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Abstract

In field studies on brown shrimp (Crangon crangon), eatehes eontaining large numbers of animals
are a eommon feature, and sub-sampling has beeome a eommon praetiee. So far, however, the
cost-benefit-ratio of sampling strategies and sampie sizes (in terms of workload, on the one hand,
and statistieal soundness of the estimated population parameters, on the other) has never been
thoroughly investigated. The present study tries to solve this problem, by means of simulations on
theoretieal "populations" (= the combined eatehes of a shrimp cod-end and its cover) with known
size distributions, under various eonditions with respeet to their size eomposition, and the way they
are subdivided into eateh fraetions (eod-end cover, discards and landingsl.

As far as the optimal sampIe size is eoneerned, the results of the simulations showed that, in
general, sampies of 750 animals (all eateh fraetions eombined), will give sound estimates of the
mean size of the population, and reasonable estimates of its length-frequeney distribution, provided
that the original estimates of the numbers-at-Iength are smoothed with a moving average of order
5. For statistically sound estimates of the size distribution, the total number of measurements has
to be inereased to at least 1500.

With respect to the type of sampling strategy that is to be preferred (sampIes of a fixed size or
proportional sampies, weighted aeeording to the relative share of eaeh eatch fraction in the
population), the outcome of the simulations was much less conclusive. Because of the differences
in adequacy between the two methods that were tested, the choice of the optimal sampling
strategy will depend on: the kind of information one expects to obtain from the sampIes; the levels
of precision one is aiming for; the size structure of the population in itself; and the way the
population is partitioned over the various catch fractions.

This study was subsidised by the Institute for Scientific Research in Industry and Agricul­
ture (lSRIA), Brussels, Belgium.
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1. Introduction

In field studies on brown shrimp (Crangon crangon), catches containing several tens of
thousands of animals are a common feature, and sub-sampling of the catclies has become
customary. Measuring large quantities of shrimps (say 1000 or more per sampie) is a time­
consuming, demanding and tedious job, particularly if the measurements have to be made
by 1 or 2 mm sile c1asses. To find an acceptable balance between workload and statistical
soundness, it would be helpful to have an idea on the minimum numbers of animals that
need to be measured to obtain reasonable estimates of e.g. the sile composition of the
catches, or the mean sile of a Crangon population. Up to now, this question has, however,
never been thoroughly addressed.

..

With the present study, we have tried to solve this problem, by means of computer
simulations of various sampling strategies on theoretical populations witli different size
compositions. Initially, these investigations were started as part of another study, on the
effects of population structure and sampling strategy on the estimates of the selection
parameters for shrimp trawls (POLET and REDANT, 1996). This explains why the simula­
tions were run on populations subdivided into three catch fractions (cover, discards and
landings) instead of two (discards and landings), which is the kind of subdivision most
shrimp biologists are used to. Later on, however, the study was extended,.to also answer
the questions raised by the Steering Group of RESCUE (an EC-funded research programme
on the by-catches and discards in the European brown shrimp fisheries) on the optimal
sampling levels for the landings and discards of Crangon.

A general description of the Belgian Crangon fishery (including an overview of the trends in
landings, eftort and LPUE's), and background information on the catch handling procedures
onboard of the Belgian shrimp trawlers, can be found in ICES (1994 and 1996), and in
POLET and REDANT (1996).

2. Methods

2.1. General background

The basic idea for the simulations was to start from a theoretical "population" with known
size composition (in this case the combined catches of a shrimp trawl and its cod-end
cover), which was then subdivided into three fractions, by means of equally known selec­
tion curves for the cod-end and the shrimp riddle. Next, random sampies were taken from
each catch fraction, under specific, user-defined conditions with respect to sampling strat­
egy and sampie size. The numbers-at-Iength thus obtained could then be used to recalculate
the size distribution and the mean size of the population. By altering each of the elements in
the system (population structure, selection parameters, sampling strategy and sampie size),
we hoped to be able to identify their impact on the reliability of the recalculated length
frequencies and mean siles, and to draw conclusions on the adequacy of the sampling
procedures and sampie siles tested.
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A similar approach has been proposed by HAMPTON and MAJKOWSKI (1987), to assess
the effect of various sampling strategies on the estimates of, amongst others, growth
parameters, natural and fishing mortality rates, and gear selection parameters for exploited
fish stocks. Contrary to HAMPTON and MAJKOWSKI (1987), who used a complex of
mathematical equations to "reconstruct" a theoretical population trom aseries of consecu·
tive age cohorts, the simulations in our study were based on actual size compositions and
selection curves, derived from preliminary field studies. The uncertainty on e.g. the extent
ot recruitment variability, the growth rates, and the natural and tishing mortality rates of
Crangon (see ICES, 1993 and 1994, for astate of the art review on these issues), did not
allow a strictly mathematical approach of the problem. '

The fact that this study was based on Crangon populations with specific characteristics,
and on specific selection curves to subdivide the populations into catch fractions, may give
the impression that its outcome is applicable to this particular species and this particular
fishery only. This is not necessarily the case, as will be shown in the results section. The
decision to use species-specific and empirical, rather than hypothetical selection curves,
mainly arose trom the consideration that realistic selection curves could be expected to
produce catch fractions which are similar to the ones a scientist is likely to encounter in the
field. In principle, we could have used any kind of "selection" curves to subdivide the
population into two or more fractions (such as e.g. a general catchability curvo, or a' strictly
hypothotical fishermen's selection curve). Even though this would hardly have affected the
conclusions trom this study, their choice might have been subject to debate, and it might
have cast some doubts on the veracity of the simulations, and on the overall validity of the
conclusions. .

2.2. Conventions on standard length

•
Contrary to many other commercial shrimp species (such as Penaeids and Pandalids), for
which carapace length (measured from the base of the eye-socket to the postedor edge of
the carapace) is the standard length measurement, there is no standardised length measure·
ment for Crangon. Measuring total length is !he most common practice, but depending on
the author, the word "total" can have a different meaning. In this study, totallength (TL) is
defined as the distance between the tip of the scaphocerites and the distal margin of the
fans on the stretched uropods (Figure 1). Unless stated otherwise, all size c1asses referred
to are 1 mm TL c1asses, measured to the nearest mm.

