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Abstract

Coarse grid Ocean General Circulation Models (OGCMs) take into account the effect of unresolved mesoscale ed-
dies by means of a rotated mixing operator which diffuses tracers (such as temperature or salinity) along surfaces of
constant potential density called isopycnals. In spite of its profitable physical aspects, the discrete version of the is-
opycnal mixing parameterization can produce oscillations in the tracer fields, which disagrees with the well-known
properties of diffusion operators. The causes of this non-monotonic behaviour of a diffusion operator are highlighted.
The location and magnitude of these over-funder-shootings are examined in the results of an OGCM. © 1998 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Oceanic mesoscale eddies, the size of which typically lies between 10 and 100 km, play an im-
portant role in the transport of tracers [1-4]. Eddy-resolving models 5] require too large compu-
tational resources to be used for long simulations, such as those needed in climaie studies.
Therefore, most climate-oriented Ocean General Circulation Models (OGCMs) do not explicitly
resolve the mesoscale eddies, implying that their effect must be parameterized appropriately. For
an extended period of time, this has been achieved by means of horizontal diffusion terms [2-4].

However, it is generally believed that mesoscale eddies cause tracers, such as temperature or
salinity, to mix predominantly along surfaces of constant potential density called isopycnals (den-
sity referenced at sea surface [1,6]) or neutral surfaces (density referenced locally at the mixing
depth [7], rather than along horizontal surfaces). This is why Redi [1] and Solomon [6] suggested
that a mixing operator leading to diffusion along isopycnals be used. A simplified form of the lat-
ter, based on relevant approximations, has been introduced by Cox [8] to enable a more practical
numerical implementation. The formulation of Cox [8] was tested by several authors [2-4,9], who
noticed significant improvements of the model results, such as a better representation of the in-
termediate water masses, a freshening of the deep ocean and a drastic reduction of convective
activity.
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In spite of the improvements mentioned above, a number of problems remain unsolved. In par-
ticular, when the isopycnal mixing terms are discretised according to the scheme of Cox [8], it is
generally necessary to retain a small, purely horizontal mixing term to avoid numerical problems
such as over-/under-shootings of the tracer values [2-4,9].

Investigating the causes of this deficiency and understanding the role of the background hor-
izontal diffusion are the main objectives of the present article. The Cox [8] operator is described in
Section 2, while its usual discretisation is detailed in Section 3. Then, the reason why over-/under-
shootings can arise is highlighted (Section 4). In Section 5, the amplitude of the latter is estimated
in the results of an OGCM. Finally, conclusions are drawn in Section 6.

2. Isopycnal diffusion operator in the Cox approximation

Taking advantage of the smallness of the slope of the isopycnals (=~107), of the ratio of the
vertical to the horizontal scales of ocean basins (=~1073) and of the ratio of the cross-isopycnal
to along-isopycnal eddy coefficients (~10~7), Cox [8] simplified the formulation of Redi [1], ob-
taining a parameterization implying smaller computational cost. The small-slope assumption of
Cox (8] is well verified in the ocean because isopycnals are quasi-horizontal within the bulk of
ocean volume except in a few regions corresponding to convective activity, upwelling and strong
currents. It is worth stressing that the modified expression, in contrast to Redi’s [1], does not con-
tain any horizontal cross - derivatives, so that, without any loss of generality, the present discus-
sion may be carried in out in a single vertical plane.

Let £, x and z represent time, the horizontal coordinate and the vertical coordinate — increasing
upward — , respectively. Taking solely into account diffusion along surfaces of constant potential
density p, the concentration C of a passive tracer obeys the following partial differential equation
expressed in Cartesian coordinates

0,C = —o,F" — 0F* (1)
with
£ K~ K*][0o, C
z == 2% 4 1 (2)
F K K 0 C
where 8, 0, 0, F* and F* are the temporal derivative, the horizontal derivative, the vertical de-

rivative, the horizontal and vertical diffusive fluxes, respectively. The coefficients K, o, K7,
K are the components of the Cox isopycnal diffusivity tensor

K= K= l «
= ) 3
[sz Kﬂ} "‘[a aZJ 3)
where k; is the along-isopycnal diffusivity and o= —0,p/0,p denotes the slope of the isopycnals.

The evolution equation (1) may be reformulated in terms of equivalent horizontal and vertical
diffusivities [10], x4 and Ky
0,C = 8,(ky0,C) + 0,(%y0.C) (4)
with
1
(’_{HJEV):KI[I—”C: az(l—_)]': (5)
e

where rc = a/oc is the ratio of the slope  of isopycnals to the slope of a; = —0,C/8,C of the iso-
concentration lines. If the slope ratio rc, is positive, then the equivalent diffusivities have opposite
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signs, so that one of the fluxes is down-gradient while the other is up-gradient, implying that nu-
merical problems may arise when solving the discrete counterpart of the evolution equation
above.

