Calculation of axion–photon–photon coupling in string theory

Jihn E. Kim

Department of Physics, Kyung Hee University, 26 Cyungheedaero, Dongdaemun-Gu, Seoul 130-701, Republic of Korea

A R T I C L E I N F O

Article history:
Received 22 May 2014
Accepted 9 June 2014
Available online 11 June 2014
Editor: M. Cvetic

Keywords:
QCD axion
Axion–photon–photon coupling
\mathbb{Z}_{12} toroidal compactification
Flipped SU(5) GUT

A B S T R A C T

The axion search experiments invite a plausible estimation of the axion–photon–photon coupling constant $c_{\gamma\gamma\gamma}$ in string models with phenomenologically acceptable visible sectors. We present the calculation of $c_{\gamma\gamma\gamma}$ with an exact Peccei–Quinn symmetry. In the Huh–Kim–Kyae \mathbb{Z}_{12} toroidal compactification, we obtain $c_{\gamma\gamma\gamma} \approx 1.98 \pm 0.91$. The low-temperature axion search experiments will probe the QCD corrected coupling, $c_{\gamma\gamma\gamma} \approx 1.98 \pm 0.91$.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP³.

1. Introduction

It seems that the Universe once passed the grand unification (GUT) scale energy region with its imprint survived until now [1]. If this BICEP2 result on the B-mode polarization survives on the matter of GUT scale energy density during inflation, it has a farreaching implication in axion cosmology [2,3]. Firstly, the implied high scale inflation nullifies the dilution idea of topological defects, strings and domain walls of axion models [4]. Secondly, if the QCD axion accounts for most of cold dark matter (CDM) in the Universe, the constraint from isocurvature perturbation rules out the anthropic region [5] of the axion parameter space [6]. If axion accounts for some fraction of CDM, then it may be possible to detect it by low temperature Sikivie-type detectors [7]. If we accept this high scale inflation scenario, there are two urgent issues to be clarified.

The first is to introduce the trans-Planckian value of inflaton, the so-called Lyth bound [8], within a well-motivated theory. Recently, Lyth argued for a rationale of any specific term working for a large e-fold number [9]. There are three widely different classes of theories on this, the natural inflation completed with two non-abelian forces [10,11], appropriate quantum numbers under string-allowed discrete symmetries [12], and M-flation [14]. Discrete symmetries are favored compared to global symmetries in string compactification [13], which is thus welcome in obtaining a large e-folding by this method. If we rely on a single field inflation, it is generally very difficult to put the e-fold number at the bull’s eye on the BICEP2 point [12]. However, there are some attempts to obtain the large e-folding from single field inflation [15].

The second issue which motivated this paper is the domain wall problem in some axion models. Accepting high scale inflation, a string theory solution of the domain wall problem is possible [4] using a discrete subgroup of the anomalous U(1) symmetry in string models. In string models with anomalous U(1) [16], the model-independent (MI) axion becomes the longitudinal degree of the anomalous U(1) gauge boson, rendering it massive above 10^{16} GeV [17]. Below 10^{16} GeV, there results a global symmetry whose quantum numbers have descended from the original anomalous U(1) symmetry [18,19]. Thus, string models with the anomalous U(1) is suitable for introducing a spontaneously broken Peccei–Quinn (PQ) symmetry at the intermediate scale, to have an invisible axion [20,21]. Now, because of the high scale inflation, it is a dictum to have the axion domain wall number one: $N_{DW} = 1$. In string compactification, we found a solution of the domain wall problem [4] by identifying vacua in terms of discrete subgroups of the anomalous U(1), which is the Choi–Kim (CK) mechanism [22].

The early (and so far the only) example of the CK method using the anomalous U(1) was Ref. [18], which however was based on a toy model. Here, we present the second example based on a phenomenologically acceptable grand unification (GUT) model from the heterotic string theory, leading to an $N_{DW} = 1$ solution. In addition, we calculate the axion–photon–photon coupling strength, which is needed as a guideline in the axion detection experiments. It is in the Huh–Kim–Kyae (HKK) double SU(5) model.
[23,24] from Z_{12→1} orbifold compactification. We may consider the Z_{12→1} compactification as the simplest one among the thirteen different orbifolds of the heterotic string [25]. One may be tempted to regard the Z_0 orbifold compactification as the simplest one, but it is not so because the Z_0 orbifold has twenty-seven fixed points while the Z_{12→1} orbifold has only three fixed points. If one follows the orbifold selection rules carefully, the Z_{12→1} orbifold compactification leads to the easiest way of obtaining a string model [25,26]. The most complicated orbifolds are from Z_{6→11} [27]. The double SU(5) model is defined here as the model having three (10 + 5) families under one SU(5) and one (10 + 5) family under the other SU(5)/θ toward a successful low energy supersymmetry (SUSY). One family SU(5) is needed for dynamical breaking of SUSY with confining force SU(5)′ [28]. There does not exist any double SU(5) model in the Z_2 orbifold compactification [25], and we have not found any other double SU(5) model yet beyond the HKK model in the computer scan of Z_{12→1} orbifolds.

