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Sammendrag 
 
Vi konstruerer fem systematiske risikofaktorer for Oslo Børs i perioden fra 1991 til 2010: en 
markedsfaktor, og faktorer relatert til selskapsstørrelse, bokverdi av egenkapital dividert på 
markedsverdien til egenkapital, momentum, og belånings- og finansieringsbegrensninger. Vi 
finner bevis for en momentumeffekt på kortsiktig avkastning og signifikant positiv avkastning 
for faktoren tilknyttet bokverdi dividert på markedsverdi. Det er lite som tyder på at det er 
noen positiv sammenheng mellom estimert beta og påfølgende avkastning, noe som er 
motstridende til CAPM. Det er ingen indikasjon på høyere abnormal avkastning knyttet til 
selskapets størrelse. Denne rapporten gir nye bevis knyttet til belånings- og 
finansieringsbegrensninger for Oslo Børs, som ikke viser seg å gi noen signifikant positiv 
risikojustert avkastning. En standard firefaktormodell som inneholder markedsfaktoren, 
størrelsesfaktoren, bok-til-markedsverdifaktoren og en momentumfaktor gir best beskrivelse 
av det norske aksjemarkedet. 
 
 

Abstract 
 
We construct five systematic risk factors for the Oslo Stock Exchange over the sample 
period of 1991 to 2010: an overall market factor, and factors related to firm size, book-to-
market equity, momentum, and leverage and margin constraints. We find evidence of a 
continuation of short-term returns and significant positive differential returns for book-to-
market equity. There appears to be no positive relationship between beta estimated and 
subsequent returns, which is contradictory to CAPM. Also, there is no indication of higher 
abnormal returns related to firm size. This paper provides new evidence related to leverage 
and margin constraints, which is found to not yield any positive risk-adjusted returns for the 
Norwegian stock market. The standard four-factor model containing the market factor, size-
factor, book-to-market factor, and a momentum factor provides a reasonable fit for the 
cross-section of Norwegian stock returns. 
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Abstract

We construct five systematic risk factors for the Oslo Stock Exchange over the
sample period of 1991 to 2010: an overall market factor, and factors related to firm
size, book-to-market equity, momentum, and leverage and margin constraints. We find
evidence of a continuation of short-term returns and significant positive differential
returns for book-to-market equity. There appears to be no positive relationship between
beta estimated and subsequent returns, which is contradictory to CAPM. Also, there
is no indication of higher abnormal returns related to firm size. This paper provides
new evidence related to leverage and margin constraints, which is found to not yield
any positive risk-adjusted returns for the Norwegian stock market. The standard four-
factor model containing the market factor, size-factor, book-to-market factor, and a
momentum factor provides a reasonable fit for the cross-section of Norwegian stock
returns.
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1 Introduction
One of the most discussed topics in finance is the relationship between risk and re-
turn. The behavior and understanding of asset prices is important for professional
investors, and of fundamental importance for the macro economy as it provides crucial
information for key economic decisions. Most people in their daily life are influenced
by the asset prices, when deciding between saving in the form of cash, bank deposits,
portfolios or stocks. The decision depends on what people think of the risk and return
associated with these options.

Asset pricing theory is concerned with explaining prices of financial assets in an
uncertain world. It tries to clarify why some assets give more compensation than
others. The theoretical and empirical asset pricing literature is internationally very
extensive. In spite of this there are few analyses that especially study the Oslo Stock
Exchange (OSE). Such an extensive empirical analysis of the Oslo Stock Exchange
has to our knowledge just been completed by Bernt Arne Ødegaard, using different
assumptions than we have in this analysis. An understanding of what risk factors that
are essential for stock prices, the magnitude of realized risk premiums, and to what
extent the cross-section of returns at the OSE is different from other stock markets
is of interest to investors and companies raising capital through the exchange. In
our research we investigate whether the factors typically used internationally for such
purposes also are relevant in the Norwegian setting. This includes an overall market
factor, and factors related to firm size, book-to-market equity, and momentum.

Previously it has been argued that the security market line is too flat relative to
the Capital Asset Pricing Model (CAPM) (Black, Jensen, and Scholes, 1972), and
that it is better explained by the CAPM with restricted borrowing (Black, 1972).
Many investors are in fact constrained in the leverage that they can take, and they
therefore overweight risky securities instead of using leverage, causing those assets to
offer lower returns. A behavior of tilting toward high-beta assets suggests that more
risky high-beta assets require lower risk-adjusted returns than low-beta assets, which
require leverage. Pursuing this line of thinking, Frazzini and Pedersen (2013) present a
model with leverage and margin constraints that vary across investors and time. They
also introduce a betting against beta (BAB) factor, which they believe can exploit
this effect. This paper is probably the first paper that examines these conditions for
the Norwegian market, by constructing a market-neutral BAB-factor which is long
leveraged low-beta assets and short high-beta assets.

The purpose of our analysis is to investigate whether the factors affecting the stock
prices at Oslo Stock Exchange can be explained using standard financial theory, and
to what extent the results from other international stock markets are also found in the
Norwegian stock market. We use a dataset including all stocks listed on the Oslo Stock
Exchange in the period 1991 – 2010 and a second dataset consisting of accounting
numbers for the period 1980 – 2011. For any model and data set combination, the
Black, Jensen and Scholes (1972) time series average absolute pricing error test, and
the Fama MacBeth (1973) cross-sectional test are conducted. Our results document

4



that in addition to the local market, empirically motivated factors related to book-
to-market equity, and momentum seem to be factors demanding risk compensation
at the Oslo Stock Exchange. The size effect appears to have a slight negative effect,
but the results are not significant. We also present evidence related to leverage and
margin constraints, which is found to not yield any positive risk-adjusted returns for
the Norwegian stock market.

In the next section we give an overview of related literature for this research. Section
3 contains development of the asset pricing theory, starting with Markowitz Portfolio
Theory. The section provides a deeper understanding of where asset-pricing models
comes from, diverse factor models, and different characteristics which the standard
benchmark asset pricing model, CAPM, not can explain. In section 4 we give a brief
description of the Oslo Stock Exchange, our data and sample selection, how asset
returns are calculated and a detailed description of how stock prices are calculated.
Section 5 give an advanced understanding of how all the potential risk factors are
constructed, and the main results from our empirical investigation are presented in
section 6. First, we see whether some of the factors give significant returns, then we
show a sort approach where we examine the returns on sets of deciles formed from sorts
on different firm characteristics, before we present results from the cross-sectional Fama
MacBeth (1973) regressions. The final section provides a brief conclusion of our study,
and we also propose what could be an interesting approach in further studies.

2 Related literature
The classical CAPM was for a long time considered a basic framework for explaining
differences in returns across assets. It asserts that assets that correlate more strongly
with the market as a whole carry more risk and thus require a higher return in com-
pensation. In a large number of international studies researchers have attempted to
test this proposition, and although early CAPM tests seemed promising, the empirical
support for the model was increasingly questioned towards the end of the 1970s. As
the CAPM seemed to be failing, a number of studies found that the cross-sectional
variation in average returns across securities could not be explained by the market
beta alone. Fundamental variables such as size (Banz, 1981), ratio of book-to-market
value (Rosenberg, Reid and Lanstein, 1985; Chan, Hamao and Lakonishok, 1991),
macroeconomic variables and the price to earnings ratio (Basu, 1983) where found to
account for a sizeable portion of the cross-sectional variation in expected returns. Oth-
ers show that a firm’s average stock return can be explained by a reversal in long-term
returns (DeBondt and Thaler, 1985); stocks with low long-term previous returns tend
to have higher future returns. Jagadeesh and Titman (1993) found, on the contrary,
that short-term returns tend to continue; stocks with higher returns in the previous
twelve months tend to have higher future returns.

The body of work discussed above was eventually synthesized into a three-factor
model constructed by Fama and French (1993). The three-factor model captures the
size and value patterns in average returns and has shown to greatly improve the ex-
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planatory power relative to the CAPM model. Return momentum was still left un-
explained, therefore Carhart (1997) later proposed a four-factor model including a
momentum factor. Both models are commonly used in applications, but most notably
to evaluate portfolio performance. More recently, Frazzini and Pedersen (2013) pre-
sented a model with leverage and margin constraints that vary across both investors
and time. Because constrained investors bid up high-beta assets, high beta is asso-
ciated with low alpha. A betting against beta (BAB) factor, which is long leveraged
low-beta assets and short high-beta assets, was introduced and was showed to yield
significant positive risk-adjusted returns.

Despite the extensive theoretical and empirical international asset pricing litera-
ture, there are just a few analyses concerning the Norwegian stock market. Randi
Næs, Johannes A. Skjeltorp and Bernt Arne Ødegaard (2009) have done considerable
research on this topic and found that a three-factor model containing the market, a size
factor and a liquidity factor provides a reasonable fit for the cross-section of Norwegian
stock returns.

3 Asset Pricing Theory
Asset pricing theory is concerned with explaining prices of financial assets in an un-
certain world. It tries to clarify why some assets give more compensation than others.
A central insight, dating back to the portfolio model of Markowitz (1952), is that in-
vestors should only demand compensation for systematic risk, i.e., risk that can not
be eliminated by holding a well diversified portfolio. But which systematic risks drive
stock returns, and to what extent are investors compensated for them in terms of
higher expected returns? The uncertainty, or compensation for risk is what makes
asset pricing interesting and complicated.

A simple way of looking at the asset pricing theory is to state that it all stems from
the simple concept that price equals expected discounted payoff. However, there are
elaborations to this statement. Generally we can differentiate between what is called
absolute pricing and relative pricing (Cochrane, 2001). Absolute pricing base prices
on economic theory, such as assumptions about preferences of economic agents and
supply and demand. Absolute pricing does not take into consideration other prices
quoted in the market, and most absolute pricing models are what are known as equi-
librium pricing models. They calculate at what prices a market will reach equilibrium
- where supply and demand balance and the market clears. A shortcoming of many
equilibrium models is the fact that they calculate hypothetical equilibrium prices that
not necessarily match actual prices currently observed in the market. This violates
the law of one price, described below. The Capital Asset Pricing Model (CAPM) by
Sharpe (1964), Lintner (1965) and Mossin (1966), and other equilibrium models are
examples of this approach.

In relative pricing, on the other hand, we learn of an assets value given the prices of
some other assets, determined by the market. Most relative pricing models are based
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on the theory of absence of arbitrage opportunities. Prices are determined relative
to other prices quoted in the market in such a manner as to preclude any arbitrage
opportunities. An arbitrage opportunity is a "money pump", which makes it possible
to make arbitrary amounts of money without taking on any risk. The Law of One Price
states that if two assets are equivalent in all economically relevant respects, then they
should have the same market price. If the law is violated, it will cause arbitrageurs
to simultaneously buy the asset where it is cheap and selling it where it is expensive,
and in the process force the prices in equilibrium so that the arbitrage opportunity
is eliminated (Cochrane, 2001). The idea that market prices will move to rule out
arbitrage opportunities is perhaps the most fundamental concept in capital market
theory. The Arbitrage Pricing Theory (APT) by Ross (1976) is an example of this
approach.