2.3. The "population"

The choice of the length-frequency distribution (LFD) of the shrimps entering the cod-end of
a commercial shrimp trawl (= the "population") was based on data collected during several
selectivity experiments, carried out in March 1995 (POLET, unpubl. data). From these, a
representative LFD was chosen, which was then used as a basis to calculate a theoretical
population. Note that in this particular case, "population" stands for the combined catch of
a shrimp cod-end and its cover, and not tor a population in the strictly biological sense of
the word.
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The observed LFD (Figure 2) was first smoothed, using two consecutive runs of moving
averages, to eliminate the background noise fram the original numbers-at-Iength. The result
was a typical bimodal size distribution (Figure 3), with each of the modes most likely corre­
sponding to one age cohort (see e.g. TETARD, 1985, for details on the polymodal size
structure of Crangon populations, and their "de-convolution" into age classes). Next, the
smoothed LFD was reconstructed by means of aseries of superposed normal distributions
(Figure 4). Whether these do have a biological meaning or not, is of little relevance. What
really matters is that the technique praduced a realistic population with precisely known
length frequencies, which could then be subdivided into cod-end and cover catches
(Section 2.3.) and, as far as the cod-end is concerned, into discards and landings (Sec­
tion 2.4.) also ~ith precisely known LFD's.

After some preliminary simulations with this theoretical population (fram now on called
"Type 1" population) ('), we decided to also run the simulations with two other populations,
with slightly modified size compositions (Figure 5). The first one ("Type 2" population) had
a much weaker first cohort, set at 1/5 of its original strength; the second one ("Type 3"
population) had a much narrawer first cohort (of the same numerical strength as the original
one), which, in addition, was slightly moved to the right. LFD's similar to the "Type 2"
population are frequently observed in certain areas and at certain times of the year, when
the smallest size c1asses of Crangon are almos! absent fram the catches. "Type 3" is not a
typical Crangon LFD. Nevertheless, it was included in the simulations, to obtain an indica­
tion on how the sampling strategies and sampie sizes tested would perform for species that
do have much narrawer age cohorts (such as Nephrops).

2.4. Cod-end selection

The cod-end selection curves used to subdivide the populations into cod-end and cover
catches were based on the results of selectivity experiments, carried out w!th the covered
cod-end technique, under various conditions with respect to fishing ground, weather type,
catch composition, etc. (POLET, unpubl. data). Two selection curves were used (Table 1
and Figure 6):

• Ogive "A": a relatively steep logit curve, with an L50 (Iength at 50 % retention) of
43.0 mm TL, and a selection range·(the range between the lengths at 25 and 75 %
retention) of 9.0 mm TL; and

• Ogive "C": a very smooth logit curve, with an L50 of 30.0 mm TL, and a selection
range of 22.0 mm TL.

The steepest selection curve is typical for "clean" catches, while the other is typical tor
catches containing large amounts of seaweed and hydroids, which reduce the selective
properties of the cod-end by clogging up the meshes (POLET, 1996).

(') For reasons of consistency, the codes used to reter to populations, selection
ogives and sampling strategies, are the same as in POLET and REDANT (1996).

I' I
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2.5. Riddle selection

The riddle selection curve used to subdivide the cod-end fractions into discards and landings
(Table 1 and Figure 6), was the same as the one used by POLET and REDANT (1996), and
had an L50 of 50.0 mm TL and a selection range of 5.0 mm TL. Since riddle selection is
much less sensitive to variations in catch composition than cod-end selection, we decided
to run all the simulations with the same riddle selection curve.

The different combinations of theoretical population, cod-end selection curve and riddle
selection curve are summarised in Table 1. From now on, each of these combinations will
be referred to by the two digit code given in the first column of this table. The total
numbers of shrimps in each catch fraction, for each combination of theoretical population
and cod-end selection curve, are summarised in Table 2, together with their respective size
ranges, and the mean size of the population as a whole. The size distributions of all popula-

.tions and their catch fractions (cover, discards and landings) are shown in Figure 7.

2.6. Sampling strategies and sampie sizes

.Overall sampie sizes (j.e. the total number of shrimps measured for all fractions combined)
were arbitrarily set at 375, 750, 1500, 2250 and 3000.

In addition to various sampie sizes, two different sampling strategies were investigated
(Table 3):

• Sampling strategy S1: equal numbers of shrimps are taken from each catch fraction,
according to the principles of simple random sampling (KREBS, 1989).

•
• Sampling strategy S5: the numbers of shrimps taken from each catch fraction are

proportional to the relative share of that fraction in the population. Again, the sampies
taken are simple random sampIes.

Both sampling strategies are comparable to stratified random sampling (non-weighted in the
case of S1; weighted in the case of S5), albeit that the boundaries between the different
strata (= the catch fractions) are not as sharp as is required in stratified sampling (KREBS,
1989).

Sampling strategy S5 comes cJosest to taking sampies from an unsorted catch (= a shrimp
catch not subdivided into catch fractions). There is, however, an important difference
between the two methods. In simple random sampies of an unsorted catch, each draw can
be chosen anywhere within the full size range of the population. Statistically spoken, this
involves a potential risk of "over-" or "under-sampling" parts of the size range, especially
when the number of animals measured is smalI. Fraction sampling does not eliminate this
risk completely, but because of its similarity with stratified sampling, it can be expected to
strongly reduce the extent of this problem.

5trategy 51 is straightforward and easy to use in the field, whereas 55 requires information
on the numerical strength of the different catch fractions. This information can, however,
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be obtained fairly easily, by raising the numbers of shrimps in the sampies fram each catch
fraction (usually a fixed volume or weight, rather than a fixed number of animals) to total
numbers caught, and by comparing the results of these calculations with the results for the
other catch fractions, before starting the measurements.

2.7. The simulations

The actual simulations were run in a spreadsheet programme. Basically, they can be
subdivided into five major steps:

• Step 1: s!mple random sampies are "taken" fram each catch fraction, using the
spreadsheet's built-in random number generator, and the length "measurements" are
stored in a length-frequency table.

• Step 2: the numbers-at-Iength thus obtained are raised to the level of the largest
sampie size tested (either 3 x 1000 for the simulations with sampling strategy S1, or
3000 proportional for those with S5), and the LFD of the population is recalculated by
pooling the data for the three catch fractions.

• Step 3: the original recalculated LFD is smoothed by means of two non-weighted
moving averages, viz. one of order 3 (MA3l, and one of order 5 (MA5).