In spite of the potential occurrence of anti-diffusive fluxes, the isopycnal operator is clearly a
well-conditioned diffusion operator, which verifies the following “min-max principle”: in a do-
main V limited by insulating boundaries, the minimum concentration does not decrease as time
progresses, while the maximum does not increase. To demonstrate the first part of this state-
ment — i.e. that the minimum is not decreasing — , it is convenient to re-write C(t, x, z) as

C(t,x,z) = min[C(to,x,2)] + C_(t,x,2) + C,(t,x,2), (6)
where
C_{t,x,z) = min{0, C(¢,x,z) — min[C(ty, x, 2)]}, (7)
C.(¢,x,z) = max{0, C(¢,x,z) — max[C(t, x,2)]}. (8)
Combining Eqgs. (1)~(3) and Egs. (6)~(8), it is readily seen that:
%[Cfdxdz=u2/(axCﬁ+cxazC_)2dxdz\<\0. (9)
v v

Since C_(to, x, z) is zero in ¥V, Eq. (9) indicates that C_ is zero in V as time progresses (¢ = t;),
implying that the concentration will not become smaller than the minimum observed at ty. Dem-
onstrating that the maximum concentration does not increase may be achieved similarly.

It will be seen that a standard discretisation of the isopycnal diffusion equation [8], set out in
the next section, does not obey the above min—max principle,

3. Spatial discretisation of the mixing operator

It is believed that the main reason why the min-max principle may be violated is related to the
spatial discretisation of the tracer equation, which is the reason why we will focus on this.

As indicated in Fig. 1, integer indices i and k are associated with the horizontal and vertical
discretisations, respectively. So, a;, represents the value of the variable g at x = iAx and z =kAz,
where Ax and Az are the horizontal and vertical grid sizes, respectively. It is convenient to use the
following discrete operators:

Qit1/2k — Ai1/2h Aik+1/2 — Aik—1/2
(5xai,kaazai,fc) " ( i+1/ Ax i M il AZ : )’ (10)
s Qiyi/2, + Ai_i2441/2 + Q12172 F Gig1 /24—
aur,z _ Fit1/2k+1/2 J2k+1/2 ; 1/2k-1] +1/2,k 1/2. (ll)

With the above notations, the discretised form of the isopycnal diffusion operator D (right-hand
side of Eq. (1)), reads

Di,k = AéxP;fk - 5ZF;';:J (12)
where the fluxes are computed as

Flipe = —11(8Civiyan + tiijaib.Crvipon ), (13)

1

Fiop = —Kiligr12 (oiger1/28,Ciy /2.4k0xCi st /2”) (14)
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Fig. 1. Numerical grid in the vertical plane (indice k increases vertically downward). Horizontal and vertical fluxes of the
tracer C are evaluated at square and circle hatched points, respectively. A double mean average is used when derivatives
are needed where they are not naturally evaluated.

with
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For consistency with the small-slope approximation and computational stability, Cox recom-
mended that the absolute values of « evaluated according to Eq. (15) be not allowed to become
larger than an appropriate threshold, typically 1072

It is very important to discuss some consequences of this necessary limiting of slope. By defi-
nition, the isopycnal diffusion operator is expected to have no effect on a tracer which is homo-
geneous along isopycnal surfaces. This property is satisfied for the continuous Egs. (1)~(3) and
discrete Eqgs. (12)(15) cases. Indeed, it is readily seen that when the iso-p are parallel to the
iso-C, replacing p by C in the definition of the isopycnal slope yields trivially a zero diffusive flux.
However, the numerical scheme does not guarantee this in regions where the slope limitation is
active. In such a case, the numerical scheme diffuses the tracer along isopycnal surfaces of slope
%max Which is smaller than the actual slope. As discussed hereafter, this has important implications
in the particular case where the tracer is potential density. Traditionally, p is diagnosed from the
potential temperature 7, salinity § and pressure fields by using an equation of state. If the latter
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may be linearised, the combination of the heat and salt equations yields an evolution equation for
the density similar to Eq. (1). Hence, p is not affected during isopycnal diffusion of 7" and S be-
cause, by definition, there is no density gradient along isopycnals. In the regions where the slope is
limited, the density evolution is such that buoyancy is somewhat mixed [4], as if a “hidden” con-
vection scheme were at work.

