Charged charmonium-like $Z^{+}(4430)$ from rescattering in conventional B decays

P. Pakhlov, T. Uglov

A R T I C L E I N F O
Article history:
Received 25 August 2014
Received in revised form 26 June 2015
Accepted 29 June 2015
Available online 2 July 2015
Editor: M. Doser

Keywords:
Rescattering effects
Charmonium like states

A B S T R A C T
In a previous paper we suggested an explanation for the peak designated as $Z(4430)^+$ in the $\psi'\pi^+$ mass spectrum, observed by Belle in $B \to \psi'\pi^+K$ decays, as an effect of $D^{*0}D^{+} \to \psi'\pi^+$ rescattering in the decays $B \to D_s^{*-}D^+$. The D_s^{*-} is an as-yet unobserved radial excitation of the pseudoscalar ground state D_s^--meson. In this paper, we demonstrate that this hypothesis provides an explanation of the double $Z^{'}$-like peak structures, which were studied by LHCb with much higher statistics. While according to our hypothesis, the origin of the peaking structures is due to the kinematical reflection of conventional resonances in the unobserved intermediate state, the amplitude of the $Z(4430)^+$ peak carries a Breit–Wigner–like complex phase, arising from the intermediate D_s^{*-} resonance. Thus, our hypothesis is entirely consistent with the recent LHCb measurement of the resonant-like amplitude behavior of the $Z(4430)^+$. We perform a toy fit to the LHCb data, which illustrates that our approach is also consistent with all the observed structure in the LHCb $M(\psi'\pi^+)$ spectrum. We suggest a critical test of our hypothesis that can be performed experimentally.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Many XYZ states above open charm threshold, and decaying into charmonium and light hadron(s) have been observed within the past decade. Their conventional interpretation as charmonium states remains controversial as their properties, especially their large decay rates into final states without open charm, do not easily match the levels of heretofore unobserved charmonia. Various exotic explanations, such as tetraquarks, molecular states, charmonium hybrids and hadrocharmonium are also not fully embraced by the physics community, as they cannot describe the variety of observed states, and all their measured properties, within a single self-consistent approach.

The first charmonium-like state, the $Z(4430)^+$, which is entirely inconsistent with a simple charmonium interpretation, was observed by Belle [1,2] in 2007 as a peak in the $\psi'\pi^+$ mass near $M \sim 4430$ MeV in B decays. Interpreted as a real resonance containing a $c\bar{c}$ pair, its minimal quark content given its non-zero charge, is necessarily exotic. The existence of the $Z(4430)^+$ was cast into doubt by BaBar [3], but the recent $Z(4430)^+$ observation by LHCb [4] unambiguously (with significance $\sim 14\sigma$) supports Belle's claim.

Among the exotic explanations of the $Z(4430)^+$, the most popular are the tetraquark [5], hadrocharmonium [6] and DD^{**} molecules [7]. There are also non-resonant interpretations such as the “cusp effect” [8], rescattering via the chain $B \to D\to D_1(2420)K \to \psi'\pi^+K$ [9], and the initial pion emission mechanism [10]. In our previous paper [11], we suggested another possible explanation of the $Z(4430)^+$ peak, resulting from $D^{*0}D^{+} \to \psi'\pi^+$ rescattering in the decays $B \to D_s^{*-}D^+$. Although this decay has not yet been observed and even the D_s^{*-}-meson not yet discovered, the branching fraction for the decay $B \to D_s^{*-}D^+$ is expected to be large, similar to that observed for $B^+ \to D_s^{*-}D^0$ [13], while the mass of the D_s^{*-} is predicted in the range (2600–2650) MeV—which corresponds to the range that provides a $Z(4430)^+$ peak value consistent with the extant experimental data.

If our ad hoc hypothesis is correct, the origin of the $Z(4430)^+$ peaking structure is caused by the presence of a conventional resonance (the D_s^{*-} meson) in the hidden intermediate state. However, our explanation also implies an interesting underlying phenomenon: namely, a non-vanishing rescattering amplitude over a wide range of $M(D^{*0}D^+)$. In this Letter, we demonstrate that our approach is fully consistent with all the experimental data, including the recent $Z(4430)^+$ phase study by LHCb, as the $Z(4430)^+$ phase would then arise from the Breit–Wigner D_s^{*-} amplitude.

http://dx.doi.org/10.1016/j.physletb.2015.06.074
0370-2693/© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
We show that other structures that are evident in the LHCb ψ'/π^+ spectrum can be attributed to similar effects. We also suggest here a critical test of our hypothesis that can be performed by Belle, BaBar and LHCb.

