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4.1 PCBs in cod (Gadus morhua), flounder (Platichthys flesus), blue 

mussel (Mytilus edulis) and brown shrimp (Crangon crangon) from the 

Belgian continental shelf: relation to biological parameters and trend 

analysis" 

76013 

Abstract 

PCB levels in cod, flounder, mussel and shrimp, covering a ten-year period, were assessed for temporal 
trends and their relation to biological parameters. A significant relation was found between the PCB levels 
on a wet weight basis and the total lipid content. Normalising on the total lipid content reduced the 
differences in PCB levels between the organisms and between different tissues within the organisms. A 
general downward trend was observed for the PCB levels on the Belgian continental shelf. 

44 From Chemosphere, 37 (1998) 2199-2210. 
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4.1.1 Introduction 

Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, which 

have caused world-wide concern since the discovery of their presence in the environment 

by Jensen [1]. Their widespread occurrence in the marine environment and their toxic 

potential resulted in a number of international monitoring programmes such as the Co-

ordinated Monitoring Programme of the International Council for the Exploration of the 

Seas (ICES) and the Joint Monito ring Programme (JMP) of the Oslo and Paris 

Commissions (OSPARCOM) [2]. These programmes aimed to assess the levels of PCB 

contamination in the marine environment with an emphasis on human consumption and 

the overall quality of the marine ecosystem, and to investigate possible trends in PCB 

levels. 

The Belgian Fisheries Research Station has been measuring PCBs in marine samples 

since 1978. The data presented here cover an eleven-year period (1983-1993) and form a 

solid basis to investigate time trends. Trends in the PCB concentrations in cod, flounder, 

mussel and shrimp on the Belgian continental shelf in relation to biological parameters 

such as fat content, age, weight, length and sex are assessed. 

4.1.2 Materials and Methods 

Materials 

All materials used for this work were of research grade quality. Standard solutions were 

prepared on a weight basis from pure compounds (> 99% pure) or certified reference 

standards. 

Sampling 

Cod (Gadus morhua), flounder (Platichthys flesus) and shrimp (Crangon crangon) were 

collected by the institute, using beam trawling, on the Belgian continental shelf from 1983 

to 1993. Twenty-five individuals per fish species were sampled 2-3 months prior to 

spawning and divided in five length classes between 214 and 905 mm for cod and 200 

and 450 mm for flounder. Muscle tissue was analysed individually but livers were pooled 

per length class. Shrimp sample sizes comprised 100 individuals. Cooked tail muscle was 

isolated and divided in five subsamples. Mussels (Mytilus edulis) were harvested on three 

jetties along the Belgian coast and sorted per length class of 20-30 mm, 30-40 mm, 40-50 

mm and > 50 mm. Total sample sizes were between 150 and 617 individuals. The mussels 
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were left in settled seawater at room temperature for 24 hours. Subsequently the soft body 

was isolated for analysis. All samples were stored at -28 °C prior to analysis. 

Chemical analysis 

Extraction was based on total lipid extraction according to the method of Bligh and Dyer 

[3]. The extracted lipids firstly used for the determination of the fat content were 

redissolved in hexane, and the resulting solution was subsequently cleaned on a Florisil 

column [4,5]. Analyses were performed on a Carlo Erba 4160 gas chromatograph 

equipped with an electron capture detector and a 25 m SE-54 column (before 1990) or 

(from 1990 onwards) a 60 m DB-17 and a 60 m DB-5 column (internal diameter 0.25 

mm, film thickness 0.25 µm). Prior to 1989, the PCB concentrations were calculated on 

the basis of comparison with eight PCB peaks of Aroclor 1260 [4]. These eight peaks 

corresponded with IUPAC nos. 101, 136, 147, 153, 138, 128, 180 and 170 [6]. 

Concentrations of individual congeners, viz. IUPAC nos. 28, 31, 52, 101, 105, 118, 138, 

153, 156 and 180 [6], are determined since 1989 [5]. Prior to 1990, quality assurance 

consisted of the analysis of procedural blanks, reproducibility and repeatability tests, 

injection of standard solutions as unknowns, and analysis of samples with known 

concentrations. Since 1990, the analysis of a certified reference material (BCR CRM 349) 

has been added as a standard procedure. 