Phenomenologically interesting orbifold models, in particular the standard-like models with gauge group SU(3)c × SU(2)L × U(1)y are interesting [30], but for the study of anomalous U(1) they are too complicated because there are thirteen U(1) directions to consider. A simpler model with the GUT-type gauge coupling unification is the flipped SU(5) GUT, SU(5)_{flip} [31], in which a 16-dimensional set is obtained from the spinor representation 16 of SO(10). In this paper, the rank 5 gauge group SU(5)_{11} × U(1)_{X} is denoted as SU(5)_{flip}. The fermionic construction of SU(5)_{flip} was given in [32]. The double SU(5) model contains SU(5)_{flip} as the visible sector, and a successful phenomenology of the HKK model was discussed in Ref. [23].

In Section 2, we obtain the anomalous charge operator Q_{anom} which is used for the PQ charges and list the charges for the SU(5)_{flip} non-singlet representations. For the representations of the E_6 sector non-abelian groups, the charges listed are in Appendix A. In Section 3, we list the charges for electromagnetically charged singlet representations and compute the axion–photon–photon coupling ξ_{γγγ}. Section 4 is a conclusion.

2. SU(5) × U(1)_{X} × SU(5)′ × U(1)_{anom} without domain wall problem

Recently, we emphasized that the early history of the Universe does not take the possibility of inflating away the topological defects of axion models [4]. This implies that the axion solution of the strong CP problem via the spontaneous breaking of the Peccei–Quinn (PQ) symmetry is cosmologically disfavored if the axion domain wall number is not one [33]. The solution by introducing N_{DW} = 1 via the model-independent (MI) axion by the CK mechanism in string models is the following [4]. The MI axion has the anomaly coupling to gauge fields,

$$\frac{\alpha_{MI}}{32\pi^{2}F_{MI}}(\tilde{G}\tilde{G} + F_{\tilde{H}}F_{\tilde{H}})$$

where \tilde{G}\tilde{G} and \tilde{H}\tilde{H} are the QCD and hidden sector anomalies, respectively. With the anomalous U(1)_{anom} gauge boson symmetry, below the U(1)_{anom} gauge boson scale a global symmetry survives and its spontaneous symmetry breaking allows the second axion coupling as

$$\frac{N_{a2}}{32\pi^{2}F_{2}}\tilde{G}
+ \frac{N_{a2}}{32\pi^{2}F_{2}}\tilde{H},$$

where \tilde{N} is common to \tilde{G}\tilde{G} and \tilde{H}\tilde{H}. Here, we assumed only one extra axion \tilde{a}_{2} beyond the discrete subgroup of the MI axion direction. The fact that \tilde{N} is common to \tilde{G}\tilde{G} and \tilde{H}\tilde{H} is essential to have an N_{DW} = 1 solution. In this section, we show that indeed this is the case even though \tilde{G}\tilde{G} occurs from E_6 and \tilde{H}\tilde{H} occurs from E_8. Identifying the same \tilde{N} as the N_{DW} = 1 solution via a discrete subgroup of U(1)_{anom} [4].

In the Z_{12→1} HKK orbifold model, we have SU(5) × U(1)_{X} × SU(5)′ × U(1)_{anom}, and the key field contents under SU(5) × SU(5)′ are 3 × 16 + [10, 10] + [10, 5]. The set [10, 10] is needed for spontaneous breaking of SU(5)_{flip} × U(1)_{X} down to the standard model gauge group. The set [10, 5] is useful for SUSY breaking. Three copies of 16 constitute three families of SU(5)_{flip}.

