Andreas Käufl, Friedrich Pukelsheim, Olga Ruff

Abstentions in the German Bundesrat and Ternary Decision Rules

Preprint Nr. 04/2010 — 19. April 2010
Institut für Mathematik, Universitätsstraße, D-86135 Augsburg

http://www.math.uni-augsburg.de/
Impressum:

Herausgeber:
Institut für Mathematik
Universität Augsburg
86135 Augsburg
http://www.math.uni-augsburg.de/pages/de/forschung/preprints.shtml

ViSdP:
Friedrich Pukelsheim
Institut für Mathematik
Universität Augsburg
86135 Augsburg

Preprint: Sämtliche Rechte verbleiben den Autoren © 2010
ABSTENTIONS IN THE GERMAN BUNDES RAT
AND TERNARY DECISION RULES

ANDREAS KÄUFL, FRIEDRICH PUKELSHIEM AND OLGA RUFF

Institute for Mathematics, University of Augsburg, Germany

Ternary decision rules are analyzed that allow for abstentions, in addition to Yea- and Nay-votes. The German Bundesrat serves as a prime example. We show that the decision-making efficiency of the Bundesrat would increase if abstentions were allowed. Generally, a formula for the mean success margin of a ternary decision rule is derived assuming selfdual and permutationally invariant distributions. Specifically, the ternary Penrose/Banzhaf model is discussed in detail. The influence probabilities of voters, and the influence sensitivity of the rule are evaluated.

1. Introduction. Many studies on decision rules concern settings where voters are faced with just two options, to vote either Yea or Nay. In practical situations voters often have the third option of abstaining. An interesting example is provided by the German Bundesrat, the second chamber representing the sixteen German States. The Bundesrat Rules and Regulations do not provide for abstentions, yet States do abstain. Section 2 describes the specific Bundesrat procedure in greater detail. The remaining sections develop a probabilistic analysis of ternary decision rules.

A peculiar practice is exercised by the Council of Ministers of the European Union. Abstentions are mostly counted as Nay-votes. But they are taken to be Yea-votes when the adoption of a proposal requires unanimity, see Felsenthal/Machover (1998, page 335), Lindner (2004, page 23). There is a historical precursor for such flexibility. The 1802 Swiss Notablenverfassung (Constitution of the Notables) drew more Nay-votes than Yea-votes from the people. By classifying abstentions as Yeas, the Notables manufactured a majority and the constitution entered into force (Reinhardt 2006, page 89).

There are decision-making systems that appreciate the particular quality of abstentions. For instance, the notion of a straight majority may be realized in two ways. The first way requires more than half of the plenum to vote Yea. This implies that those who do not vote Yea are counted as opposers, whether they vote Nay or abstain. The second way requires more Yea-votes than Nay-votes. Voters who abstain are acknowledged to be undecided, and they drop out from comparing Yea- and Nay-votes.

While much of the literature on decision rules focuses on the binary case of Yea-Nay voting, the analysis of ternary decision rules has now and then received some attention, see the review in Section 10.1 of Felsenthal/Machover (2005). The earliest setting, such
as Rubinstein (1980, 2002) and Bolger (1983), is the consideration of more than two candidates for which the voters can opt, that is, there is a (unordered) multitude of levels how voters can express their choice.

The other setting investigates an ordered set of ways how voters may express their choice, such as three levels of increasing consent ranging from Nay over abstention to Yea. This the predominant view in Felsenthal/Machover (1997, 1998), Braham/Steffen (2002), Freixas/Zwicker (2003, 2009), Corte-Real/Pereira (2004), Lindner (2004). In particular, Freixas/Zwicker (2003) propose a systematic discussion how abstentions may be worked into the more classical binary decision rule theory. In their terminology, the present paper would be categorized as dealing with a $(3, 2)$ voting game with ordered input alternatives, that is, voters have 3 ordered input levels to express themselves (Nay, abstention, Yea) and the resulting decision may attain 2 possible output levels (positive, negative).

The papers mentioned have a certain emphasis on the game-analytic properties of multi-level decision rules, and their combinatorial structure. In the present paper we prefer a more probabilistically oriented viewpoint. The companion paper Ruff/Pukelsheim (2010) presents a probabilistic synopsis of binary decision rules, the present paper extends this approach to ternary decision rules.

Our basic assumption says that all participants share a common probability t of abstaining. For an a priori analysis we find this supposition to be quite reasonable. Theoretically, the abstention probability t is taken to range from zero to unity. Practically, an abstention probability exceeding one third would seem to be of little practical value. Felsenthal/Machover (1997, 1998) examine the case for $t = 1/3$, that is, equal probabilities of voting Yea, Nay, or of abstaining. In the terminology of Freixas/Zwicker (2003), the type of weighted voting games that we use is ratio-weighted voting, as opposed to difference-weighted voting. Our motivation was to stay close to the practical needs of the current Bundesrat discussion. As it turns out the notions chosen also submit themselves to a somewhat rigorous probabilistic analysis.

