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1 Introduction

The global ocean is one of the principal compo-
nents of the climatic system. For instance, the
oceanic poleward heat transport is of the same
order of magnitude as the atmospheric one, i.e.
10*®* W [15]. Due to the non-linear behaviour
of the climatic system, numerical models are the
only serious tools to understand thoroughly the
interaction of its components and to predict its
evolution.

Nowadays, most global ocean circulation mod-
els (OGCM) are based on finite difference codes
based on structured grids. However, there does
not exist curvilinear coordinate systems on the
sphere without singularities and meridian con-
vergence zone — what limits the stability of the
explicit models. Despite all efforts to bypass
these drawbacks [3, 7, 11, 12], two main disad-
vantages due to the rigidness of the structured
grids are inescapable. Firstly, the rigidness of
these grids combined with the expensive CPU-
cost of the OGCM prevent the specific refinement
of the grids without nesting or adaptive mesh re-
finement [4]. Secondly, the piece-wise constant
shape coastlines drawn by the structured grids of
the global ocean exert some spurious form stress
on model boundary currents [1] and the alter-
native grid generation method based on the the
boundary-fitted coordinates [9] only works for re-
gional applications. Weaver, Marshall or Haid-
vogel [1, 10, 13] suggested that the finite ele-
ment methods could be a promising alternative
approach for OGCM codes.

In this paper, we present an automatic mesh gen-
erator for the global ocean — a spherical domain.
To take advantage of robust and well known al-
gorithms, we have chosen to subdivide the world
ocean into a conform triangulation. Renka [16]
already implemented an automatic triangulation
generator of the sphere which, unlike the gener-
ator described below, did not take into account
boundaries like coastlines.
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2 Finite Elements for OGCM

Let u be the exact solution of a general circula-
tion model. The block-field vector u includes all
variables of an oceanic circulation model : the ve-
locity components, the pressure, the temperature
and the salinity. Let u”* be the approximation of
u so that ;

N
(1) u(x,8) = Y Ui(t)¢i(x)

i=1

where ¢; are typically piecewise polynomial shape
functions and where U; are unknown nodal val-
ues.

For a coercive discrete operator, the following in-
terpolation property holds [6] :

yas)
2)  |lu—ut||m@ < C"p—li‘l”m(n)

where ||.||g1(9) and ||.]|g2¢q) are usual Sobolev
norms, p is the order of the shape functions, b is
a typical mesh size, p is a typical inscribed cir-
cle radius of the triangulation elements, C is a
triangulation-independent constant. The quality
factor £ — the inverse of the shape factor 2 —
is commonly used to quantify the quality of a tri- -
angulation. It belongs to the interval [0,1]. The
quality factor of a degenerated triangle vanishes
while the one of an equilateral triangle is equal to
the unity.

Due to the equation (2), the fact that the trian-
gulation exhibits great quality factors is a crucial
issue for the accuracy of the finite element ap-
proximation of the solution. Typically, it is ac-
cepted that a triangulation is a good one if all
its triangles have just acute angles. That means
the quality factor of the worst triangle must be
greater than 0.5. The so-called Delaunay trian-
gulation generally exhibits good shape factors.
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3 Delaunay triangulation

Let X = {Z1,Z2,...,73} be a set of points, called
sites. Now, partition the plane in Voronoi regions
where each point are nearer a site than the oth-
ers. The Voronoi diagram is defined as the set
of points belonging to more than one Voronoi di-
agram. The Delaunay triangulation of the sites
X is the dual graph of the Voronoi diagram and
is obtained by drawing connecting lines between
sites perpendicular to the edges of the diagram.
An important property of the Delaunay diagram
is the following: the open circle circumscribed to
any triangle of the Delaunay triangle does not
contain any triangle vertex.

Figure 1: The Delaunay triangulation (continu-
ous lines) is obtained by drawing connecting lines
between sites perpendicular to the edges of the
Voronoi diagram (dash lines). Sometimes quad-
rangular elements are produced and can be cor-
rectly divided into two triangles.

To adapt the Delaunay triangulation to the
sphere, we have replaced the usual distance with
the geodesic one, i.e. the length of the unique
great circle arc passing trough two points of the
sphere. Therefore, we can define the Voronoi dia-
gram on the sphere. It can be demonstrated that
the dual triangulation of this diagram exhibits in
most cases good shape factors. Such a triangu-
lation is characterized by the Delaunay criterion:
if S is the surface to triangulate, the open sphere
circumscribed to any triangle of the triangulation
and whose center lies on the surface of S does not
contain any triangle vertex.

Delaunay triangulations are used for several ap-
plications and stimulated researchers to develop
a variety of algorithms to obtain it. As state-of-
the-art approaches, let us cite the intersection of
halfplanes, the divide and conquer , the Fortune’s
algorithm or the incremental construction [8, 17].