Conversion of data calculated with the Aroclor standard. 

Due to the lack of individual PCB congener concentrations, before 1989, all statistical 

analyses had to be performed on the total PCB concentrations. Since 1989 individual 

congener concentrations are calculated and summed to express the total PCB 

concentration (EPCB). However, the resulting sum is not equal to the concentration 

calculated on the basis of Aroclor 1260 (Aroclor concentration). A conversion or 

recalculation method was therefore developed. The conversion is based on the fact that 

the ratio between the total PCB concentrations calculated with both methods should 

remain constant if the PCB patterns are identical and the ratios of the individual peaks to 

the total peak pattern are constant. A conversion factor (CF) can then be calculated, which 

is given in Equation 1. 

(1) 	
CF = [Aroclor] 
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with [Aroclor] = concentration based on Aroclor 1260 and EPCB = summed  

concentration of individual PCBs  

Consequently the older Aroclor concentration can now be recalculated to give EPCB 

values. All EPCB referred to in this paper are either the sums of individual congeners or 

the concentrations recalculated as described above. 

Shrimp 
	

Mussel 
	

Cod 
	

Flounder  
Figure 4.1.1: Ratio between EPCB and CB 153 for shrimp, mussel, cod and flounder in 
the period 1990-1993.  

Statistical analysis  

All statistical analyses were performed on EPCB and the level of significance was set at  

95%. Correlations between fat content, length of the animal and PCBs were analysed by  

linear regression. The non-parametric Mann-Withney test was used to investigate the  

relation between sex and PCB concentrations, and the non-parametric Kruskall-Wallis  

ANOVA test combined with Dunns' post test was performed to compare the PCB  

contents of liver and muscle tissues in and among species and to study the influence of  

the age of the animals on the PCB content. Time-trend analysis of the PCB concentrations  

(median values per year) in cod, flounder and mussel were studied according to the  

method of Nicholson et al. [7]. PCB trends in shrimp were analysed by linear regression.  
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4.1.3 Results 

Recalculation of the Aroclor concentrations 

Converting the Aroclor concentrations to EPCB by using Equation 1 requires that the 

PCB pattern of a given species/tissue is identical and that the ratios of the concentration 

of individual peaks to the total peak pattern are constant. The ratios between EPCB and 

CB 153 were calculated for the data obtained since 1990 and are presented by box and 

whisker plots in Figure 4.1.1. The results show a narrow box for cod, flounder and blue 

mussel and prove that the ratio remained constant; they also allow to suggest that the PCB 

patterns are similar. However, the shrimp data show a different pattern, which may find 

its origin in the rather small data set available. The PCB concentrations in the samples of 

cod and flounder, taken in 1991, and of mussel and shrimp, taken in 1991-1992, were 

then calculated using both methods of calculation and for each sample the CF was 

calculated according to Equation 1 (Table 4.1.1). Next, the Aroclor concentrations were 

re-calculated into EPCB. 

Table 4.1.1: Conversion factors (CF) for the recalculation of `Aroclor' 

data. 

Species CF 

Cod 4.20 ± 0.04 (n=25) 

Flounder 3.6 ± 0.1 (n=25) 

Mussel 3.4 ± 0.1 (n=12) 

Shrimp 3.1 ± 0.1 (n=10) 

In principle, the CF value of 3.1 cannot be used to recalculate the Aroclor concentrations 

of shrimp, since the experimental results do not provide the required proof. However, the 

standard deviation of the CF is rather small; it is, moreover, similar to that of the other 

species. Moreover, a similarity between PCB patterns in invertebrates has been reported 

in the literature [8,9] and is indeed found for mussel (cf. above). We therefore assumed 

that the PCB patterns in the same species of invertebrate from the same location will be 

essentially the same and used the CF-based procedure also to recalculate the older data 

for shrimp. 
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Relation between PCB concentrations and total lipid content.  

The results of the correlation analysis between the total lipid content and log (EPCB) for 

the different species and tissues are given in Table 4.1.2. A significant correlation 

(p<0.05) was found for the log (EPCB) expressed on a wet weight basis and the total lipid 

content, despite the large variability of the data (Figure 4.1.2). No significant correlation 

was found when the concentrations were normalised on the total lipid content (Table 

4.1.2).  

