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Barite particles are a universal component of suspended matter in the Atlantic and Pacific Oceans. This is demon- 
strated by scanning electron microscope and electron microprobe analyses of samples collected during the 
GEOSECS program. These discrete particles, about 1 #m in diameter, account for by far the greatest part of the 
total particulate barium of most of the filters collected at different depths. Total particulate barium (mean value: 20 
ng/kg seawater) was measured on the same filters by instrumental neutron activation analysis. 

Several observations indicate that biochemical, rather than purely chemical, processes are involved in the forma- 
tion of the BaSO4 mineral in the water column. Sr/Ba molar ratios among the individual barite grains, particularly 
from surface waters are extremely variable, which would not be anticipated for purely chemical interactions. Barite 
crystals occurring within fecal debris have been observed throughout the water column. Within such debris decom- 
position of the abundant organic matter may provide the micro-environment predicted as necessary for the precipi- 
tation of BaSO4. Finally, a strong correlation between nutrient content and particulate barium is found in the upper 
1000 m of the water column, which also suggests a control of barite formation by biota. 

Some of the barite dissolves at depth in the water column. Dissolution rates were calculable for two GEOSECS 
stations, from which a dissolved barium flux of 0.4 ~g/cm 2 yr was deduced. This figure is of the same order as the 
dissolved barium flux calculable from the barium content and known dissolution rates of calcareous and siliceous 
tests: approximately 0.5/ag/cm 2 yr. These fluxes represent the largest source of dissolved barium in the water col- 
umn, the other being river input (0.6/~g/cm 2 yr). This supports the contention that the barium in the water column 
is mostly recycled. The residual flux of barite-Ba reaching the sea floor is of about equal importance as the flux of 
barium associated with fast-settling fecal material. These two sources together are almost sufficient to account for 
the total sedimentation rate of barium. 

1. I n t r o d u c t i o n  

Dur ing  the  pas t  t w e n t y  years  the  d i s t r i bu t ion  o f  

dissolved Ba in the  wor ld  ocean  has  been  ex tens ive ly  

s tud ied  [ 1,2].  The  prof i les  o f  dissolved Ba are charac-  

te r ized  b y  a dep le t ion  in surface wa te r  and  an  enr ich-  

m e n t  in  deep water .  This  suggests a close assoc ia t ion  

o f  Ba w i th  the  biological  cycle [3 ,4] .  

A n  assoc ia t ion  o f  Ba w i t h  b iogenic  par t ic les  is 
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deduced  f r o m  the  fact  t h a t  s ed imen t s  u n d e r l y i n g  

h igh ly  p r o d u c t i v e  surface wa te r s  are en r i ched  in Ba 

[ 5 - 8 ]  and  s u b s e q u e n t l y  in s e d i m e n t a r y  ba r i t e  [7] .  

S u b m a r i n e  vo lcan ism however ,  m a y  be local ly  impor -  

t a n t  [9] .  Because o f  the  good  co r re l a t ion  observed  

b e t w e e n  dissolved b a r i u m  and  si l icon in the  wa te r  

c o l u m n  it  has  b e e n  suggested t h a t  the  d i s t r i bu t i on  o f  

b o t h  e l emen t s  is governed  b y  the  d isso lu t ion  o f  Ba- 

en r i ched  si l iceous f rus tu les  [ 4 , 1 0 - 1 2 ] .  This  conclu-  

sion was s u p p o r t e d  b y  earl ier  obse rva t ions  t h a t  some 

d i a t o m  species are able to  accumula t e  s ignif icant  

a m o u n t s  o f  Ba [13 ,14] .  
O the r  ideas have b e e n  pu t  fo rward  c o n c e r n i n g  the  

m e c h a n i s m  o f  Ba u p t a k e  b y  organisms and  b y  the i r  
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detritus. A precipitation of  barium sulphate in decay- 
ing, sulphate-rich organic micro-environments was 
proposed by Chow and Goldberg [! ]. Likewise, Ture- 
kian [15] concluded that the distribution of  Ba in the 
sediments could be explained by the production of  
barium sulphate crystals in association with biological 
activity and their partial dissolution in deep water. 
The involvement of  barite in at least some biological 
processes has been confirmed by the observation of  
barite crystals within the protoplasm of  abyssal 
benthic Rhizopoda of  the class Xenophyophorida 
[16,17,45]. 

Previous to the first measurements of  particulate 
barium in suspended matter samples [ 18] (collected 
during the 1972 R.V. "Jean Charcot" cruise (Harma- 
tan expedition) in the Equatorial Atlantic and the 
Gulf of  Guinea), no direct evidence of  the presence of  
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a barium-rich phase in suspension was available. 
The data presented here were mostly obtained dur- 

ing the GEOSECS program [19,20]. Scanning elec- 
tron microscope and electron microprobe (SEM-EMP) 
analyses have permitted the identification of  a 
barium- and sulphur-rich phase in samples of  sus- 
pended matter in seawater. The chemical composition 
and electron micro-diffractometry observations con- 
firm the identification of  these particles as barite. The 
mass of  Ba carried by the barite particles was esti- 
mated from particle size measurements by electron 
microscopy and was subsequently compared with 
data on total particulate Ba, obtained for the same 
samples by instrumental neutron activation analysis 
(INAA). In this study we attempt to elucidate the 
origin of  suspended barite and its importance as a 
source of  dissolved Ba in deep water and of  sedi- 

TABLE 1 

Geographical position of stations and investigated depth intervals 

Stations Positions Investigated depth (interval in meters) 

Atlantic Ocean 
GEOSECS station 17 74°56'N, 01°07rW 992-3439 a 

5 56°54'N, 42°47'W 363-2464 a 
3 5 I°01'N, 43°01rW 28-3660 a,b 

27 42°00'N, 41°59'W 1441-4858 a 
31 27°00'N, 53°31'W 1-5500 b 
58 27°02'S, 37°00'W 197-4422 a,b 
67 44°58%, 50°10'W 40-5580 a,b 
91 49°36'S., 11°37'E 486-3074 a 
82 56°15'S, 57°38'W 1-5202 a,b 

ATLANTIS II station 715 52°56~N, 36°13rW 2000 a 
2111 33°41~N, 57°38'W 2195 a 

HARMATAN 1971 station 6 04°30tN, 19°35~W 2000-3000 a 
15 00%0' , 05°30'W 1000-4000 a 

MIDLANTE 1974 station 50 34°43ti3I, 29°34rW 985-3510 b 
Madcap 28°401N, 25°25'W 1075-5043 b 

TRANSAT 1975 station 17 34°06tN, 61°17'W 5-4380 b 

Pacific Ocean 
GEOSECS station 257 10°10'S, 170°00'W 1263-5182 a,b 

263 16°36'S, 167°05'W 676 a 
269 23°591S, 174°26rW 1253-6348 a,b 
310 26°55%, 157°llrW 1557-4789 a,b 
282 57°35%, 169°36'E 2131-5187 a,b 

a Inspected for BaSO4 presence by SEM-EMP. 
b Analysed for total Bap by INAA. 
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mentary barite. The geographic coverage of this study 
can be ascertained by examining the locations of the 
suspended matter profiles in Table 1. 