A brief overview of the paper is as follows. Section 2 presents a case study of some current interest, the German Bundesrat. Section 3 introduces our reference space, the set of ternary voting profiles, within which we can conveniently define the events of interest. Section 4 adds the probabilistic assumptions, with an emphasis on distributions that are selfdual and permutationally invariant. Section 5 applies the general theory to a specific model, the ternary Penrose/Banzhaf model. Section 6 adds a brief outlook toward other modeling assumptions, and concludes with some final remarks.
2. Abstentions in the German Bundesrat. The Bundesrat (Federal Council) is one of the five constitutional organs of Germany, besides the Bundestag (Federal Diet, Parliament), Bundesregierung (Federal Government), Bundespräsident (Federal President) and Bundesverfassungsgericht (Federal Constitutional Court). The Bundesrat, the second chamber, is the assembly of the sixteen States of the Federal Republic of Germany.

Every State is allocated a certain number of Bundesrat seats. Delegation sizes only vaguely mirror population sizes, yet this has never been a point of concern. Four States send 6 delegates (Bavaria, Baden-Württemberg, Lower Saxony, North Rhine-Westphalia), one State 5 (Hesse), seven States 4 (Berlin, Brandenburg, Rhineland-Palatinate, Saxony, Saxony-Anhalt, Schleswig-Holstein, Thuringia), four States 3 (Bremen, Hamburg, Mecklenburg-Western Pomerania, Saarland). Thus the Bundesrat plenum counts 69 members.

A State’s delegation must submit their votes en bloc. In practice the head of delegation, usually the State’s Prime Minister, carries the corresponding voting weight. Factually, then, four States command a voting weight of 6 units, one State voting weight 5, seven States voting weight 4, and four States voting weight 3.

The Bundesrat uses two quotas. Normally, decisions call for a straight majority of more than half of the votes, whence the one-half quota equals 35. Others, like constitutional amendments, must reach at least a two-thirds quota, that is, 46 votes.

German State Governments are mostly coalition governments, with many of them composed by political parties other than those that constitute the Federal Government. Since quite a few proposals originate from the Federal Government and its administration, it occasionally happens that the coalition partners in a State cannot agree on a common vote. But their Bundesrat delegation must submit a bloc vote. So the consensus is to abstain, often laid down in the coalition manifesto for the legislative period. In this way the coalition governments on the state level shield themselves from being forced into a political fight that is triggered on the federal level and that is not under the State’s control.

However, the Bundesrat Rules and Regulations do not provide for abstentions. Only Yea-votes count toward reaching the quotas of 35 or 46. Thus the political practice is a bit peculiar. While the minutes do record whether a State abstains, the presidency only counts Yea-votes and does not distinguish between Nay-votes and abstentions.

With an increasing diversification of the political spectrum it nowadays happens more often than in former times that on the state level governments are formed by different political coalitions than on the federal level. This increases the tensions on the decision-making process in the Bundesrat in that it becomes increasingly harder to satisfy quota.
For this reason Wolfgang Schäuble, Minister for Interior Affairs during the legislative period 2005–2009, proposed an amendment of the Bundesrat Rules and Regulations. Instead of referring the one-half and two-thirds quotas to the total number of votes (69), he proposed to refer them to the total number of Yea- and Nay-votes and thus to give abstentions a novel, neutralizing effect. Schäuble’s intention was to strengthen the Bundesrat’s decision-making efficiency, and to overcome its increasingly frequent stalemates.

The present paper quantifies the effects of abstentions in the Bundesrat procedures. As a measure for its decision-making capability we calculate the efficiencies of the Bundesrat decision rules. We also investigate how abstentions affect the influence probabilities and the power shares of the States, though this issue was not addressed in Schäuble’s proposal.

We adopt the ternary Penrose/Banzhaf model. Voters abstain with probability \(t \), while they vote Yea or Nay with half of the remaining probability, \((1 - t)/2\). The minutes of the Bundesrat confirm that States vote more often Yea or Nay than abstain. Unfortunately we did not succeed to acquire sufficient empirical data from the Bundesrat archives in order to differentiate between the voting behavior of the various States. Of course, it is a bold hypothesis assuming the same abstention probability for all States. On the other hand, from an a priori point of view, common abstention probabilities appear to be a natural starting point for a first study. We focus on abstention probabilities between \(0 \) and \(1/3 \).

We evaluate the indices of interest by treating abstentions either as pseudo abstentions, or as true abstentions:

- **Pseudo abstentions**: Abstentions are counted as Nay-votes. The percentage quota is evaluated statically, relative to the sum of the weights of all votes (69).

- **True abstentions**: Abstentions are recorded as a category of their own, besides Yea- and Nay-votes. The one-half and two-thirds quotas are evaluated dynamically, relative to the sum of the weights of Yea- and Nay-votes.

The results of our ternary analysis are summarized in Figures 1 and 2.

