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Over the past two decades, ionic liquids (ILs) have been widely
used for enzymatic conversions of substrates — especially
substrates that are insoluble in common organic solvents and
water — resulting in high conversion rates, high selectivity, and
improved enzyme stability, wherein the ILs are recoverable and
recyclable. Compared with performance in first-generation ILs,
researchers recently considerably improved the technological
utility of enzymes in second- and third-generation ILs
composed of enzyme-benign cations and anions. Use of
upgraded ILs with enzymes offers further improved activity and
stability compared with research studies in the past decade,
rendering IL-assisted biocatalytic processes more environ-
mentally and economically attractive. This short review briefly
presents recent developments of enzymatic reactions in ILs.
The review covers approaches for and modifications of en-
zymes and ILs within the past 2 years for improved enzymes
performance in ILs.
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Introduction
There is growing interest in using ionic liquids (ILs) for
enzymatic reactions, including polymerization and other
syntheses, wherein certain organic solvents are incom-

patible. Not all ILs are environmentally friendly.
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However, in the past 2 years, emphasis has moved from
first-generation to second- and third-generation ILs,
which are more compatible with enzymes [1,2] and can
be derived from environmentally friendly and relatively
inexpensive renewable sources [3,4]. A Scopus search of
the literature from 2018 to 2020 generated many key-
words related to ILs and enzymes, such as enzyme ac-
tivity, enzyme immobilization, thermostability, biomass,
pretreatment, and biofuel production. Figure 1 shows a
corresponding network visualization created using
VOSviewer.

The aim of this review is to highlight recent de-
velopments in IL-assisted enzymatic reactions, partic-
ularly those that are challenging to perform in water or
organic solvents. In enzymatic reactions, ILs can be
used in various ways. In this short review, we give special
consideration to enzyme-catalyzed reaction innovations
in ILs such as hydrolysis for biofuel production, trans-
esterification, esterification, delignification of biomass,
and new techniques for immobilization and stabiliza-
tion, all reported within the past 2 years. This period has

witnessed progressive applications; 625 articles were
published with the keywords ‘ionic liquid’ and ‘enzyme’
from 2018 to the date of this review.
Second- and Third-generation ILs
Second-generation ILs are compatible with substances
such as ion composites, energetic substances, and lu-
bricants [5e7]. ILs’ tailorable physicochemical proper-
ties facilitate development of new, useful materials.
Third-generation ILs with biological activity can be
active pharmaceutical ingredients [8e10]. Over the last
few years, extensive reports of biocatalysis in second-
generation ILs have demonstrated that a number of
enzymes display outstanding selectivity and stability
[11e14]. Enzymes have also maintained excellent
operating and thermal stability in ILs. In other words,

researchers have developed groundbreaking ILs with
enhanced green efficiency. Recently, third-generation
ILs have begun to emerge with the construction of
abundant biodegradable and nontoxic ions, including
naturally occurring sugars, amino acids, alkalis, and car-
boxylic acids [15]. Alkylpyridinium, dialkylimidazolium,
phosphonium, and ammonium are extensively used
cations. The commonly used anions are halides, hexa-
fluorophosphates, and tetrafluoroborate. Researchers
have used such ILs for both physical and chemical
urrent Opinion in Green and Sustainable Chemistry 2021, 27:100406
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Figure 1

Network visualization of keywords from the Scopus database (2018–2020) for the search terms ‘ionic liquids’ and ‘enzyme,’ as of July 20, 2020.
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applications. Because third-generation ILs are pertinent
to environmental and biological applications, they are of
much interest [8e10].
Enzyme stabilization in ILs
Enzymes are biocatalysts that contribute considerably to
current advances in industry, supporting various pro-
cesses. As a consequence of their adaptability, some en-
zymes exhibit greater activities in ILs than without ILs.
Enzymes are extensively used in industrial and research
biocatalysis (in the pharmaceutical, waste management,
food, and energy sectors). Furthermore, enzymes offer
advantageous ecofriendly features compared with

chemical catalysis [12]. Many studies have focused on
the dynamic and structural characteristics of enzymes
and other proteins dissolved in IL media [12,16,17].
Reactions catalyzed by enzymes can be performed in an
IL-based monophasic or biphasic system consisting of
ILs/supercritical CO2, ILs/molecular solvents, or ILs/
water. Researchers have used ILs as additives or reaction
media for whole-cell processes, solvents, or cosolvents in
such systems [18]. For instance, Aspergillus niger lipase
showed enhanced activity in ILs with a short cation alkyl
side chain length, namely, 1-butylimidazolium chloride,