3.1 The Markowitz portfolio theory
The framework of Markowitz (1952) is commonly known as the Mean Variance model,
due to the fact that it is based on expected value (mean) and the variance of the
various portfolios. The model provides a method to analyze how good a given portfolio
is, based on only these measures. Markowitz stated that an investor does (or should)
consider expected return a desirable thing and variance of return an undesirable thing
(Markowitz, 1952). Thus, an investor will always strive to switch from one investment
to another which has the same expected return but less risk, or one which has the same
risk but greater expected return, or one which has both greater expected return and
less risk. To prove his point, Markowitz used mathematical statistics.

Suppose we have a portfolio with n different assets, where Ri is the return on the
ith asset. Let µi and σ2

i be the related mean and variance, and let σi,j (= pi,jσiσj)
be the covariance between Ri and Rj . Suppose that the relative value of the portfolio
invested in asset i is xi. If R is the return on the portfolio as a whole, then:

µ = E[R] =

n∑
i=1

xiµi (3.1.1)

σ2 = V ar[R] =

n∑
i=1

x2iσ
2
i +

n∑
i=1

n∑
j=1

xixjσij (3.1.2)

n∑
i=1

xi = 1 (3.1.3)

xi ≥ 0, i = 1, 2, ..., n (3.1.4)

Condition 3.1.4 excludes negative values of the xi, meaning that only long positions
are allowed. To include also short sales, this condition has to be omitted. The investor
has a choice of various combinations of µ and σ2 depending on his choices of x1, ...., xn.
The set of all achievable combinations of σ2 and µ is called the attainable set. An
investor can state which combination is desired, and the portfolio that gives the desired
combination can be found. Based on the assumption that the investor is motivated
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to maximize µ and minimize σ2, he would select a portfolio which gives a (σ2, µ)
combination in the efficient set (or efficient frontier). See appendix 8.1 for further
description.

Investors should diversify funds amongst securities which give maximum expected
return. By combining assets that are not perfectly correlated, the risk (variance) em-
bedded in a portfolio is lowered and the higher risk-adjusted returns can be achieved.
This is implicit by looking at the covariance coefficient in 3.1.2. The lower the covari-
ance between assets, the greater the reduction in risk that can be derived. To illustrate,
if we suppose that the assets are all independent and uncorrelated, then:

V ar[R] =

n∑
i=1

x2iσ
2
i (3.1.5)

Suppose further that the portfolio is equally weighted, so xi = x = 1/n ∀i, and that
the average variance is:

σ2 =
1

n

n∑
i=1

σ2
i

then portfolio variance can be written as:

V ar[R] =

n∑
i=1

1

n2i
σ2
i =

1

n

n∑
i=1

σ2
i

n
−→ 0 (3.1.6)

as n −→ ∞. Hence, as we acquire more and more assets, the risk moves to 0. It is,
however, not enough only to invest in many securities to reduce the variance. It is
also necessary to avoid investing in securities that are highly correlated. Thus, we can
diversify across industries with different economic characteristics, because it is more
likely for firms within the same industry to do poorly at the same time then for firms
in unrelated industries[46]. Suppose now that the portfolio is still equally weighted,
but this time the assets are not necessarily uncorrelated. And, consider the average
covariance as:

σij =
1

n(n− 1)

n∑
i=1

n∑
j=1

σij

then the portfolio variance from equation 3.1.2 simplifies to:

8



V ar[R] =

n∑
i=1

1

n2
σ2
i +

n∑
i=1

n∑
j=1

1

n2
σij

=
1

n2

n∑
i=1

σ2
i +

1

n2

n∑
i=1

n∑
j=1

σij

=
nσ2

n2
+
n(n− 1)

n2
σij

=
σ2

n
+ (1− 1

n
)σij

(3.1.7)

Thus, as n −→ ∞, the portfolio variance σ2 converges to σ2 = σij . That is, as the
number of assets in the portfolio increases, the variance of individual assets become
negligible, and its the covariance term that dominate. This is our measure of the
undiversifiable, systematic, risk (Markowitz, 1959).

3.2 Factor models
The mean-variance theory by Markowitz (1952) requires knowledge of the mean, vari-
ance and covariance for all n assets, making the computation heavy as more assets are
included. In 1958 James Tobin showed that when a risk-free investment is included,
the efficient frontier must be a straight line (Tobin, 1958)(see appendix 8.1 for details).
Based on both Markowitz and Tobin, William Sharpe (1963) showed that the com-
puting time could be greatly reduced by his Diagonal Model, commonly known as the
Single Factor Model. The model of Sharpe is the first simplified factor model, where
only one factor is being considered. All that is required is parameter estimation of how
the security will behave relative to the market. The model is described by:

Ri = E[Ri] + βiF + εi (3.2.1)

Where E[Ri] is the expected return on stock i. F is the deviation of the common
factor from its expected value, and βi is the sensitivity of the firm i to that factor. εi
is the firm specific disturbance.

As noted in the model, the uncertainty in asset returns has two sources: a common
or macroeconomic factor, and a firm specific factor. As described above, Markowitz
showed that the firm specific risk becomes negligible when combining assets that are less
than perfectly correlated in order to reduce portfolio risk, without sacrificing portfolio
return. Thus, risk is limited to an undiversifible level in a well-diversified portfolio.
Investors only worry about variation in their total wealth and consumption rather than
variations in the value of each single stock in their portfolio. Thus, the only relevant
risk for decision is the systematic risk. Diversifiable, non-systematic risk is not priced.
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3.2.1 Capital Asset Pricing Model

The CAPM is an equilibrium model that results from Markowitz work. The model is
a special case of the Single Factor Model, and was developed simultaneously in three
papers by Sharpe in 1964, Lintner in 1965, and Mossin in 1966. CAPM tells us how
investors determine expected returns and asset prices, as function of one risk factor, the
market portfolio. According to CAPM, the expected return E[Ri] of a given financial
asset i is given by:

E[Ri] = rf + βi(E[Rm]− rf ) (3.2.2)

where rf is the risk-free rate, E[Rm] is the expected return on the market portfolio,
and βi measures the covariability between the return on stock i and the market port-
folio. In the CAPM model, βi is the key measure of systematic risk that requires a risk
premium for holding. But how good is actually CAPM when it comes to explaining the
cross-section of asset prices? If we assume rational market expectations, meaning that
observed returns Ri,t are equal to expected returns plus a random error εi,t, CAPM
can be tested based on this equation:

Ri,t − rf = α+ βi(Rm − rf ) + εi,t (3.2.3)

Early tests performed by Douglas (1969), Black and Scholes (1973) and Black,
Jensen and Scholes (1972) found a positive relation in accordance with the theory.
However, the estimated coefficient implied an implausibly high value for the riskless
rate of return, and they did not account for cross-sectional correlation in stock returns.
This led to biased inference. Fama and MacBeth (1973) found substantial support of
the model with their alternative approach (described in section 6.4), and their approach
has become a standard method for testing cross-sectional asset pricing models.

However, the CAPM is based on very simplified assumptions (see appendix 8.2)
and although the early tests seemed promising, the empirical support for the model
was questioned toward the end of 1970s. In his influential paper from 1977, Richard
Roll criticized tests of CAPM arguing that the theory is not testable unless the exact
composition of the true market portfolio was known and used in the tests. However,
the market portfolio contains every individual asset in the economy, including human
capital, and is therefore inherently unobservable. Using a proxy for the market port-
folio, which previous tests had done, would therefore lead to biased and misleading
results. Later on, using the methodologies developed in the earlier tests, several other
studies tested for the determinants of cross-sectional differences in returns. These led
to the discovery of a number of CAPM "anomalies" (described in more detail in section
3.4), where firm specific characteristics seemed related to differences in return. In 1992,
Fama and French wrote a paper where they integrated most of these results and at the
same time established that the CAPM beta have practically no additional explanatory
power once book-to-market and firm size have been accounted for.

However, if we assume that the CAPM is true, we can expect that returns will
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be increasing in beta. We should thus expect to observe that securities with higher
beta have higher returns. Following Sharpe and Cooper (1972), we can test these
implications of CAPM by first estimating betas, and then see if the portfolios with
higher estimated betas have higher subsequent returns. This is done in section 6.2.

3.3 Multi-factor models
It has been shown that different strategies can result in high average returns without
large betas. Thus, there is not necessarily a strong tendency for the strategies return
to move up and down with the market as a whole. Multi-factor models can be useful
in this context. These models introduce uncertainty stemming from multiple sources,
whereas the CAPM, in principle, limits risk to one source - covariance with the market
portfolio.

3.3.1 Arbitrage Pricing Theory

In 1976 Stephen Ross developed the Arbitrage Pricing Theory (APT), which can be
viewed as an extension of the CAPM. From a purely statistical characterization of
realized return, and simple arbitrage arguments, Ross (1976) showed how expected
returns could be priced by multiple factors. The return is thus given by a factor
structure:

Ri = E[Ri] + ΣβiF + εi (3.3.1)

Where F is a systematic risk factor, and βi is a constant giving the loading of asset
i on the factor F. An asset is mispriced under the APT if its current price diverges
from the price predicted by the model. The price should equal the sum of all future
cash flows discounted at the APT rate. Nevertheless, the theory cannot guarantee that
all assets will satisfy the equation at all time, since it is not an equilibrium condition
anymore, but rather a no-arbitrage condition.

Unlike the CAPM, the APT does not tell us which are the systematic factors driving
returns, and it gives no guidance of where to look for factors. However, there are two
principles that can be used as guidance when specifying a reasonable list of factors.
First, we wish to restrict ourselves to a limited number of systematic factors with
considerable ability to explain security returns. Second, we wish to choose factors that
seem likely to be important risk factors that concern investors sufficiently that they
will demand meaningful risk premiums to bear exposure to those sources of risk. Chen,
Roll, and Ross (1986) chose an approach with a set of factors based on the ability of
these factors to paint a broad picture of the macro economy, which is one of many
possibilities that can be considered.

However, there have been identified many patterns in average stock returns. DeBondt
and Thaler (1985) found that stocks that had over-performed over longer horizons
tend to underperform over subsequent years (and vice versa). Jagadesh and Tit-
man (1993) found, on the contrary, that a short-term return tends to continue; i.e.
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stocks with higher returns in the previous 12 months tend to have higher future re-
turns. Furthermore, firms average stock returns have been found related to its book-to-
market equity (BE/ME)(Statman, 1980, Rosenberg, Reid and Landstein, 1985), earn-
ings/price (E/P)(Basu, 1977, 1983), cash flow/price (C/P), past sales growth (Lakon-
ishok, Schleifer and Vishny, 1994), and firm size (Banz, 1981). Findings like the ones
mentioned were positively related to expected returns, even after the CAPM beta had
been controlled for; they are typically called anomalies.