2. M e t h o d s  

Specific details concerning the techniques of 
sampling, filtration and weighing of total suspended 
matter during the GEOSECS program are given in 
Brewer et al. [21 ]. 

2.1. Chemical analysis of particulate barium by 
instrumental neutron activation analysis 

Quantitative analysis of particulate Ba (Bap) was 
performed by INAA, at the Centre des Faibles Radio- 
activitds (CFR, CNRS-CEA *, Gif-sur-Yvette, France) 
using the facilities of the Pierre Sfie Activation Analy- 
sis Laboratory (CNRS-CEA, Saclay, France). 

The samples were pelletized using a specially 
designed stainless steel press. The standards consisted 
of multi-element solutions, including Ba, adsorbed on 
pelletized Whatman No. 41 filters. These standards, as 
well as blanks, were included on each irradiation run 
of suspended matter samples. After an irradiation of 
10 rain. in a neutron flux of the order of 2.3 × 10 la 
neutrons/cm 2 s in the EL3 reactor at Saclay Nuclear 
Centre, we analysed for la9Ba (period: 89 minutes; 
laaBa (n, 7)), with a Ge-Li detector having a resolu- 
tion of about 1 keV/channel. 

The 2o confidence levels mentioned in the tables 
and figures are determined by the counting statistics 
in the 166-keV photo-peak region. 

2.2. Electron microscope and electron microprobe 
analysis 

Determination of the elemental composition of 
barium-rich particles by SEM-EMP. The elemental 
composition and morphology of Ba-rich particles 
were studied at the Universitd Libre de Bruxelles (for 
some samples at CFR), using scanning electron micro- 

* Centre des Faibles Radioactivit~s, Centre National de la 
Recherche Scientffique-Commissariat fi l'Energie Atomi- 
que. 

scopes equipped with electron microprobes. Both 
energy-dispersive spectrometers (EDS) with software 
facilities for X-ray data treatment, and wavelength- 
dispersive spectrometers (WDS) were used. 

For SEM-EMP investigation, the sample consisted 
of a small portion (approximately 0.5 cm 2) of the 
original filter, mounted with colloidal carbon onto an 
aluminium stub and vacuum coated with carbon. 

The EMP detection of Ba-rich particles was 
accomplished by one or the other of the following 
methods: 

(1) By scanning the sample at constant magnifica- 
tion; every particle composed of high-Z elements 
(Z > 13), was checked for dominance by Ba and S 
with the EDS~ As is well known, the EDS cannot 
resolve the Ti-K and the Ba-L lines. Definitive identi- 
fication was based on the appearance of the general 
spectrum or by checking with the WDS, which 
resolves both lines. 

(2) By a semi-automatic method which consisted 
of scanning several fields at a low magnification 
(600 × or 12,000 X) with the WDS set to diffract the 
Ba-La spectral line, while the Ba X-ray map was pho- 
tographically recorded and compared with the SEM 
picture in order to localize the Ba containing parti- 
cles. These were checked with the EDS for S con- 
tent. 

For both methods, if Ba and S were present as the 
only principal components (K, Sr are sometimes 
present in minor amounts), the particle was recorded 
as barium sulphate. 

The detection limit of the EDS system is between 
100 and 1000 ppm. 

Confirmation of the suspended barium sulphate parti- 
cles as barite. Electron micro-diffraction patterns of 
Ba- and S-rich particles in the GEOSECS suspended 
matter samples were obtained by Klossa [22]. These 
particles are dense and highly absorbant and proved 
to be extremely opaque to electrons. In order to ob- 
tain a definitive identification the use of a 1-MeV 
electron microscope, equipped with a goniometer 
stage, was required. We illustrate this work (Fig. 1) 
with an easily oriented single crystal, for which it was 
possible to identify a large number of crystal plane 
families, according to the degree of rotation and 
inclination of the stage. The results confirm that it is 
a highly crystalline barite particle. 
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Fig. 1. Dark-field micrograph, obtained with a 1-MeV transmission electron microscope, of a single BaSO4 grain, previously 
located on the filter by SEM-EMP (1860 m, GEOSECS station 17). Despite the penetrating power of the 1-MeV electrons only 
grain margins permitted any intense diffraction (A). In B one can distinguish the planes of the (212) and the (201) families, which 
form an angle of 85 ° . (From J. Klossa, Laboratoire R. Bernas, Orsay and Centre des Faibles Radioactivitfs, Gif-sur-Yvette.) 

Estimation o f  the mass o f  barium carried by barite 
particles. We evaluated the contribution of  the barite 
particles to the total  particulate Ba for 12 samples 
from GEOSECS station 67; 8 samples from 
GEOSECS station 3 and 2 samples from GEOSECS 
station 5. To do this required that the mass of  Ba car- 
ried by the barite grains be known. Particle size analy- 
sis was thus a prerequisite for the computat ion of  par- 
ticle masses. This was done by the following proce- 
dure. In order to more easily observe the sparsely 
scattered grains we reconcentrated the particles by 
resuspending the t'dtered matter  present on 1/4 (225 
mm 2) of  the original Nuclepore membranes in prefil- 
tered A.R. grade CC14, and re-filtered onto a much 
smaller Nuclepore membrane surface (37 mm 2) under 
a laminary flow hood.  The samples were then pre- 
pared for SEM-EMP analysis as discussed above. The 
barite particles detected were photographed at a fixed 
magnification (12,000X). The images were projected 
on a scan table equipped with a coordinatograph. The 
final magnification at the scan table was 30,000× and 
the accuracy of  the size measurements was 0.003/am. 

Only two-dimensional images are obtainable but 
since most o f  the barite particles were equant and 
rounded we have used the convention of  projected 

area diameters [23] to obtain estimates of  grain vol- 
umes. After inserting the projected area diameters 
into classes of  a geometric progression a histogram of  
size (volume) distribution was obtained. The mass of  
Ba of  equivalent spheres was then calculated with the 
following equation: 

M = 6 p NiD FV  (1) 

with M = Ba mass carried by barite particles (g/kg sea- 
water ) ;p  = BaSO4 density (4.5 g/cm a ) ; N  i = particle 
number in size class i (number/kg seawater); D i = pro- 
jected area diameter;  = class-midpoint of  class i (cm); 
F = molar fraction of  Ba in BaSO4 (0.59); and V = 
ratio of  the unit volume of  seawater (1 liter) to the 
volume of  filtered seawater which is equivalent to the 
scanned filter surface. 

