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CURVILINEAR COORDINATE SYSTEM

E. Deleersnijder, J-P. Van Ypersele and J-M. Campin

ABSTRACT

A orthogonal, curvilinear grid system for World
Ocean modelling is examined. It involves the coupling
of two non-singular spherical sub-grids, avoiding the
North Pole singularity of the standard, spherical coor-
dinates. The two sub-grids are connected in the equa-
torial Atlantic. It is shown how to minimize the sud-
den variation in the grid size across the connection
line. It is suggested that the two spherical coordinate
systems be considered as a single orthogonal, curvilin-
ear coordinate system, in which the metric coefficients
and the OGCM governing equations are established.

INTRODUCTION

Although the surface and the volume of the po-
lar oceans are small compared with the whole World
Ocean, sea-ice dynamics has a very significant influ-
ence on the Earth’s climate: the processes of melting
or freezing of sea-ice involve large amounts of energy
and play the role of a significant salt source or sink,
which has a profound influence on the large-scale ther-
mohaline circulation. Thus, ocean models to be used
in global climate studies must be truly global, i.e.,
they are to encompass the polar regions, s0 that they
can be coupled to sea-ice models.

The governing equations of most OGCMs are
discretized according to the finite-difference method.
The numerical grid is generally based on the standard
spherical coordinate system, which has singularities
at both the North and the South Pole. As those singu-
larities are approached, the latitudinal grid size tends
to zero, which may lead to aumerical instabilities be-
cause the CFL condition is no longer met. Since the
South Pole is located sufficiently far away from the
pearest oceanic region, the reduction of the latitudi-
nal grid size has no harmful effect. Thus, it is only
in the Arctic Ocean that the grid or the numerical
method has to be adapted to circumvent this prob-
lem of numerical instability.

Several methods to deal with the singularities of
the spherical coordinates have been examined (see for
example Williamson, 1979). Finite-difference AGCMs
usually rely on the Fourier-filtering of the appropri-
ate latitudinal components of the dependent vari-
ables, or of their time derivatives. This technique,
which has proved very efficient in the atmosphere,
might be less adapted to ocean grids, where not all
the grid points along a latitudinal circle are active.
Despite this potential drawback, Fourier-filtering has
been performed for a long time in global ocean simu-
lations.

Recently, however, the LODYC model (Marti et
al., 1090; Marti et al., 1992) has been adapted to
an orthogonal curvilinear grid obtained by shifting
the northern singularity into a land region, located
in northern Canada. This solution, yet extremely ap-
pealing, requires that the computer code be capable
of dealing with a generalized, orthogonal, curvilin-
ear coordinate system. This is obviously not a se-
rious problem, because the equations when written
in the generalized coordinate system are Very similar
to their spherical counterparts (Hughes and Gaylord,
1964). On the other hand, generating the curvilinear
grid implies the use of a sophisticated grid generation
software. The latter must be capable of producing a
grid that is “sufficiently orthogonal”, since even slight
departures from orthogonality are likely to lead to se-
rious numerical errors (Thompson et al., 1982). Nev-
ertheless, in the long run, the LODYC technique may
be recognized as having compelling advantages.

Another modification of the standard spherical
coordinate system has also been put forward. Al-
though we don’t know who should be credited for in-
venting it, it is K. Bryan who made one of us aware of
this solution, which consists in combining two spher-
ical sub-grids in such a way that their singularities
are not close to their own wet grid points. The first
sub-grid (hereafter referred to as “G”), covering the
Southern Hemisphere and the Pacific Ocean up to the
Bering Strait, is based on geographical spherical co-
ordinates. The second sub-grid (hereafter “G'") is as-
sociated with spherical coordinates having their poles
on the Equator and encompasses the Northern Hemi-
sphere part of the Atlantic together with the Arctic
Ocean. The two sub-grids, G and G', are connected
in the equatorial Atlantic.

In the present note, we provide a theoretical dis-
cussion of the main characteristics of this grid system,
which is being implemented in our OGCM, as well as
in other models, such as that of the British OCCAM
project.

THE SPHERICAL SUB-GRIDS

As stated above, the sub-grid G is based on the
geographical spherical coordinates A, ¢, and z, which,
respectively, represent the longitude, the latitude, and
the altitude above sea level. The cartesian coordi-
nates, X, Y, and Z (Figure 7), are related to the
spherical coordinates by

(X,Y,2) = (a+ z)(cos A cos ¢,sin A cos ¢,sin ¢),

where a denotes the Earth’s radius.



The North Pole of G’ is located on the geograph-
ical equator at longitude 8. The spherical coordinates
X,¢’', and 2’ = 2, and the corresponding cartesian
coordinates, X', Y’, and Z’ (Figure 7), satisfy

(X\v',2) =
(a+ z')(cos A cos¢’,sin X' cos ¢, sin ¢').