• Step 4: the mean size of the population is recalculated fram the estimated el num­
bers-at-Iength for all catch fractions combined; the recalculated LFD's (the one with
the original, non-smoothed numbers-at-Iength, and the two smoothed ones) are com­
pared with the expected LFD (also raised to the equivalent of the largest sampie size
tested), using a Chi2-test; and the so-called "noise levels" for all size c1asses in the
recalculated LFD's are computed fram: -

l I ~. I

•

(Estimated no. - Expected no.) / (Expected no.) x 100

Step 5: the results for all runs (1000 for each combination of population structure,
cod-end selection ogive, sampling strategy and sampie size) are transferred to a statis­
tical software package for further analysis.

•
Strictly spoken, the technique used to generate the sampies was random sampling with
replacement. In field studies, however, sampies are usually taken without replacement. In
sampies with replacement, the possibility of measuring the same animal more than once
cannot be excluded. This may introduce a bias in the estimates of the numbers-at-Iength,
depending on how often the event of measuring the same animal more than once is
occurring. Basically, there are two solutions to this problem. One is to "filter" the random
numbers praduced by the random number generator, to make sure that double draws are
excluded. The other, and much simpler one, is to make the theoretical population so large

e) Throughout the text, "recalculated" and "estimated" are used as synonyms.
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that the probability of double draws is reduced to almost zero. This is the option we
eventually chose for. Sy increasing the total number of animals in the original theoretical
population (Le. population "Type 1") to 250000 (Table 2), the probability of a double draw
was reduced to ::::: 1.5 x 10-9 for the smallest catch fraction in the simulations (viz. the cover
fraction in 2-C), and to::::: 13.5 X 10-9 for the largest (viz. the cover fraction in 1-A, and the
discards fraction in 3-C).

At first sight, the Chi2-test is the most obvious choice to compare "observed" (read:
recalculated) with "expected" length trequencies. Secause of its high sensitivitV (which can
easily lead to excessively pessimistic conclusions on the overall degree of similarity
between two data sets), it could be argued that the ChF is not exactly the most appropriate
test for this kind of investigations, where the similarity in overall shape of the size distribu­
tions is more important than the similarity between "observed" and "expeeted" numbers-at­
length for individual size c1asses. From that point of view, a more rigorous test, such as
Kolmogorov-Smirnov, might have been a better choiee. The main reason why we decided in
favour of the ChF-test was that it ean be applied to any kind of grouped data, including
raised or smoothed data series with fractional numbers. The Kolmogorov-Smirnov test, on
the other hand, requires a data matrix with original length measurements, which was a
major bottleneek in the analysis of the type of data produeed by the simulations (pooled
numbers-at-Iength, derived trom three different "samples", and raised to a eommon
standard).

The use of raised data inevitably has an adverse effect on the results of the ChF-tests. Sy
raising the data, the absolute differences between "observed" and "expected" numbers-at­
length are raised too, and, beeause of the way the Chi2-statistie for each pair of data is
ealeulated, this results in higher Chi 2-values, and henee, in lower p-values. Two arguments,
however, speak for the use of raised data. First of all, raising has the advantage that it
creates a common basis for the comparison and quality assessment of the results tor all
sampie sizes tested. Secondly, it should be borne in mind that raising is a common practice
in fisheries research. Most often, it is not the original but the raised data that are used e.g.
in a time series analysis or in comparative studies. When the quality of these datei is
doubtful, the conclusions derived from them may be dubious. Therefore, the use of raised
instead of non-raised data sets to run the Chi 2-tests, can be considered as a prudent
approach.

3. Results

3.1. Estimation of the mean size of the population

The estimates of the mean size improve with inereasing sempIe size. Figure 8 (top) gives an
example of the distributions of the recaleulated mean sizes around the true mean size of the
population for simulation 1-A-S1, and sampIe sizes of 3 x 125,3 x 250,3 x 500,3 x 750
and 3 x 1000 animals eaeh. Note that these charts do not give the actual estimates of the
mean size, but their deviations from the true mean size of the population, in intervals of
0.2 mm TL each.
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Figure 8 (bottom) also shows the probability-probability plots for the same data series.
These clearly demonstrate that the recalculated mean siles are normally distributed around
the true mean sile. With respect to these plots, it is worth mentioning tl1at the example
given is not the best available, in the sense that the results for the other simulations were
at least as good, and often even better than the ones for simulation 1-A-S1.

Table 4 summarises the most important results on the estimations of the mean sile. For
each combination of population structure, cod-end selection ogive, sampling strategy and
sampie sile tested (columns 1 and 2), the table gives the distribution of the deviations of
the estimated mean siles from their ~rue value, in absolute intervals of 0.5 mm TL each
(columns 3 to 6), and the parameters (mean and standard deviation, SO) of the normal
distributions fitted to the deviations (columns 7 and 8).

The degree of dispersion of the recalculated mean siles narrows down considerably when
the number of shrimps measured is increased from 375 to 750, and again to 1500 (with •
over 95 % of the estimates at less than 0.5 mm TL above or below the true mean sile, and
with SO's < 0.25 mm TL) (Table 4). From then onwards, however, the gain in accuracy
decreases quickly, to such a point that it becomes questionable whether it is still worth the
extra investment in terms of workload, associated with the measurement of e.g. 2250 or
3000 shrimps per hau!.

3.2. Estimation of the numbers-at-Iength for individual size cJasses

Effect of sampIe size

Figure 9 shows the box-and-whisker plots (once more for simulation 1-A-S1) of the noise
levels in the non-smoothed estimates of the numbers-at-Iength, for all sile c1asses with
expected numbers-at-Iength > 1.0, and for all sampie siles tested. The boxe.s in these plots
represent the 2.5-97.5 percentile ranges (from now on called 95 % ranges) and the
whiskers the min-max ranges of the noise levels in the recalculated numbers-at-Iength.

Two major conclusions can be drawn from this example:

• The levels of background noise in the estimates of the numbers-at-Iength are inversely
related to sampie sile. The gain in ~ccuracy is most substantial when the number of
measurements increases from 3 x 125 to 3 x 500, then gradually slows down as
sampIe siles increase to 3 x 750 and 3 x 1000.

• A close relationship exists between the amplitude of the noise levels and the shape of
the sile distribution of the population. The lowest noise levels are associated with the
peaks in the LFO; the highest with the troughs and the tails, where the expected
numbers-at-Iength are lowest (Figure 7, first page, top).