3.3.2 Fama-French Three-Factor model

Fama-French three-factor model (Fama and French, 1993) is one of the most popular
current multi-factor models. The model is composed of the work mentioned above,
and Fama and French (1993) argue that many of the anomalies associated to CAPM
are related, and that the three-factor model captures them. The three-factor model
extends the CAPM model by two new factors. In addition to the market portfolio,
the model includes a portfolio of "small-minus-big" market value stocks (SMB), and a
portfolio of "high-minus-low" book-to-market value stocks (HML). Fama and French
justify their model on empirical grounds, arguing that SMB and HML not necessarily
are obvious candidates for relevant risk factors. However, these variables may proxy for
yet-unknown more fundamental variables for which investors demand compensation.
Explicitly, the expected return given by the three-factor-model is:

E(Ri)− rf = bi[E(Rm)− rf ] + siE(SMB) + hiE(HML) (3.3.2)

Where E(Rm) − rf , E(SMB), and E(HML) are expected premiums, and the factor
sensitivities or loadings, b, s and h are the slopes in the time-series regression:

Ri − rf = ai + bi(Rm − rf ) + siSMB + hiHML+ εi (3.3.3)

In support for their argument, Fama and French (1995) showed that book-to-market
equity and slopes on HML could be interpreted as compensation for distress risk.
They found that weak firms with persistently low earnings tend to have high BE/ME
and positive slopes on HML. In the opposite case, strong firms with persistently high
earnings have low BE/ME and negative slopes on HML.

The three-factor model, in accordance to DeBondt and Thaler (1985), is also shown
to capture reversals of long-term returns. Stocks with low long-term past returns tend
to have positive SMB and HML slopes, and higher future average returns. In the
opposite case, long-term winners tend to have negative slopes and low future returns.
However, the three-factor-model comes up short related to explain the continuation of
short-term returns recognized by Jagadesh and Titman (1993).

Apart from explaining differences in expected returns across stocks, Fama and
French also showed that their factors could explain a significant amount of variation
in time-series. In other words, stocks with similar exposure to these factors move to-
gether. In light of the model’s empirical success, Fama and French argue that SMB and
HML are priced risk factors and that this makes the three-factor-model an equilibrium-

12



pricing model.

Despite their effective way to simplify and unify the immense literature on the
cross-section of stock returns, Fama and French (1993) interpretations have produced
reasonable scepticism, much centered on HML, argued to be the premium for distress.
Kothari, Shanken, and Sloan (1995) argue that a substantial part of the premium is due
to survivor bias, so the average return for high BE/ME firms is overstated. Another
view, pointed out by Black (1993), is that researchers that focus on finding variables
that are related to average return eventually may uncover past "patterns" purely by
chance (called data-snooping). A third view is that distress premium is irrational in the
way investors overreact and underprice distressed stocks, and overprice growth stocks.

3.3.3 Carhart Four-Factor model

Although Fama-French Three-Factor-Model (1993) has been shown to improve on av-
erage CAPM pricing errors, the model comes up short related to explain the contin-
uation of short-term returns recognized by Jagadeesh and Titman (1993). Jagadeesh
and Titman (1993) show that simple strategies that rank stocks based on their past
3-12 monthly returns, predict relative performance over the next 3-12 months. That
is, recent winners will continue to be winners over the next 3-12 months and recent
losers will continue to be losers over the next 3-12 months. After 12 months, the ef-
fect disappears and there is a sharp drop in momentum profitability. As you reach
3 to 5 years of past data, mean reversion becomes strong, giving the opposite effect
of momentum (Asness, 1994). Based on the observation by Jagadesh and Titman
(1993), Carhart (1997) constructs a Four-Factor-Model using Fama and Frenchs model
plus an additional factor, prior one-year (PR1YR), capturing Jagadesh and Titmans
(1993) one-year momentum anomaly. Carhart (1997) states that the resulting model
is consistent with a market equilibrium model with four risk factors, or it can be in-
terpreted as a performance attribution model where the coefficients and premia on the
factor-mimicing portfolios indicate the proportion of mean return attributable to four
elementary strategies. The four-factor model can be shown by:

E(Ri)− rf = bi[E(Rm)− rf ] + siE(SMB) + hiE(HML) + piE(PR1Y R) (3.3.4)

where PR1YR is the difference in return between a portfolio of past winners and a
portfolio of past losers. In the same manner as the three-factor model, bi, si, hi and
pi specifies the factor loadings which are the slopes in the time-series regression:

Ri − rf = ai + bi(Rm − rf ) + siSMB + hiHML+ piPR1Y R+ εi (3.3.5)

Based on numerous findings, a number of behavioral-finance papers have built the-
ories based on investor psychology to explain both the book-to-market and momentum
effects, e.g., based on investor underreaction to news in the short-run, leading to mo-
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mentum. Also psychology based on overreaction in the longer run, leading to reversals,
or book-to-market effects (Economic Sciences Prize Committee of the Royal Swedish
Academy of Sciences, 2013).

Lakonishok et al. (1991) and Lakonishok, Shleifer, and Vishny(1992) explain the
effect as what they call "window dressing". This is when fund managers prepare for
clients regular progress reports on their portfolios, they tend to visualize their skills by
keeping shares that are rising and selling those that are falling. This type of behavior
is further encouraged by the common practice of fund selection in the business. Fund
managers who recently beat the market can attract more capital flows from their
sponsors, and the managers will invest more in the winning stocks that they hold,
giving the momentum effect an extra boost.

Grundy and Martin (2001) provide an explanation related to firm’s specific com-
ponent of returns. Lee and Swaminathan (2000) explain the effect by trading volume.
George and Hwang (2004) state that a large portion of the momentum effect can
be obtained by using the 52-week high price. Characteristics like small size and low
analyst coverage (Hong, Lim, and Stein, 2000), high market-to-book ratios (Daniel
and Titman, 1999) and high analyst forecast dispersion (Zhang, 2006) are related to
stocks with momentum profits. All these type of characteristics are explained through
the concept of information uncertainty Zhang (2006). The anomaly derived from the
momentum profits poses a challenge to the efficient market hypothesis. The market
hypothesis in its weak work states that past price movements should not provide any
guide to future price movements. This is clearly not the case with the trading strategy
that prefers past winners and makes profit of the strategy. With an efficient market,
it is wasteful to time trading because all information is already reflected in the price.

Literature on the momentum strategy is massive but research on assessing whether
a stock is running out of momentum is untouched. Investors hardly have sufficient
information to determine whether the stock price of a winning stock has exceeded its
equilibrium to a level where the risk incurred from dropping is imminent.

Kelsey, Kozhan, and Pang (2011) demonstrate that momentum is more likely to
continue for downward trends in a highly uncertain market. Daniel and Moskowitz
(2012) document that the losses of momentum portfolios are due to the highly skewed
returns of the momentum strategies. In particularly bad conditions, the past losers
of the momentum strategy usually have a very high premium. The strong profits
that come along with the market recovery lead to a "momentum crash". Investors
who implemented the momentum strategy would experience series of negative returns
especially after a market collapse.

3.3.4 Betting Against Beta

Recently, Journal of Financial Economics published the highly influential research pa-
per "Betting Against Beta" by Andrea Frazzini and Lasse Pedersen (2013), where a
dynamic model with leverage and margin constraints that vary across investors and
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time is presented. Frazzini and Pedersen integrate and extend multiple aspects from
the earlier work by Black (1972, 1993), related to CAPM with restricted borrowing,
and Black, Jensen, and Scholes (1972) which argued that the ”Capital Market Line”
(CML)1 is flatter than assumed by CAPM. Frazzini and Pedersen construct a Betting
Against Beta (BAB) factor that they argue rival HML, SMB and momentum in terms
of economic magnitude, statistical significance, and robustness across time periods,
sub-samples of stocks, and global asset classes.

While CAPM assumes that all investors invest in the portfolio with the highest
expected excess returns per unit of risk (Sharpe ratio2), and leverage or de-leverage
according to their willingness to take on risk, Frazzini and Pedersen acknowledge that
a large number of investors – such as individuals, pension funds, and mutual funds –
are unable to use leverage, and therefore overweight risky securities instead of using
leverage. Hence, these constrained investors need to purchase assets riskier than would
be optimal in order to reach their required expected return. This suggests that risky
high-beta assets require lower risk-adjusted returns, meaning that investors are not
rewarded efficiently for taking risk because they bid up high-beta assets. This can be
seen in conjunction with the relative flatness of the CML, outlined by Black, Jensen,
and Scholes (1972). For unconstrained investors this can present an appealing strategy,
and Frazzini and Pedersen (2013) find empirically that portfolios of high-beta assets
have lower alphas and Sharpe ratios than portfolios of low-beta assets.

To capture the asset-pricing effect of the funding friction, Frazzini and Pedersen
(2013) construct a market-neutral BAB-factor. The BAB factor is a portfolio that
goes long low-beta assets and short-sells high-beta assets. To illustrate, let wL be the
relative portfolio weights for a portfolio of low-beta assets with return RL

t+1 = R′t+1wL

and consider similarly a portfolio of high-beta assets with return RH
t+1. The portfolio

betas are denoted βL
t and βH

t , where βL
t < βH

t . The BAB factor is then constructed
as follows:

RBAB
t+1 =

1

βL
t

(RL
t+1 − rf )− 1

βH
t

(RH
t+1 − rf ) (3.3.6)

The portfolio has a beta of zero, which makes it market neutral. Meaning that the
long side has been leveraged to a beta of 1, and the short side has been de-leveraged
to a beta of 1.

3.4 Identifying anomalies
The name, anomaly, has been given because the CAPM, often seen as the standard
benchmark asset pricing model, could not explain them. The anomalies show links

1The Capital Market Line specifies the return an individual investor expects to receive on a portfolio.
This is a linear relationship between risk and return on efficient portfolios. See appendix 8.1

2Sharpe ratio is a measure of risk-adjusted returns. It says how great returns a portfolio has given
relative to its risk. Sharpe Ratio is based on the difference between a portfolio’s return and the risk-free
rate divided by the standard deviation of the portfolio(Sharpe, 1994).
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between the cross-section of asset prices and observable characteristic of the stock
in question. Generally, there are two approaches used to identify anomalies. The
first approach, examines returns on sets of portfolios formed from sorts on anomaly
variables. The second approach is a cross-sectional related regression presented by
Fama and MacBeth (1973) that use anomaly variables to explain the cross-section of
average returns.

3.4.1 Sorts

The sorts approach, done by Lakonishok, Shleifer, and Vishny (LSV, 1994), and later
done by Fama and French (2008), examine the returns on sets of deciles formed from
sorts on different anomalies. The approach is simple, and gives a picture of how average
returns vary across the spectrum of an anomaly variable. Following the LSV procedure,
Fama and French (2008) produced a strong positive relation between average return
and the anomalies in question. Firm size, BE/ME and return momentum have all
shown remarkable persistence across markets and over time. In section 6.3 we follow
the sort procedure, and investigate whether these characteristics also seem relevant for
returns in the Norwegian stock market. However, just looking at the realized portfolio
returns like this does not constitute a formal test of a model. Thus, we perform a more
formal test of the relationship between CAPM anomalies and risk-adjusted returns in
section 6.4.