Flounder: muscle 
	

Flounder: muscle  

Figure 4.1.2: Relationship between total lipid content and log (EPCB) expressed on wet and fat weight  

basis (r, correlation coefficient; dotted line, 95% confidence interval of the mean).  

The effect of lipid normalisation of the PCB data is illustrated in Figure 4.1.3 for all  

species and tissues examined. The results of a Kruskal-Wallis ANOVA analysis of the  

data indicate significant (p<0.05) inter-tissue and inter-species differences. However,  

narrowing this down with Dunn's post test revealed that the differences between cod  

liver, flounder liver, flounder muscle and blue mussel (soft body tissue) were not  

significant. Obviously, normalisation on the total lipid content reduces the differences in  

PCB levels between the organisms and between different tissues within the organisms,  

that is, the results illustrate the impo rtance of lipids as a normalising factor. PCB  

concentrations are therefore only considered on a fat weight basis in the remainder of this  

paper.  
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Table 4.1.2: Results of correlation analysis between total lipid content and log (EPCB) on  

wet and fat weight basis for the different species and tissues.  
Parameter Total lipid content (%) vs. log Total lipid content (%) vs. log  

(EPCB) on wet weight basis (EPCB) on fat weight basis  

r p r 	 p 

Cod muscle 0.25 <0.05 0.7255  

Cod liver  

Flounder muscle 0.42 <0.05  0.1392  

Flounder liver  

Blue mussel 0.50 <0.05  0.7526  

Brown shrimp 0.51 <0.05  0.7685  

p = p value, r = correlation coefficient  

A  B 

Species and tissue  Species and tissues  

Figure 4.1.3: PCB concentrations for cod, flounder, mussel and shrimp, (A) not normalised and (B)  
normalised on total lipid content.  

Relations between EPCB and length and sex 

The trend analysis of Nicholson et al. [7] dictates a different approach when a length 

effect has been established. As regards both fish species, no demonstrable size effects 

were found except in cod liver (Figure 4.1.4). The EPCB concentrations were in addition 

to body size also related to sex, but no significant relations were found. 

As a result of the sampling procedure, no individual size data were available for the 

invertebrates. For mussel, however, samples were divided into five length classes and the 

EPCB concentrations were compared. The results are shown in Figure 4.1.5. The length 

class has, apparently, no effect on the EPCB concentrations, which was confirmed with a 

Kruskal-Wallis ANOVA test. 
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Flounder: muscle 
	

Cod: liver  

Figure 4.1.4: Relationship between length and log (EPCB) expressed on fat weight basis for flounder 
muscle tissue (left) and cod liver (right) (line illustrates calculated significant trends; r, correlation 
coefficient; dotted line, 95% confidence interval of the mean). 

Mussel  

20-30 	30-40 	40-50 
	

>50  

Length class (mm)  

Figure 4.1.5: Relationship between length class and log (EPCB) 
expressed on a fat weight basis for blue mussel (box, median and 25 
and 75 percentiles; whiskers, minimum and maximum). 

Temporal-trend analysis  

The observed absence of relations between the PCB content and the animals' length or  

sex allowed the analysis of temporal trends in cod muscle, flounder muscle and flounder  

liver tissues and in blue mussel without statistical modifications, but not for cod liver with  

which a length effect was found, nor for brown shrimp for which the length effect was not  

studied. As regards the cod liver data, they were subdivided at the median into a `small'  

and a `large' group and both were analysed independently [7]. Temporal trends in brown  

shrimp data were analysed by linear regression. The data were log transformed in order to  
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approach the normal distribution. The temporal trends are illustrated in Figure 4.1.6 and 

the lipid normalised mean and median concentrations are given in Table 4.1.3. Long-

term changes in the PCB concentrations were only considered as significant within a 95% 

confidence inte rval. The results revealed (1) significant year-to-year differences in cod 

and flounder muscle tissues and flounder liver tissue, (2) a significant downward non-

linear trend in cod muscle, (3) a significant downward linear trend in flounder muscle, (4) 

no trend in blue mussel tissue, (5) a significant downward trend in brown shrimp and (6) 

no significant trends in cod and flounder liver tissues. 