The findings for the other combinations of population structure, cod-end selection ogive and
sampling strategy are very similar to the ones just described for simulation 1-A-S1. There
are some differences, of course, but these are limited to the overall appearance of the box­
and-whisker plots (all of which can be explained by the differences in the LFD's of the three

•
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populations tested; see below), and to the amplitudes of the 95 % and the min-max ranges
of the noise levels, particularly in the tails of the LFD's (which generally were slightly larger
for sampling strategy S5 than fer S1).

The relationships between the noise levels in the non-smoothed estimates of the numbers­
at-Iength, on the one hand, and the expected numbers-at-Iength, on the other, are shown in
Figure 10 (top). For sampie sizes of 3 x 500 and more, these relationships are quasi­
asymptotic, with a rapid decrease in the overall levels of background noise in the lower
ranges of the expected numbers-at-Iength, and a very gentle, almost linear decrease in the
upper ranges.

Similar negative asymptotic relationships between the expected numbers in ci population
and the levels of dispersion in their estimated values, have been reported by BECKER
(1975) and JOHNSTON et al. (1975), in sensitivity studies on the retiability of the estimates
of the numbers-at-age in commercial fish stocks, derived from length-stratified market
sampies.

Effect oi smoothing

A representative example of the effect of smoothing on the noise levels in the estimates of
the numbers-at-Iength is shown in Figure 11 (the example given is for simulation 1-A-S1
and a sampie size of 3 x 500 animals). The noise reducing effect of smoothing is remark­
able: from ~ 35 % for the moving average of order 3, to ~ 50 % for the moving average of
order 5, and this for all size classes, ineluding the ones in the tails of the size distribution.

The noise reducing effect of smoothing is also apparent from Figure 10, which shows the
relationships between the noise levels in the non-smoothed (top) and the smoothed (centre
and bottom) estimates of the numbers-at-Iength, on the one hand, and the expected num­
bers-at-Iength, on the other, for all sampie sizes tested under 1-A-S1. From these graphs, it
is elear that the noise levels fall off much more quickly and to much lower asymptotic
values for the smoothed data than for the non-smoothed. The effect is also stronger when a
moving average of order 5 is applied to the data than when a moving average of order 3 is
used.

A eloser look at Figure 11, however, reveals that the use of moving averages has some
side effects which may force us to temper the initial enthusiasm on their noise reducing
potential. For the non-smoothed estimates (Figura 11, top), the medians of the noise levels
are all very elose to zero, actually meaning that there is no systematic tendency towards
over- or underestimating the numbers-at-Iength. For the smoothed data, first of order 3
(Figura 11, centre), then of order 5 (Figure 11, bottom), the medians show an incraasingly
strong tendency to "undulate" around the tine of zero percent deviation. This phenomenon
is most obvious in the lower half of the size range, Le. in that part of the size distribution
where the relatively narrow left cohort is located (Figure 7, first page).

The undulating effect is elearly demonstrated in Figure 12, which shows the medians of the
noise levels in the non-smoothed (top) and in the smoothed (centre and bottom) estimates
of the numbers-at-Iength, for all sampie sizes tested under 1-A-S1 (note that the scale of
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the y-axes in Figure 12 differs from the one in Figure 11). The most important conclusion
that can be drawn from Figure 12 is that the undulating effect is totally independent from
sampie size.

The explanation of this phenomenon is fairly simple. In size distributions with narrow peaks
and troughs, the use of a moving average will result in levelling off the peaks, and in filling
up the troughs, by shifting fractions of the original, non-smoothed numbers-at-Iength down
the slopes of the size distribution, on both sides of their inflexion point. The narrower the
peaks and/or the troughs, and the higher the order of the moving average, the stronger this
"erosive" effeet will be.

Effect of sampling strategy

•• I .
• I

The effeet of sampling strategy on the reliability of the recalculated numbers-at-Iength was
examined for two combinations of population strueture and cod-end selection curve, viz. •
1-A and 1-C (Table 3). The performance of the two sampling strategies was tested by
eomparing the noise levels in the estimates of the numbers-at-Iength under one sampling
regime (e.g. 51 and a sampie size of 3 x 125), with the noise levels for the same size class
under the other (e.g. 55 and a sampie size of 375 proportional). For this purpose, the ratios
between the noise levels for all size c1asses in the population were calculated as:

(95 % range of the noise levels under 55) / (95 % range of the noise levels under 51)

If this ratio is ~ 1, the noise levels in the two estimates of the numbers-at-Iength for that
partieular size class are similar, and we can conclude that, on average, both sampling
strategies are performing equally weil (or badly). If it is > 1, the noise levels under sampling
strategy 55 are larger than those under 51, and we can conclude that, on average, 51
performs better than 55; ete.

Figure 13 shows the above mentioned ratios for the non-smoothed estimates of the num­
bers-at-Iength for 1-A (top) and 1-C (bottom). There is a marked difference between the
results for the two combinations of population strueture and seleetion ogive. In the case of •
1-A, sampling strategy 55 performs mueh better than 51 tor the size c1asses between 25
and 35 mm TL, whereas, in general, S1 performs slightly better for the size classes below
20 and between 35 and 60 mm TL (Figure 13, top). For 1-C, however, sampling strategy
55 performs better for the size classes between 30 and 50 mm TL, whereas, in general, 51
performs bettcr for the size classes below 30 and above 50 mm TL (Figure 13, bottom).

The differenees in performance between the two sampling strategies are c10sely related to
the shape of the LFD's of the catch fraetions (which diffor from one combination of
population strueture and cod-end selection ogive to another), and to the way the measure­
ments are partitioned over the different cateh fraetions under eaeh sampling regime. In
other words, to the relative levels of sampling intensity applied to different parts of the size
distribution.

Under sampling strategy S1, all catch fractions are sampled in equal numbers. The conse­
quenee being, that the smallest fraetions (in terms of numerieal strength) will be "over-
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sampled" and the biggest ones "under-sal!'pled", as compared to their relative share in the
population. This should not pose much of a problem, as long as all catch fractions have a
fairly simple (read: unimodal) size structure. If, however, the biggest catch fraction has a
bimodal size structure, the "under-sampling" will resul! in much higher noise levels in the
estimates of the numbers-at-Iength in and around the trough, than would have been the
case with S5, and, as a consequence, in a lower level of precision in the estimates tor that
part of the size range (see Section 3.2., partim Effect of sampIe size, for details on the
relationship between noise levels and expected numbers-at-Iength).