[bmim]Cl, and 1-hexyl-3-methylimidazolium chloride,
[hmim]Cl [19]. Researchers have tested commercial
proteases (Neutrase 0.8 L, Flavourzyme 500 L, and
Current Opinion in Green and Sustainable Chemistry 2021, 27:100406
Alcalase 2.4 L) with the ILs choline chloride, tetrame-
thylammonium bromide, and [emim]Br and observed a
20%, 15%, and 150% increase in protease activity,
respectively, with respect to control samples [20]. IL-
tolerant cellulose, obtained from the halophile Stachybo-
trys microspora, exhibited enhanced activity of 115.5% and
114.5% in the presence of 5 v/v% 1-ethyl-3-
methylimidazolium diethyl phosphate, [emim]DEP,

and 1-allyl-3-methylimidazolium chloride, [amim]Cl,
respectively [21]. In the following sections, we will
elaborate further on the reactions catalyzed by enzymes
in ILs.
Current developments in enzymatic
reactions in ILs
ILs can play a similar role as an organic solvent in
influencing enzyme function as follows: (1) the IL re-
places the water surrounding the enzyme; (2) when
entering the microaqueous phase, the IL interacts with
the enzyme by modifying the conformation, dynamics,
or active site; and (3) the IL interacts with the products
and substrates, by reacting with or changing their
partitioning between the nonaqueous and aqueous
phases [22]. Lipases are common components of ILe
enzyme systems. Such reactions include surfactant
synthesis [23], food and medicinal applications [24],
ester synthesis [25], biodiesel preparation [26],
www.sciencedirect.com
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transesterification [27], and interesterification. We
therefore summarize recent studies of lipase-catalyzed
reactions, followed by other enzymes (Table 1).

Fan et al [38] reported that the inactivation induced by
ILs is consistent with reversible, competitive inhibition
after investigating the kinetics of trypsin inhibition by
various imidazolium- and ammonium-based ILs. After

removing the IL, the enzyme can recover its activity
(Figure 2).

Janati-Fard et al [39] studied the conformational sta-
bility and enzymatic activity of glucose oxidase in two
imidazolium-based ILs: [bmim]Br and [hmim]Br. They
found that hexyl derivatives have a more stabilizing
effect than other imidazolium derivatives. Wang et al.
[40] used Candida antarctica lipase B (CALB) for the
resolution of (R,S)-1-(1-naphthyl)ethylamine [(R,S)-
NEA] in [hmim]Tf2N. They reported that the conver-

sion of (R,S)-NEA and enantiomer excess of (R)-n-octyl
acyl-NEA was 49.3% and 99.2%, respectively, under
Table 1

Enzymatic reactions in ionic liquids.

Entry Enzyme IL Rea

1 CALB, TLL RML, CRL,
lipases

[bmim]PF6 Furoic acid /
(MF)

2 Candida ruosa lipase, type
VII

[C1C3OHim]
Tf2N

Lipase-catalyz
addition: hydro
HC) / benzyl
(BA), warfarin

3 Aspergillus niger EXF 4321 [emim]Tf2N 2-phenyl ethan
acid / caffeic
esters + water

4 Candida rugosa lipase
(CRL)

[emim]BF4 (R,S)-Atenolol
acetate

5 Burkholderia contaminans
(DFS3) lipase

[emim]CH3SO3 a-D-glucose +
methyl 6-O-ace
glucopyranosid

6 Candida rugosa lipase, type
VII

[bmim]BF4

[bmim]CH3SO4

Isopropanol +
ester / ketop

7 Trametes versicolor laccase
Immobilized on
Fe3O4@SiO2@KIT-6-NH2

nanoparticles

[bmim]PF6 Phenols and li

8 a-amylase
Bacillus licheniformis, type
XII–A

[bmim]Br Starch / gluc

9 Chitinase from
Streptomyces albolongus
ATCC 27414

[emim]OAc IL-chitin / N-
acetylglucosam

10 Cellulase from Trichoderma
reesei

[Cho]OAc Hemicellulose
glucose

[bmim]PF6, 1-butyl- 3-methylimidazolium bishexafluorophosphate
bis(trifluoromethylsulfonyl)imid; CH3SO3, methanesulfonate; BF4, tetrafl
antarctica lipase B; IL, ionic liquid; TLL, Thermomyces lanuginosus lipase
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optimal conditions. Moreover, circular dichroism ex-
periments showed that in [hmim]Tf2N, CALB has a
stable secondary structure and increased b-sheet con-
tent compared with no IL. A general comparison of
enzymes in ILs with lipases in ILs is unavailable.
Nevertheless, there has been a rapid increase in new
studies such as catalase, chitinase, and oxidase.
Furthermore, IL enzymeecatalyzed reactions are clearly