3.4.2 Cross-section regression

To answer which anomalies are distinct and which have little marginal ability to explain
returns, we use the cross-section related regression approach of Fama and MacBeth
(1973). Based on insights from earlier tests done by Douglas (1969), Black and Scholes
(1973), and Black, Jensen and Scholes (1972), Fama and MacBeth (1973) presented an
alternative procedure for running cross-sectional regressions, and for producing stan-
dard errors and test statistics. Their approach uses anomaly variables in a regression
to explain the cross-section of average returns. The advantage is that the multiple
regressions slopes provide direct estimates of marginal effects, meaning that we can
measure marginal effects for many explanatory variables with our dataset from the
Oslo Stock Exchange. The approach gives us the opportunity to conduct straightfor-
ward diagnostics on the regression residuals. This will allow us to judge whether the
relation between average returns and the variables, implied by the regression slopes,
show up across the full range of the variables. The Fama and MacBeth (1973) is done
in the following two steps:

The first step in the method is to perform a set of time-series regressions of each
portfolio return to find the beta estimates. Assume we have n portfolio returns over T
periods with a specific portfolio’s excess return in a particular time denoted Ri,t. The
number of regressions equals the number of portfolios one is testing:
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R1,t = α1 + β1,F1
F1,t + β1,F2,t

F2,t + ...+ β1,Fm,t
Fm,t + ε1,t

R2,t = α2 + β2,F1
F1,t + β2,F2,t

F2,t + ...+ β2,Fm,t
Fm,t + ε2,t

Rn,t = αn + βn,F1
F1,t + βn,F2,t

F2,t + ...+ β1,Fm,t
Fm,t + εn,t

(3.4.1)

The step gives us information about to what extent each portfolio’s return is affected
by each factor, and provides us with estimates of the β′s required for the next step.
In the second step a cross-sectional regression is performed, to calculate the premiums
for each factor. β̂i,Fm

is defined as the estimated β′s for each portfolio for factor Fm.
The estimated coefficients from step one are used as explanatory variables, and the
regression is run for every month in the sample, to calculate a single risk premium for
each factor:

Ri,1 = α1 + γ1,1β̂i,F1
+ γ2,1β̂i,F2

+ ...+ γm,1β̂i,Fm
+ ε1

Ri,2 = α2 + γ1,2β̂i,F1
+ γ2,2β̂i,F2

+ ...+ γm,2β̂i,Fm
+ ε2

Ri,T = αT + γ1,T β̂i,F1
+ γ2,T β̂i,F2

+ ...+ γm,T β̂i,Fm
+ εT

(3.4.2)

The γj,T terms are regression coefficients. The only variation between the regres-
sions is in the dependent variables, which is different for each time period. The inde-
pendent β̂i,Fm

terms, on the other hand, will be exactly the same for every regression.
Further, Fama and MacBeth (1973) suggests to estimate γ and α as the average of the
cross-sectional regression estimates:

γ̂ =
1

T

T∑
t=1

γ̂t, α̂i =
1

T

T∑
t=1

α̂i,t (3.4.3)

and to test if these averages deviate significantly from the expected values according
to the theory. The correct standard error for the test is calculated from the time-series
standard deviation of the coefficients from the cross-sectional regressions:

σ2(γ̂) =
1

T 2

T∑
t=1

(γ̂t − γ̂)2, σ2(α̂i) =

T∑
t=1

(α̂i,t − α̂i)
2 (3.4.4)

Both the sorting and Fama and MacBeth (1973) approach face some potential
pitfalls and problems. For example it can encounter problems related to domination
by microcaps where microcaps often consist of a large portion, and tend to have more
extreme values. To avoid the problem related to sorting, the average returns can
be examined from separate sorts of microcaps, small stocks, and big stocks on each
variable. Related to the regression one can estimate separate regressions for microcaps,
small stocks, and big stocks, as well as for a sample that includes all except microcap
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stocks. Also, the return on individual stocks can be extreme and therefore it has
potential for influential observation problems.

4 Data, calculation, and sample selection

4.1 Oslo Stock Exchange
Before a detailed description of the data used in our analysis and the related calculation,
we give a brief introduction about the Oslo Stock Exchange, its development, and its
composition, acquired from their website . Hopefully this will grant the reader with a
more comprehensive insight into our analysis.

Oslo Stock Exchange goes all the way back to September 1818 when it was estab-
lished. However, the trading did not begin until April 1819. Since that time there have
been a number of changes to the market place, also in the period from 1991 to 2010.
One of the main changes in the period took place in 1991, when a new electronic trading
system (ASTS) was introduced, which made it possible to trade via the Internet. This
led brokers to move out of the stock exchange building, and to the establishment of a
number of specialized Internet brokers. To create a common Nordic/Baltic platform
for the exchanges and market participants, Oslo Stock Exchange joined the NOREX
alliance in 2000. Along with the other NOREX exchanges, Oslo Stock Exchange in
2002 moved to a common platform (SAXESS). The platform has simplified and auto-
mated trading on the Oslo Stock Exchange as all changes get updated in real time,
and the transactions are completed automatically when price, volume and other order
characteristics coincide. These changes, combined with an adaptation of the opening
hours to harmonize the Norwegian securities market with the other Nordic markets,
have led to improved liquidity for many companies during the period.

Oslo stock exchange has grown rapidly during the last decades. In 1980 there were
93 listed companies on the Oslo stock exchange with a market value of NOK 16,5
billions. At the end of 2010, the number of listed companies on the exchange had
increased to 239 companies and had a total market value of NOK 1 806 billions(Kili,
1996).

Historically, a few very large companies have dominated the Oslo stock exchange.
In the early 1980s, Norsk Hydro accounted for over fifty percent of the market value,
while the IPOs of the state-owned companies Telenor and Statoil in 2000 and 2001
respectively, have a major impact on the stock exchange today(Kili, 1996).

4.2 Data and sample selection
The data used for empirical investigation in this article is provided by the Oslo Stock
Exchange3, and includes daily observations of all equities traded at the Oslo Stock
Exchange in the period from 1991 to 2010. The data contains end of day bid and

3Both accounting and price data are provided by the OSE data service (oslo børsinformasjon (OBI)).
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offer prices, as well as the last trade price of the day, if there was any trading. The
data provided from Oslo Stock Exchange seems complete but we have found some
missing stocks in the dataset. We also have accompanying accounting information for
the equities, although this information is somewhat lacking. This leads to a rather
reduced data set where this information is used. To visualize this incomplete data,
table 1 shows how many stocks that are missing in the accounting information that
exist in our dataset with daily prices. These missing values will affect our results
where accounting information is used to construct factors like SMB and HML. In
empirical asset pricing investigation, it is common to filter the data before calculating
representative returns for the exchange. The reason is that securities that are seldom
traded, or those defined as penny stocks, are challenging and can give exaggerated
returns (Ødegaard, 2014). In the following, we have therefore made three different
filters of preconditions that need to be fulfilled before a security is included in the
analysis. All our analyses is done with each of these filters to make our results more
robust. With our dynamic algorithm we adjust the preconditions to analyze the results.

Our choice of filter is a result of practical advice from Kristian Heggen, where we
use more realistic preconditions than earlier papers. Calculations require that stocks
have a minimum number of 50 trading days during the previous year to enter the
sample pool. Stocks with market capitalization under NOK 50 million are excluded,
and we don’t use any preconditions regarding penny stocks at all. The second filter
is similar to the one used by Bernt Arne Ødegaard (2009), where calculations require
that stocks have a minimum number of 20 trading days to enter the sample pool.
Also, calculations require that the stock have a price above NOK 10 and a total value
outstanding of minimum NOK 1 million to be considered. Finally, in our third filter
we have chosen to adjust all the prerequisites down to zero, using all the data we
have available. The three different filters are illustrated in table 2, while we in table 1
provide some descriptive statistics for our filtering of the sample. Generally, all results
presented in this paper will be based on our preconditions, and results of the remaining
filter criteria are shown in appendix.
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Table 1: Filtering and exclusions

Filtering the dataset

Year-end Total stocks Missing stocks Penny stocks Micro caps. Iliquid stocks
1991 143 20 0 14 0
1992 157 11 0 26 2
1993 162 18 0 9 11
1994 173 14 0 8 2
1995 177 14 0 8 10
1996 187 18 0 3 7
1997 236 18 0 5 17
1998 251 15 0 18 3
1999 229 40 0 10 1
2000 226 33 0 15 7
2001 223 28 0 18 0
2002 212 27 0 30 0
2003 187 36 0 7 2
2004 196 17 0 3 4
2005 229 22 0 1 18
2006 235 23 0 1 11
2007 273 23 0 1 11
2008 265 29 0 13 2
2009 241 32 0 10 1

The table provides some descriptive statistics for the sample of equities traded on the Oslo Stock Exchange
in the period 1991 to 2010. The first column lists the year. The second column lists the number of stocks
available in our dataset with daily prices. The third column lists how many stocks that are missing in our
accounting information. The fourth column lists how many stocks that are excluded for having to low stock
price. The fifth column lists how many stocks that are excluded regarding market capitalization. The final
column lists how many stocks that are excluded based on trading days.

Table 2: The three filters used in this paper

Our preconditions Ødegaards preconditions No preconditions
Market Cap (MNOK) 50 1 0
Stock Price (NOK) 0 10 0
Minimum trading days 50 20 0

20



4.3 Asset return calculations
There are generally two methods used to calculate returns from a series of prices, simple
returns and continuously compounded returns. The different returns are calculated as
follows:

Simple returns: Rt =
Pt - Pt−1

Pt−1
x 100% (4.3.1)

Continuously compounded returns: rt = 100% x ln(
Pt

Pt−1
) (4.3.2)

where Rt denotes the simple return at time t, rt denotes the continuously compounded
return at time t, Pt denotes the asset price at time t, and ln denotes the natural
logarithm(Brooks, 2008).