This is c1early what happened in 1-A, where the cover fraction (which represents over
46 % of the unsorted catch; Table 2) has abimodal size distribution with two marked
peaks (Figure 7, first page, top), and where sampling strategy S1 produces less reliable
estimates of the numbers-at-Iength for all size c1asses in and around the trough. To a certain
extent, the same applies to 1-C, where the discards (which reprosent almost 44 % of the

• unsorted catch; Table 2) have abimodal size distribution (Figure 7, first page, bottom), and
where, once again, sampling strategy S1 was found to be less performing than S5 for the
estimation of the numbors-at-Iength in and around the trough. In this case, however, the
loss in accuracy due to the "under-sampling" of the discards, is partly compensated by the
gain in accuracy resulting from the "over-sampling" of the cover fraction, viJhich has a size
range similar to that of the discards (Table 2 and Figure 7, first page, bottom).

The same elements also explain why sampling strategy S1 scores better than S5 for esti·
mating the numbers-at-Iength in the lower ranges of the size distribution in simulation 1-C,
and in the upper ranges of the size distribution in simulations 1-A and 1-C. In all cases, the
explanation must be sought in the relative degree of "over-sampling" of the catch fractions
containing tho size c1asses in question (Iandings in the case of 1-A; cover and landings
in 1-C).

•
With rospect to this problem, it is worth mentioning that the use of a moving average has
little or no effect on the differonces in performance between the two sampling strategies. In
absolute terms, the differonces in noise level between the two estimates of the numbers-at­
length decrease (as a result of the overall noise reducing effect of the moving average), but
their ratios do not.

3.3. Estimation of the numbers in selected groupings of size c1asses

In species tor which the application of analytical assessment techniques poses problems,
alternative approaches are oHen used to evaluate the state of exploitation of the stocks.
These include a variety of indices, such as mean sizes of catches and landings, seasonal
and annual landings-per-unit-effort of the largest size c1asses in the population, etc. (see
e.g. ICES, 1995, for an overview of the indices used for Nephrops). Similar approaches
have also been proposed for the evaluation of Crangon stocks (unpubl. minutes of the ·1994
and 1996 meetings of the ICES Study Group on Life History, Population Biology and
Assessment of Crangon Stocks). It should be clear, however, that the usefulness of such
indices tor assessment and management purposes strongly depends on their statistical
soundriess, and that unreliable estimates of e.g. the relative abundance of the oldest
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animals in a population may lead to erroneous conclusions on the state of exploitation of the
stock in question.

In view of the considerable levels of background noise in the estimates of the numbers-at­
length of, amongst others, the largest animals in the theoretical populations (Section 3.2.,
partim Effect of sampie size), we decided to "re-run" simulations 1-A-S1 and 1-A-S5, with
the specific aim to investigate the reliability of the estimates of the numbers of shrimps in
selected groupings of size classes (viz. all shrimps ~ 50 mm, ~ 60 mm and ~ 70 mm TL).
The procedure followed to run these simulations was similar to the one used to estimate the
numbers-at-Iength for individual size classes (Section 2.7.).

The results of these simulations (noise levels in the recalculated numbers for each grouping
of size classes and each sampIe size tested) are summarised in Figure 14. The estimates for
the size group ~ 50 mm TL are generally good to excellent, with 95 % of the noise levels
below 10 %, even for the smallest sampie sizes. Those for the size group ~ 60 mm TL are •
generally acceptable to good, with 95 % of the noise levels below 25 % for the smallest
sampie sizes, and below 15 % for combined sampie sizes of 1500 animals and more. And
those for the size group ~ 70 mm TL are generally poor, with considerabJe proportions of
the noise levels exceeding 25 %, except for the very largest sampie sizes tested.

The accuracy of the estimates is clearly related to the relative abundance of the different
size groups in the population. Shrimps ~ 50 mm TL represent ~ 34 % of the population,
those ~ 60 mm TL ~ 11 %, and those ~ 70 mm TL only ~ 2 % (Figure 7, first page). In view
of these differences in abundance, the differences in accuracy between the estimated
numbers should not come as a complete surprise. Striking, however, are the relatively high
levels of dispersion in the estimates for the size group ~ 60 mm TL, which, after all,
represents about 1/10 of the population. This puts another light on the general belief that
grouping is a powerful means to minimise the background noise in th~ estimates of
numbers-at-Iength. If the sampIes are small (say, less than 250 animals per catch fraction),
the noise reducing effect of grouping will be small too, even for size groups which are not
exactly what might be called "poorly represented" in the catches. •

With respect to the general outcome of these simulations, it is also worth mentioning that
the differences between the two sampling strategies (S 1; Figure 14, top; and S5;
Figure 14, b0t:!~m) were larg~ly insignificant.

3.4. Similarity between recalculated and "true" size distributions

The results of the Chi2-tests on the overall degrees of similarity between the recalculated
and the true size distributions, for each combination of population structure, cod-end selec­
tion ogive and sampling strategy, are summarised in Figure 15. The plots in Figure 15 show
the percentages of runs giving p-values above several critical threshold values (viz. ~ 0.50,
~ 0.75 and ~ 0.90), under various conditions with respect to sampIe sizo and smoothing
technique.
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Effect ofsampIe size

Except for simulation 2-A-51, which shows a slightly different picture (see below), the
overall appearance of the graphs in Figure 15 is very similar. If we take the results for
simulation 1-A-51. (Figure 15, first page, top left corner) as an example, we see that:

• The similarity between the non-smoothed recalculated LFD's and the true LFD of the
population is generally poor, even for the largest sampie sizes (with only :::: 20 % of
the runs giving a p-value ;;::: 0.90 for a sampie size of 3 x 750, arid only ~ 65 % giving
a p-value ;;::: 0.90 for a sampie size of 3 x 1000).

•
• The similarity between recalculated and true LFD's increases considerably when a

moving average is applied to the data. This effect is stronger in the case of the
moving average of order 5 than in that of order 3.

•

• With a sampie size of 3 x 250, almost 80 % of the runs gives a p-value ;;::: 0.90, pro­
vided that a moving average of order 5 is applied to the data. With a sampie size of
3 x 500, however, over 90 % of the runs gives a p-value ;;::: 0.90, provided that a
moving average of order 3 is used.