an influential research topic.
Functionalization, immobilization, and
modification of enzymes with ILs
Most enzymes can be deactivated in ILs, particularly
hydrophilic enzymes. This limitation can be overcome
by immobilization of the enzyme on a solid support to
enhance its biocatalyst properties. One commercially
available immobilized enzyme formulation for CALB is
Novozyme 435, and it is the most extensively used
lipase formulation. Additional examples include lipo-
zyme (Rhizomucor miehei lipase; RML), proteinase K
ction Main findings Reference

methyl-2-furoate Yield of MF: 82.5% at 24 h
Reusability: 1 cycle, 20% for 4 more
cycles.

[28]

ed Michael
xycoumarin (4-
ideneacetone

Warfarin yield was 83.7% and
purity was 99.3%.
Reusability: 5 cycles

[29]

ol + caffeic
acid

Yield: 84%.
Reusability: 5 cycles

[30]

/ (S)-atenolol Enantioselectivity (E) = 56.07,
enantiomeric excesses of product
(eep) = 95.23%
Reusability: 5 cycles

[31]

vinyl acetate /
tyl-a-D-
e

Yield was 76%. [32]

ketoprofen ethyl
rofen

Yield was 45%
Reusability: 3 cycles (90% activity)

[33]

gnin degradation Phenols: degradation 76.5%
Lignin degradation: 77.3%
Reusability: 11 cycles
Enzyme activity: 70% after 21 days

[34]

ose 90% of the activation remained for
2 weeks, and 50% remained for
one month.

[35]

ine
76.11% [36]

and cellulose / Yield was 0.62 g of sugar/g of
biomass.
Cellulase was stable for 48 h.

[37]

; [C1C3OHim]Tf2N, 1-methyl-3-(3-hydroxypropyl) imidazolium
uoroborate; CH3SO4, methylsulfate; OAc, acetate; CALB, Candida
; RML, Rhizomucor miehei lipase; CRL, Candida rugosa lipase.
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Figure 2

Illustration of reversible, competitive inhibition of enzymes in ILs. Created by Biorender.com web application (license ID: D67A6E35-0001). IL, ionic
liquid.
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(from Tritirachium album), immobilized Eupergit C, and
many others.

Several inorganic materials can be used as a support.
Among those materials, Scherer et al. [41] explored
mobile crystalline materialetype mesoporous silicas
from the M41S family synthesized using 1-hexadecyl-3-
methylimidazolium chloride, [C16mim]Cl. Based on
their properties, such as uniformity and three-
dimensional channel arrangement, mesoporous mate-
rials synthesized using ILs have potential as environ-
mentally friendly materials for chemical processes.
Immobilization of AK lipase presented a 66% esterifi-

cation yield (ethyl and geranyl oleates) and an activity of
578 U/g in four cycles. Immobilization of porcine
pancreatic lipase (PPL) was similarly performed on
magnetic chitosan nanocomposites, modified by an
imidazolium-based IL, wherein 91.5% of the PPL initial
activity was maintained even after 10 cycles [42].

Fan et al. [43] used a hydroxyl-functionalized IL
[C1C3OHPyr][Tf2N] as the reaction medium to
improve biodiesel yield to 85%. Barbosa et al. [44]
investigated a phosphonium-based IL, [P666(14)]

[Tf2N], on the activity of immobilized Burkholderia
cepacia lipase by two approaches: (i) ILesilica
support and (ii) immobilization using ILs. On
combining both approaches, the relative activity
increased up to 231%, and the immobilization yield was
98%. Moreover, the biocatalyst material was recycled
26� while maintaining 50% of the activity. Researchers
have integrated organiceinorganic nanoparticles, such
Current Opinion in Green and Sustainable Chemistry 2021, 27:100406
as mesoporous silica SBA-15 and chitosan, using
carboxyl-functionalized IL as a bridging agent (SBAe
CILeCS). The nanoparticles immobilized laccase
(Aspergillus oryzae) through physical adsorption, wherein
the enzyme retained 75.3% of its initial activity and
reusability for five cycles with a 58.8% removal rate for
2,4-dichlorophenol [45].