3. Results 

3.1. The concentration o f  particulate barium in sea- 
water as a function o f  depth (INAA data) 

The profiles of  total  particulate barium (Bap) mea- 
sured for the Atlantic and Pacific Ocean by INAA are 
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TABLE 2 

Mean suspended barium concentration (geometric means) in surface water, in intermediate and deep water and in bottom water 

Region in the 
water column 

Stations at high latitudes: 
north of 45°N and south of 45°S 

Stations between 45°N and 45°S 

stations number of Bap stations number of Bap 
investigated (ng/kg sw) investigated (ng]kg sw) 
samples samples 

Surface water GEOSECS 82, 67, 3 14 27 GEOSECS 58, 31 5 11 

Intermediate GEOSECS 82, 67, 3,282 72 27 GEOSECS 58, 31, 62 10 
and deep water 310,269,257 

MIDLANTE 50, 
Madcap 
TRANSAT 17 

Region in the Stations Number of Bap 
water column investigated (ng/kg seawater) 

samples 

Bottom water a GEOSECS 82, 67, 58, 28 14 
31, 3,310,269,257,282 
MIDLANTE 50, Madcap 
TRANSAT 17 

a For the bottom waters no systematic variation of the Bap content with latitude is observed. 

presented in Fig. 2. In order to emphasize geographic 
differences in the values the condensed data (geomet- 
ric means) are reproduced in Table 2. 

3.2. Barite in suspended matter {SEM-EMP data) 

Geographical distributions. Our SEM-EMP analyses of 
samples collected at the stations listed in Table 1, 
which cover the North,  Equatorial and South Atlantic,  
the Antarctic and the Central and South Pacific 
Oceans, reveal that Bap is almost exclusively present 
as discrete barite particles of  about 1/~m diameter. 
These particles were observed in all investigated sam- 
ples. 

Elemental compositions. The suspended barite parti- 
cles contain minor amounts of  Sr and K. In the sur- 
face waters a broad range of  Sr/Ba ratios exist. A 

semi-quantitative SEM-EMP study of  100 Ba-, St- and 
S-rich particles, collected in the surface water 
(200 m) at GEOSECS station 58, revealed that for 
67% of  the particles the strontium sulphate fraction, 

Nsrso4 (with Ns r so  4 + NBaSO4 = l ) ,  was ~<0.1 ; for 

22%Nsrso  4 was between 0.1 and 0.5 and for 11% 
N s r s o  4 was 2>0.5 (P. Buat-Menard and C. Jehanno, 
personal communicat ion;  see Figs. 3, 4 and 5C). Ba- 
free, St- and S-rich particles are also present, either as 
biogenic debris (Acantharia debris; Fig. 5A, B), or as 
smaller particles with no obvious biogenic morphol- 
ogy (Fig. 5D). 

Morphology. The most frequently observed morphol- 
ogies for barite particles are, in decreasing order of  
frequencies (see Fig. 6): 

- Ellipsoidal or spherical particles. 
- Particles with a distinct crystalline habit  

(euhedral, automorphic particles). 
- Irregularly shaped particles that were probably 

affected by dissolution. 
- Aggregates of  very small particles (sub-micron 

sized) with or without a crystalline habit.  

3.3. Non-barite particles containing barium (SEM- 
EMP data) 

Particles with Ba as a minor consti tuent also occur. 
These particles measure between a few microns to 
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Particle 
frequency 

% 

60 

50 

40  

30 

20 

10 

0.0 0.1 0.5 1.0 N sr so  4 

Fig. 3. Frequency histograms of (Ba, Sr)SO4 and 
(Sr, Ba)SO4 particles as a function of their SrSO4 fraction 
(Nsrso4), for the sample from 200 m, GEOSECS station 58. 
We take NSrSO 4 + NBaSO 4 = 1. Data obtained by P. Buat- 
Menard and C. Jehanno at the Centre des Faibles Radioac- 
tivit6s, Gff-sur-Yvette. 

J 

I 

SrL,  KK,, Ba ~ ,~  SrK,  
SK, 

- -  S r S O  4 

- -  (Sr, B a ) S O  4 

(Ba,Sr)SO 4 

Ba SO 4 

0 2 4 6 112 114 
KeV 

Fig. 4. Energy-dispersive spectra of barite, celestite and inter- 
mediate solid solutions, as observed in oceanic suspended 
matter samples. Vertical scales are arithmetic, but are nor- 
malized for the S-Kc~ peak which represents 58,000 counts. 
Horizontal scale: energies of the X-rays in keV. 

several tens o f  microns. Two categories of  such Ba- 
containing particles are distinguishable, based upon 
the nature of  their principal elements: 

- Particles with Fe as the major constituent.  Si, 
Ca, A1 and occasionally S, C1 are detected.  Discrete 
Fe-rich particles in suspended matter  occur mainly as 
goethite [24]. Scavenging of  smaller particles and/or 
adsorption of  soluble species could explain the pres- 
ence of  Ba and S in these particles. 

- Particles with Si-A1 as the major constituents. 
Fe, Ca, Na are occasionally detected.  Harmotome, a 
zeolite reported to occur in the marine environment 
[25], seems a likely candidate. Depending on their 
composit ion (Si + A1 + Na + Ba or Si + A1 + Ca + Ba) 
other particles could represent feldspars. Adsorption 

processes could explain the presence of  the sulphur 
that is occasionally detected.  

3.4. The size distribution o f  the barite particles and 
associated mass o f  barium (SEM-EMP data) 

According to the method described earlier (p. 531), 
the barite particle frequency, as a function of  particle 
diameter,  and the associated mass of  Ba was com- 
puted for the samples listed in Table 3. The samples 
were randomly chosen from one profile in the Argen- 
tine Basin (GEOSECS station 67) and two profiles in 
the North American Basin (GEOSECS station 3 and 
5). The barite particle size distributions (e.g., Fig. 7, 
GEOSECS station 67) are log-normal. This type of  
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A B 

C D 

Fig. 5. Strontium sulphate and barium-enriched strontium sulphate particles. A. Biogenic SrO4 debris: GEOSECS station 67: 
151 m, elemental spectrum by SEM-EMP in Fig. 4, "SrO4". B. Broken SrSO4 spicule: GEOSECS station 67:62 m; elemental 
spectrum by SEM-EMP in Fig. 4, "SrSO4". C. Rounded, ellipsoidal (Sr, Ba)SO4 particle with traces of corrosion: GEOSECS sta- 
tion 67:151 m; elemental spectrum by SEM-EMP in Fig. 4, "(Sr, Ba)SO4". D. Euhedral, slightly corroded SrSO 4 particle: 
GEOSECS station 67:1499 m; elemental spectrum by SEM-EMP in Fig. 4, "SrSO4". 

distribution is not  unusual and has been observed by 
SEM-EMP in our laboratories for other categories of  
suspended particles including aluminosilicates [60] 
and calcareous and siliceous debris [28,60]. These 
size distributions enabled us to compute the mass of  
Ba carried by suspended barite. 

Tile computed masses of  Ba are given in Table 3, 
column B, and are compared with INAA data on 
total  Bap (Table 3, column C). 