The shift vector V of Z_{12→1} is composed of sixteen fractional numbers which are integer multiples of 1/12, satisfying the modular invariance conditions. With the twist vector of the six internal dimensions with three complex numbers, \phi = (\frac{5}{12}, \frac{4}{12}, \frac{1}{12}), the condition is 12(V^2 - \phi^2) = even integer. The Wilson line W should satisfy the modular invariance conditions, 12(V^2 - \phi^2) = even integer, 12V = W = even integer, and 12W^2 = even integer. The HKK model is [23].

$$V = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & -1 & -1 \ 6 & 6 & 6 & 6 & \end{pmatrix}, \ W = \begin{pmatrix} 2 & 2 & 2 & 2 & 0 & -2 & 2 \ 3 & 3 & 3 & 3 & 0 & -2 & 2 \ 3 & 3 & 3 & 3 & 0 & -2 & 2 \ \end{pmatrix}.$$ (3)

In this model, the SU(5) charge raising and lowering generators are

$$SU(5): \quad F_{\alpha} = (1 - 10000; 000; 000)^{(\alpha)},$$ (4)

where the underline means permutations of the entries above the line. The SU(5)′ charge raising and lowering generators are

$$SU(5)′: \quad A_{\alpha} = (0^3)(1 - 10000; 000)^{(\alpha)},$$

$$A_{\alpha} = (13 + 16) = (0^3)(000; 000; 000)^{(\alpha)},$$ (5)

The SU(2)′ charge raising and lowering generators are

$$SU(2)′: \quad \begin{pmatrix} T^+ = (0^8)(+ + + + + + + +) \\ T^- = (0^8)(- - + + + + + +) \end{pmatrix},$$ (6)

The rank 5 gauge group SU(5) × U(1)_{X} is denoted as SU(5)_{flip}, where the hypercharge Y_{5} \in SU(5) and X are denoted as

$$Y_{5} = \begin{pmatrix} -1 & 1 & -1 & 1 & 1 & 1 & 0 & 0 \ \end{pmatrix},$$ (7)

$$X = \begin{pmatrix} -2 & -2 & -2 & 0 & 0 & 0^8 \ \end{pmatrix},$$ (8)

with the convention presented in Ref. [25]. To get U(1)_{anom}, consider the rank 16 gauge group SU(5)_{flip} × U(1)_{X} × U(1)_{X} from E_{6} and SU(5)′ × SU(2)′ × U(1)′_{4} × U(1)′_{5} × U(1)′_{6} from E_{8}. The six U(1) charges are given by

$$Q_{1} = (0^5; 12000)(0^8), \quad Q_{1} = \frac{1}{12}Q_{1},$$

$$Q_{2} = (0^5; 01200)(0^8), \quad Q_{2} = \frac{1}{12}Q_{2},$$

$$Q_{3} = (0^5; 00120)(0^8), \quad Q_{3} = \frac{1}{12}Q_{3},$$

$$Q_{4} = (0^8)(0^4; 012 - 1200), \quad Q_{4} = \frac{1}{12\sqrt{2}}Q_{4},$$

$$Q_{5} = (0^8)(0^5; -6 - 6 - 12), \quad Q_{5} = \frac{1}{6\sqrt{6}}Q_{5}.$$
Table 1
The SU(5)$_{\text{lep}}$ states. Here, $+$ represents $\frac{1}{2}$ and $-$ represents $-\frac{1}{2}$. In the Label column, 3 is multiplied for $\mathbf{10}$ and $\overline{\mathbf{16}}$ each of which houses three quark and antiquarks. The PQ symmetry, being chiral, counts quark and antiquark in the same way. The right-hand three in T_1 and T_5 are converted to the left-hand ones of T_9 and T_7, respectively.