If the asset under consideration is a stock or a portfolio of stocks, the total return
due to holding it is the sum of the capital gain and any dividends paid during the hold-
ing period (Brooks, 2008). Ignoring dividend payments is unfortunate, and will lead
to an underestimation of the total returns that accrue to investors. For short holding
periods this is likely to be negligible, but over investment horizons of several years this
will have a severe impact on cumulative returns. Ignoring dividends also has an effect
of distortion on the cross-sections of stock returns. For example, growth stocks with
large capital gains will be inappropriately favored over income stocks, such as utilities
and mature industries that pay high dividends. We take this into account and make
several adjustments to the stock prices, see section 4.4 below. By adjusting the stock
prices, either of the two formulae presented above generate returns that provide a mea-
sure of the total return that will accrue to a holder of the asset during time t. However,
we are using log-return, which is most commonly used in financial modeling. Part of
the reason for this is that the relationship between multi-period continuously com-
pounded returns and one-period continuously compounded returns is simpler than the
relationship between multi-period simple returns and one-period simple returns. The
multi-period simple returns becomes a geometric sum of the one-period simple returns,
meaning that adding simple one-period returns to arrive at a multi-period returns can
lead to misleading results. Continuously compounded multi-period returns, on the
other hand, is just the sum of the continuously compounded one-period returns. This
makes continuously compounding better suited for financial modeling (Brooks, 2008).
To illustrate this, consider a two-month continuously compounded return defined as:

rt(2) = ln(1 +Rt(2)) = ln(
Pt

Pt−2
) = pt - pt−2

taking exponentials of both sides shows that:

Pt = Pt−2e
rt(2)

so that rt(2) is the continuously compounded growth rate of prices between months
t − 2 and t. Using Pt

Pt−2
= Pt

Pt−1
x Pt−1

Pt−2
and the fact that ln(xy) = ln(x) + ln(y) it
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follows that:

rt(2) = ln(
Pt

Pt−1
x
Pt−1

Pt−2
)

= ln(
Pt

Pt−1
) + ln(

Pt−1

Pt−2
)

= rt + rt−1

4.4 Adjusting stock price
When calculating returns we make several adjustments to the stock prices. This is done
to better handle problems related to dividends, splits and no-trade. If a stock is traded
during the day, we use the closing price adjusted for splits and adjusted for dividend
distributions. Dividends reduce the total assets of the company causing the share price
to fall once the dividend is paid out to the investors. Furthermore, a company can
perform a stock split or a reverse split. The number of outstanding shares increases
(decreases) by the multiple corresponding to the split (reversed split), but the total
market value of common equity is unchanged. Hence, using unadjusted stock prices
leads to very inaccurate measurement of the single-day change in price. Related to
stocks that have not been traded during a day, we use the mean value of the bid price
and ask price, adjusted for splits and dividends. Our opinion is that even if there is
no actual trading during a day, the bid and ask prices give valuable information about
the hypothetical direction of the prices, reflecting what potential buyers and sellers
actually want to pay and sell the stocks for. In cases where there is no trading during
the day, and either the ask price or bid price is missing, we use the previous actual close
price. Clearly, this is a problem related to illiquid stocks, and you can debate whether
to use other calculations of the price than the previous close price. One solution is to
exclude stocks with poor liquidity, or to use an interpolation method between trade
dates. We use the generic adjusted price, which is the last closing price adjusted for
splits and dividends.

In cases where we don’t have a closing price for the actual day, bid price, ask price
or a previous closing price, we use the nearest price to calculate returns. This is the
case where a stock gets listed but starts trading after a period. For example, if a
company is listed October the 2st, and the first trading takes place October 4th, the
actual closing price on the 4th is used for the previous days. This adjustment occurs
very rarely, and the return for the few days without trading are set to zero. This
means that as far as the company is listed at Oslo Stock Exchange, we always use an
adjusted price for every trading day. As the identifier of a security, we are using the
International Securities Identification Number (ISIN). If stocks are missing ISIN, they
are excluded from our data. Similarly, if a stock is listed and de-listed later with just
one or zero trades, the stock is excluded because of the impossibility to calculate the
stocks returns.
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5 Method

5.1 Estimation of Market Beta
The betas are estimated by the slope of a regression line, where return on a security is
related to the return on the market, consisting of all the securities in our data4.

βit =
Cov(Rit, Rmt)

V ar(Rmt)
(5.1.1)

where Cov(Rit, Rmt) is the covariance between Rit and Rmt, and V ar(Rmt) is the
variance of Rmt. In order to implement the calculation, we need to choose a time
period for the estimation.

This measurement of a security’s instantaneous and possibly time-varying riskiness
in terms of its market exposure (beta) is something that has increased in importance
lately. This is based on the increase in high frequency trading and the reduction
in investment horizons. The stock’s market exposure is in fact not the same when
measured across different return frequencies. Gilbert, Hrdlicka, Kalodimos and Siegel
(2014) showed that sorting stocks based on the difference between low- and high-
frequency betas yields large mispricing relative to the CAPM at high frequencies, but
smaller mispricing at lower frequencies. They also documented a robust relationship
between the frequency dependence of betas and proxies for the uncertainty about the
effect of systematic news on firm value. Their research shows empirically that the
frequency dependence of betas is associated with firm- and industry-level proxies of
opacity (uncertainty about the effect of systematic news on firm value). Their expec-
tations model, free from microstructure, trading frictions and behavioral biases, shows
how opacity can generate differences in unconditional betas across frequencies. The
apparent mispricing at high frequencies relative to CAPM reflects the unconditional
CAPM’s failure to capture opaque and transparent firm’s risk exposure properly at
high frequencies, while the unconditional CAPM does so correctly at low frequencies.
They also document that conditional high-frequency betas vary with systematic news
and that the conditional CAPM is not able to price assets correctly. By sorting stocks
based on the difference between their quarterly and daily beta estimates, ∆β, they find
that a portfolio that is long high stocks, ∆β, and short low stocks, ∆β, yields large
positive CAPM alphas when using daily returns but significantly lower alphas when
using quarterly returns. Their study states that the effect of opacity can confound
asset pricing models and distort risk measurements at high frequencies, while opacity
has little impact at low frequencies.

Asset pricing models such as the CAPM or the Fama- French-Carhart model that
might be appropriate at low frequencies will not price assets correctly when applied
at high frequencies, as the effect of opacity-induced uncertainty is not captured by
betas. Bearing this in mind we have chosen to use monthly data and both five (60
months) and three (36 months) years of data in our estimation (a security would not

4Calculations use the securities satisfying the filter criteria discussed in section 4.2.
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be included if a full 36 or 60 months of data were not available). Also, based on our
rolling regression, we rebalance our beta estimates each month. Finally, we define our
proxy for the market factor in stock returns as the excess market return, Rm−rf . rf
is the one month NIBOR-rate at the beginning of the month, while Rm is the returns
on the equally-weighted portfolio of the stocks.

5.2 Construction of SMB & HML
In this section we will give a comment on the methodology, the forming of six portfolios
sorted on stocks ME and BE/ME, used in our study of economic fundamentals. To
construct both the SMB-factor and the HML-factor, we are using some preconditions
relative to penny stocks, micro caps and trading days described in our filtering of
securities in section 4.2. The method used when constructing the factors is similar to
the method used by Fama and French (1992). At the end of June each year t (1992 –
2010), stocks that meet our preconditions is allocated into two groups, small (S) or big
(B), based on whether their June market equity (price time shares) is below or above
the median market value for OSE stocks.

The stocks are also broken into an independent sort to three book-to-market equity
groups; low, medium or high (L, M or H). This is based on the breakpoints for the
bottom 30 percent (low), middle 40 percent (medium), and top 30 percent (high) of
the ranked values of BE/ME for the OSE stocks. When constructing low, medium and
high we use a round function for low and high. Medium is defined as the sum of low
and high subtracted by the total numbers of stocks. This will give approximately 30
percent for low and high, and 40 percent for the medium. Book equity, BE, is defined
as the OBI book value of stockholders equity. Book equity for the fiscal year ending in
calendar year t-1, divided by market equity at the end of December of t-1 corresponds
to Book-to-market equity, BE/ME. Firms with negative BE are included in our sample.
However, this only applies to very few companies and will only have a marginal effect.
Fama and French (1992) exclude these firms from their sample when constructing the
factors.

The six size portfolios (S/L, S/M, S/H, and B/L, B/M, B/H) are defined as the
intersections of the two ME and the three BE/ME groups. For instance, the S/H
portfolio contains the stocks in the small-ME group that also were in the high-BE/ME
group, and the B/L portfolio contains the big-ME stocks that also had low BE/MEs.
The construction of these portfolios is illustrated in table 3.

The monthly value-weighted returns on the six portfolios are calculated from July
of year t to the following June of t+1, were the portfolios are reformed. Firms need to
have both stock prices for December of year t-1 and June of t and OBI book equity for
year t-1 to be included in the sample. Also, since the portfolios are reformed every year
stocks might be both listed and de-listed between the reformations. These listings or
de-listings are excluded. This means that if S/H consists of 20 stocks when formed and
2 stocks de-lists during the year, we will compute the average return based on the 18
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Table 3: The construction of the six size portfolios

Median ME
Top 30 percent BE/ME S/H B/H

Middle 40 percent BE/ME S/M B/M
Bottom 30 percent BE/ME S/L B/L

remaining stocks. Furthermore, if a company gets listed during the year, the company
will not be included in one of the portfolios until June year t+ 1, when the portfolios
are reformed. Table 22 in the appendix shows the six different portfolios where returns
are calculated as the value-weighted average.

The SMB-factor is defined as the difference, each month, between the average of
the returns on the three small-stock portfolios (S/L, S/M, and S/H) and the average of
the returns on the three big-stock portfolios (B/L, B/M, and B/H). Thus, SMB is the
difference between the returns on small- and big-stock portfolios with about the same
weighted-average book-to-market equity. This makes the influence of BE/ME trivial,
focusing instead on the different return behaviors of small and big stocks. HML, on
the other hand, are defined as the difference, each month, between the simple average
returns on the two high-BE/ME portfolios (S/H and B/H) and the average of the
returns on the two low-BE/ME portfolios (S/L and B/L). As the two components of
HML are returns on high- and low-BE/ME portfolios with about the same weighted
average size, the two returns should be largely free of the size factor in returns. Meaning
the focus will be on different return behaviors of high- and low-BE/ME firms.

SMB = average(S/L, S/M,S/H)− average(B/L,B/M,B/H) (5.2.1)

HML = average(S/H,B/H)− average(S/L,B/L) (5.2.2)

5.3 Construction of PR1YR
To capture short-term past performance, we follow Carhart’s (1997) method related
to construction of the momentum factor. Each month, t, we examine how well a mo-
mentum strategy is by going long the previous winners, and short-selling the previous
losers. On a monthly basis, we rank stocks at the end of the month t − 1 based on
their cumulative logarithmic returns from t−12 to t−2 to identify the winners and the
losers. To avoid the 1-month reversal in stock returns, which may be related to liquid-
ity or microstructure issues (Jagadeesh (1990), Lo and MacKinaly (1990), Boudoukh,
Richardson, and Whitelaw (1994), Grinblatt and Moskowitz (2004)), the most recent
month, t− 1, is skipped. This is standard in the momentum literature.
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Before the securities are included in the portfolios, they need to fulfill the precon-
ditions determined in our filtering described in section 4.2. Also, a security must have
had monthly returns for the previous t− 12 to t− 2. This means that the security has
to be listed at the exchange for all the 11 months to be included. If a security is listed
in month t− 11 and gets traded for the rest of the period, it will be excluded from the
portfolio. Securities can fulfill this precondition and still be de-listed in month t − 1,
which also leads to exclusion. In month t we obviously only include securities that still
are listed, and when using our filter5 securities with a total value outstanding below
NOK 50 million will be excluded. Whether or not to include a security based on its
market capitalization is determined the last trading day of period t−1. Regarding the
requirement related to minimum number of trading days, a security must have fulfilled
this requirement during the 11 months t− 12 to t− 2 to be included. A security with
only a few actual trades less than 50 during the period, will be excluded regardless of
extremely high or low returns.