4. Discussion 

4.1. Barite as a genuine component o f  oceanic sus- 
pended matter 

The possibility of  contamination by Ba-rich parti- 
cles during the sampling (i.e., contamination with 
exogenic particles) and the possibility of  BaSO4 pre- 
cipitation due to physical and chemical processes 



A1 A2 A 3  

B1 B2 B 3  

C1 C 2  C3  

D1 D2 IO,.5 

Fig. 6. Morphological types of barite particles in suspension in seawater. A. EUipsoidal or spherical particles. 1 = GEOSECS sta- 
tion 67, 1499 m; 2 = GEOSECS station 3, 28 m; 3 = GEOSECS station 82,832 m. B. Particles with a crystalline habit: euhedral, 
automorphic particles. 1, 2 and 3 = GEOSECS station 67,658 m, 2982 m, and 2982 m, respectively. C. Irregularly shaped parti- 
cles; probably affected by dissolution. 1, 2 and 3 = GEOSECS station 67, 2982 m, 2193 m, and 5599 m, respectively. D. 
Aggregates of very small particles, with or without a crystalline habit. 1 ,2  = GEOSECS station 67, 62 m and 4424 m; 3 = 
GEOSECS station 3,105 m. 
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Comparison between the amount of particulate barium carried by barite particles, measured by SEM-EMP, and the total 
particulate barium measured by INAA 
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Depth A B C 

(m) Number of barites Particulate Ba in barites Total Bap (INAA data) 

(N/kg sw) o a (ng/kg sw) o b (%) (ng/kg sw) 2a c (%) 

D 

Fraction of total 
Bap carried by barite 
(%) 

G E O S E C S s m t i o n  67  

151 10,600 1550 10 45 38.5 9 25 
353 20,400 1960 48 54 66.9 4 72 
658 16,580 1670 27 50 50.5 7 53 

1053 17,820 1760 38 37 50.0 6 76 
1499 12,240 1280 31 44 48.2 5 64 
2193 5440 670 37 44 37.7 4 100 
2574 7160 970 27 51 25.6 5 100 
2982 4180 600 23 78 28.2 5 82 
3601 5660 1030 15 59 19.2 9 79 
4424 3440 490 15 41 19.4 9 75 
5304 8820 1260 25 67 33.0 13 76 

G E O S E C S s ~ t M n  3 
105 5830 580 17 39 27.8 9 61 
813 3900 390 18 53 44.2 28 41 

1083 4480 630 14 59 16.9 17 83 
1875 25,000 2550 31 36 35.1 70 88 
2479 3930 410 15 48 18.6 14 81 
2696 1970 300 5 47 5.4 19 93 
2989 24,850 2740 33 54 33.6 17 98 
3267 2920 470 15 87 29.5 19 51 

G E O S E C S s t a t b n  5 d 

363 16,040 1830 27 47 36 75 
760 46,990 5070 48 40 50 96 

a a = 1/x /N,  with N = number of effectively counted barites [23]. 
b tr = Zai ;  a i = Mi / x /n i ,  with M i = % by weight in a given size range; n i = number of particles counted in this size range [23 ]. 
c cr is determined by the counting statistics in the 166-keV photo-peak region. 
d Total Bap data for the samples we analyzed for barite content by SEM-EMP were not available; we deduced total Bap values by 

interpolation of the data of P. Brewer (GEOSECS shore-based data), for depths immediately above and below depths 
investigated by SEM-EMP. 

inherent  in the sampling procedure  (i.e., contamina-  

t ion with  e n d o g e n i c  particles) have been considered 

and rejected as significant problems.  This is based on 

the fol lowing arguments:  

E x o g e n i c  o r i g i n :  (1) On board ship, blanks were 

run under  the same technical  condi t ions  as the sam- 

ples. They never  show con tamina t ion  by Ba-rich par- 

ticles. 
(2) Barite particles were observed in al l  samples 

col lected during various expedi t ions  by dif ferent  

research vessels since 1972. All these samples conta in  

the same morphologica l  types o f  barite particles. This 

is incompat ib le  wi th  occurrences o f  accidental  con- 

taminat ion.  Fur the rmore ,  the use o f  different  equip- 

ment  for sample col lect ion and handling during 

GEOSECS,  A T L A N T I S  II, H A R M A T A N ,  MID- 

LANTE and T R A N S A T  expedi t ions  makes a system- 

atic contamina t ion  o f  the samples unlikely.  

(3) On several occasions we observed barite crys- 

tals inside low-densi ty pellet-like particles, probably  
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Fig. 8. Dark-field micrograph obtained with a 1-MeV trans- 
mission electron microscope of a barite grain (indicated by 
the arrow) inside an organic pellet, collected at 1860 m at 
GEOSECS Pacific station 306. (From J. Klossa, Laboratoire 
R. Bernas, Orsay and Centre des Faibles Radioactivit~s, Gif- 
sur-Yvette.) 

of organic composition (Fig. 8). Barite particles were 
also found in large aggregates containing different 
species of diatoms and coccoliths. These pellets and 
aggregates represent fragments of the kinds of fecal 
material described by Bishop et al. [26]. These barite 
particles were either scavenged by zooplankton and 
excreted together with the fecal matter, or were 
formed inside such pellets. An exogenic origin can be 
excluded in both cases. 

Endogenic origin. Several processes can induce a 
precipitation of barium sulphate during sample 
recovery: 

(1) Deep-sea water samples are enriched in dis- 
solved Ba and may approach, and eventually reach, 
saturation when hauled to the surface, since the 
effects of decompression and temperature transition 
decrease the saturated Ba level by a factor two [27]. 
However, according to Church and Wolgemuth [27] 
such a precipitation process, especially in heteroge- 
nous systems with a large sulphate excess, should take 
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days. Even for the deep-sea samples, recovery time is 
only a matter of hours. Since deep-sea water Ba con- 
centrations are in fact much lower titan the sediment 
pore waters discussed by Church and Wolgemuth 
[27], we conclude that barite precipitation does not 
take place during sample recovery. In fact, barite par- 
ticles were observed in samples of suspended matter 
which were filtered in situ, at depths of 2000 m 
(ATLANTIS II, station 2111) and 2195 m 
(ATLANTIS II, station 715) with an especially 
designed titanium bottle of the Woods ttole Oceano- 
graphical Institution. This technique effectively pre- 
cludes barite precipitation during sampling. 

(2) A possible source of endogenic contamination 
might be incomplete rinsing of seawater from the 
filters. The subsequent dessication of such micro- 
drops of seawater can introduce contamination such 
as precipitated gypsum ( C a S O 4  • 2 H20) [28]. The 
complete dessication of about 10/~1 of seawater is 
required to obtain the weights of endogenic gypsum, 
measured by Aubey [28]. If we use this figure (10/A) 
as a reasonable estimate of endogenic sources the 
maximum amount of Ba contamination from this 
mechanism would be 10 -4 #g/filter. This is 1700 
times less than the mean total Bap concentration, 
which consists mainly of barite (section 4.2). 

We conclude from the set of arguments presented 
above that the barite particles we observe are a 
genuine component of the natural marine environ- 
ment. 

