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2 3 7 9 6 n  a  p e c u l i a r i t y  o f  t h e  b - g r i i ;

E . D e le e rsn ijd e r  a n d  Jean -M ich e l C a m p in
Vlaams Instituut voor de Zae
Flanders Marine Institute

To determ ine the stability  conditions of a  nu­
m erical scheme, it is custom ary to exam ine a lin­
earized version in an unbounded dom ain. This is usu­
ally referred to as the von Neum an analysis. A lthough 
this technique resorts to m any simplifying assum p­
tions, it is generally capable of providing a  satisfac­
tory  approxim ation to  the stab ility  condition of the 
original, non-idealized, num erical algorithm . Here, we 
present a  simple geophysical fluid problem  where the 
von N eum an analysis provides a stability  lim it th a t 
is completely irrelevant and, hence, useless.

We consider linear, dam ped inertia-gravity  
waves, which obey the following equations:

^  +  h V -u =  0, (1)

—  +  f e  X u  =  - g  y  r? +  A H V 2 u , (2)

where t is time; V  denotes the horizontal gradient op­
erator; r¡ and  u  represent the  sea surface elevation and 
the horizontal velocity; e , h, ƒ, g , and A h  are the ver­
tical unit vector, the (constant) sea depth , the  (con­
s tan t)  Coriolis param eter, the  g rav ita tional accelera­
tion, and the horizontal viscosity, respectively.

The dom ain of interest is assum ed to  be closed so 
th a t, on its  boundary, u  m ust vanish. Hence, if A h  > 
0, the to ta l— potential -f kinetic—energy of the flow 
m ust decrease until a s ta te  of rest is a tta ined . If  A h  is 
zero, only the com ponent of u  norm al to  the  boundary  
is prescribed to  be zero and  the  to ta l energy rem ains 
constan t as the tim e increases. It is desirable th a t 
any num erical solution of ( l) - (2 )  exhibit the same 
properties.

We define all variables on the B-grid and we ap­
ply the well known forw ard-backw ard scheme to (1 )- 
(2), i.e., all tim e derivatives are discretized by forward 
differences, the o ther term s are taken explicitly, w ith 
the  exception of the  pressure term  th a t  is evaluated at 
in stan t i - f  A í, instead of t, A í being the  tim e step. In 
addition, the  Coriolis te rm  is num erically evaluated 
by

/ e x  u  —+/[(1 — <*)e  X u ( i)  -f a e  x u ( i  +  A í)],
0 <  a  <  1, (3)

where a  is the “ra te  of im plicitness” of the  tim e dis­
cretization of f e  X u . One m ay believe th a t, when

a  >  1/2 , artificial dam ping is added to the scheme, 
which should th en  become m ore stable. This seems to 
be confirmed by the von N eum an analysis, which for 
A h  =  0, leads to  the following stability  conditions:

a  =  l / 2 :  A í <  — , (4)

o  =  l :  A í <  — — --------  1 (5)
V ^m ax(0,1 —

w ith c2 =  gh  and  A s =  min(A®, A y)— A x  and A y  
denoting the space increm ents in the  direction of the 
x — and y— axis, respectively.

As can be seen from (4)—(5), tak ing  o  =  1 should 
improve the scheme’s stability  and, if A s2f 2/(Ac2) > 
1, the num erical algorithm  should be unconditionally 
stable. One m ay believe th a t introducing a  non-zero 
viscosity should not render the scheme less stable.

We have carried ou t a  series of numerical ex­
perim ents in a  square dom ain of 50 x 50 grid points 
bounded by im perm eable walls. Very surprisingly, the 
numerical results are in m arked constrast w ith what 
could be expected from  the  theoretical stability  analy­
sis!

For A h  =  0 and a  =  1, the dom ain of stability 
of the  scheme should be delim ited by

f 2* 2 > « ( ^  ■-1)  • (6)

The numerical sim ulations indicate a completely 
different stability dom ain (Figure la ) . If  some diffu­
sion is present, the  stability  dom ain som ewhat ex­
pands bu t remains m uch smaller th an  th a t corre­
sponding to  (6)(Figure lb ).

It is striking to  note th a t, for a  =  1 /2, the nu­
m erical experim ents (Figure le  and  Id ) lead to a 
stability  dom ain th a t seems to be approxim ately in 
agreem ent w ith (4). As a  m a tte r of fact, it  is only for 
a  =  1 /2  th a t  the scheme presents a  large area of sta­
bility. Thus, for all practical purposes, it is clear th a t 
one should only consider a  =  1 /2.

C an anyone provide a  theoretical explanation for 
th a t odd behaviour?
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