It is assumed that the Atlantic part of the Equator
corresponds to the A’ = m/2 meridian of the modified
spherical coordinates. It is assumed that 8 > 0. It may
be seen that (X,Y,Z) = Y'sinf+2' cos 8, —Y' cos 6+
Z'sin8, X'), which implies

(A-6,9) = ,

[—atan (sin A" cos ¢), asin (cos A’ cos ¢)] - ()
The meridians of G are connected to the parallels of
G' in the equatorial Atlantic—with equal tangents,
but unequal curvatures. For G and G’ to be compat-
ible, it is necessary that the grid sizes be such that
A) = A¢' (Figure 8)..

For numerical accuracy, it is desirable that the
grid size variation be as “slow” as possible (Thompson
et al., 1985; Castro and Jones, 1987). It is across the
connection line of G and G’ that the rate of variation
of the grid size is the highest, as is illustrated below.

Consider the grid point A located on the Equa-
tor at longitude Ag and latitude ¢4 = 0. In the
Southern Hemisphere, the grid point that is near-
est to A is B, the position of which is given by
(Ag,¢8) = (Aa,—A¢). To the [lorth, the neigh-
bour of A is called C and is located at (Ay,¢p) =
(m/2—- AN, A4+ m/2—8). If G were extended to the
North of the Equator, C would be at location D, i.e.,
at (Ap,¢p) = (A4, A¢). In a regular grid, C' would
be equivalent to D. This is however not the case. It
is suggested to measure the departure from a regular
grid by (dy,dg) = (Ac — Ap.$p — c) (Figure 9).
Using (1), one obtains

dy = 1/2 — ¢/-atan (cos AN cotdl)

= (1/4) sin (2¢5) AN + 0 (Ax‘) , 2

dgy = A¢ — asin (sin AN cos Of)

=A¢—ANcosgh + 0 (AX“) : (3)
Let us assume, for the moment, that A¢ = AN,
Hence, minimizing | d) | and | dy | requires that | ¢} |
be kept as small as possible, implying that the con-
nection of G and G’ must be carried out in the vicinity
of the equator of G'. In the Atlantic, the Equator ap-
proximately extends from the mouth of the Amazon
(A = —50° to Libreville (in Gabon) (A = 10°), The
width of the connection is thus 60° of latitude. There-
fore, by setting the North Pole of G’ at A =8 = 70°,
i.e., in the Macintosh II Indian Ocean (near the Mal-
dives), one has —30° < ¢.30°. The South Pole of G’
is located at A = —110°, in the Pacific Ocean.

Clearly, | dx |<<| dg |. We thus concentrate on
ds and we suggest looking for the value of AM mini-
mizing the integral of (d;)? along the connection line.
This elementary least squares analysis is performed
with the asymptotic expansion of dy for small AN,
ie, dy ~ AN cos¢l,. It yields AN ~ 1.05A¢. Hence,
it may safely be assumed that AN = A¢, which is ob-
viously the simplest grid configuration. Nevertheless,
at the ends of the connection line, where ¢/, &~ +£30°,
dy/A¢ a2 1 —cos ¢}, is as small as 0.8. This represents
a somewhat sudden, but probably acceptable (Castro
and Jones, 1987), transition from G to G’.

A SINGLE COORDINATE SYSTEM

Most OGCM computer codes assume that the
numerical grid is based on a single coordinate sys-
tem. As we suggest to resort to 2 different coordi-
nate systems, modifications will have to be brought
about in the computer code. Various approaches may
be thought of, and it is difficult to determine a pri-
ori which one is preferable. Here we suggest consider-
ing the two spherical coordinate systems as a single,
orthogonal, curvilinear coordinate system. This way,
the computational domain doesn’t have to be viewed
as a set of two sub-domains in which the computations
have to be carried out separately—with an appropri-
ate matching on the connection line. Furthermore, as
will be seen, a natural treatment is possible of the
sudden grid size decrease across the connection line.
On the other hand, however, the governing equations
must be written in a curvilinear coordinate system—
as is done in the LODYC model (Marti et al, 1990;
Marti et al., 1992)—that is slightly more complicated
than the original spherical one.

The independent variables z, y, and z, of our
general coordinate system satisfy (8/0z, 8/0y) =
a~'(8/0A,8/0¢) in G and (8/0z, B8/dy) =
a~1(8/8¢', —-8/0A) in G'. The horizontal grid sizes
are Az = aAX = aA¢’ and Ay = aA¢ = aA). As
for the spherical coordinate used in most OGCMs,
it is considered that the metric coefficients are such
that dh;/0z = 0 = Oh,/0z, and that h, = 1. It fol-
lows that Macintosh II (k;, hy) = (cos ¢, 1) in G and
= (1,cos¢') in G'.