4.2. Is barite the main carrier o f  barium in oceanic 
suspended matter? 

Table 3 compares the calculated mass of barite-Ba 
(column B) with the total Ba o measured by INAA on 
the same filters (column C), expressed as a percentage 
(column D). The conclusion that barite is the princi- 
pal carrier of barium in these samples is inescapable 
considering the nature and limitations of the method. 
In 15 cases out of 22, calculated barite contributions 
account for over 70% of the total Bap and for several 
samples the values are virtually 100%. There are only 
a couple of cases where the percentage drops below 
50%. Part of the Ba amount that is not accounted for 
by detected barites is certainly carried by phases 
other than barite (see below). We believe that 
larger barite grains, which are very scarce and thus 
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Fig. 9. Profiles of cumulative Ba mass distributions. Ordinate (gaussian scale): cumulative Ba mass in percent, calculated with 
respect to the total Bap amount measured by INAA. Abscissa (logarithmic scale: barite particle diameter in microns). Crosses 
correspond to measured values of cumulated Ba mass (in %). A = GEOSECS station.67; depth interval 151-5304 m; only the 
distributions at 1053 m and 2193 m are displayed as a solid fine. B. GEOSECS station 3; depth interval 105 3267 m; only the 
distributions at 1083 m, 2989 m and 3267 m are displayed as a solid line. C. GEOSECS station 5; depth interval 363-760  m; 
both distributions are displayed as a solid line. 

s ta t is t ical ly  missed  dur ing  c o u n t i n g  p rocedures ,  bu t  

wh ich  have large mass ,  can a c c o u n t  pa r t ly  for  the  

a p p a r e n t l y  low pe rcen tages  in Table  3, c o l u m n  D. In 

Fig. 7 we show the  p ro jec t ed  shape  o f  the  tails o f  the  

h i s tog rams  i f  t he  cumula t ive  curves  o f  Fig. 9 are 

e x t r a p o l a t e d  to  100%. These  tails r ep resen t  the  num-  

ber  o f  large bar i te  grains,  wh ich  would  be requ i red  to  

c o m p l e t e l y  a c c o u n t  for the  INAA Bap values,  i f  the  



other sources of  particulate Ba are ignored. 
The percentage Bap as barite figures are subject to 

error due to the limitations of the counting, volume 
estimate and mass extrapolat ion procedures. There 

are other carriers of  barium in oceanic suspended 
matter.  As discussed in section 4.3, these may 
account for as little as 8.5% of  the total  Bap in inter- 
mediate and deep water and as much as 50% when 
considering the contributions within the surface wa- 
ters (first 150 in). Within the great bulk of  the 
oceanic water column, however, it is barite which is 
the dominant carrier of Bap. 

4.3. The contribution o f  non-barite barium carriers to 
total particulate barium 

The role o f  diatom skeletons. Several authors 
[ 4 , 10 -12 ] ,  citing the correlation between dissolved 
Ba and dissolved SiO2 in the water column and the 
work of  Vinogradova and Koval 'skiy [14], have sug- 
gested that diatoms play a major role in the transport  
of  Ba. Very few experimental data exist, however, on 
the uptake of  Ba by diatoms. We have studied this up- 
take in two diatom species: Rhizosolenia alata and 
Chaetoceros lauderi. Details concerning the experi- 
mental techniques are published elsewhere [29]. The 
data show that,  for C. lauderi, Ba uptake does not  
exceed the INAA detection limit (~1 ppm for these 
series of  analyses). For R. alata Ba is observed to be 
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entirely associated with the silica phase obtained after 
oxidation of  the organic fraction with concentrated 
peroxide. The Ba uptake is positively related to the 
Ba content of  the growth medium (Table 4). 

These Ba values are 1 0 - 1 0 0  times smaller, when 
compared on a whole dry matter  basis, than those 
reported for different Chaetoceros and Rhizosolenia 
species from the Black Sea by Vinogradova and 
Koval'skiy [14]. Our data do, however, agree well 
with those of  Martin and Knauer [31 ] for natural, 
composite diatom-rich phytoplankton,  as well as with 
the data of  Riley and Roth [32] for other cultured 
diatoms. 

The SEM-EMP analyses performed on the diatom 
frustules in GEOSECS samples show that these 
frustules contain no Ba above the detection limit 
( 1 0 0 - 1 0 0 0  ppm). Therefore we will take the Ba con- 
tent observed for R. alata frustules (120 ppm; Ta- 
ble 4), as a representative value for diatom frustules 
in the ocean. 

We use the figure of  10% as the proport ion o f  bio- 
genic silica in total  suspended matter  (TSM) ([26,31, 
33,34] ; see Table 5, column B), to calculate the con- 
tr ibution of  Ba from this component  in Table 6, col- 
umn B. 

The role o f  carbonate skeletons. Biogenic CaCO3 is 
assumed to contain 200 ppm of  Ba [7], although this 
is probably an upper limit, since lower values ( 1 0 - 3 0  

TABLE 4 

Barium content (in ppm) of diatoms grown in culture 

Diatom species Media not enriched in Ba 

natural seawater; dissolved 
Ba content: 10/~g/kg sw a 

artificial seawater b 

Media enriched in Ba 

artificial seawater; dissolved 
Ba content: 30 ~g/kg sw c 

Rhizosolenia alata 58 d 69 d 196 d 
116 e 138 e 392 e 

Chaetoceros lauderi <1 f <1 f <1 f 

a This value corresponds to the Ba content measured for Mediterranean Sea surface water [30], which is the natural medium in 
which the diatoms were grown. 

b Ba was introduced into the culture medium as impurities in the constituents used. 
c Ba was added as the chloride salt in order to reach a final concentration of 30 ~zg/kg seawater. 
d In ppm of whole dry matter. 
e In ppm of SiO 2 weight; for R. alata the SiO 2 weight represents 50% of the whole dry matter weight. Ba is entirely associated 

with the silica fraction. 
f Concentrations did not exceed the detection limit (1 ppm). 
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TABLE 5 

Concentrations of  total suspended matter (TSM), siliceous and calcareous matter,  particulate organic matter and aluminosilicates 
as potential barium carriers in the water column 

Section of  the A B C D E 

water column TSM in the SiO2 CaCO 3 POM Alumino- 
Atlantic a 0ag/kg sw) 0ag/kg sw) (~g/kg sw) silicates e 
(~g/kg sw) (~g/kg sw) 

Surface water 
high latitudes max: 200 
low latitudes max: 50 
(between 45°N and 45°S) 

Intermediate and deep water 
(high and low latitudes) max: 25 

Bottom water range: 
(nepheloid layer) 12 100 

(= 10%ofTSM b) ( = 6 % o f T S M  c) (= 60% of TSM d) 
max: 20 max: 12 max: 120 } 2.2 
max: 5 max: 2 max: 30 

( = 1 0 % o f T S M  b) ( = 6 % o f T S M  e) (= 60% of TSM d) 
max: 2.5 max: 1.5 max: 15 

2.5 f 1.5 f 15 f 

1.4 

4.5 

a From Brewer et al. [21]. 
b From Bishop et al. [ 26], Martin and Knauer [31 ], Copin-Montegut and Copin-Montegut [33,34]. 
c From Aubey [28] and CFR-GEOSECS shore-based data. 
d From Bishop et al. [26], Copin-Montegut and Copin-Montegut [33,34], Krishnaswami et al. [35]. 
e From Alp geometric means in Buat-Menard and Chesselet [37] and CFR-GEOSECS shore-based data. 
f The CaCO3 concentrat ion in bot tom water is similar to that in intermediate and deep water (CFR-GEOSECS shore-based data); 

this is assumed also for SiO 2 and POM. 