• For sampie sizes of 3 x 750 and more, c10se to 100 % of the runs gives a p-value
;;::: 0.90, whichever smoothing technique is used.

These findings are of particular importance when it comes to deciding which combination of
sampie size and smoothing technique provides the best "cost-benefit ratio" between
workload and statistical soundness of the recalculated LFD's.

Effect of sampling strategy

At first sight, the results concerning the effect of sampling strategy on the accuracy of the
recalculated LFD's are far from being consistent. In the case of 1-A, sampling strategy 55
performs slightly better than 51 (Figure 15, first page, top row) but for 1-C, it is exactly the
opposite (Figure 15, first page, bottom row).

The differences in overall performance between the two sampling strategies are associated
with their differences in performance with regard to the estimation of the numbers-at-Iength
in particular parts of the size range. In 1-A, sampling strategy 51 scored worse than 55 for
the estimation of the numbers-at-Iength in and around the trough between the two cohorts
(5ection 3.2., partim Effect of sampling strategy), i.e. in a critical part of the size distribu­
tion where the expected numbers-at-Iength aro low, and where even relatively small
differences between "observed" and "expected" numbers will result in higher Chi2-statistics
(Le. higher than in the case of 55), and hence in lower p-values. Conversely, in 1~C,
sampling strategy 55 scored worse than 51, especially in the upper and lower ranges of the
size distribution (5ection 3.2., partim Effect of sampling strategy). Again, these are the
parts of the size range where the expected numbers-at-Iength are low, and where relatively
small deviations will result in higher Chi2-statistics (Le. higher than in the case of 51), and
hence in lower p-values.
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It is important to notice that the differences in adequacy between the two sampling
strategies gradually disappear with increasing sampie size, provided that a moving average
is applied to the data. For combined sampie sizes of 1500 and more, the differences are
almost negligible (Figure 15, first page).

Effect ofpopulation structure

The results for the other simulations (except for 2-A-S1) are very similar to those described
earlier in this section for 1-A-S1 (Figure 15). This is an important finding, because it proves
that, within certain limits (see below), the size structure of the population in itself hardly
affects the reli.a.bility of the recalculated length-frequency distributions. ..

As already mentioned, there is one exception to this rule, viz. simulation 2-A-S1. It should
be emphasised, however, that in this simulation, the cover fraction had a very peculiar size
composition, with a marked peak at the right, and a low "shoulder" at the left (Figure 7,
second page, top). When sampie sizes are smalI, there is a considerable degree of scatter­
ing in the estimates of the numbers-at-Iength for the size c1asses in the "shoulder". This
results in high Chi2-statistics and, as a consequence, in low p-values. The adverse effect of
the scattering on the p-values largely disappears when the size of the sampies is increased,
and when, as a result of a better coverage, the estimates of the numbers-at-Iength in that
part of the size distribution improve.

Theoretically, something similar could be expected for simulation 2-C-S1, which starts from
the same population, and the same initial size structure, as simulation 2-A-S1. In this case,
however, the weak left cohort is partitioned over two catch fractions, viz. cover and dis­
cards (Figure 7, second page, bottom). For the discard fraction, the precision of the
estimates of the numbers-at-Iength in the "shoulder" can be expected to be poor, for the
same reasons given in the previous paragraph. In the case of 2-C-S1, however, this is
largely compensated by the much higher levels of precision in the corresponding estimates
of the numbers-at-Iength derived from the cover fraction, which, under sampling regime S1,
is heavily "over-sampled" as compared to the other catch fractions.

4. General discussion

Similar investigations, to which the results of this study could be compared, are extremely
scarce in the scientific literature. Most papers on the adequacy of sampling strategies or
sampie sizes to estimate population compositions either deal with the subject from a mostly
mathematical point of view (see e.g. FOURNIER, 1983; SOLANA-SANSORES and
ARREGUIN-SANCHEZ, 1990 and 1991), or they pertain to the estimation of age distribu­
tions (see e.g. BECKER, 1975; JOHNSTON et al., 1975), where the number of c1asses to
be estimated is much smaller than in size distributions, and where the overall shape of the
distributions usually is much simpler. 80th the shape of the distribution and the number of
c1asses to be estimated, however, are important elements in the discussion on optimal
sampling strategies and sampie sizes (Sections 3.2., 3.3. and 3.4.). The more complex the
shape of the distribution, and the larger the number of c1asses for which estimates of the
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numbers-at-age or length are needed, the larger the sampies that will be required to achieve
a certain level of precision in the estimates.

Next to the actual findings of this study, a number of additional corisiderations should be
taken into account, when it comes to applying the results of this simulation exercise to field
studies on Crangon, or on other (shrimp) species. .

In this, mostly theoretical simulation study, the sampies taken from the different catch
fractions were simple randorn sampIes. This means that each draw was independent from
the others, and that all animals in a catch fraction had. an equal chance of being chosen. In
sea or port sampling programmes, however, "batch sampling" is the most common
technique. Batch sampling is a typical example of non-probability sampling, where the
consecutive draws are not fully independent from one another. Under the right conditions,
non-probability sampling may give the same results as simple random sampling (KREBS,
1989). In sea sampling programmes, these conditions may be met, provided that the
animals in each catch fraction are randomly distributed. Therefore, it is of crucial impor­
tance to make sure that the shrimps in sach fraction are thoroughly mixed befere the
sampies are collected, and that the sampling devices are not size-selective.

With respect to the comment, made in Section 2.6., that sampling strategy S5 comes
closest to taking sampies of an unsorted catch, it is important to emphasise that by
"unsorted" catch we mean an unsorted catch of shrimps (= not subdivided into e.g.
discards and landings), and not the unsorted catch as it appears when the cod-end of a
shrimp trawl is emptied. Preliminary experiments on the adequacy of various sampling
techniques for the fish by-catches of shrimp trawlers (REDANT, unpubl. data), revealed that
the quantities of shrimp contained in a single box of unsorted catch, can easily vary by up
to 100 %, depending on the amount and the composition of the by-catches, in the broadest
sense of the word (fish, invertebrates, lumps of peat and sand, litler, etc.). Whether this has
an impact on the size composition of the shrimp sampies, romains to be invostigated but, if
not properly remedied, it will definitely have an impact on the estimates of abundance
indices, such as CPUE's, LPUE's, or the numbers of shrimp caught per unitarea swept.