Figure 1 exhibits the behavior of the decision-making efficiency of the decision rules when the abstention probability \(t \) increases from 0 to \(1/3 \). The efficiency index tells how likely a random voting profile turns out to be positive and leads to the acceptance of the proposal. The top lines relate to a quota of one-half, the bottom lines of two-thirds.

The left panel reflects current conditions, pseudo abstentions. The decision-making efficiency of the Bundesrat is seen to decrease, very much so in the case of the one-half quota, and just a little bit for the two-thirds quota.
Figure 1. Decision-making efficiencies in the Bundesrat. Under current pseudo abstentions, efficiencies diminish when the abstention probability grows larger (left panel). Under hypothetical true abstentions, efficiencies are unaffected for the one-half quota, and slightly increase for the two-thirds quota (right panel).

The right panel displays the behavior in the case of true abstentions. True abstentions have almost no effect on the one-half quota and leave the decision-making efficiency virtually constant. In the case of the two-thirds quota the efficiencies are even slightly increasing. Figure 1 confirms the intuitive judgment of Wolfgang Schäuble that by acknowledging true abstentions the Bundesrat would operate more efficiently.

Figure 2 corroborates Schäuble’s view as far as the influence probabilities and the power shares of the States are concerned. The panels show how the influence probabilities of the States change, as the abstention probability grows from 0 to 1/3. The four lines refer to the States with voting weights 6, 5, 4, 3, from top to bottom.

The upper panels apply to the one-half quota. Panel A, for pseudo abstentions, has all influence probabilities decreasing. Panel B treats true abstentions, and has all influence probabilities slightly increasing.

The lower panels are for the two-thirds quota. Panel C shows pseudo abstentions. The decrease of the influence probabilities is more pronounced, and falls almost down to zero. Panel D refers to true abstentions. The influence probabilities increase more than in Panel B.

Yet another index is provided by the power shares of the States, the quotients of the influence probability of a single State over the influence sensitivity of the decision rule. We
find that all States acquire power shares that stay practically constant on the same level. In other words, no State gains or loses power relative to another State when switching from pseudo abstentions to true abstentions. The graphical message inherent in constant lines is rather uninformative, and hence omitted.

It is open to debate which conclusions to draw from the results shown. For instance, true abstentions and the two-thirds quota entail decision-making efficiencies that grow with the abstention probability, see Figure 1, right panel, lower line. Thus a higher abstention probability makes it increasingly easier to pass a constitutional amendment. This may not be a reasonable political goal. Instead one might contemplate to maintain the status
In any case the example illustrates how the discussion of characteristic indices of decision rules may contribute to a design of sound procedures. The remaining sections turn to a general theory for the ternary setting.

3. Ternary voting profiles and decision rules. Let N be a finite set, the assembly, of n voters. A voting profile is a vector $a = (a_j)_{j \in N}$ with ternary components, $a_j := 1$ in case voter $j \in N$ is a Yea-voter, $a_j := -1$ in case j is a Nay-voter, and $a_j := 0$ in case voter j abstains. Together the voting profiles form the ternary profile space

$$\Omega_N := \{-1, 0, 1\}^N.$$

Let $1_N := (1, \ldots, 1)$ denote the unity vector with n components, signifying the profile with everybody voting Yea. For a given voting profile $a \in \Omega_N$ the component-wise partial ordering \leq of vectors induces the interval region of increasing consent, $[a, 1_N] := \{b \in \Omega_N : a \leq b \leq 1_N\}$. A ternary decision rule is a subset $W_N \subseteq \Omega_N$ enjoying three properties:

1. $[a, 1_N] \subseteq W_N$ for all $a \in W_N$,
2. $1_N \in W_N$,
3. $0 \notin W_N$.

The monotonicity property (1) is central: If a voting profile a is in W_N and b exhibits at least as much consent as a, $b \geq a$, then b is also in W_N. In view of (1), property (2) means that the decision rule W_N is nonempty. Property (3) implies that profiles without a single Yea-voter are necessarily losing. The voting profiles in W_N are termed positive or winning, for the reason that they are taken to represent the positive outcomes of the voting procedure. They are also known as winning coalitions, or winning configurations. The voting profiles in the complement $W_N^c := \Omega_N \setminus W_N$ are called negative or losing.

Instead of our property (3) Felsenthal/Machover (1998, page 283) demand

$$(3') \quad -1_N \notin W_N.$$

Under $(3')$ a voting profile consisting of abstentions only and even including Nay-votes could still come out to be positive. We believe that such generosity is impractical and, therefore, adopt our more restrictive property (3).
A family of decision rules that is of particular relevance is formed by weighted decision rules. Let \(w = (w_j)_{j \in N} \in (0, \infty)^N \) be a vector of voting weights. The sum of all components of \(w \) is denoted by \(w_+ := \sum_{j \in N} w_j \). For a given voting profile \(a \) the sum of the voting weights of its Yea-voters is \(\sum_{j : a_j = 1} w_j \), and defines the profile weight of \(a \).