TABLE 6 

Contribution of siliceous and calcareous tests, POM and aluminosilicates to the total barium content  of  suspended matter 

Section of  A B C D E F 

the water Total Bap a Ba carried by Ba carried by Ba carried by Ba carried by Fraction of 
column (ng/kg sw) SiO2 tests b CaCO 3 tests c POM d aluminosilicates e total Bap carried 

by non-barite 
(ng/kg % of (ng/kg % of (ng/kg % of (ng/kg % of phases 
sw) Bap sw) Bap sw) Bap sw) Bap (%) 

total total total total 

Surface water 
high latitudes 27 2.4 9 2.4 9 7.2 27 } 1.3 5 50 
low latitudes 11 0.6 5.5 0.6 5.5 1.8 16.5 12 39.5 
(between 45°N 
and 45°S) 

Intermediate and 
deep water 

high latitudes 27 } 0.3 1 ) 0.3 1 } 0.9 3.5 } 0.8 3 8.5 
low latitudes 10 3 3 9 8 23 
(between 45°N 
and 45°S) 

Bottom water 
(nepheloid layer) 14 0.3 2 0.3 2 0.9 6.5 2.7 19 29.5 

a From Table 2. 
b SiO2 tests contain 120 ppm of  Ba ; this study (Table 4). 
c CaCO3 tests contain a maximum of  200 ppm Ba; from Church [7]. 
d POM contains 60 ppm of  Ba; from Martin and Knauer [31], Riley and Roth [32]. 
e Aluminosilicates contain 600 ppm of  Ba; from Turekian [ 15] and Turekian and Wedepohl [38]. 



ppm) are reported [6] for coccolith oozes. The 
weight fraction of biogenic CaCO3 in TSM is given in 
Table 5, column C and the contribution of CaCO3 
skeletons to the total Bap content is shown in Table 6, 
colunm C. 

The role of  particulate organic matter. Particulate 
organic matter (POM) represents the main fraction of 
TSM (Table 5, column D). To estimate the Ba con- 
tent of this material we have used the data of Riley 
and Roth [32] and Martin and Knauer [31] for 
skeleton-free plankton. A mean value of 60 ~g Ba/g 
dry matter was used to calculate the POM contribu- 
tion to total Bap in Table 6, column D. 

The role of aluminosilicates. SEM-EMP and 1NAA 
analyses of GEOSECS suspended matter samples, 
revealed that A1 can be used as an indicator of alu- 
minosilicates in suspended matter [24,36,37] and 
confirm estimations of Arrhenius [25] that particu- 
late A1 represents 7--9% by weight of the total inor- 
ganic component of TSM. This quantity is equal to 
the A1 content of shales: 8% by weight [38]. We will 
therefore consider the Ba concentration in shales 
(600 ppm [38,15 ]) to be representative of the Ba 
content of aluminosilicates suspended in seawater. 
The aluminosilicate content of seawater is given in 
Table 5, column E and the fraction of total Bap, car- 
ried by aluminosilicates is given in Table 6, column E. 

An examination of the data in Table 6, column F 
shows that for the largest part of the water column 
(intermediate and deep water) non-barite phases 
account for only 8.5-23% of the total Bap. In surface 
water up to 50% of total Ba is carried by phases other 
than barite. Here skeletal and organic debris are im- 
portant contributors to the total Bap content of sus- 
pended matter. In the bottom nepheloid layer non- 
barite phases account for 29.5% of the total. Here 
19% of total Bap is due to aluminosilicates, most 
probably resuspended from the sediments in the 
nepheloid layer [61]. We do not have quantitative 
measurements for surface and bottom waters, but the 
remaining fraction of total Bap is most likely com- 
prised of barite particles, which were indeed ob- 
served. 

4.4. Origin of the barite particles 

The possibility of direct precipitation of barite in 
seawater is presently a subject for debate. Seawater is 
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undersaturated with respect to BaSO4 but Hanor 
[39] has predicted that St-enriched barite is less 
soluble than pure BaSO4 and might precipitate in the 
sea. Church [7] has shown that this concept cannot 
be confirmed experimentally. A lack of data on the 
solid activity coefficients of non-dilute (Ba, Sr)SO4 
solid solutions prevents the definitive resolution of 
this problem ([40], and T.M. Church, personal com- 
munication, 1979). 

Our data lead us to believe that direct precipita- 
tion is not a significant process. The highly variable 
Sr/Ba ratios we observe among the barite particles 
(section 3.2) is inconsistent with authigenic forma- 
tion of such variable particles in a single parcel of sea- 
water considered as a given physico-chemical environ- 
ment. In any case we observe Sr-free barites. There is 
no disagreement between these authors [7,39] con- 
cerning the impossibility of inorganic precipitation of 
barium sulphate under natural oceanic conditions. 

Biological activity appears to provide the necessary 
intermediary for the formation of barite in seawater. 

Fig. 10 shows a plot of the mean Bap content 
versus the mean dissolved PO4 content for a broadly 
spaced set of stations from the Atlantic Ocean. Since 
Bap maxima occur at variable depths below the 
euphotic zone (Fig. 2), all concentrations from 150 m 
down to 1000 m were considered to compute geo- 
metric mean values. PO4 values are from GEOSECS 
ship-board data and the Bap data for GEOSECS sta- 
tions 27, 5, 11, 18 in the North Atlantic and for 
GEOSECS station 17 in the Norwegian Sea, are from 
P. Brewer (GEOSECS shore-based data). A linear rela- 
tionship between Bap and dissolved PO4 is apparent 
when considering stations 31, 58, 27, 17, 3, 5 and 67. 
PO4 contents in surface waters are generally regarded 
as indicators of potential productivity [41-44] and 
these results indicate a positive relationship between 
Bap production and organic productivity. Unfortu- 
nately, direct measurements of organic carbon produc- 
tion were not obtained at the same time as the collec- 
tion of samples for Ba and PO4. Carbon production 
data taken at a different period but for the same 
general vicinity as these stations [41,44] are included 
in parentheses in Fig. 10. These data confirm the 
general correlation of Bap with biological productiv- 
ity. The stations 11, 18, 23 from the Norwegian Sea 
and the North Atlantic, and station 82, from the 
Antarctic, fall much closer to the central line when 
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Fig. 10. Total Bap versus dissolved PO 4 . The geometric mean Bap value (in ng/kg sw), observed between 150 and 1000 m is 
plotted against the geometric mean dissolved PO4 value (in t~mole/kg sw; GEOSECS ship-board data) for the same depth interval. 
Crosses refer to Bap measurements performed by INAA at the Centre des Faibles P, adioactivitds; open circles refer to measure- 
ments performed by INAA at the Woods Hole Oceanographical Institution by P. Brewer (GEOSECS shore-based data). Numbers 
refer to GEOSECS station numbers. Between brackets: values of organic carbon production rates (in mg C/m 2 day) from 
Koblentz-Mishke [44] ;value for station 31 from Steeman-Nielsen [41]. 

the  relative in tensi ty  o f  organic carbon produc t ion  is 

considered.  