Stocks fulfilling the described requirements are then split into three portfolios based
on their cumulative logarithmic returns from t − 12 to t − 2: the top 30 percent, the
median 40 percent, and the bottom 30 percent. When constructing the top and bottom
30 percent, we use a round function.To finalize the PR1YR-factor the equal-weighted
average portfolio return is calculated for the top and the bottom portfolios in each of
the subsequent months. The return of the momentum strategy, which buys the winner
portfolio and sells the loser portfolio, is then the return of the winner portfolio minus
the return of the loser portfolio, in each month. If a company gets de-listed in period t,
we exclude this security and compute the average return with the rest of the securities.
There are several reasons why a security might de-list during a month, for example
in case of bankruptcy, mergers and acquisitions. During our time sample there are
few months with more than one de-listing, and ignoring one security has a minimal
marginal effect on the average simple return of this month.

5.4 Construction of BAB
With respect to the construction of the BAB-factor, we have for the most part chosen
to follow Frazzini and Pedersen’s (2013) method. Our method differs from theirs when
estimating market betas. Frazzini and Pedersen (2013) estimate pre-ranking betas
from rolling regressions of excess returns on market excess returns using daily data (if
available). We have chosen the same approach but we exclusively use monthly data(see
section 5.1 where we justify our choice of data). The choice of estimation period is a
trade-off between a short period reflecting structural changes in the risk situation in a
good way, for an extended period of time that eliminates noise in an improved manner.
We have chosen to construct the BAB-factor using both 36 months of historical data,
and 60 months of historical data to get as robust results as possible. Frazzini and
Pedersen further employ some adjustments in their estimation, including a shrinking
of the time series estimate of beta (βTS

t ) toward the cross-sectional mean (βXS). They

5When using a filter similar to Bernt Arne Ødegaard, we determine whether or not to include a security
based on its price the last trading day of period t− 1.
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argue that the shrinking factor will diminish the effects of outliers. We have not made
the corresponding shrinkage of our estimates.

To be consistent, only securities that fulfill the predefined preconditions in our three
different filters will be used for factor calculation- including the betting-against-beta
factor. Also, a precondition to calculate the beta is that a security must have monthly
returns for all the previous months in question, 36 or 60 months. If requirements
are met and betas are estimated for each security, we rank all securities in ascending
order on the basis of their estimated beta, and constructs two portfolios. One low-beta
portfolio comprised of all the stocks with a beta below the median, and one high-
beta portfolio consisting all the stocks with a beta above the median. Weights of the
securities in the two portfolios are determined by the ranked betas, with higher weights
assigned to the extreme values (i.e. highest weight for the lower-beta securities in the
low-beta portfolio and for the higher-beta securities in the high-beta portfolio). The
portfolios are rebalanced every month.

The process can be illustrated by letting z denote the nx1 vector of beta ranks
zi = rank(βit), and z̄ = 1′nz/n the average rank of all the securities, with n being
the number of securities and 1′n a vector of ones. Given these definitions, the portfolio
weights of the low-beta and high-beta portfolios are:

WH = k(z − z̄)+

WL = k(z − z̄)−
(5.4.1)

Where x+ and x− indicate the positive and negative elements of a vector and k is
the normalizing constant that assures that the sum of weights in each portfolio equals
one, hence k = 2/1′n|z − z̄|. The BAB factor is a long-short combination of the two
portfolios that is long the low-beta portfolio and short-sells the high beta portfolio.
Each portfolio is rescaled to have a beta of one at portfolio formation and the resulting
factor is therefore market-neutral. The final step to calculate the return of the BAB
factor is then given by the equation:

RBAB
t+1 =

1

βL
t

(RL
t+1 − rf )− 1

βH
t

(RH
t+1 − rf ) (5.4.2)

where RL
t+1 = R′t+1WL, RH

t+1 = R′t+1WH , βL
t = β′tWL, βH

t = β′tWH .

6 Results
In this section the main results from our empirical investigation is presented. We will
start by giving some descriptive statistics for the calculated asset pricing factors and
their related correlations, before we move on to the sorts approach. For the latter
we will examine the returns on sets of deciles formed from sorts on different firm
characteristics. Finally, in section 6.4 we will show the results from the cross-sectional
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Fama MacBeth (1973) regressions on different asset pricing models.

6.1 Asset pricing factors
Table 4 gives descriptive statistics for the calculated asset pricing factors. The table
lists the average percentage monthly return, and in the parenthesis the p-value for a
test of difference from zero. The averages from both the HML and the PR1YR-factor
appear to be significantly different from zero. Meaning that if you had followed one of
these strategies, you would have earned a positive average return for the whole sample
period. The PR1YR-factor has the highest average returns of all the factors regardless
of the period tested, and it is also significant positive for all the sub-periods on a 5 %
level, except for the period 1992-1995 (where it is significant positive on a 10 % level).
SMB turns out to be insignificant for all of the sub-periods on a 5 % significance level,
but it yields a significant negative average return for the periods from 1992 – 2010
and 2006 – 2010 on a 10 % significance level. The BAB-factor has both negative and
positive average returns during the sub-periods, but it is far from significant. Based on
this, it seems to be a book-to-market and momentum effect at the Oslo Stock Exchange
during our sample period. Also, there is a weak indication of a negative SMB effect.
From the correlation overview in the same table we can observe limited correlation
between the factors, but we do notice a negative correlation of -0,3 between BAB and
PR1YR. We show similar results with the other filter criteria in the appendix section
8.4.
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Table 4: Descriptive statistics for asset pricing factors

Average

SMB HML PR1YR BAB
1992-2010* -0.54 (0.06) 0.92 (0.00) 2.21 (0.00) 0.01 (0.98)
1992-1995* 0.38 (0.57) -0.19 (0.77) 1.48 (0.06) NA
1996-2000 -0.24 (0.63) 0.91 (0.06) 1.52 (0.00) -0.53 (0.59)
2001-2005 -0.81 (0.15) 2.28 (0.00) 3.44 (0.00) 0.84 (0.67)
2006-2010 -1.23 (0.04) 0.33 (0.52) 2.25 (0.00) -0.92 (0.36)

*The BAB value are not available in all of the sub-periods due to three years of beta construction.

Correlations
SMB HML PR1YR BAB

SMB 1
HML -0,024 1
PR1YR -0,146 0,122 1
BAB -0,103 -0,035 -0,310 1

The table describes the calculated asset pricing factors. SMB and HML are the Fama and French (1992)
pricing factors. PR1YR is the Carhart (1997) factor. BAB is the betting-against-beta factor recently
documented by Frazzini and Pedersen (2013). The table lists the average percentage monthly return, and
in the parenthesis the p-value for a test of difference from zero. The table also list an overview of the
correlation between the factors.

6.2 Simple portfolio sort based on Market Beta
When the betas are estimated, we rank the numerical values and divide the securities
into 5 portfolios based on the ranking. Securities in portfolio 1 are those with the lowest
betas, while the ones in portfolio 5 are those with the highest betas. The beta values in
portfolio 1 are mainly positive. However, there are some few negative estimated beta
values in some months. We have chosen to not exclude the stocks with negative beta
estimates based on their rare occurrence. This procedure, from calculations of betas,
ranking of securities, and to assigning into portfolios is done through all the possible
investment years. Table 5 shows the results for the whole period, calculating average
returns of beta sorted portfolios.

Results are shown for the whole time period, although we lose the time spent on
creating the beta factor. For that reason the 3-year beta portfolios starts in 1995 and
the 5-year beta portfolios start in 1997. Portfolio 1 consists of the stock with lowest
beta values. At first glance it looks like there is no relation between betas estimated and
returns. Both the mean and median values show a relatively unsystematic distribution
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of returns during the period. Surprisingly, the results indicate that stocks with high
beta values have negative returns for both calculation methods. The sample period
used in this study is relatively short, and it would be interesting to examine average
returns related to the beta values for a much longer time period. Based on our data,
there appears to be no positive relationships between beta estimated and subsequent
returns, which is contradictory to CAPM. A possible explanation could be related to
recent research done by Frazzini and Pedersen (2013), which suggest that risky high-
beta assets require lower risk-adjusted returns. This means that investors are not
rewarded efficiently for taking risk because they bid up high-beta assets. Interestingly,
we see that the volatility of the stock returns increase with the stocks beta. Both the
minimum and maximum values increases related to beta, showing that riskier stocks
tend to be more volatile.

Table 5: Beta portfolios 1995(1997) – 2010

Three years of monthly returns

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.50 (3.69) -12.50 1.08 8.82 19 30 39
2 0.50 (4.62) -19.35 0.69 10.20 19 30 39
3 0.25 (6.11) -27.38 1.24 13.12 19 30 39
4 0.41 (7.30) -34.17 1.09 21.18 19 30 39
5 -0.70 (9.69) -37.54 0.57 26.75 18 29 39

Five years of monthly returns

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.40 (3.32) -13.22 0.51 8.79 14 19 24
2 0.72 (4.29) -18.95 1.25 11.93 14 19 24
3 0.63 (5.63) -27.57 1.02 11.87 14 19 24
4 0.43 (6.91) -27.99 0.79 14.52 14 19 24
5 -1.10 (10.00) -42.62 0.67 20.84 13 19 25

Returns are percentage monthly returns. The returns are not annualized. Data for stocks listed at the
Oslo Stock Exchange during the period 1991-2010. Calculations use the stocks satisfying the ”filter” criteria
discussed in 4.2. When the portfolios are constructed, we rank the numerical values and divide the securities
into 5 portfolios based on the ranking. When dividing by 5 we use a round function for the first 4 portfolios.
The fifth portfolio is defined as the sum of the first four portfolios subtracted by the total number. This is
why the number of stocks in portfolio 5 can vary with +/- 1 stocks.
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6.3 Simple portfolio sorts based on CAPM anomalies
In this section we present returns on sets of deciles formed from sorts on different
anomalies. The approach helps us to get a picture of how average returns vary across
the spectrum of an anomaly variable. We will start by sorting on firm size and then
continue to sort on book-to-market ratio. Finally we sort on momentum.

6.3.1 Size

The size effect is a well known and good documented regularity showing that invest-
ments in small companies on average have had a (risk-adjusted) return premium relative
to investments in big companies. However, it has been proven that the effect varies
with the choice of time period being analyzed. For example, it has been shown that the
effect for the most countries was declining and negative after it was first documented
by Banz in 1981 and that it later again become on average positive. Taking this into
account, we have chosen to split into different sub periods to observe the evolvement
of differential returns between small and large companies. But first, to investigate the
size effect in Norway, we sort into portfolios based on a company’s market value at
the end of the previous year. Each year the portfolios are re-balanced. Table 6 shows
returns for 5 portfolios sorted on size for the period 1992 – 2010. Portfolio 1 contains
the smallest companies and portfolio 5 the largest companies.