The definition of weighted decision rules is more involved for ternary decision rules than for binary decision rules. The underlying idea is the same: the profile weight should exceed a certain prespecified quota. For the ternary case, however, the reference set for the quota is variable. For this reason we prefer to work with relative quotas \(q \in [0, 1) \). The relative quota \(q \) is evaluated relative to the sum of the weights of the voters who vote Yea or Nay, excluding the weights of the voters who abstain.

To this end we define the indicator vector of the voters who vote either Yea or Nay, \(|a| := (|a_j|)_{j \in N} \). The indicator vectors that characterize the Yea-voters, the Nay-voters, and the voters who abstain then take the form

\[
(\sum_{j : |a_j| = 1} |a_j| + a_+)/2, \quad (\sum_{j : |a_j| = 1} |a_j| - a_+)/2, \quad 1_N - |a|.
\]

Again we use a subscript “+” to indicate the sum of all components. The number of Yea-voters is given by \((\sum_{j : |a_j| = 1} |a_j| + a_+)/2 \), the number of Nay-voters is \((\sum_{j : |a_j| = 1} |a_j| - a_+)/2 \), and the number of those who abstain is \(n - \sum_{j : |a_j| = 1} |a_j| \). In a profile \(a \) the cumulative weight of the Yea- and Nay-voters is given by the scalar product of the indicator vector \(|a| \) and the weight vector \(w, w'|a| := \sum_{j : |a_j| = 1} w_j \).

We are now in a position to formally introduce the weighted decision rule \(W_N(q; w) \). By definition, it contains the voting profiles for which the profile weight exceeds the share \(q \) of the cumulative weight of the Yea- and Nay-voters,

\[
W_N(q; w) := \left\{ a \in \Omega_N : \sum_{j : a_j = 1} w_j > q \sum_{j : |a_j| = 1} w_j \right\}.
\]

In particular, voters who abstain drop out from calculating the absolute quota \(Q(a) := q \sum_{j : |a_j| = 1} w_j \). The definition demands strict inequality in order to satisfy property (3), that the voting profile with everybody abstaining cannot be winning. Freixas/Zwicker (2009, page 430) point out, though, that the two-thirds quota is often taken to mean “two-thirds or more” rather than “strictly more than two-thirds”, as is the case in the German Bundesrat.

Important examples for weighted ternary decision rules are the unanimity rule \(U_N \) and the straight majority rule \(M_N \):

\[
U_N := W_N(1 - 1/n; 1_N) = \left\{ a \in \Omega_N : a_+ = |a|_+ > 0 \right\},
\]

\[
M_N := W_N(1/2; 1_N) = \left\{ a \in \Omega_N : a_+ > 0 \right\}.
\]
An event of some interest is composed by the voting profiles where participant $j \in N$ is critical. Given a voting profile a, a voter j is \textit{upgrade-critical} when the profile a is negative, but an increase in the degree of consent of j turns it positive (by voter j switching from Nay to abstention, or from Nay to Yea, or from abstention to Yea). Similarly voter j is called \textit{downgrade-critical} in a when the profile a starts out to be positive, but becomes negative as soon as the approval level of j decreases (from Yea to abstention, or from Yea to Nay, or from abstention to Nay). A voter j is \textit{critical} or decisive when j is upgrade- or downgrade-critical.

For a concise definition of critical events we introduce $\Pi_{N \setminus \{j\}}$, the projection of the profile space $\Omega_N = \{-1,0,1\}^N$ onto $\Omega_{N \setminus \{j\}} = \{-1,0,1\}^{N \setminus \{j\}}$, the $(n-1)$-dimensional marginal space omitting voter j. Given a marginal voting profile $b \in \Omega_{N \setminus \{j\}}$ without voter j, we introduce the full voting profiles $(b; 1)$ with j joining by voting Yea, $(b; 0)$ with j abstaining, and $(b; -1)$ with j voting Nay. The set of voting profiles where voter j is critical takes the form

$$C_j(W_N) := \{a \in \Omega_N : (\Pi_{N \setminus \{j\}}(a); 1) \in W_N \text{ and } (\Pi_{N \setminus \{j\}}(a); -1) \in W^c_N\}.$$

Let $D_j(W_N) := \Pi_{N \setminus \{j\}}(C_j(W_N))$ denote the image under the projection $\Pi_{N \setminus \{j\}}$ of the critical event $C_j(W_N)$.

Theorem 1. Let W_N be a ternary decision rule for an assembly N. Then $C_j(W_N)$ is the pre-image of $D_j(W_N)$ under the projection $\Pi_{N \setminus \{j\}}$:

$$C_j(W_N) = \Pi_{N \setminus \{j\}}^{-1}(D_j(W_N)).$$

Proof. A vector $a \in \Omega_N$ is mapped to the image $b := \Pi_{N \setminus \{j\}}(a) \in \Omega_{N \setminus \{j\}}$, with components $b_i = a_i$ for all $i \neq j$. The vector $b \in \Omega_{N \setminus \{j\}}$ has three pre-images, $(b; -1)$, $(b; 0)$ and $(b; 1)$. Hence we obtain $D_j(W_N) = \{b \in \Omega_{N \setminus \{j\}} : (b; -1) \in W^c_N, (b; 1) \in W_N\}$. Evidently the pre-image of $D_j(W_N)$ reproduces the event $C_j(W_N)$.