<table>
<thead>
<tr>
<th>Sect.</th>
<th>Colored states</th>
<th>SU(5)$_X$</th>
<th>Multiplicity</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
<th>Q_5</th>
<th>Q_{anom}</th>
<th>Label</th>
<th>Q_{em}</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$(++--;---;+;+)0^0y')$</td>
<td>$\overline{\mathbf{16}}$,1</td>
<td>-6, -6, +6, 0, 0, 0</td>
<td>-1638</td>
<td>$3C_2$</td>
<td>-3276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>$(---;+++;+;+)0^0y')$</td>
<td>$\mathbf{5}$,3</td>
<td>+6, -6, -6, 0, 0, 0</td>
<td>-126</td>
<td>C_1</td>
<td>-294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbf{10}^0$</td>
<td>$(+++;--;+;+)0^0y')$</td>
<td>$\mathbf{5}$,2</td>
<td>-2, -2, -2, 0, 0, 0</td>
<td>-378</td>
<td>$2C_5$</td>
<td>-882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbf{10}^5$</td>
<td>$(+++;--;+;+)0^0y')$</td>
<td>$\mathbf{5}$,2</td>
<td>-2, -2, -2, 0, 0, 0</td>
<td>-378</td>
<td>$6C_4$</td>
<td>-756</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{\mathbf{10}}^0$</td>
<td>$(10000;+;+;+)0^0y')$</td>
<td>$\overline{\mathbf{5}}$,2,3</td>
<td>$+4$</td>
<td>$+4$</td>
<td>$+4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$+756$</td>
<td>$2C_5$</td>
<td>+1008</td>
</tr>
<tr>
<td>$\overline{\mathbf{10}}^5$</td>
<td>$(10000;+;+;+)0^0y')$</td>
<td>$\overline{\mathbf{5}}$,2,3</td>
<td>$+4$</td>
<td>$+4$</td>
<td>$+4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$+756$</td>
<td>$2C_6$</td>
<td>+1008</td>
</tr>
<tr>
<td>$\overline{\mathbf{10}}^0$</td>
<td>$(++--;+++;+;+)0^0y')$</td>
<td>$\overline{\mathbf{16}}$,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$3C_7$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\overline{\mathbf{10}}^5$</td>
<td>$(++--;+++;+;+)0^0y')$</td>
<td>$\overline{\mathbf{16}}$,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$3C_8$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{16}^0$</td>
<td>$(+++;--;+;+)0^0y')$</td>
<td>$\mathbf{1}$,1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+9</td>
<td>+3</td>
<td>-927</td>
<td>C_{11}</td>
<td>-1296</td>
</tr>
<tr>
<td>$\mathbf{16}^5$</td>
<td>$(+++;--;+;+)0^0y')$</td>
<td>$\mathbf{1}$,1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+9</td>
<td>+3</td>
<td>-927</td>
<td>C_{12}</td>
<td>-1296</td>
</tr>
</tbody>
</table>

$\sum Q(q_i)m(q_i) = -16 - 28 + 8 \quad 0 + 18 + 6 = -6984 \quad \sum_i = -17058$

$Q_6 = (0^0)^x(−6-
The tr Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(\bar{T}_{-1}^0 - 1) = \text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(10_{-1}^0) = 2,
\text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(5_{+3}) = \frac{7}{3}, \quad \text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(1_{-5}) = 1,
\text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(5_{-2}) = \text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(\bar{5}_{+2}) = \text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}(\bar{5}_{-2})
= \frac{4}{3}.

In passing, note that the trace of Q^{\text{em}}_{\text{Q}^{\text{em}}_2} for an anomaly-free irreducible set, including the fundamental representation of GUT representations, defines \text{sin}^2 \theta_W of that GUT. Such examples in Eq. (16) are \bar{T}_{-1}^0 + 5_{+3} + 1_{-5} + 5_{-2} + \bar{5}_{+2}, etc. Assuming the universal coupling for all gauge groups in string theory, from 5_{-2} + \bar{5}_{+2} for example, we obtain

\text{sin}^2 \theta_W = \frac{\text{Tr} W^2}{\text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2}} = \frac{3}{8}.

(17)

From the last columns of Tables 1, 2, 3, and 4, we obtain

\text{Tr} Q^{\text{em}}_{\text{Q}^{\text{em}}_2} = -20214. Thus, we obtain

\zeta_{\text{Q}^{\text{em}}_{\text{Q}^{\text{em}}_2}} = \frac{-20214}{6984} = \frac{1123}{388}.

With the chiral symmetry breaking effect, -1.98, calculated with m_{\bar{\nu}}/m_{\nu} \simeq 0.5 [34], we obtain c_{\text{Q}^{\text{em}}_{\text{Q}^{\text{em}}_2}} = \zeta_{\text{Q}^{\text{em}}_{\text{Q}^{\text{em}}_2}} - 1.98. The cavity detector probes the axion–photon–photon coupling in a strong magnetic field B.

\mathcal{L} = \frac{c_{\text{Q}^{\text{em}}_{\text{Q}^{\text{em}}_2}} \alpha_{\text{em}}}{8 \pi f_\alpha} \mathbf{E} \cdot \mathbf{B}.

(19)
Table 3
The SU(5)' representations. Notations are the same as in Table 1.