Researchers have investigated ether-functionalized ILs
in the ring-opening polymerization of ε-caprolactone at
70 �C, catalyzed by Novozyme 435. The IL
[CH3OCH2CH2-PBu3][Tf2N] generated the maximum
molecular weight (up to 25,400 Da) in the polymeriza-

tion reaction [46]. Qiu et al. [47] used modified mag-
netic nanoparticles using amino-functionalized ILs and
dialdehyde starch as a cross-linker (Fe3O4eNILeDAS).
They achieved an immobilization efficiency of 85.8%;
activity retention of 73.7%; removal efficiencies of
86.1%, 93.6%, and 100% for phenol, 4-chlorophenol, and
2,4-dichlorophenol, respectively; a stability higher than
80% after 30 days; and reusability over six cycles with
83% of the activity [47].

Xie and Wang [48] prepared magnetic Fe3O4/SiO2

composite nanoparticles and used polymeric acidic IL
(1-vinyl-3-(3-sulfopropyl)imidazolium hydrogen sulfate,
[VSim][HSO4]) for immobilization. The solid catalyst
displayed high activity for both esterification of free
fatty acids and transesterification of soybean oil. Re-
searchers used ILs to modify magnetic chitosan nano-
particles (CSeFe3O4) and used them to immobilize
PPL, which showed a 382% improvement in the activity
www.sciencedirect.com
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Figure 3

Representative snapshot of the surface of a-lactalbumin as obtained from simulations, highlighting the distributions of the IL cations and anions (bmim+

and BF4
−). Reprinted with permission from Ghanta et al. [55]. Copyright (2020) American Chemical Society. IL, ionic liquid.
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and withstood 10 cycles with 84.6% of its activity.
Moreover, using a magnetic field, the immobilized
enzyme was readily recovered [49]. Suo et al [50]
formulated IL-modified magnetic nanoparticles of
carboxymethyl cellulose (ILeMCMC) and used them
as carriers for enzyme immobilization, whereby the
specific activity of immobilized PPL was 1.43-fold
higher than that of free lipase. Clearly, the emerging

field of nanotechnology has enabled synthesis of more
support materials for enzymatic reactions in ILs.
IL-coated enzymes for biocatalysis
ILs may offer protective functions and could act as a

support for enzymes [51]. For instance, researchers used
the pyridinium salt 1-ethylpyridin-1-ium cetyl-PEG10
sulfate for a Burkholderia cepacia lipase coating, whereby
an alcohol transesterification proceeded more quickly
than a free lipase reaction [52]. Room-temperature
solid-phase ILs have been used to coat u-trans-
aminases with three different techniques: precipitation
coating, melt coating, and colyophilization. Grabner
et al. [53] found that melt coating and colyophilization
increased the activity and recyclability of transaminases.
Interestingly, the cofactor essential for transaminase

activity (pyridoxal 50-phosphate) was protected from
www.sciencedirect.com C
degradation because of the coating. A unique study
enhanced the activity of CALB in a water-like IL (an
imidazolium-based IL functionalized with both ether
and tert-alcohol groups). The water-like IL enabled very
high transesterification up to 2- to 4-fold compared with
commonly used ILs such as [bmim][Tf2N] [54].

To understand the coating mechanism, Ghanta et al.

[55] investigated a-lactalbumin (protein) in the pres-
ence of [bmim][BF4] ranging from 20 v/v% to 80 v/v%.
Calculations revealed that the protein, in general, tends
to have reduced conformational fluctuations and is more
rigid in the IL. The enhanced protein rigidity is asso-
ciated with increased fractions of secondary structures,
namely, a-helices and b-sheets. In addition, in the
presence of the IL, the protein forms an increased
number of salt bridges that are stronger than the inter-
molecular forces in neat aqueous solution [55]
(Figure 3). We suggest that researchers extend this

concept to enzymes.
Conclusions and prospects
In conclusion, ILs facilitate many enzyme-catalyzed
reactions with outstanding yields, enhanced activities,

and reusability, which are key factors for industrial
urrent Opinion in Green and Sustainable Chemistry 2021, 27:100406
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applications. Thus, mechanisms and interactions of ILs
and enzymes require further investigation to more fully
understand activation or inhibition. Moreover, emerging
nanotechnology in the field of ILs has expanded re-
searchers’ opportunity to tackle additional concerns
with regard to stabilization and recyclability that until
recently were not feasible. The immobilization tech-
nique, support material, and technology are crucial for

both effective and sustainable processes. Although high
yield of production is usually a main concern in indus-
trial applications, recyclability and recovery of the bio-
catalyst is a major challenge that researchers are striving
to tackle. There is no general rule that describes the
enzymatic reactions in ILs; hence, more kinetics and
molecular studies are needed. Nevertheless, technolo-
gies aimed at sustainable and green processing can
overcome these obstacles.
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