Next we turn to evaluating the events of interest by means of appropriate probability distributions.
4. Ternary probability models. Let P be a probability distribution on the ternary profile space Ω_N, and let W_N be a ternary decision rule. The share of all positive voting profiles $P(W_N)$ is called the efficiency of W_N under P. It serves as an indicator for the decision-making ability of the decision rule W_N under P.

The influence probability of voter j in the decision rule W_N is defined to be the probability of j being critical, $P(C_j(W_N))$. The sum of all influence probabilities is termed the decision rule’s influence sensitivity, $\Sigma_P(W_N) := \sum_{j \in N} P(C_j(W_N))$.

The critical events $C_j(W_N)$, $j \in N$, generally neither cover the profile space Ω_N, nor are they pairwise disjoint. Hence there is no reason for the influence sensitivity to be equal to unity. However, the influence sensitivity can be used to normalize the influence probability of j into $P(C_j(W_N)) / \Sigma_P(W_N)$, the power share of voter j under P. The power shares form a probability distribution on the set of voters, N, preserving for any two voters $i \neq j$ the ratio of their influence probabilities, $P(C_i(W_N)) / P(C_j(W_N))$. We shall not shift references spaces, though, and stick to the profile space Ω_N.

In summary, efficiency and influence sensitivity are indices that refer to the decision rule W_N as a whole, while influence probabilities and power shares describe characteristics of individual voters $j \in N$.

Two structural properties become essential for singling out particularly meaningful probability assumptions. A distribution P is called selfdual when $P(\{a\}) = P(\{-a\})$ holds for all voting profiles $a \in \Omega_N$. Selfduality means that the probability of a profile a occurring for some proposal, equals the probability that the dual voting profile $-a$ emerges for the negated proposal.

A distribution P is called permutationally invariant when $P \circ \pi^{-1} = P$ holds for all permutations π of the assembly N. That is, it does not matter whether a profile a lists voters in one way or another. To see the effect of permutational invariance, we write the profile space Ω_N as the disjoint union of the sets of voting profiles with fixed numbers k of Yea-voters and ℓ of Nay-voters (and hence $n-k-\ell$ abstentions):

$$\Omega_N = \biguplus_{k=0}^{n} \biguplus_{\ell=0}^{n-k} \left\{ \left\{ \binom{n}{k}; \binom{n-k}{\ell} \right\} : \binom{n}{k} \in \Omega_N : (|a|_+ + a_+)/2 = k \text{ and } (|a|_+ - a_+)/2 = \ell \right\}.$$

The cardinality of the latter set is given by the trinomial coefficient

$$\binom{n}{k; \ell} := \binom{n}{k} \binom{n-k}{\ell} = \frac{n!}{k! \ell! (n-k-\ell)!}.$$
Within such a profile subset, a permutationally invariant distribution behaves like a uniform distribution:

\[P(\{a\}) = \frac{1}{\binom{n}{k; \ell}} P\left(\left\{ \binom{N}{k; \ell} \right\}\right) \quad \text{for all } a \in \left\{ \binom{N}{k; \ell} \right\}. \]

A voting profile \(a \in \Omega_N \) is said to be a \textit{success} for voter \(j \), and voter \(j \) is said to agree with the profile \(a \), provided the profile is positive and \(j \) votes Yea \((a \in W_N, a_j = 1)\), or the profile is negative and \(j \) votes Nay \((a \in W_N^c, a_j = -1)\). A positive voting profile is taken to be a \textit{failure} for a Nay-voter, as is a negative voting profile for a Yea-voter. An abstaining voter \(j \) is taken to be indifferent, whence the profile counts neither as a success nor as a failure.

The difference between the number of voters for which a voting profile is a success, and the number of the voters for which it is a failure, defines the \textit{success margin} \(\sigma_{WN}(a) \) of the voting profile \(a \):

\[\sigma_{WN}(a) := \begin{cases} a_+ & \text{in case } a \in W_N, \\ -a_+ & \text{in case } a \in W_N^c. \end{cases} \]

Some emphasis is laid on the positive voting profiles \(a \in W_N \) that are a failure to a majority of the voters. For such voting profiles the success margin is negative. Hence the negative part of the success margin is called the \textit{majority deficit}, \(\delta_{WN}(a) := \sigma_{WN}(a) = (|\sigma_{WN}(a)| - \sigma_{WN}(a))/2 \).

Theorem 2. Let \(W_N \) be a ternary decision rule for an assembly \(N \).