Al though  this relat ionship be tween  biological  pro- 

duct ivi ty  and barite fo rmat ion  seems to  hold ,  the 

m a x i m u m  concent ra t ions  o f  bari te  are generally found  

just  be low the euphot ic  zone  and the detai led pa thway  



between organic productivity and barite formation is 
not known. Two complementary pathways can be 
considered: 

(1) Secretion of barite crystals by planktonic 
organisms and the release into the waters below the 
euphotic zone upon the death and disintegration of 
the organisms. Direct secretion of intracellular barite 
is known to occur in several species of the benthic 
protozoan Xenophyophora [45]. In surface waters 
only SrSO4 (celestite)-secreting organisms, acantharid 
Radiolaria, have as yet been reported [46]. These, 
however, have a world-wide distribution and their 
spines can contain high levels of Ba (up to 5400 ppm) 
[25]. The central capsulum of certain species of 
collosphaerid Radiolaria contain rhombic crystals, 
identified as celestite and/or barite [47]. Finally, 
radiolarian-rich plankton has been observed to con- 
tain high Ba levels [31 ]. Such examples indicate that 
biological mediators can control the varying Ba/Sr 
molar ratios. 

(2) Barite is formed during the decomposition of 
organic matter. Chow and Goldberg [ 1 ] proposed 
that decaying organic matter, rich in sulphate ions, 
could form a micro-environment in which BaSO4 
saturation is attained. We have in fact observed sub- 
micron sized, discrete barite crystals and aggregates of 
barite prisms inside low-density media, of organic 
composition (Fig. 8). These are likely to represent 
such micro-environments, with barite precipitated 
within them. Again, high productivity in the photic 
zone could thus induce a maximum of suspended 
barite in the subsurface waters. 

4.5. The importance o f  suspended barite as a source 
o f  deep-sea dissolved Ba 

Undersaturation with respect to BaS04 induces 
the dissolution of suspended barite in the water col- 
umn. 

4.5.1. Estimation o f  the dissolution rate o f  barite 
in the water column 

We have looked systematically for traces of an 
etching or corrosion process affecting the barite par- 
ticles. The morphological study (Fig. 6, section 3.2), 
revealed that suspended barite particles are nearly aU 
affected, to different degrees, by dissolution. The 
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edges of the euhedral particles are rounded (Fig. 6B, 
1-3)  and particles become ellipsoidal and spherical 
(Fig. 6A, 1-3).  Etching of the particles can occur 
(Fig. 6B, 3). Dissolution proceeds further in eroding 
the particles by means of a layer by layer alteration 
(Fig. 6C, 1,2) or by a piercing of the particle (Fig. 
6C, 3). The effect of dissolution is further indicated, 
at GEOSECS station 67, by the decrease in the num- 
bers of barite particles with depth, as shown in Fig. 7. 

If the dissolution rate constant and the particle 
size distribution of a substance in the water column 
are known, and if constancy of particle flux at any 
depth is assumed, the dissolution rate J can be calcu- 
lated [48]: 

S = ½Pk(Z i XiD~) (2) 

where J = input of dissolved matter per unit volume 
and per unit time (= g/kg seawater yr); p = density of 
the particulate matter (= 4.5 g/cm 3 for barite); k = 
dissolution rate constant (cm/yr) (= e~r in equation 9 
in Lal and Lerman [48]);NI = particle number in size 
class i, per unit volume (number/kg seawater); and 
D i = particle diameter; = class-midpoint of class i 
(cm). 

The dissolution rate constant of barite was esti* 
mated from a comparative study of the size distribu- 
tions of barite for successive samples in the water col- 
umn. It was assumed that the sinking particles obey 
the Stokes settling and dissolution rate model pro- 
posed by Brun-Cottan [49] after an original model of 
Lal and Lerman [50]. The sample pairs for 
which it was possible to apply the model calculations 
are given in Table 7A, together with the derived dis- 
solution rate constants (k). An order of magnitude 
difference exists between the lowest and the highest 
computed values of k. If barite dissolution is a sur- 
face-controlled process, as observed for other 
sulphate salts [51 ], the lower range of k values (0.05 
and 0.1/~m/yr) is more compatible with the existing 
condition of low undersaturation for BaSO4 in deep 
water, as discussed in Dehairs [29]. Therefore we 
have used an average k value of 0.075 ~tm/yr. Equa- 
tion (2) was applied to all the barite size distributions 
of GEOSECS stations 67 and 3, and a depth-weighted 
JBa value was deduced. Table 7B shows the best esti- 
mate of JBa resulting from the dissolution of sus- 
pended barites identified in this study. 

Since carriers of Ba other than barite exist, and 
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TABLE 7A 

Dissolution rate constants of barite as deduced from a Stokes 
settling and dissolution rate model 

Stations and Barite dissolution rate 
considered sample pairs constant k 

(tam/yr) 

67 (2574-2982 m) 0.05 
3 (1975-2479 m) 0.l 
3 (2989-3267 m) 0.4 

TABLE 7B 
Depth weighted JBa values for the GEOSECS stations 67 and 
3, resulting from barite dissolution 

Stations and JBa (depth-weighted) for 
considered depth k = 0.075 um/yr 
interval (/sg/cm 2 yr) 

67 (151-5304 m) 0.42 
3 (105-3267 m) 0.36 

since these are not conservative, we must also esti- 
mate the contribution of their dissolution to the over- 
all JBa term. 

4.5.2. The JBaflUX resulting from the dissolution 
of Si02 and CaC03 skeletons 

Jcaco 3 and the resulting JBa. We take CaCO3 and par- 
ticulate organic carbon (POC; = 1/2 ×POM [52]) 
to represent, respectively, 6 and 30% by weight of 
TSM (Table 5) and consider a mean Atlantic Ocean 
organic C production rate of 7 mg/cm 2 yr [44]. By 
[CaCO3]/[POC] X production rate of organic C, we 
obtain a mean CaCO3 production rate of 1.4 mg/cm 2 
yr. If  an average CaCO3 sedimentation rate of 0.34 
mg/cm 2 yr is considered [43], it follows that about 
80% (= 1.1 mg/cm 2 yr) of the CaCOa produced in the 
surface reservoir redissolves at depth. This JCacoa 
agrees with data of Berger ([43] : 1.5 mg/cm 2 yr) and 
Li et al. ([53] : 1.7 mg/cm 2 yr). 