4. Cause of numerical over-/under-shootings

Violations of the min—max principle were noticed repeatedly in large-scale ocean models
[4,8,10-12] but the causes thereof were apparently not identified. This may be achieved rather eas-
ily by considering the following semi-discrete version of the tracer equation (1)

d,Cisx = Diy. ‘ (16)
The discrete isopycnal diffusion operator may be written in terms of coefficients y, ,, obtained from
expressions (12)—(15)

11
Dy = Z Z?l,m Gt bz (17a)

I=—Im=—1

If, for example, the grid spacing and the isopycnal slope are constant, the y,,, read

2i1(1 +1%)

'Y0,0:_.l—sz_a (17b)
} , | :

Y10 =7V-10= K‘x'lj =0, (17¢)
K[?’Z

You = Vo1 = 37 & 0, _ (174d)

Kir
Pip =Yoo = TN = TV T 550 ; (17¢)

where r = aAx/Az is the grid slope ratio (i.e. the ratio of the isopychal slope a to the grid slbpe
aG = Az/Ax). In any case, the consistency of the numerical scheme requires that y,,, verify

ZZ’P’"" =0, (18)

I=—1m=-1

so that Eqgs. (16) and (17e} may be transformed to

11 ‘

C0Cy = Z Z Vim Coptrrn — Cip)- (19)
I=—1m=-1 s

If the monotonicity criterion were verified (i.e. if the coefficients y;,, were positive except for
[/,m] =10,0]), then &,C;; would be positive if C;; were the minimum of the tracer concentration,
and would be negative if C;; were the maximum, implying that the min-max principle would
be obeyed [13]. Strictly speaking, this demonstration is not valid if the maximum or minimum
is adjacent to a boundary of the computational domain. In such a case, more complex arguments
must be appealed to, but the statement above would still hold true. Unfortunately, the discreti-
sation of mixed derivative terms 3,, introduces two negative y,,, (Eq. (17¢)) - either y; _;, y_;
OT Y11, ¥-1,-1 — S0 that the solution of the semi-discrete isopycnal diffusion equation will not nec-

essarily verify the min—max principle.
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According to Jameson [13], the discussion above may be applied locally for each grid point
showing that a local maximum or minimum may increase or decrease, respectively. For example,
if Cip < Ciprpsm, (Lm=-1,0,1), then it cannot be excluded that d,C;y may be negative, which
would lead to a local under-shooting of the solution. Obviously, a similar conclusion may be
drawn for over-shooting. Consequently, ripples could arise and grow, a surprising behaviour
for the solution of a diffusion equation.

It is also useful to split the isopycnal diffusion operator D;; in two contributions, D}, and D};,
which are associated with homogeneous (8., or 9,.) and cross (9,,) derivative terms, respectively.
The operator Dy, which violates the monotonicity criterion has an unmixing behaviour while Dy
is a mixing operator which diffuses in the horizontal and vertical directions with diffusivities Ky
and xya?, respectively. It is worth stressing that the non-monotonicity of D}, may be acceptable
since it introduces the “negative” diffusion sufficient to re-orient the horizontal/vertical diffusion
of D, in the isopycnal direction. Unfortunately, in contrast with the continuous case, the discreti-
sation prevents the appropriate compensation between the D}, and Dy, from occurring because
the associated y;,, are not localised at the same place on the grid.

5. Analysis of min—max violations in an OGCM

The non-monotonic behaviour of the isopycnal mixing formulation could damage the distribu-
tion of any passive tracer by producing unphysical negative concentrations. Furthermore, min—
max violations of temperature T, salinity S and therefore density p caused by the isopycnal mixing
scheme are likely to produce unphysical water masses that may contaminate the world ocean
through transport and diffusion. The impact of these spurious water masses on the degradation
of model results is impossible to assess because we lack a reference monotonic isopycnal scheme
to compare with. However, it is still possible to determine the location and amplitude of the over-/
under-shootings in an OGCM. The measure of over-/under-shootings is taken in the steady state
simulation since we are interested in the equilibrated circulation. It is worth stressing that in case
of transient hydrodynamic simulations, the present over-/under-shooting measure could not be
representative of what happens in the transient phase. However, in the scope of this study, this
1s not problematic since the basic goal is to illustrate and to localise the non-monotonic behaviour
of the 1sopycnal diffusion operator.

5.1. Model set-up and experiments

The OGCM used in this study was developed at the Université Catholique de Louvain [14-16}
(Belgium). This model has an horizontal resolution of 3° x 3° (typically Ax~Ay~:300 km) and a
vertical discretisation with 15 levels ranging from Az=~20 m at surface to Az=800 m for the deep-
est points (Fig. 2). A control run which has been integrated to the steady state is used as a starting
point for the measure of min-max violations.