(i) The success margin \(\sigma_{WN} \) and the majority deficit \(\delta_{WN} \) satisfy \(\sigma_{WN} = \sigma_{MN} - 2\delta_{WN} \leq \sigma_{MN} \), where \(\sigma_{MN} \) is the success margin of the straight majority rule \(M_N \). In particular, every distribution \(P \) fulfills

\[E_P[\sigma_{WN}] \leq E_P[\sigma_{MN}]. \]

(ii) Every selfdual distribution \(P \) fulfills

\[E_P[\sigma_{WN}] = 2 \sum_{a \in W_N} a_+ P(\{a\}) = 2 \sum_{k=1}^{n} \sum_{\ell=0}^{n-k} (k - \ell) P\left(W_N \cap \left\{ \binom{N}{k; \ell} \right\} \right). \]

(iii) Every selfdual and permutationally invariant distribution \(P \) fulfills

\[E_P[\sigma_{WN}] \geq E_P[\sigma_{UN}]. \]
Proof. (i) The absolute value of any success margin is equal to the success margin of the straight majority rule, since $|\sigma_{WN}(a)| = |a_+| = \sigma_{MN}(a)$. The assertions follow from $\delta_{WN} = (\sigma_{MN} - \sigma_{WN})/2$, and $\sigma_{WN} \leq |\sigma_{WN}| = \sigma_{MN}$.

(ii) With the indicator function $\mathbbm{1}\{a \in W_N\} = 1$ in case $a \in W_N$ and $\mathbbm{1}\{a \in W_N\} = 0$ in case $a \in W_N^c$, the success margin becomes $\sigma_{WN}(a) = (2 : \mathbbm{1}\{a \in W_N\} - 1)a_+$. We obtain $E_P[\sigma_{WN}] = 2\sum_{a \in WN} a_+P(\{a\}) - \sum_{a \in WN} a_+P(\{a\})$. The last sum vanishes due to $a_+ = -(-a_+)$ and the selfduality of P:

$$2 \sum_{a \in \Omega_N} a_+P(\{a\}) - \sum_{a \in \Omega_N} (-a_+)P(\{-a\}) = 0.$$

In view of $a_+ = k - \ell$ the second equality is a rearrangement according to the number of Yea-voters, $k = (|a_+| + a_+)/2$, and the number of Nay-voters, $\ell = (|a_+| - a_+)/2$. In the first sum k ranges from 1 to n since $0 \notin W_N$ and hence $\binom{N}{0; \ell} \notin W_N$, due to the monotonicity condition (1).

(iii) Since for every voting profile $a \in \binom{N}{k; \ell}$ its dual voting profile $-a$ is in $\binom{N}{\ell; k}$, selfdual distributions satisfy $P\left(\binom{N}{k; \ell}\right) = P\left(\binom{N}{\ell; k}\right)$. Permutational invariance yields

$$P(\{a\}) = P(\{b\}) = \frac{1}{\binom{n}{k; \ell}} \binom{n}{k; \ell} \quad \text{for all} \ a \in \binom{N}{k; \ell} \text{ and } b \in \binom{N}{\ell; k}.$$

For the unanimity rule $U_N = \bigcup_{k=1}^{n} \binom{N}{k; 0}$ part (ii) entails

$$E_P[\sigma_{WN}] = E_P[\sigma_{U_N}] + 2\sum_{k=1}^{n} \sum_{\ell=1}^{n-k} (k - \ell)P\left(W_N \cap \binom{N}{k; \ell}\right).$$

We show that the double sum is nonnegative. Note that the summand vanishes in case $\ell = k$. Omitting this case and applying permutational invariance and selfduality, we obtain

$$\sum_{k=1}^{n} \sum_{\ell=1}^{k-1} (k - \ell)P\left(W_N \cap \binom{N}{k; \ell}\right) + \sum_{k=1}^{n} \sum_{\ell=k+1}^{n-k} (k - \ell)P\left(W_N \cap \binom{N}{k; \ell}\right)$$

$$= \sum_{k=2}^{n} \sum_{\ell=1}^{k-1} (k - \ell)\left(P\left(W_N \cap \binom{N}{k; \ell}\right) - P\left(W_N \cap \binom{N}{\ell; k}\right)\right)$$

$$= \sum_{k=2}^{n} \sum_{\ell=1}^{k} \left(\frac{n}{\binom{n}{k; \ell}} \#\left(W_N \cap \binom{N}{k; \ell}\right) - \#\left(W_N \cap \binom{N}{\ell; k}\right)\right).$$

Since a decision rule W_N is monotone, by its defining property (1), any set of positive voting profiles with many Yea-voters (k) outnumbers any set of positive voting profiles with fewer Yea-voters (ℓ). Hence the final expression is nonnegative. \qed
5. The ternary Penrose/Banzhaf model. The ternary Penrose/Banzhaf model assumes that all voters act independently and that the individual marginal distributions are Multinominal\(((1-t)/2, t, (1-t)/2)\). Thus voters are taken to share a common abstention probability \(t \in [0,1]\), and to vote Yea or Nay with half of the remaining probability, \((1-t)/2\).