First, we note that in our previous paper [11] we have predicted the quantum numbers of the $Z(4430)$ to be $J^P = 1^+$ based on the simple argument that the $D^{*+}D^{0} \rightarrow \psi'/\pi^+$ rescattering should be dominated by S-waves in both the colliding $D^{*+}D^0$ and also the produced ψ'/π^+ systems. This prediction was confirmed by subsequent Belle [12] and LHCb [4] measurements. We also predicted the presence of other structures in the ψ'/π^+ spectrum, in particular near $M \sim 4200$ MeV, which arise from another $\bar{B} \rightarrow D^{*+}D$ decay chain. Such a broad peak at $M = 4239$ MeV is, indeed, observed in the LHCb data, and has been interpreted as another Z^+ resonance.

We reiterate the main points of our hypothesis. As in our previous paper [11] we consider B decays governed by the tree diagrams shown in Fig. 1a. In these decays the W^- is directly coupled to the radial excitations of the D_{s}^- and D_{s}^{*-}-mesons (the D_{s}^{*-} and D_{s}^{*-}) in a similar way as to their ground states. One of such mode, $B^- \rightarrow D_{s}^-(2700)^-D^0$, was observed by Belle with a relatively large branching fraction $B(B^- \rightarrow D_{s}^-(2700)^-D^0) \approx 0.01$ [13]. The measured quantum numbers of the $D_{s}^-(2700)^-$ ($J^P = 1^-$) suggest the interpretation of this state as the D_{s}^{*-}-meson. Other channels and even the D_{s}^{*-} have, not thus far, been explicitly searched for experimentally. However, the inclusive $B \rightarrow D^{(*)}D^{(*)}K$ branching fractions are large: they vary from 0.1 to 1% [15]. It is natural to assume that they should be saturated by two-body modes with intermediate radial D_{s}^- and D_{s}^{*-} excitations, since the known contribution of orbital D_{s}^- excitations to these final states is small [15].

The D_{s}^{*-}-meson is expected to decay mostly to the D^+K final state, as the decay $D_{s}^- \rightarrow DK$ is forbidden by parity conservation, while the D_{s}^{*-} decays to both DK and D^+K [15]. Therefore the B decays under consideration hadronize into $(D^{(*)})D^{(*)}K$ final states. We note that two charmed mesons are produced spatially at the same point and fly apart relatively slowly with $v/c \approx 0.3-0.5$. Therefore one can expect the non-vanishing rescattering of two charmed mesons into charmonium plus a light meson. Considering the S-wave rescattering as a recombination of the charm quark from one charmed meson and the charm antiquark from the other into charmonium, with the simultaneous merging of a light quark-antiquark pair into a light meson, we conclude that only $D^{*+}c\bar{c}$ states can result in rescattering into ψ'/π^+ or $\bar{f}/f\pi^+$. Other $(D\bar{D}$ and $D^{(*)}D^*)$ can rescatter to other charmonia and/or other light mesons. The rescattering amplitude can be determined by the overlap integral of two products of wave functions with the same quark content, taking into account color supression. We do not attempt such calculations, which can only be done by invoking a model for light and heavy mesons and charmonium wave functions, but simply assume that this amplitude is small but not vanishing, and does not change dramatically within the range of interest ($M_D + M_{D^*} < M_{D(D^*)}, \lesssim 4.8$ GeV).

Of the decay chains discussed above, only two can contribute to the ψ'/π^+K^+ final state:

\begin{align}
\bar{B} &\rightarrow D_s^{*-}D^+, \quad \text{followed by} \quad D_s^{*-} \rightarrow D^{0}K^- , \\
\bar{B} &\rightarrow D_s^{*-}D^{++}, \quad \text{followed by} \quad D_s^{*-} \rightarrow D^{0}K^- .
\end{align}

They corresponds to the triangle diagrams in Fig. 1b) and c) respectively. The decay $\bar{B} \rightarrow D_{s}^{*-}D^{+}$ which could otherwise contribute to this process, has parity opposite Z^+K^- and is therefore not considered. We note that while parity is not conserved in B decays, the rescattering process is mediated by the strong interaction and requires parity conservation.

We introduce a common notation, $(\bar{D}D)^+$, to refer to both $\bar{D}D^{*0}$ and $(\bar{D}+ D^0)$ systems in the reactions (1) and (2), respectively, and designate as Z^+ a pseudoparticle with $J^P = 1^+$ formed by the $(\bar{D}D)^+$ combination before its subsequent decay to ψ'/π^+. As in our previous paper, we calculate the amplitude of interest in the on-shell approximation of the triangle diagrams (Fig. 1), taking into account the $D_{1}^{(*)}\psi'$-Breit-Wigner amplitude. We also include the D^* spin rotation amplitudes, which provide the proper D^* helicity in the Z^+ system, corresponding to S-wave formation of the Z^+. Depending on the $D_{1}^{(*)}$-decay angle different values of $D_{1}^{(*)}$ mass within the Breit-Wigner distribution can yield the same $(\bar{D}D)^+$ mass. Thus, the total amplitude A_{Z^+} should be calculated as a superposition of all allowed values of $M(D_{1}^{(*)})$, accounting for the variation in phase with mass. Unlike our previous paper, here we therefore integrate the entire allowed kinematic region, explicitly including the variation in phase. This procedure is more rigorous, and the Z^+ shape is also slightly changed, relative to our previous calculations. The full decay amplitude has the following form in the helicity formalism:

\begin{equation}
A(M_{Z^+} \equiv M_{(\bar{D}D)^+}) = \sum \int A_{BW}(M_{D_{1}^{(*)}})
D_{1,\lambda}^{1}(\theta_{\text{dec}}) D_{1,\lambda,0}^{1}(\theta_{\text{rot}}) D_{0,\lambda,0}(\theta_{\text{form}}) dM_{D_{1}^{(*)}} ,
\end{equation}
fixed to the PDG values ($M = 2.709$ MeV, $\Gamma = 0.112$ MeV [15]);
the $D_{s}^{−}$ parameters are fixed to $M = 2610$ MeV and $\Gamma = 100$ MeV
as in our previous paper [11] (the expected $2S^1−2S^3$ splitting is
(60–100) MeV [14]). For each generated event, we then calulate
the expected contribution to the full amplitude according to
Equation (3) (this amplitude is a function of the kinematic characteristics of a particular event). Finally, we sum over (complex)
amplitudes corresponding to the same $M_{\bar{B}D}^{+\pi^{-}}$ bin. The resulting
Z^{+} shapes (equal to $|\sum A_l|^2$) for the chains (1) and (2) are shown
in Fig. 2; for the latter we plot separately the contributions of different D^{+} helicities.

The phase of the Z^{+} amplitude, $\arg (A_{Z^{+}})$, from the reaction
(1), which is responsible for the most prominent peak of the $Z(4430)^{+}$, is presented in Fig. 3a). Equivalently, we plot the Argand diagram Fig. 3b) using the same $M_{Z^{+}}$ binning as the LHCb experiment for direct comparison. The initial phase in our case is arbitrarily set to π, while for the LHCb experiment, it is fixed relative to the reference $B \to \psi K$ phase from their 4D-fit. The phase variation around the $Z(4430)^{+}$ peak arises from the $D_{s}^{(*)}$ Breit-Wigner phase variation via the convolution with the angular variables in Equation (3). We note that the highest mass region of $D_{s}^{(*)}$ corresponds to lower $Z(4430)^{+}$ mass, and vice versa. Therefore, in the region around the $Z(4430)^{+}$ the phase turns out to have opposite behavior relative to the conventional
Breit–Wigner definition: it tends to rotate clockwise in the Argand
diagram. However, experimentally the direction of amplitude rotation cannot be determined as there is a two-fold ambiguity ($\mathcal{A} \leftrightarrow \bar{\mathcal{A}}$) in the extraction of the Z^{+} amplitude from the measured $|A_{Z^{+}} + A_{\text{non}-Z^{+}}|^2$. Thus, our hypothesis is fully consistent with the LHCb Argand diagram.

To further illustrate that our hypothesis is plausible, we use the LHCb $\psi\pi^{+}$ mass spectrum with vetoed $K^{*}(890)$ and $K_{2}^{*}(1430)$
resonances (Fig. 4 from [4]) and perform a toy fit to this spectrum
ignoring interference between major $B \to \psi K^{(*)}$ and rescrattering
contributions. This is not a fully correct procedure, we thus use
it for illustration only, but having access to the published one-
dimensional $M_{\psi\pi^{+}}^{Z^{+}}$ projections only, we cannot calculate phase-
dependent interference effects. We first estimate the remaining
contributions from $K^{*}(890)$, $K_{2}^{*}(1430)$ and S-wave three-body phase space, after selecting the $1.0 < M_{Z^{+}} < 1.8$ GeV interval, using Figs. 3a) and b) from [4]. The LHCb data points
with these three contributions superimposed (the histogram colors
correspond to the LHCb notation) are shown in Fig. 4a). The spectrum
in Fig. 4b) is obtained after a bin-by-bin subtraction of $K^{(*)}$ and
non-resonant three-body decays. We attribute the remaining
spectrum to the rescrattering contribution and perform a fit to this
spectrum with a sum of contributions from the reactions (1) and
(2), therefore with five free parameters. We note that all intermediate
B decay channels with various $D_{s}^{(*)}$ states contribute to Z^{+}
production coherently with the same universal rescrattering amplitude.
The fit results are plotted in Fig. 4b) with the black solid line, and nicely
describe all the features observed in data.