The amplitude ACscy of the over-/under-shootings of a tracer C (such as temperature T in °C,
salinity § in g/l or density p in kg/m®) caused by a numerical scheme SCH in an OGCM is ob-
tained by integrating the model with solely the scheme SCH active (i.c. all other routines are
switched off) during one iteration and by comparing the updated values of the tracer C at time
n+l to the extrema of C on the grid stencil at the previous time n. By extending the stencil of
Fig. 1 to three dimensions, the definition of ACscy is

ACscy = max [Cl”j; — max [C,f'H,J_f'Hk,J,O] — min [C;'J.‘k — min [C,T'H,JH,,HF] ’ 0] ) (20)
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Fig. 2. Distribution of the grid thickness Az (m) for each level & (increasing from surface to deep ocean) in our OGCM.

where the labels 7/ and K, refer to the points involved in the evaluation of fluxes of the
scheme SCH. This definition is only valid for explicit schemes, we reduce the standard time step
At=10"stoAr=10*ssoastobeina position to resolve all fluxes explicitly without violating sta-
bility constraints.

The magnitude of min-max violations will be determined for the isopycnal mixing scheme —
ACiso over 15 stencil points — and for a centered advection scheme — ACxpvyc over 7 stencil points
—, allowing us to localise the “hot spots” of the over-/under-shootings of the isopycnal scheme and
assess the relative importance of the over-/under-shootings caused by diffusion and advection.
Note that the standard set of parameters (x; = 300 m? 57!, tmax = 1072) of the control run is em-
ployed to determine ACgq.

5.2. Distribution and magnitude of min-max violations of tracers

The salient feature of the distribution of ATiso and ASiso is that the extrema are close to the
surface (Figs. 3 and 4 () and (b)). Indeed, the magnitude and the number of over-funder-shoot-
ings decreases rapidly with depth (Fig. 4(a) and (b)) from the surface, where the vertical grid spac-
ing is fine and isopycnals slope steeply in the mixed layer, to the abyssal ocean, where the vertical
resolution is coarser and isopycnal surfaces are almost horizontal. As the isopycnal diffusivity and
the horizontal resolution are constant with depth, the slope ratio r = a/ag appears to be the factor
that controls most of the depth distribution of ACiso. This is illustrated by the anti-correlation
between the grid thickness (Fig. 2) and the over-/under-shoot profile (Fig. 4(a) and (b)).

Another striking feature of the results is that the majority of over-funder-shooting points are
adjacent to boundaries and especially corners (Figs. 3(a) and 5(b)), which is consistent with
Gerdes et al. [12] (in their Appendix 2). Indeed, although their paper focused on the influence
of numerical advection schemes on OGCM results, the authors noticed that some anomalies of
T'and S outside the physical range and confined to boundaries should be attributed to isopycnal
diffusion. However, this problem was neither further investigated nor quantified.

This privileged position of over-/under-shootings (Fig. 5(b)) shows that a majority of over-/un-
der-shooting points are adjacent to impermeable boundaries) could be explained by the fact that
the zero flux boundary condition reduces the efficiency of the horizontal component of the mixing
operator D/, indamping the over-/under-shootings created by the unmixing operator D, . Another
possible argument is based on the definition of P—i.e. the ratio of the number of points with yy ;s < 0
to the number of wet points involved in the spatial stencil — which shows that the tendency to over-/
under-shoot is stronger in corners (P = 4/92244%) rather than in the open ocean (P =4/15~26%).

It is worth stressing that the propertics of the isopycnal mixing formulation are responsible for
special characteristics of the distribution of Apiso compared to ATiso and ASiso. Indeed, Apiso
always corresponds to over-shootings and has a much less extended pattern relatively to ATso
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Fig. 3. Surface distribution of (a) ATiso and (b) ATapyc (in logarithmic scale) displayed according to a projection cor-
responding to the grid system of our OGCM, which consists of a spherical grid with its poles located on the equator to
cover the Arctic — North Atlantic basin and a classic latitude-longitude grid for the rest of the ocean [16].

and ASiso (not shown here). This is consistent with the construction of the numerical scheme
(17)~(19) which guarantees an exact compensation between 7-S variations — of physical or nu-
merical origin — except in the presence of slope limitations or non-linear effects in the equation
of state which leads to densification of water [4,17].