Table 6 shows a relatively unsystematic distribution of returns during the period.
There is no indication that the small companies have higher returns than the large
companies, quite the contrary. Small companies actually have a negative return over
the period as opposed to the large companies, which have positive returns. This trend
can partly be confirmed by the median values, which almost are monotonically in-
creasing with firm size. In other words, it appears that there has been no size effect in
Norway. In panel B of the table we observe that the differential return between small
and large companies has been negative also for most sub-periods, and has been more
negative over time. The last column of the table shows the results for a test of whether
the differential return between the two portfolios is significantly different from zero.
Only for the last sub-period (2006-2010) do we find support for a significant negative
difference in the returns of small and large companies. Meaning that a SMB-strategy
during the financial crises would yield a significant negative return.
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Table 6: Monthly returns for portfolios sorted on company value

Panel A shows the monthly percentage returns for 5 portfolios constructed based on market value. The
results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the end of each
year. Panel B shows the average monthly return for the portfolios containing the 20 percent smallest firms
(portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-periods. The table
also show p-values from a test of whether the return difference between the portfolios is zero.

Panel A: Whole sample 1992 - 2010

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.25 (7.14) -33.49 0.14 21.83 18 35 50
2 0.14 (6.78) -27.14 0.97 21.54 20 34 50
3 -0.02 (7.29) -30.88 0.72 17.43 20 33 50
4 0.60 (6.62) -29.45 1.58 13.74 21 35 50
5 0.30 (7.52) -32.16 1.21 16.76 19 36 51

Panel B: Sub-periods

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 1.60 0.75 0.85 0.53
1996 - 2000 0.17 0.53 -0.37 0.56
2001 - 2005 -0.47 0.17 -0.64 0.39
2006 - 2010 -1.73 -0.13 -1.60 0.03

6.3.2 Book value relative to market value

The relationship between book value and market value is another well know company
characteristic that seems to give a systematic pattern in returns across companies.
Several studies have found that companies with the highest book value relative to
market value have systematically higher risk-adjusted returns than those with lowest
book value relative to market value. To investigate whether this phenomenon also is
present in Norway, we construct five portfolios in the same manner as the size portfolios.

Table 7 shows the results of this analysis. Portfolio 1 contains the companies with
the lowest BE/ME ratio, while portfolio 5 contains the companies with the highest
BE/ME ratio. As we can see from the table, there has been a positive differential
return in the period: the companies with the highest BE/ME ratio have had the highest
returns, and the returns are falling monotonically with lower BE/ME ratio. Portfolio
5 gives on average a return of 1,24 percent per month compared with portfolio 1. In
light of this, it appears that there has been a systematic pattern in returns across
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companies in Norway related to BE/ME. In the table’s panel B we show returns for
the two extreme portfolios based on BE/ME for four sub-periods. We see that the
BE/ME effect has been dominating in most of the periods in our sample (except for
the period 1992-1995), and that the effect was highest in the period 2001-2005, where
it had a differential return per month of 3,23 percent. The latter is however also the
only period that is significant.

Table 7: Monthly returns for portfolios sorted on BE/ME

Panel A shows the monthly percentage returns for 5 portfolios constructed based on Book to Market value
(BE/ME). The results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the
end of each year. Panel B shows the average monthly return for the portfolios containing the 20 percent
smallest firms (portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-
periods. The table also show p-values from a test of whether the return difference between the portfolios is
zero.

Panel A: Whole sample 1992 - 2010

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.64 (8.47) -37.50 0.28 18.52 21 35 50
2 0.19 (7.00) -32.28 1.08 14.00 20 35 50
3 0.28 (6.20) -30.43 1.17 12.94 20 34 50
4 0.34 (6.46) -23.37 1.28 15.46 20 34 50
5 0.60 (6.59) -34.04 1.21 17.32 17 36 51

Panel B: Sub-periods

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 1.04 0.83 -0.21 0.80
1996 - 2000 0.14 0.99 0.85 0.21
2001 - 2005 -1.63 1.60 3.23 0.00
2006 - 2010 -1.61 -0.93 0.67 0.21

6.3.3 Momentum

Jagadeesh and Titman (1993) documented that an investment strategy defined as buy-
ing winning stocks the last 3-12 months and selling looser stocks with low return over
the same period, gave risk-adjusted returns. The momentum effect has been confirmed
in financial markets in several countries, and the profits generated from the momentum
strategy can not be explained away stating that high-performance stocks are riskier or
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that trading costs associated with the strategy will eat up the profits (Chuang & Ho,
2013).

Our table 8 shows monthly returns of portfolios sorted on momentum at Oslo Stock
Exchange. We have chosen to show the monthly returns with momentum periods
comprising 6, 12, 24, and 36 months, to see if the choice of time period has an effect on
the returns. Furthermore, consider the returns estimated with a period of 12 months.
Portfolio 1 contains the stocks with the lowest returns the previous 12 months (last
month is skipped), while portfolio 5 contains the stocks with the highest return. As we
can see, the returns are increasing monotonically with higher momentum. This is also
the case for the time period of 6 months. In line with theory the momentum effect is
highest with a strategy containing 12 previous months. The table also show that the
momentum effect is decreasing when longer time periods are chosen, and that there
is an indication of a mean reversion (this is clearly the case when using same filter
criteria as Bernt Arne Ødegaard (2009), see appendix 8.7 table 29). This supports
prior research on momentum. For example, De Bondt and Thaler (1985) argued that
over a 3- to 5-year holding period, stocks that performed poorly over the previous
3- to 5- years would realize higher returns than stocks that performed well over the
same time period. Regardless of time period chosen portfolio 1 has a negative average
return, meaning that an investment strategy that consist of buying prior losers will
yield a negative return for our time period. But there is as mentioned an indication
of an increase when using a longer time period. Again looking at the time period of
the 12 previous months, the average return is 1,18 percent for portfolio 5. The spread
between portfolio 1 and portfolio 5 is 2,64 percent. This means that if you follow the
investment strategy, you will on average earn a return of 2,64 percent each month for
the whole time period, excluding transactions costs - a distinct momentum effect.
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Table 8: Momentum sorted portfolios

5 Portfolios - 6 months
Returns Number of securities

Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.47 (9.50) -34.48 0.23 22.55 23 38 53
2 -0.20 (6.58) -26.11 0.78 13.69 23 38 53
3 0.49 (5.62) -27.47 0.90 12.91 23 38 53
4 0.62 (5.85) -26.81 1.46 14.16 23 38 53
5 0.87 (7.17) -24.98 1.36 19.37 23 39 54

5 Portfolios - 12 months
Returns Number of securities

Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.46 (9.60) -38.24 0.13 25.70 22 36 48
2 -0.36 (7.06) -32.67 0.34 17.38 22 36 48
3 0.49 (5.82) -28.66 1.00 14.35 22 36 48
4 0.64 (5.57) -20.17 1.51 13.46 22 36 48
5 1.18 (7.07) -27.78 1.91 21.70 21 36 49

5 Portfolios - 24 months
Returns Number of securities

Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.50 (9.26) -32.53 0.82 25.79 21 32 43
2 0.50 (6.50) -26.33 0.63 19.12 21 32 43
3 0.78 (5.35) -21.89 1.27 15.69 21 32 43
4 1.00 (5.32) -26.67 1.65 12.74 21 32 43
5 0.36 (6.74) -31.52 1.33 16.38 20 32 44

5 Portfolios - 36 months
Returns Number of securities

Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.64 (8.68) -30.34 0.36 26.31 20 30 39
2 0.13 (6.07) -23.32 0.38 16.72 20 30 39
3 0.71 (5.08) -24.85 1.37 12.26 20 30 39
4 0.49 (4.91) -24.13 1.51 9.99 20 30 39
5 0.31 (6.89) -37.66 1.38 14.78 18 30 40
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6.4 Fama MacBeth regression
In the following sections, we will present results from our estimations of the CAPM,
Fama French three-factor model, Carharts four-factor model, and one model where
we have made certain adjustments compared to the models mentioned. The different
models are empirically tested over the period 1992 to 2010. We have chosen to group
our securities in four different sorted datasets; 1) 5 portfolios sorted on firm size 2)
5 portfolios sorted on book-to-market 3) 5 portfolios sorted on momentum, and 4) 5
portfolios sorted on market beta. The main reason to break it in two different sorts is
that we want to reduce measurement errors, and to hopefully get a dispersion of the
market betas. For any model and data set combination, the Black, Jensen and Scholes
(1972) time series average absolute pricing error test, and the Fama MacBeth (1973)
cross-sectional test are conducted. For all the t-tests in section, the significance level
of rejecting null hypothesis is 5 % .

6.4.1 CAPM

We will first start to present the results of our CAPM estimation, since this is consid-
ered to be the benchmark model in finance literature. The model is considered to be
correct if the intercept is zero, and the slope of the market beta is the expected value
of the excess return of market value. In table 9 and 10, panel A shows the results
of the CAPM time series regressions for the 5 portfolios sorted on firm size, book-to-
market equity, momentum, and market beta during 1992 – 2010. Column two and
three in the tables show estimated constant terms, α, with related p-values. α is the
measure of abnormal return, or the pricing error of the portfolios. It is the difference
in the expected return on the portfolios estimated and its time series average with the
expected return predicted by the CAPM. This means that if the CAPM describes ex-
pected return and a correct market portfolio proxy is selected, the regression intercepts
of all portfolios should be zero. An α which is significantly different from zero therefore
indicates a bad specified model. Furthermore, column four and five show estimated
market betas, β1

i , and their related p-values. The final column shows the adjusted R2.
R2 is the most common goodness of fit statistic. A usual definition is to say that it
is the square of the correlation between the values of the dependent variable and the
corresponding fitted values from the model. If this correlation is high, the model fits
well, while low correlation gives a value close to zero. Adjusted R2 is a modification
to R2 and takes into account the loss of degrees of freedom associated with adding
extra variables. Adjusted R2 can be used as a decision-making tool for determining
whether a given variable should be included in a regression model or not. However,
there are problems with the maximization of adjusted R2 in relation to model selection.
Implying that criterion, researchers will typically end up with large models, containing
a lot of marginally significant or insignificant variables (Brooks, 2008). The mentioned
information above is also adequate for the models coming in the next sections.

If we throw a glance at the results from the estimation, we can see that the abso-
lute values of the average of the intercepts are 0,0022, 0,0034, 0,008, and 0,0042 for
portfolios sorted on firm size, book-to-market equity, momentum, and market beta re-
spectively. From the t-test, the null hypothesis is rejected for portfolio 4 sorted on firm

36



size, for portfolio 1 and 5 sorted on book-to-market, for all portfolios sorted on momen-
tum, and for all portfolios sorted on market beta, except portfolio 3. The significant
constant terms are an indication of poorly specified models for the mentioned portfo-
lios. Furthermore, looking at the beta values they are all significant regardless of the
model chosen. When we sort on firm size, the betas have a good dispersion and range
from 0,94 in portfolio 1 to 1,05 in portfolio 3. The dispersion is poorest when sorted on
market beta, where it ranges systematically from 0,48 in portfolio 1 to 1,46 in portfolio
5. These are the portfolios with the lowest and highest risk in the tests of the CAPM,
which is natural. Adjusted R2 is lowest for portfolio 1 sorted on market beta with
a value of 0,68. The highest adjusted R2 is for portfolio 2 sorted on book-to-market
value on 0,91. Based on the time series regression, it seems like the market factor in the
CAPM is not quite able to price portfolios sorted on momentum and book-to-market
equity. This may indicate that the CAPM is inadequate to explain the returns in the
Norwegian market. Within the framework of a multi-factor model the explanation for
this can be that both the momentum and the book-to-market equity characteristics
represent risk factors that investors demand compensation for being exposed to, and
that this effect is not captured by the market portfolio.