Hence the ternary Penrose/Banzhaf distribution \(P^t_N\), contingent upon the “ternary” parameter \(t\), is defined through

\[
P^t_N\{a\} := t^{a-|a|} \left(\frac{1-t}{2}\right)^{|a|} \text{ for all } a \in \Omega_N.
\]

It is easy to see that these distributions are selfdual and permutationally invariant. They are also projectively consistent in the sense that the identity \(P^t_N \circ \Pi^{-1}_{N\setminus\{j\}} = P^t_N\{j\}\) holds for all \(j \in N\).

Theorem 3 looks at the sets of voting profiles that are a success for voter \(j\) (that is, where \(j\) “agrees” with the outcome), or a failure:

\[
A_j(W_N) := \{a \in \Omega_N : a \in W_N \text{ and } a_j = 1, \text{ or } a \in W_N^c \text{ and } a_j = -1\},
\]

\[
F_j(W_N) := \{a \in \Omega_N : a \in W_N \text{ and } a_j = -1, \text{ or } a \in W_N^c \text{ and } a_j = 1\}.
\]

We call \(P^t_N\{A_j(W_N)\}\) the success probability and \(P^t_N\{F_j(W_N)\}\) the failure probability of voter \(j\). They are related to the influence probability of \(j\), as follows.

Theorem 3. Let \(W_N\) be a ternary decision rule for an assembly \(N\). The ternary Penrose/Banzhaf success, failure, and influence probabilities for voter \(j \in N\) fulfill

\[
P^t_N\{A_j(W_N)\} = \frac{1-t}{2} + \frac{1-t}{2} P^t_N\{C_j(W_N)\},
\]

\[
P^t_N\{F_j(W_N)\} = \frac{1-t}{2} - \frac{1-t}{2} P^t_N\{C_j(W_N)\}.
\]

Proof. Voting profiles in which voter \(j\) abstains are neither a success nor a failure. In the complementary profiles \(j\) votes Yea or Nay, \(\{a_j = \pm 1\} := \{a \in \Omega_N : a_j \neq 0\}\). Clearly we have \(A_j(W_N) = A_j(W_N) \cap \{a_j = \pm 1\}\).

Every voting profile in which voter \(j\)’s Yea or Nay is critical is a success for \(j\). This first case occurs with probability

\[
P^t_N\{C_j(W_N) \cap \{a_j = \pm 1\}\} = P^t_{\{j\}}\{\{\pm 1\}\} P^t_{N\setminus\{j\}}\{D_j(W_N)\} = (1-t) P^t_N\{C_j(W_N)\}.
\]
For a voting profile \(a \) in which voter \(j \)'s Yea or Nay is not critical, either \((b; -1)\) or \((b; 1)\) is a success for \(j \), where the projection \(b = \Pi_{N \setminus \{j\}}(a) \) comprises the votes of the others. Since the two possibilities are equally likely, the contribution of the second case is
\[
\frac{1}{2} P^t_N(C_j(W_N)^c \cap \{a_j = \pm 1\}) = \frac{1-t}{2} \left(1 - P^t_N(C_j(W_N))\right).
\]
The sum of the two cases yields the success probability of \(j \) as given in the assertion. The failure probability formula follows from the identity
\[
P^t_N(A_j(W_N)) + P^t_N(F_j(W_N)) = P^t_N(\{a_j = \pm 1\}) = 1 - t.
\]

We are now in a position to show that the ternary Penrose/Banzhaf influence sensitivity coincides with the Penrose/Banzhaf mean success margin, up to a scaling constant that solely depends on the abstention probability \(t \).

Theorem 4. Let \(W_N \) be a ternary decision rule for an assembly \(N \). Under the ternary Penrose/Banzhaf distribution with abstention probability \(t \in [0, 1) \), the influence sensitivity of \(W_N \) and the mean success margin of \(W_N \) fulfill
\[
\Sigma_{P^t_N}(W_N) = \frac{1}{1-t} E_{P^t_N}[\sigma_{W_N}].
\]

Proof. For every voter \(j \) we define the success function
\[
\sigma_j(a) := \begin{cases}
1 & \text{in case } a \in A_j(W_N), \\
0 & \text{in case } a_j = 0, \\
-1 & \text{in case } a \in F_j(W_N).
\end{cases}
\]
The success margin is the sum of the individual success functions, \(\sigma_{W_N}(a) = \sum_{j \in N} \sigma_j(a) \).