Unlike hz, the metric coefficient h, is discontin-
uous across the connection line of G and G'. Indeed,
on the northern side of this line hy is equal to cos ¢/,
whereas it is equal to 1 in the Southern Hemisphere. If
analytic calculations were carried out, this difficulty
would be dealt with by simply matching the values
of the dependent variables and the appropriate fluxes
across the connection line. For the purposes of nu-
merical calculations, a single value of h, is obviously
required at ¢ = 0.

Let us consider a grid box straddling the Equa-
tor. Its area is about a’AA(A@/2 + cosg’AAN/2),



which must be equivalent to h;hyAzAy. Hence, hy, =
(1 +cos ¢')/2 on the connection line.

Here, it should be pointed out that the metric
coefficients should not be estimated from analytic ex-
pressions. In fact, to preseve the order of accuracy of
the numerical scheme, the metric coefficients should
be computed from finite-difference expressions that
are consistent with those used to solve the govern-
ing equations of the model (Thompson et al., 1985).
However, with spherical coordinate it is so tempting
to analytically derive the values of the metric coeffi-
cients that most modellers, if not all of them, proceed
this way. This is the reason that we also adopted this
method.

To complete the present study, we outline the
OGCM equations in the coordinate system described
above. We define the following operators:

Ala) = % (hzhya)
5 5 . (4)
+ = (hyua) + 3y (hzva) + (hzhywa),

Jz
7} « by Oa

a o he O a « fa
vy (a5 ) + 3 (ancn ).
(5)
where t denotes time; u, v, and w represent the ve-
locity components along the z—, y—, and z—axis; A%
and A% are appropriate horizontal and vertical diffu-
sivities of the quantity a.

The mass conservation equation reads (Hughes
and Gaylord, 1964):

A(l) =0- (6)

If Q¢ stands for the rate of production/destruction of

the scalar quantity ¢, it is easily shown that the latter
obeys (Hughes and Gaylord, 1964)

A(c) = hzhyQ° + D(c)- (7)

With the above notations, the horizontal momentum
equations may be written as (Hughes and Gaylord,
1964):

A@) -u‘~’%ﬂ
oh, hy Bp (8)
+U1ng—=hzhyfv-;;a+p(u),
. Y Av) - uzﬁ! = —hyhy fu - E"—a—;ﬂ+D(u), (9)
p 3}7 po Oy

cx

where f, po, and p, denote the Coriolis parameter, the
reference density, and the pressure, respectively. In
the horizontal diffusion terms of the momentum equa-
tions, the horizontal velocity is considered a scalar

quantity, meaning that we have neglected the nu-
merous, additional terms stemming from the deriva-
tives of the base vectors. This simplifying assumption,
which may not be universally accepted, rests on two
main arguments.

First, the horizontal diffusion terms are intro-
duced to represent the effect of sub-grid scale ad-
vection processes and to damp small scale computa-
tional modes which are ill represented by the numeri-
cal scheme. It is far from guaranteed that those terms
should be parameterized by resorting to the “true
Laplacian” of the horizontal velocity vector. Thus,
any term that mostly damp the smallest scale mo-
tions may be a good candidate.

Second, by not using the Laplacian of the hor-
izontal velocity vectors, we drop terms that involve,
at most, first derivatives of the velocity components.
They should thus be smaller than those, which are re-
tained in (8) and (9), involving second derivatives of
the velocity components, since the Laplacian operator
is dominated by the smallest scale motions.

It is worth pointing out that the last two terms in
the left-hand side of (8) and (9) stem from the deriva-
tives of the base vectors. Whether or not they could
be neglected is not clear. The reasoning applied to
similar terms in the diffusive parameterizations may
not hold valid for them, chiefly because the advective
processes are likely to be larger than diffusive ones.
The terms in question appear as source/sink terms
although they come from the budget of the momen-
tum fluxes, which means that they may be cast into
a conservative form. To do so, several methods are
suggested in the literature (Anderson et al., 1968; Vi-
nokur, 1974; Eiseman and Stone, 1980), but they in-
volve complications that are probably unnecessary in
the scope of our grid system, which is fairly regular,
rendering it less necessary to seek truly conservative
forms.

CONCLUSIONS

An orthogonal, curvilinear grid is examined for
application in OGCMs. The properties of the grid are
studied on a theoretical basis and it is shown that
our grid is most probably acceptable. This will hope-
fully be confirmed by the runs of our OGCM that will
soon be available on the global grid system discussed
above.
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FIGURE 7

(Deleersnijder, Van Ypersele and Campin)
Section through the equatorial plane showing the axes of the cartesian coordinates associated with the two
spherical coordinate systems considered in the present study.
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FIGURE 8
(Deleersnijder, Van Ypersele and Campin)

Perspective view of our grid system. The thick line represents the intersection of G and G'.
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(Deleersnijder, Van Ypersele and Campin)

Locations of the points A, B, and C, and D, in the equatorial Atlantic used to define the distances d, and
dy.