As our problem consists in creating a good trian-

gulation from a given spherical domain but with-
out knowing a priori all the sites z;, we have
chosen an incremental construction. Indeed, the
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principle of the incremental method is the con-
struction of a Delaunay triangulation 7;,; of
k+ 1 sites from a Delaunay triangulation 7. The
method we have used can be described as follows:

Creation of an initial triangulation

The initial triangulation must be a Delaunay tri-
angulation, which can be easily implemented. For
symmetry reasons we have chosen an initial tri-
angulation with 5 sites (two on the poles and the
remaining three on the equator) and six triangles.
However, this is not the only possible choice.

Figure 2: A uniform Delaunay triangulation of
the ocean (12000 triangles).

Insertion of boundary sites

To have an easy representation of continents and
islands, known boundary sites are firstly inserted
one by one in the Delaunay triangulation.

The creation of a Delaunay triangulation 73, of
k + 1 sites from a Delaunay triangulation 7z of
k sites needs two steps. The first one consists in
inserting the new site p in the old triangulation
Tk: the triangle which contains p is searched and
replaced by three new triangles whose vertices are_
the new site p and the vertices of the old triangle.
The second step transforms the new triangulation
into a Delaunay one. Only a limited number of
triangles are involved by such a transformation.
We proceed by swapping the common segment of
two triangles which do not satisfies the Delaunay
criterion [5].




Destruction of triangles

The insertion of boundary sites in the triangu-
lation generates triangles outside the oceans. To
avoid the creation of non-desired inner sites, those
are destroyed immediately after the insertion of
the boundary sites.

Creation of inner sites

Finally, new sites are created in a dynamic fash-
ion at the middle of well chosen segments in order
to reach a preset level of local mesh size. Uni-
form distribution of triangles shapes is obtained
by an iterative procedure that consists in insert-
ing a new site in the middle of the longest segment
of the triangulation. Non-uniform triangulations
are obtained by using a weighted distance to iden-
tify the longest segment. Illustrations of uniform
and graded meshes along Western boundary and
Equator are respectively in Figure 2 and Figure

Figure 3: A graded Delaunay triangulation mesh
of the global ocean refining the Gulf Stream and
the equatorial regions (7000 triangles).

4 Results

The boundary design and the segments weight
govern essentially the quality of the grid — both
controlled by the user.

The boundary design must be adapted to the de-
sired mesh size: a too fine boundary design leads
to flat triangles. The stopping condition of the
incremental algorithm must be based on an a pri-
ori specified mesh size, what allows an automatic
fit of the boundary design. “As the small-scale
features of the coastlines (fjords, bays, etc.) do
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not significantly influence the large-scale pattern
of the oceanic circulation and as they are limit-
ing factors for an OGCM, we treat the boundary
design in two steps.
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Figure 4: Distribution of the quality factors of
the triangulation displayed in Figure 2.

In the first step, a physical representation of the
coastlines is obtained by inserting boundary sites
with exact geographical coordinates. The choice
of those nodes depends mainly on modeling
issues. In the second step, such a representa-
tion is enriched by adding new boundary sites
with interpolated cogrdinates and not exact
geographical coordinates. In fact, we filter small
scale details of the coastlines. Those details
would be totally irrelevant for our calculations
and would moreover introduce critical numerical
difficulties. Figure 4 shows the distribution of
the quality factor of Figure 2. More than 90 %
of the triangles of the grid have quality factor
greater than 0.7 and no triangles have quality
factor smaller than 0.5. The worst quality factor
is equal to 0.53.

Finally, strong difference in weight distribution
would lead to highly graded meshes that perform.
poorly from a numerical and geometrical point of
view. Indeed, sharp gradients in weight distribu-
tion mean that two regions with different mesh
size are juxtaposed so that at the interface flat
triangles could be generated.

5 Conclusion

We have implemented an incremental algorithm
to generate unstructured mesh for a global ocean
circulation model. Needing only the specification
of a coastline and segments weight, a triangula-



tion with good shape factors can automatically be
created. In particular, no singularities or uncon-
trolled convergence zones are created. The gener-
ator appears to be able to refine at a correct scale
the topological and dynamical features which are
key points for a globally well-resolved ocean cir-
culation model. Among these are equatorial dy-
namic, western boundary currents, mesoscale ed-
dies, ridges, continental slopes, channels or straits
(figure 3).

The next step of our work will be the develop-
ment of an ocean general circulation model based
on the Finite Element method to compare the
efficiency of unstructured grids with classical ap-
proaches. Finally, the mesh generator is a general
purpose tool that could be useful in other fields
of geophysics. Let us just cite the interpretation
of scattered measurements on the Earth [14] or
the analysis of the geography influence in paleo-
climates [2].
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