From Theorem 3 we obtain
\[
E_{P^t_N}[\sigma_{W_N}] = \sum_{j \in N} \left(P^t_N(A_j(W_N)) - P^t_N(F_j(W_N))\right) = (1-t)\Sigma_{P^t_N}(W_N).
\]

Theorems 2 and 4 provide bounds for the ternary Penrose/Banzhaf influence sensitivity \(\Sigma_{P^t_N}(W_N) \) of an arbitrary ternary decision rule \(W_N \). The lower bound is given by the unanimity rule, through \(\Sigma_{P^t_N}(U_N) = n \left(\frac{1+t}{2}\right)^{n-1} \). The upper bound stems from the straight majority rule,
\[
\Sigma_{P^t_N}(M_N) = \sum_{k=1}^{n} \sum_{\ell=0}^{k-1} (k - \ell) \binom{n}{k; \ell} t^{n-k-\ell} \left(\frac{1-t}{2}\right)^{k+\ell-1}.
\]
6. Discussion. The present paper proposes a probabilistic approach to ternary decision rules that permit committee members to vote Yea, or Nay, or to abstain. Our motivation to calculate some characteristic indices for such rules originates from the political debate in Germany to improve upon the decision procedures used in the Bundesrat, in order to increase the Bundesrat’s decision-making efficiency.

Current Bundesrat procedures implement pseudo abstentions, as described in Section 2, with an abstention factually being viewed as just another way of voting Nay. Such a system is modeled by a distribution wherein voters act independently, and vote Yea with probability \((1 - t)/2\) and Nay with the complementary probability \((1 + t)/2\). Thus the binary voting profile \(a \in \{-1, 1\}^N\) occurs with probability

\[
\left(\frac{1 - t}{2}\right)^{(n+a_+)/2} \left(\frac{1 + t}{2}\right)^{(n-a_+)/2}
\]

The pseudo abstention curves in Figures 1 and 2 were calculated with these probabilities, using generating functions as in Bilbao et al. (2000) and Leech (2002) for efficient computation. The example is interesting also from the theoretical viewpoint, in that it is based on a probability distribution that fails to be selfdual but otherwise looks quite reasonable.

True abstentions generate ternary voting profiles \(a \in \{-1, 0, 1\}^N\), with the additional code \(a_j = 0\) signaling an abstention of voter \(j\). A pertinent probability model is obtained by extending the binary Penrose/Banzhaf model to the ternary situation. The ternary Penrose/Banzhaf distribution comes with a “ternary” parameter \(t\), the probability with which voters abstain. The model assumes the abstention probability \(t\) to be the same for all voters, and hence assigns to the ternary voting profile \(a \in \{-1, 0, 1\}^N\) the probability

\[
t^{n-\|a\|_+} \left(\frac{1 - t}{2}\right)^{\|a\|_+}
\]

The true abstention curves in Figures 1 and 2 were calculated under the ternary Penrose/Banzhaf model.

Our Theorems 3 and 4 reproduce the results of Felsenthal/Machover (1998, Section 8.3) for the special case \(t = 1/3\), that is, when a Yea, a Nay, and an abstention are equally likely. We believe that \(1/3\) gets close to the maximum of an abstention probability to be met in practice. For this reason the curves in Figures 1 and 2 do not extend beyond \(1/3\).

The ternary Penrose/Banzhaf model includes a vanishing abstention probability, \(t = 0\). In this case, ternary decision rules degenerate to binary decision rules. Accordingly, the present formulas simplify to those familiar from binary decision rules, see Felsenthal/Machover (1998, Section 3.2) and Ruff/Pukelsheim (2010).
There is a more sophisticated way to extract binary decision rules from the ternary case, by viewing the binary profile space \(\{-1,1\}^N\) as a subset of the ternary profile space \(\{-1,0,1\}^N\). Indeed, every ternary decision rule \(W_N \subset \{-1,0,1\}^N\) has a binary trace \(B(W_N) := W_N \cap \{-1,1\}^N\) that turns out to be a well-defined binary decision rule, in that it fulfills properties (1), (2), and (3') of Section 3.

Furthermore, a probability distribution \(P\) on the ternary profile space induces a distribution on the binary profile space through conditioning,

\[
P\left(\{a\}\mid \{-1,1\}^N\right) = \frac{P(\{a\})}{P(\{-1,1\}^N)},
\]

for all binary voting profiles \(a \in \{-1,1\}^N\). Not surprisingly, all ternary Penrose/Banzhaf distributions induce the same binary trace, namely the well-known binary Penrose/Banzhaf distribution.

In summary, our results on the ternary Penrose/Banzhaf model afford a passage back to the binary Penrose/Banzhaf model not only through the singular parameter choice \(t = 0\), but also, by conditioning, for all conceivable parameter values \(t \in [0,1)\).

Acknowledgments. We are grateful to Moshé Machover and Bill Zwicker for critical comments on an earlier version of the present paper.
REFERENCES

Decision-making efficiency, current pseudo abstentions

- One-half quota
- Two-thirds quota

Decision-making efficiency, hypothetical true abstentions

- One-half quota
- Two-thirds quota
Influence probabilities, current pseudo abstentions, one-half quota

Influence probabilities, hypothetical true abstentions, one-half quota

Influence probabilities, current pseudo abstentions, two-thirds quota

Influence probabilities, hypothetical true abstentions, two-thirds quota