4.1.4 Discussion 

For the four species studied the PCB concentrations expressed on a wet weight basis 

show a significant correlation with the fat content. This finding agrees well with previous 

observations. Schaefer et al. [ 10] demonstrated that PCB concentrations per wet weight in 

different tissues of cod rose with increasing lipid content as did Schneider [11].  Goerke et 

al. [12] found positive correlations between PCB concentrations and the fat content of 

various marine organisms. Positive correlations between PCB concentrations on a d ry  

weight basis and the lipid content of various ma rine organisms were also reported by 

Delbeke et al. [ 13]. 

Moreover, inter-species and tissue-type differences decreased when PCB concentrations 

were normalised for the fat content. The correlation between fat content and log (EPCB) 

illustrates the need for a normalisation of the PCB concentrations on a fat basis, especially 

when a time-trend assessment is attempted. The explanation probably is that the natural 

variations in the lipid content of an organism or organ, due to e.g. spawning or lack of 

food, may influence the variability of contaminant data when these data are expressed on 

a fresh (wet) weight basis. Delbeke et al. [ 13] observed a similar reduction of the inter-

species variability of PCB isomer concentrations after normalisation of the data on `total 

neutral lipids', as determined by Iatroscan analysis. Using this selected class of lipids for 

normalisation proved superior to using the total lipid content (gravimetrically 

determined). The authors concluded that this kind of normalisation may provide a basis 

for extrapolation of PCB pollution data among species. However, the inter-tissue and 

inter-species variability of our contaminant data is on the same order of magnitude as that 
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observed by Delbeke et al. [ 13]. Consequently, there may be some doubt whether  

speciation of the lipids would give an improvement in this case.  

Figure 4.1.6: EPCB concentrations in µg/g fat weight for cod, flounder and mussel (lines illustrate calculated  

significant trends; r , correlation coefficient; boxes, median and 25 and 75 percentiles; whiskers, minimum and  

maximum) and linear trend for the log(EPCB) concentration in shrimp (r, correlation coefficient; dotted line,  

95% of the mean).  
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Table 4.1.3: Mean and median concentration (ug/g fat weight), standard deviation (s) and number of 
samples (n) for the different species in the period 1983-1992.  

83 84 85 86 87 88 89 90 91 92 93 

Cod muscle tissue 

Average 	0.87 1.8 0.84 1.2 0.64 0.33 2.1 1.3 0.44 0.57 0.43 
n 	 25 18 25 25 25 25 25 25 25 25 25 

0.34 0.5 0.29 0.5 0.28 0.23 0.9 0.9 0.31 0.54 0.15 
Median 	0.81 1.9 0.77 1.0 0.58 0.26 2.1 1.2 0.33 0.38 0.40 

Cod liver 

Average 	2.0 3.2 2.5 2.5 1.7 0.64 1.2 2.7 
n 	 5 5 5 5 5 5 5 5 

0.5 0.9 0.7 0.4 0.6 0.14 0.2 0.9 
Median 	2.2 2.9 2.1 2.5 1.4 0.69 1.1 2.9 

Flounder muscle tissue 

Average 	3.4 3.1 3.1 3.2 2.5 1.9 3.8 3.3 1.8 2.5 1.7 
n 	 25 20 25 25 25 25 25 25 20 25 25 

0.8 1.7 1.8 1.2 1.1 1.2 2.4 2.7 0.7 1.8 2.0 
Median 	3.3 2.4 2.4 2.9 2.0 1.7 3.1 2.1 1.8 2.0 0.9 

Flounder liver 

Average 	4.9 3.3 4.4 3.6 3.3 2.5 4.6 4.9 1.7 2.8 1.8 
n 	 5 5 5 5 5 5 5 5 4 5 4 

1.8 1.6 0.8 0.45 1.2 1.3 1.9 2.6 0.5 0.6 0.6 
Median 	5.8 2.3 4.4 3.9 2.8 2.0 4.8 3.9 1.7 2.7 2.0 

Blue mussel 

Average 	2.5 2.3 1.90 2.3 0.85 3.7 1.7 1.6 1.3 1.6 
n 	 4 4 4 4 4 4 4 4 4 4 

0.3 0.2 0.03 0.4 0.04 0.5 0.1 0.2 0.2 0.1 
Median 	2.4 2.3 1.91 2.2 0.84 3.6 1.6 1.6 1.3 1.6 

