K n i g h t ,  A . W . ,  1 9 7 9 .  T h e  d i s t r i b u t i o n  a n d  a b u n d a n c e  o f  

Neomysis mercedis i n  r e l a t i o n  t o  t h e  e n t r a p m e n t  z o n e  i n  t h e  W e s t e r n  S a c r a m e n t o - S a n  J o a q u i n  
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