<table>
<thead>
<tr>
<th>Sect.</th>
<th>States</th>
<th>SU(5)'</th>
<th>Multiplicity</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
<th>Q_5</th>
<th>Q_{6_{mass}}</th>
<th>Label</th>
<th>Q_4^{1/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0^5</td>
<td>(10000: 1/2 1/2 1/2 1/2 1/2; −10000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>10_0</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>+9</td>
<td>-648</td>
<td>3T_1</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(00000: 1/2 1/2 1/2 1/2 1/2; 10000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>(5', 2')</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>-3</td>
<td>-540</td>
<td>2F_1</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(00000: 1/2 1/2 1/2 1/2 1/2; 00000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>5_0</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>-15</td>
<td>-432</td>
<td>F_2</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 0 0 0 0 0)</td>
<td>5', 3/3</td>
<td>1</td>
<td>+4</td>
<td>-4</td>
<td>0</td>
<td>+4</td>
<td>-1</td>
<td>-44</td>
<td>F_3</td>
<td>-230</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 1/2 1/2 1/2 0 0)</td>
<td>5', 3/3</td>
<td>3</td>
<td>-2</td>
<td>+2</td>
<td>+6</td>
<td>-4</td>
<td>-2</td>
<td>+18</td>
<td>3F_4</td>
<td>-10</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 0 0 0 1/2 1/2)</td>
<td>5', 3/3</td>
<td>3</td>
<td>-2</td>
<td>-6</td>
<td>-2</td>
<td>-4</td>
<td>-2</td>
<td>-1242</td>
<td>3F_5</td>
<td>-590</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 1/2 1/2 1/2 1/2 0)</td>
<td>5', 3/3</td>
<td>1</td>
<td>+4</td>
<td>0</td>
<td>-4</td>
<td>-4</td>
<td>-1</td>
<td>-11</td>
<td>+666</td>
<td>F_6</td>
</tr>
</tbody>
</table>

\[\sum Q(q_i)\overline{m}(q_i) = -16 - 28 + 8 + 0 + 18 + 6 = -6984 \]

\[\sum = -736 \]

Table 4
The SU(2)' representations. Notations are the same as in Table 1. We listed only the upper component of SU(2)' from which the lower component can be obtained by applying γ of Eq. (6).

<table>
<thead>
<tr>
<th>Sect.</th>
<th>States</th>
<th>SU(2)'</th>
<th>Multiplicity</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
<th>Q_5</th>
<th>Q_{6_{mass}}</th>
<th>Label</th>
<th>Q_4^{1/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0^5</td>
<td>(00000: 1/2 1/2 1/2 1/2 1/2; 10000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>(5', 2')</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>+9</td>
<td>-648</td>
<td>3T_1</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(00000: 1/2 1/2 1/2 1/2 1/2; 10000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>(5', 2')</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>-3</td>
<td>-540</td>
<td>2F_1</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(00000: 1/2 1/2 1/2 1/2 1/2; 00000: 1/2 1/2 1/2 1/2 1/2)</td>
<td>5_0</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>+3</td>
<td>-15</td>
<td>-432</td>
<td>F_2</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 0 0 0 0 0)</td>
<td>5', 3/3</td>
<td>1</td>
<td>+4</td>
<td>-4</td>
<td>0</td>
<td>+4</td>
<td>-1</td>
<td>-44</td>
<td>F_3</td>
<td>-230</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 1/2 1/2 1/2 0 0)</td>
<td>5', 3/3</td>
<td>3</td>
<td>-2</td>
<td>+2</td>
<td>+6</td>
<td>-4</td>
<td>-2</td>
<td>+18</td>
<td>3F_4</td>
<td>-10</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 0 0 0 1/2 1/2)</td>
<td>5', 3/3</td>
<td>3</td>
<td>-2</td>
<td>-6</td>
<td>-2</td>
<td>-4</td>
<td>-2</td>
<td>-1242</td>
<td>3F_5</td>
<td>-590</td>
</tr>
<tr>
<td>T_0^5</td>
<td>(1/2 1/2 1/2 1/2 1/2; 1/2 1/2 1/2 1/2 0)</td>
<td>5', 3/3</td>
<td>1</td>
<td>+4</td>
<td>0</td>
<td>-4</td>
<td>-4</td>
<td>-1</td>
<td>-11</td>
<td>+666</td>
<td>F_6</td>
</tr>
</tbody>
</table>

\[\sum Q(q_i)\overline{m}(q_i) = -16 - 28 + 8 + 0 + 18 + 6 = -6984 \]

\[\sum = -736 \]

the same as that of the visible sector group SU(5), –6984. These hidden sector particles can carry the electromagnetic charges and they contribute to the coupling $\mathcal{E}_{\alpha'\gamma}$.

References