This study focused on the estimation of mean sizos and size distributions of the shrimp
catches from a single haul. In most sampling programmes, however, it is common practice
to pool the data from aseries of hauls, to obtain an estimate of the average size composi­
tion of the shrimp population in a wider area or over a longer period of time. Replicate
sampies of the same population (Le. with exactly the same size distribution) are likely to
result in different estimates of the numbers-at-Iength for each size class. Their medians,
howEwer, can be expected to give a fair approximation of the true numbers-at-Iength in the
population (Section 3.2., partim Effect of smoothing). When pooling data from various
locations, we are dealing with a different scale of variability. Unless further information is
available on the amplitude of the geographic and temporal variations in the size composition
of Crangon populations, and on the processes that determine variability, the effect of
pooling data trom various areas or over longer time periods on tl1e error levels in the
averaged estimates is difficult to predict.
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So far, no attempts have been made to also include the human factor in the simulations.
Preliminary inter-calibration exercises, carried out at the Fisheries Research Station, showed
that this factor can be extremely important, particularly in extensive sampling programmes,
where several people are involved in measuring the sampies. Intuitively; one is inclined to
assume that the errors due to misreading folIowarandom distribution. The results of the
inter-calibration exercises made it perfectly c1ear that this is not the case. Here too, the use
of a smoothing technique, such as a moving average, can be helpful to reduce the (extra)
noise in the estimated numbers-at-Iength caused by misreading. It is important to rernem­
ber, however, that, despite its considerable noise reducing potential, a moving average is
not some sort of "magic wand", capable of turning even the most crummy data set into a
reliable length-frequency distribution.

5. Conclusions

As in most other simulation studies on the adequacy of sampling programmes, the conclu­
sions frorn this study can be subdivided into "good" and "bad" news.

• The good news is that, in most cases, combined sampies of 750 animals (Le. either
250 per catch fraction, or 750 proportional) will give sound estimates of the mean
size of a population, and reasonable estimates of its length-frequency distribution,
provided that, for the lauer, the observed numbers-at-Iength are smoothed by means
of a non-weighted moving average of order 5. With respect to using a moving average
of this order it should, however, be stressed that there is a serious risk of underesti­
mating the numbers-at-Iength in the peaks, and of overestimating the numbers-at­
length in the troughs of the sizo distribution.

,. ...

•

• The bad news is that, for statistically sound estimates of the size distribution, the
total number of animals to be measured has to be at least 1500 (La. either 500 per
catch fraction, or 1500 proportional). Again, provided that a moving average is
applied to tho original estimates of the numbers-at-Iength. In this case, however, a
non-weighted moving average of order 3 can suffice. ••

This is not the kind of conclusions one might have hoped for, but at least, it has the
advantage that we know now with much more certainty what the "cost" of statistical
soundness really iso

The results of this study are much less conclusive as to the type of sampling strategy
(equal or proportional sampie sizos) that is to be preferred. Because of the differences in
adequacy between tho two methods, under various conditions with respect to the size
structure of the population, the optimal sampling strategy will depend on: the kind of
information one expects to obtain from the sampies; the levels of precision one is aiming
for; the sizo structuro of tho population in itself; and the way tho population is partitioned
over the different catch fractions. For combined sampie sizes of 1500 animals and more,
however, the differences in adequacy between the two sampling strategies are almost
negligible. This fact, and the strictly logistic argument that sampies of a set size are much
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easier to collect than proportional sampies, make sampling strategy S1 the better choice for
general studies on the size composition of Crangon populations.

For studies requiring statistically sound estimates on particular parts of the population,
however, neither of the sampling strategies that were tested may give satisfactory results.
In that case, one may have to consider the possibility of "over-sampling" critical parts of the
size range, in an attempt to improve the overall quality of the estimates.
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Table 1 - General features of the simulations.

Code Theoretical population Cod-end Riddle
(*) selection curve (* *) selection curve (* *)

1-A "Type 1" : standard Ogive "A" : steep Standard

a = - 10.75; b = 0.25 a = - 22.70 ; b = 0.45

See Figure 5 See Figure 6 See Figure 6

1-C "Type 1" : standard Ogive "C" : smooth Standard

a = -3.00;b=0.10

As in 1-A See Figure 6 As in 1-A

2-A "Type 2" : first cohort reduced Ogive "A" : steep Standard

to 1/5 of its original strength

See Figure 5 As in 1-A As in 1-A

2-C "Type 2" : first cohort reduced Ogive "C" : smooth Standard

to 1/5 of its original strength

As in 2-A As in 1-C As in 1-A

3-A "Type 3" : narrow first cohort, Ogive "A" : steep Standard

slightly moved to the right

See Figure 5 As in 1-A As in 1-A

3-C "Type 3" : narrow first cohort, Ogive "CO : smooth Standard

slightly moved to the right

As in 3-A As in 1-C As in 1-A

(*) Codes refer to the combinations of population type (first digit) and cod-end selection
curve (second digit), used in the simulations

(* *) a and b refer to parameters a and b in the logit curve : RR = 1 / (1 +exp(-(a+b*TL)))
in which RR = retention rate, and TL = totallength
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Table 2 - Numbers (N, in 1000) and size ranges of Crangon (mm TL) in each catch fraction (as generated
from the theoretical populations), and mean size of the theoretical populations used in the simulations.

Code Cover Discards Landings Total Mean size
(*) N Size range N Size range N Size range Sum of N's population

(* *) (* *) (* *) (mm TL)

1-A 115.4 13-57 60.0 33-58 74.6 43-78 250.0 43.56

1-C 66.5 13-62 109.2 16-58 74.3 42-78 250.0 43.56

2-A 72.3 16-58 59.4 32-58 74.6 43-79 206.4 47.70

2-C 38.6 16-63 93.5 19-58 74.3 42-79 206.4 47.70

3-A 113.9 20-57 61.5 28-58 74.6 43-78 250.0 44.65

3-C 60.2 20-62 115.5 21-58 74.3 42-78 250.0 44.65

(*) Codes refer to the combinations of population type (first digit) and cod-end selection curve (second
digit), used in the simulations

(**) Size ranges refer to those size classes, for which the expected numbers-at-Iength in the largest
sam pie sizes tested were > 1.0

Table 3 - Sampling strategies and sampie sizes tested.