Brown shrimp 
Average 0.50 0.49 0.71 0.35 0.28 0.49 0.21 0.17 0.29 0.26 
n 13 5 5 5 5 5 2 5 5 5 

0.08 0.09 0.21 0.06 0.07 0.18 0.02 0.02 0.03 0.05 
Median 0.49 0.47 0.72 0.33 0.26 0.47 0.21 0.18 0.29 0.28 

Length and sex had no noticeable effects on the PCB concentrations expressed on a fat 

weight basis, with one exception: PCB conce ntrations in cod liver significantly increased 

with length. An influence of the length of cod on the PCB content in the liver was 

previously reported by de Boer [ 14], who demonstrated a significant concentration 
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difference between individuals of different sizes (53-54 cm and 85-91 cm). Similarly, 

Kruse and Kruger [15] measured higher DDT levels in liver of Baltic cod of larger size, 

but they did not notice similar trends for hexachlorobenzene (HCB), a-

hexachlorocyclohexane (a-HCH) or dieldrin. Bioaccumulation of contaminants such as 

PCBs in biota is the result of a combination of uptake (directly from the water, ingestion 

of contaminated particles and food) and elimination (metabolisation, excretion, growth 

dilution, spawning). The relative importance of each process will, of course, depend on 

the species considered and its stage of life. An explanation for the size-dependent 

contaminant level in cod liver may be found in the regime of larger cod. Larger cod 

mainly feeds on fish, which is more contaminated than invertebrates that are 

preferentually consumed by smaller fish [ 16]. The major route of PCB uptake in larger 

cod, food, will therefore cause biomagnification. The bioaccumulation in muscle tissue is, 

however, not size-dependent; this may be related to the fact that lipid deposition with cod 

is mainly in the liver. The food consumption pattern of flounder, mussel and shrimp does 

not change during their life cycle [ 17]. For those species, no significant biomagnification 

was found; obviously, the uptake of PCBs is compensated by elimination processes. 

Significant downward trends were observed in muscle tissue of cod and flounder, and in 

shrimp, but not in mussel and the liver of both fish species. From among these species, 

flounder, blue mussel and brown shrimp are excellent indicator organisms which clearly 

reflect the quality status of their habitats because of no or restricted migratory activities. 

Cod has a more enhanced migratory behaviour and does not necessarily reflect the 

condition of the area of capture. Nevertheless, cod is considered to be a suitable 

biomonitor for spatial and temporal trend monitoring. Migration appears to be sufficiently 

confined and allows observing differences between regions that are some hundred 

kilometres apart [ 18]. The observed temporal trends in this study are on the same tenor as 

others recently reported. In the 1993 No rth Sea Quality Status Report  [2], decreasing PCB 

contents were cited for several species and various locations were cited and recent 

observations revealed decreasing concentrations of lower-chlorinated PCBs in yellow eel 

(Anguilla anguilla) from inland waters in the Netherlands [ 19]. PCB concentrations in 

cod (Gadus morhua) from the North Sea have been shown to have decreased 

significantly, although higher chlorinated congeners remained at an essentially constant 

level [ 19]. Constant PCB contents were reported by Stronkhorst [20] for Mytilus edulis 

and by Solé et al. [21] for Mytilus galloprovincialis from the western Mediterranean. The 
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observed trends may well indicate that PCB concentrations have reached their maximum 

values and that the compulsory remedial actions implemented by national and 

international organisations to improve the quality of the marine environment gradually 

become successful. However, although PCB concentrations are shown to decrease 

regionally, a global decline is not expected in the next few years, because of on-going 

inputs into the environment caused by, e.g., leakages from landfills and emissions from 

incinerators [22]. This was emphasised recently during the latest assessment of the 

OSPAR coordinated environmental programme at the MON 2004 meeting [23]. 

Moreover, it has been stated that the quantities of PCBs still in use, still exceed the 

amount that has been released into the environment to date [22]. A nice illustration is the 

recent the `dioxin' crisis in Belgium where poultry were severely contaminated by PCBs 

through an illegal addition of a PCB containing oil to oils used for the preparation of their 

feed [24]. 
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