We estimate the parameters of the $D_{s}^{(*)}$ meson from the fit to
the LHCb data. We vary the $D_{s}^{(*)}$ mass and width and calculate
the confidence level of the fit for each set of values. The result
of this exercise is presented in Fig. 5, where the green, magenta and
blue contours correspond to 1σ, 2σ and 3σ levels, respectively.
The $D_{s}^{(*)}$ parameters turn out to be well statistically constrained
by the fit: $M = (2614 \pm 4)$ MeV, $\Gamma = (92 \pm 10)$ MeV. However,
there is a systematic uncertainty in these values due to the
effect of interference with the $K^{(*)}$ background. To estimate this
effect we ascribe different phases to the amplitudes of $K^{*}(890),
K_{2}^{*}(1430)$ and S-wave three-body phase space and perform
another fit to the distribution in Fig. 4a) with varying $D_{s}^{(*)}$
mass and width. Variations of the best fit $D_{s}^{(*)}$ parameters depending on

the $K^{(*)}$ phases are estimated to be ± 10 MeV for the D_s^{*-} mass and ± 13 MeV for its width. We thus conclude that, to explain the $Z(4430)^+$ peak, the parameters of the D_s^{*-} meson should be in the interval: $M = (2614 \pm 4_{-13}^{+20})$ MeV, $\Gamma = (92 \pm 10 \pm 10)$ MeV.

Soon after this paper was submitted, another experimental analysis of $B \to J/\psi K^- \pi^+$ by Belle appeared [16]. The existence of the broad structure at $M(J/\psi \pi^+) \sim 4200$ MeV is established in that measurement with high significance and with preferred assignment of the quantum numbers $J^P = 1^+$; strong evidence for a $Z(4430)^+$ signal is also found. The parameters of the two bumps are consistent between the $J/\psi \pi^+$ and $\psi' \pi^+$ analyses. However, their relative phases with respect to $B \to K^{(*)} \pi$ background look different, (e.g. the $Z(4430)$ peak is seen as destructively interfering). While in our approach only the strengths of the $(\bar{D}D)^{**}$ rescattering amplitudes, which are real numbers, into $J/\psi \pi$ and $\psi' \pi^+$ can be different, this fact can be attributed to the different phases of the interfering $K^{(*)}$ background amplitude under Z^+ in these two modes. Indeed, the 3-body phase space is different due to the different J/ψ and ψ' masses. Thus, not only the different helicity regions of the same $K^{(*)}$ contribute to the Z^+ regions in these two modes, but also relative contributions of allowed K^{**} may differ.

A real test of our hypothesis can be achieved with a 4D-fit performed by Belle, BaBar and LHCb for $B \to \psi' \pi^+ K^-$ decays using amplitudes (3) instead of resonance-like Z^+'s. Obviously the fitting model with rescattering includes many free parameters: at least three complex amplitudes to describe all possible contributions as well as the as-yet-undetermined parameters of the D_s^{*-} resonance. It is important to fix these amplitudes using a study of $B \to D^{*0}D^+K^-$ and $B \to \bar{D}D^+K^-$, which is possible at B-factories or LHCb. However, there is an easier way to check our hypothesis experimentally. The Z^+-like structures should appear in the distributions of $M_{(\bar{D}D)^{**}} \times \cos^2(\theta_{\text{form}})$ in either $B \to \bar{D}D^0K^-$ or $B \to \bar{D}D^+K^-$ decays, or in both. The $M_{(\bar{D}D)^{**}} \times \cos^2(\theta_{\text{form}})$ is the $(D_s^{*-}\bar{D})^+$ mass spectrum corrected in each bin for the fraction of the D^* transverse component in the $(\bar{D}D)^{**}$ rest frame, and also the 1^+ formation factor $F^2(\theta_{\text{form}}) = \cos^2(\theta_{\text{form}})$.

In summary, we show that $B \to D^{*0}D^+ \to \psi' \pi^+$ rescattering in the decay chain $B \to D_s^{*-}D^+$, $D_s^{*-} \to D^{*0}K^-$ can explain the appearance of an observed peak in the $\psi' \pi^+$ mass spectrum in $B \to \psi' \pi^+ K^-$ decays around $M \sim 4430$ MeV and also correctly describes the quantum numbers and amplitude resonance-like behavior. This approach allows also to describe another peak at $M \sim 4.2$ GeV observed in LHCb data and which has been interpreted as another exotic resonance, as well as a high mass structure at the upper bound of the mass spectrum, which remains still undersaturated by the LHCb fit (with many K^{**} and two $Z(4430)^+$'s included).

The authors thank Yu. Kalashnikova for useful comments. This work is supported in part by RFBR grant 15-02-99495.

References