Code Sampling strategy S1 Sampling strategy S5

(*) Equal sampIe sizes (3 x Ns), with sampie Proportional sampie sizes, with total no.
sizes (Ns) set at : of shrimp measured (Nt) set at :

125 250 500 750 1000 375 750 1500 2250 3000

1-A x x x x x x x x x x

1-C x x x x x x x x x x

2-A x x x x x

2-C x x x x x

3-A x x x x x

3-C x x x x x

(*) Codes refer to the combinations of population type (first digit) and cod-end selection
curve (second digit), used in the simulations

•

•
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Table 4 - Percentual distribution of the deviations of the recalculated mean sizes from their "true" values, and parameters of the normal distributions fitted to the
actual deviations, for different combinations of population structure, cod-end selection curve, sampling strategy and sampie size.

Simulation No.of Deviation (+ or -) from Parameters of Simulation No.of Deviation (+ or -) from Parameters of
& sampling shrimps "true" mean size (mm) normal fit (mm) & sampling shrimps "true" mean size (mm) normal fit (mm)

strategy measured ;5; 0.5 0.6-1.0 1.1-1.5 > 1.5 Mean SD strategy measured ;5; 0.5 0.6-1.0 1.1-1.5 > 1.5 Mean SD

1-A-Sl 375 73.0 24.0 2.9 0.1 0.03 0.45 2-A-Sl 375 83.7 15.5 0.8 - 0.02 0.36

750 88.1 11.6 0.3 - 0.01 0.33 750 95.2 4.8 - --. - 0.01 0.26

1500 97.3 2.7 - -- 0.00 0.23 1500 99.7 0.3 - - 0.01 0.18

2250 98.8 1.2 - -- 0.01 0.20 2250 99.7 0.3 -- - 0.00 0.15

3000 99.9 0.1 - - 0.00 0.17 3000 100.0 - -- -- 0.00 0.12

1-A-S5 375 76.4 21.7 1.8 0.1 0.00 0.43 2-C-Sl 375 80.5 18.8 0.7 - 0.01 0.39

750 91.2 8.7 0.1 - - 0.01 0.30 750 94.5 5.5 - - - 0.01 ·0.27

1500 98.5 1.5 - -- 0.00 0.21 1500 98.8 1.2 - --- 0.00 0.20

2250 99.5 0.5 - -- 0.00 0.17 2250 99.9 0.1 - - 0.00 0.15

3000 99.7 0.3 - -- 0.00 0.15 3000 100.0 - - - 0.00 0.14

l-C-S1 375 72.0 22.9 4.9 0.2 - 0.01 0.49 3-A-Sl 375 82.7 16.7 0.6 - 0.02 0.38

750 88.2 11.6 0.2 -- 0.00 0.33 750 94.3 5.7 - - 0.02 0.25

1500 96.6 3.4 - - - 0.01 0.24 1500 99.3 0.7 -- - 0.01 0.19

2250 99.2 0.8 - - 0.00 0.19 2250 99.9 0.1 -- - 0.00 0.16

3000 99.9 0.1 -- - 0.00 0.18 3000 100.0 - -- - - 0.01 0.14

1-C-S5 375 70.3 26.1 3.6 - 0.01 0.48 3-C-Sl 375 75.4 23.1 1.5 - 0.01 0.43

750 87.4 12.2 0.4 - 0.01 0.34 750 90.8 9.1 0.1 -- 0.01 0.30

1500 97.8 2.2 - - 0.00 0.23 1500 98.3 1.7 - - 0.00 0.21

2250 99.3 0.7 - - 0.00 0.19 2250 99.8 0.2 - - 0.00 0.17

3000 99.8 0.2 - - 0.00 0.18 3000 100.0 - - - 0.01 0.15

I
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Figure 1 - Standard lengths of brown shrimp (Crangon crangon).
TL = total length ; CL = carapace length
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Figure 2 - Original size distribution of the shrimp catchest
used as a basis to calculate the theoretical populations.

Based on data collected in March 1995.
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Figure 3 - Smoothed size distribution of the shrimp catches,
used as a basis to calculate the theoretical populations.
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Figure 4 - "Reconstructed" size distribution of the shrimp catches,
calculated by means of aseries of superposed normal distributions.
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Figure 5 - Theoretical populations, used in the simulations.
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Figure 6 - Cod-end and shrimp riddle selection ogives,
used to subdivide the theoretical populations into catch fractions.
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Figure 7 - Size distributions of the theoretical populations,
and their subdivision into catch fractions.
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Figure 7 (continued) - Size distributions of the theoretical populations,
and their subdivision into catch fractions.
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Figure 7 (continued) - Size distributions of the theoretical populations,
and their subdivision into catch fractions.
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Figure 8 - Effect of sampie size (N) on the estimates of the mean size of the population (top),
and corresponding probability-probability plots tor the recalculated mean sizes (bottom).

The example given is for simulation 1-A-S1.
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Figuro 9 - Effect of sampIe size (N) on the estimates of
the numbers-at-Iength.

The example given is for simulation 1-A-S1.
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Figure 9 (continued) - Effect of sampie size (N) on the estimates of
the numbers-at-Iength.

The example given is for simulation 1-A-S1.
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Figure 10 - Relationships between the 95 % ranges of the noise levels in
the estimated numbers-at-Iength and the expected numbers-at-Iength,

for different sampie sizes (N) and smoothing regimes.
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The example given is for simulation 1-A-S1.
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Figure 12 - Effect of smoothing on the medians of the noise levels in
the estimated numbers-at-Iength, for different sampie sizes (N).

The example given is for simulation 1-A-S1.
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Figure 13 - Ratios between the 95 % ranges of the noise levels
under sampling strategies 55 and 51, for different sampIe sizes (N).
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Figure 14 - Effect of sampling strategy and sampie size on the estimates of
the numbers of shrimps in selected groupings of size classes.
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Figure 15 - Percentages of runs giving Chi2 p-values ~ 0.50, ~ 0.75 and ~ 0.90, under various conditions with
respect to size structure of the population, sampling strategy, sampIe size and smoothing regime.
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Figure 15 (continued) - Percentages of runs giving ChF p-values ~ 0.50, ~ 0.75 and ~ 0.90, under various conditions with
respect to size structure of the population, sampling strategy, sampie size and smoothing regime.
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