5.3. Relative importance of over-lunder-shootings

Although the volume associated with over-/under-shootings represents a very small fraction of
the ocean and despite the smallness of the magnitude of ACyso (which is highly dependent on the
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time step, the grid resolution and the isopycnal diffusivity), the cumulative effect of spurious water
masses created at each time step could damage the model’s climatic simulations after millions of
iterations. As the impact of these spurious water masses cannot be assessed for want of a reference
scheme for isopycnal diffusion, it is still instructive to compare ACiso and ACxpyc.

Most extrema of ACxpvc (Fig. 3(b)) are close to the surface in the regions of high velocity
(western boundary currents, equatorial current, upwelling regions and convection zones) and
are smaller than or of the same order of magnitude as ACsq (Fig. 4). However, the number of
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Fig. 5. Number of min-max violations in the salinity field for each experiment: (a) ADVC, (b) ISO and (c) ISOB. We
distinguish the open-ocean points, the corner points and the point adjacent once to impermeable boundaries.

min-max violations associated with advection (Fig. 5(a)) is much larger than that due to is-
opycnal diffusion (Fig. 5(b)). If the advection scheme were improved [18] as in most models or
if the isopycnal diffusivity were increased, the isopycnal mixing would certainly become the main
source of over-/under-shootings in our OGCM, hence the need to improve the isopycnal scheme.

3.4. Horizontal diffusion as a partial remedy

As no monotonic isopycnal scheme has been developed yet [19], modellers [2-4,9,11,20] simply
retain a certain amount of background horizontal diffusion term (with diffusivity ic;;) to alleviate
the over-/under-shootings problem. However, despite its profitable impact on numerical noise, xy
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must remain of modest magnitude because it introduces malignant effects like large spurious
diapycnal diffusion of order ki in regions of steeply sloping isopycnals [20-22] masking partly
the effects of isopycnal diffusion.

The modified isopycnal over-/funder-shootin g amplitude estimate, ACjgop, is computet as ACigo
except that a purely horizontal diffusion operator is added (1 =250 m? s, xcyy = 50 1? s~!). The
analysis of ACisop illustrates well the efficient role of xy as a way of reducing the min-max vio-
lations (Fig. 5(b) and (c)). Indeed, with the value of ku considered, the number of points con-
cerned by over-/under-shootings is reduced, especially in the open ocean. Unfortunately,
contrary to the smallest magnitudes of ACiso, the extreme ones located adjacent to the continents
are only slightly modified with xy (Fig. 4) maybe because the horizontal diffusion is less efficient
near impermeable boundaries.

Using an artificial xy damps over-/under-shootings but does not eliminate them completely,
since the extra y-coefficients introduced by the discretisation of the additional horizontal diffusion
have no direct effect on the negative coefficients (Eq. (17¢)) introduced by the discretisation of the
cross derivative terms. There is therefore no criterion that would determine the magnitude of the
horizontal diffusivity that would be sufficient to prevent any min-max violations. However, by
looking at the distribution of ACisg, it is suggested to use a ky that rapidly decreases to small val-
ues from the boundary to the interior ocean and from surface to depth. This approach is similar
to Gerdes et al. [12] who used a depth-uniform but restricted it to a “boundary layer of one
grid distance wide”.

It is also important to stress that an explicit residual background lateral diffusivity in the inte-
rior ocean may be necessary to preserve the stability of advection schemes which have no implicit
diffusion (such as the centered advection scheme).

6. Conclusions

The non-monotonic behaviour of the isopycnal mixing formulation of Cox [8] has been inves-
tigated. It was shown why the discretisation of the cross derivative terms is responsible for the
occurrence of min—max violations in the tracer field. Over-/under-shootings of temperature, sali-
nity and density were quantified in model results and their extreme values were found at surface,
especially in the vicinity of permeable boundaries. The grid slope ratio r was shown to control
most of the spatial distribution of min-max violations.

A comparison of the over-/under-shootings associated respectively with isopycnal diffusion and
advection shows that as much effort should be devoted to preserving monotonicity of the is-
opycnal mixing formulation as to the search for sophisticated advection schemes. Furthermore,
as the measure of over-/under-shootings is static (snapshot measure on one iteration), we under-
estimate the effective grid noise because we miss some harmful interactions between the active
tracers which determines density and the density which determines the direction of diffusion [20].

The simplest way to reduce the noise is to retain a certain amount of background lateral dif-
fusivity. However, this diffusivity was shown not to be entirely satisfactory because it does not
guarantee monotonicity and furthermore introduces serious physical drawbacks. Therefore, the
need for a monotonic isopycnal diffusion scheme seems to be justified.
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