Since the Ba content of CaCO3 skeletons was 
assigned an upper limit of 200 ppm (section 4.3), the 
JBa resulting from the dissolution of carbonate debris 
is ~<0.22/lg/cm 2 yr. 

Jsio 2 and the resulting JBa- We take silica to represent 
10%, and POC 30%, of the weight of TSM (Table 5). 
By [SiO2]/[POC] × production rate of organic C 
(with POC and C production rate values as given 
above), it ensues that biogenic silica production is 2.3 
mg/cm 2 yr. This value is higher than that computed 
by Berger ([43]: 1.3 mg/cm 2 yr) but is in agreement 
with the value of Harriss ([54]: 2.1 mg/cm z yr). The 
dissolution of opal at depth can amount to 97% of 
the quantity produced in surface waters [55]. With 
silica tests containing 120 ppm of Ba (section 4.3), 
their dissolution results in a JBa of 0.28 ~g/cm 2 yr. 

Summarizing, the overall JBa (0.9 t~g/cm z yr) is 
composed of JBa-barite (0.4/2g/cm 2 yr); JBa-SiO2 
(0.3/ag/cm 2 yr); JBa-CaCO3 (0.2/2g/cm 2 yr). This 
overall JBa value is in closer agreement with that cal- 
culated using a vertical advection diffusion model in 
the Pacific Ocean (0.7 ~g/cm 2 yr) [56], than with that 
deduced by box-model calculations (3.5 #g/cm 2 yr) 
[3,41. 

We agree with the conclusions of Chan et al. [2] 
that the distribution of dissolved Ba is governed by 
the dissolution of a slowly dissolving phase. Our data 
show that each of the phases suggested by Chan et al. 
(barite-carbonate-silica) is of about equal importance. 

4.6. The role of suspended barite in the accumulation 
of barium in the sediments 

Church [7] showed that in areas of rapid car- 
bonate deposition, the barium accumulation associ- 
ated with carbonate, clay, and organic matter, was 
sufficient to account for the observed levels of barite 
in the sediments. The biogenic particulate matter 
accumulating in the sediments is likely to have been 
conveyed by fast-settling fecal material [26,35,57, 
58, 62]. Due to its high settling velocity, it is likely 
that most of this fecal material arrives intact at the 
sediments. The associated flux of barium was calcu- 
lated by considering POM, SiO2 and CaCO3 to con- 
tain 60, 120 and 200 ppm of Ba respectively (Ta- 
ble 6), and using the Bishop et al. [62,26] flux data 
for these main components, obtained for the Equa- 
torial Atlantic [26] and the Cape Basin [62]. The 
resulting fecal matter flux of Ba amounts to between 
0.03 and 0.5 #g/cm 2 yr. 

It is likely that this flux is supplemented by a con- 
servative flux of suspended barite. The upper limit of 



this flux can be computed from our size distribution 
data as given in Fig. 7, assuming Stokes settling law, 
by solving: 

B = ~ m i v i  (3) 
i 

where B = vertical flux of  barite (/~g Ba/cm 2 yr); m i = 

Ba concentration (~tg/cm 3) of  barite in size class i; 
and vi = Stokes settling velocity of  the barites of  size 
i (cm/yr). 

As applied to the deep-sea samples of  the stations 
67 and 3, equation (3) gives: station 67, 5304 m: B = 
0.4 #g Ba/cm 2 yr; station 3, 3267 m: B = 0.4 ~g Ba/ 
cm 2 yr. Assuming that such fluxes reach the sedi- 
ments, it appears that settling of  suspended barite can 
at least be as important as Ba associated with the flux 
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of  fecal material. The total Ba flux (fecal material + 
barite) amounts to between 0.43 and 0.9/ag Ba/cm: 
yr, which is in agreement with the sedimentary Ba 
accumulation rate of  Turekian ( [ 15,59] : 0.5-1.0/~g/ 
cm 2 yr). 

The total flux of  particulate barium to the sedi- 
ments computed here appears to balance the amount 
of  dissolved Ba introduced to the oceans by river dis- 
charge (0.6/~g/cm 2 yr) [3,4,56]. Adding to this the 
barium reintroduced to the dissolved phase (0.9 tJg/ 
cm 2 yr), the rate of  particulate Ba production (A) 
should amount to about 1.5 #g/cm 2 yr to maintain 
steady state. A rough calculation, assuming that all of  
the barium in the annual production of  that POM 
which is not lost to the sediments (0.8/~g Ba/cm 2 yr) 
is converted to barite, and adding the annual incorpo- 
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Fig. 11. Numerical values for the components of the oceanic barium cycle. All values in ~g Ba/cm 2 yr. Arrows indicate the direc- 
tion of the fluxes. 
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ration of  barium into skeletal material (0.55/2g/cm z 
yr),  gives a figure (B) of  1.35 ~tg/cm 2 yr. The agree- 
ment  between A and B affirms the importance of  
biological activity and the recycling of  barium in the 
water column. Fig. 11 summarizes the gross budget 
of  barium in the ocean, as based on our data. 

5. Summary and conclusions 

Discrete micron-sized barite particles are present in 
suspended matter  everywhere in the World Ocean. 

A combination,  in the same suspended matter  sam- 
ples, of  quantitative analyses of  the total  barium con- 

tent and quantitative assessments of  the numbers 
and mass of  Ba of  the discrete barite particles, show 

that barite is the main carrier of  Ba in intermediate 
and deep ocean waters. In surface waters organic and 
skeletal debris comprise a significant port ion of  the 
total  particulate barium. In bo t tom waters resus- 
pended aluminosilicates can dominate over other 
forms of  non-barite particulate barium. 

The reparti t ion of Ba between organic, skeletal 
and barite phases indicates that barite is first intro- 
duced in surface waters by biological processes, and 
that such processes subsequently lead to barite max- 
ima in intermediate waters. 

The link between barite production and biological 
activity is emphasized by a positive relationship 
between the particulate barium content  in surface wa- 
ters and biological productivity.  The kinds of  pro- 
cesses which may be responsible are: direct secretion 
of  barite within planktonic organisms, and precipita- 
tion within the micro-environments of  decaying 
organic debris. 

Dissolution of  barite in the deep ocean proceeds at 
a rate of  0.4 #g Ba/cm 2 yr. A supplementary flux, 
which is of  the same magnitude, is the flux of  dis- 
solved barium resulting from the dissolution of SiO2 
and CaCO3 tests. 

The residual flux of  barite reaching the sea floor 
can account for half of  the total  sedimentation rate of 
barium in regions of  high productivity.  

The budget for barium in the ocean, as derived 
from our data, affirms the importance of  biological 
activity. This budget is to a large degree self-sustained 
by  the input to the water column of  dissolved barium 
resulting from the dissolution of  suspended barite and 
other biogenic particles. 
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