Panel B in the tables shows estimated risk premiums, λ[1], for the market factor.
These are estimated with the Fama MacBeth (1973) cross-sectional regressions, as
described in section 3.4.2. The regressions are run on the monthly excess return of the
portfolio on the estimated beta. As before, if the CAPM is true the intercept, α, is
zero. A risk factor is said to be priced if the λ[1] is significantly different from zero.
Results from our tests show that all risk premiums are significantly different from zero,
except when we sort on size. However, we can conclude that the market portfolios is a
priced risk factor, and indicate that the CAPM might be a inadequate model for the
Norwegian stock market based on all the significant constant terms (except for size).
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Table 9: Estimation of the CAPM on portfolios sorted on size and book value relative to
market value

Panel A shows the results from estimating the CAPM as in equation 3.2.3 for portfolios sorted on size and
BE/ME. Firm size is measured as the market capitalization and BE/ME is measured by the ratio between
a firms book value relative to market value. Both size- and BE/ME portfolios are equal weighted. For each
set of portfolios, columns two and three show the estimated constant with the associated p-value for each
portfolio. Constants that are significantly different from zero indicate a wrongly specified model. The two
last columns for each set of portfolios show the estimated market beta β1

i and associated p-value. Panel
B shows the risk premium estimated for the intercept and each factor. These risk premiums are estimated
with the Fama MacBeth (1973) regression. The regressions are run on the monthly excess return of the
portfolio on the estimated factor(s). If the model is true, the intercept, α, is zero. The factor is priced if
the, λ[i], is significantly different from zero.

Panel A: Exposure estimates
Size portfolios BE/ME portfolios
Size constant p-value β1i p-value R2

adj BE/ME constant p-value β1i p-value R2
adj

1 (low MCAP) -0.003 0.17 0.940 0.00 0.73 1 (low BE/ME) -0.007 0.00 1.197 0.00 0.85
2 0.000 0.26 0.960 0.00 0.85 2 0.001 0.44 1.024 0.00 0.91
3 -0.001 0.62 1.050 0.00 0.88 3 0.002 0.29 0.886 0.00 0.86
4 0.005 0.00 0.951 0.00 0.87 4 0.002 0.14 0.926 0.00 0.87
5 0.002 0.29 1.045 0.00 0.82 5 0.005 0.02 0.903 0.00 0.79

Panel B: Risk premia estimates

Size portfolios BE/ME portfolios
Factor Risk premium p-value Factor Risk premium p-value
α 0.002 (0.93) α 0.035 (0.00)
λ[1](erewm ) -0.000 (0.99) λ[1](erewm ) -0.034 (0.00)
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Table 10: Estimation of the CAPM on portfolios sorted on momentum and beta

Panel A shows the results from estimating the CAPM as in equation 3.2.3 for portfolios sorted on momentum
and beta. Both momentum- and beta portfolios are equal weighted. For each set of portfolios, columns
two and three show the estimated constant with the associated p-value for each portfolio. Constants that
are significantly different from zero indicate a wrongly specified model. The two last columns for each set
of portfolios show the estimated market beta β1

i and associated p-value. Panel B shows the risk-premium
estimated for the intercept and each factor. These risk premiums are estimated with the Fama MacBeth
(1973) regression. The regressions are run on the monthly excess return of the portfolio on the estimated
factors. If the model is true, the intercept, α, is zero. The factor is priced if the, λ[i], is significantly
different from zero.

Panel A: Exposure estimates

Momentum portfolios Beta portfolios
Momentum constant p-value β1i p-value R2

adj Beta constant p-value β1i p-value R2
adj

1 (low momentum) -0.014 (0.00) 1.324 (0.00) 0.83 1 (low beta) 0.003 (0.04) 0.476 (0.00) 0.68
2 -0.004 (0.04) 1.010 (0.00) 0.87 2 0.006 (0.00) 0.630 (0.00) 0.76
3 0.005 (0.00) 0.834 (0.00) 0.86 3 0.002 (0.21) 0.879 (0.00) 0.86
4 0.006 (0.00) 0.773 (0.00) 0.81 4 0.005 (0.01) 1.080 (0.00) 0.87
5 0.011 (0.00) 0.955 (0.00) 0.76 5 -0.005 (0.03) 1.455 (0.00) 0.90

Panel B: Risk premia estimates

Momentum portfolios Beta portfolios
Factor Risk premium p-value Factor Risk premium p-value
α 0.042 (0.00) α 0.013 (0.00)
λ[1](erewm ) -0.041 (0.00) λ[1](erewm ) -0.012 (0.03)

6.4.2 Fama French’s three-factor model

We move on to the estimation of the three-factor model consisting of the Fama French
factors, Rm, SMB and HML. A number of studies have shown that the three-factor
model can explain returns in a better way than CAPM, and we want to see if this also
applies to the Norwegian market. The results from our estimation are shown in table
11, and in table 31 to 33 in the appendix section 8.8. The concept of the tables is the
same as before, the only difference is that we now we will have more factors included.

Looking at the absolute values of the average of the intercepts, we get 0,0016, 0,001,
0,0068, and 0,0032 when we sort our portfolios on firm size, book-to-market equity,
momentum, and market beta respectively. If we compare these results to the ones we
got from CAPM, we see that the average absolute pricing errors of the Fama French
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three-factor model are smaller. This might indicate that the Fama French three-factor
model outperforms the CAPM. This is consistent with results found in past literature,
and is exactly that Fama and French (1992) claimed. Another thing which also is
evident from table 11, is that we once more have difficulties to price portfolios sorted
on momentum. All portfolios sorted on momentum have significant alphas, and they
increase with higher momentum. This is also the case for portfolios sorted on market
beta, where there are significant alpha values for portfolio 2, portfolio 4, and portfolio
5. Regardless of the portfolio sorting, the three-factor model has significant exposure to
the market factor. Also, we notice that all portfolios have significant exposure to SMB,
while two portfolios have exposure to the HML-factor (portfolio 3 and portfolio 4). The
latter is a trend in the remaining portfolio sorts as well, with the exception of portfolios
sorted on book-to-market equity, which have three significant portfolio exposures to
SMB and four to HML. Adjusted R2 is lowest for portfolio 1 sorted on market beta
with a value of 0,69. The highest adjusted R2 is for portfolio 5 sorted on firm size
with a value of 0,94. Although the three-factor model seems to be an improvement
compared to the CAPM, there are still some worrying elements especially when sorted
on momentum, but also regarding the market beta. Possibly it would be a good idea
to include the PR1YR factor in the model as well, to see if it can help us to price the
momentum portfolios. This is done in the following section.

Table 12 summarizes the estimates of the risk premiums, λ, and the alphas, α, with
associated p-values. The last two columns show the results if we instead estimate the
CAPM on the portfolios. The table shows that the SMB-factor is a priced risk factor
when we sort on firm size and momentum. Similarly, the HML-factor is a priced risk
factor when we sort on momentum and market beta. Not surprisingly, we see that the
α is significant when we sort the portfolios on momentum and market beta. Also, we
observe that the CAPM has significant α values on all portfolio sorts, besides when we
sort on size. The preliminary conclusion based on the estimation of our portfolios is
therefore that the three-factor model fits better than CAPM for the Norwegian stock
market.
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Table 11: A multifactor model for the OSE - Momentum portfolios

Panel A shows the results from estimating the Fama French three-factor model as in equation 3.3.3 for
a portfolio sorted on momentum. The momentum portfolio is equal weighted. Columns two and three
show the estimated constant with the associated p-value for each portfolio. Constants that are significantly
different from zero indicate a wrongly specified model. The remaining columns show the estimated βk

i and
their associated p-values. Panel B show the risk premiums estimated for the intercept and each factor.
These risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions are run on
the monthly excess return of the portfolio on the estimated factor(s). If the model is true, the intercept, α,
is zero. The factor is priced if the, λ[i], is significantly different from zero

Momentum constant p-value β[1] p-value β[2] p-value β[3] p-value R2
adj

1 (low momentum) -0.012 (0.00) 1.315 (0.00) 0.119 (0.05) -0.108 (0.08) 0.83
2 -0.005 (0.01) 1.016 (0.00) -0.086 (0.03) 0.065 (0.11) 0.87
3 0.003 (0.03) 0.843 (0.00) -0.088 (0.01) 0.115 (0.00) 0.87
4 0.004 (0.01) 0.780 (0.00) -0.100 (0.01) 0.084 (0.03) 0.82
5 0.010 (0.00) 0.956 (0.00) -0.132 (0.02) 0.002 (0.97) 0.77

Risk premia Rew
m

Factor premium p-value
α 0.046 (0.00)
λ[1](erm) -0.047 (0.00)
λ[2](SMB) -0.072 (0.00)
λ[3](HML) -0.088 (0.00)

41



Table 12: Asset pricing tests for different test assets

Fama/French CAPM
Portfolio erewm SMB HML erewm
sort α λ[1] λ[2] λ[3] α λ[1]

Size (ew) 0.033 -0.032 -0.007 0.022 0.002 -0.000
p-value 0.06 0.08 0.04 0.10 0.93 0.99

BE/ME (ew) -0.051 0.051 -0.040 0.023 0.035 -0.034
p-value 0.50 0.49 0.31 0.18 0.00 0.00

Momentum (ew) 0.046 -0.047 -0.072 -0.088 0.042 -0.041
p-value 0.00 0.00 0.00 0.00 0.00 0.00

Market beta (ew) 0.056 -0.046 0.021 -0.214 0.013 -0.012
p-value 0.00 0.00 0.30 0.01 0.00 0.03

6.4.3 Carhart’s four-factor model

As we saw in the previous section, the three-factor model was an improvement com-
pared to the CAPM. To improve further, we want to try to extend the three-factor
model with the additional momentum factor, PR1YR. Carhart’s (1997) four-factor
model is well established in the financial theory, so we have chosen to rely on the the-
ory and estimate the model to see if it also applies in the Norwegian market. The model
consist of the factors Rm, SMB, HML, and PR1YR, and the results of our estimation
is shown in table 13, and in table 34 to 36 in appendix section 8.8.

We will concentrate on table 13, and we want to start by looking at the absolute
values of the average of the intercepts, as this may give us an indication of the quality
of the model. Again we have sorted our portfolios on firm size, book-to-market equity,
momentum, and market beta. The results are 0,0014, 0,001, 0,0008, and 0,0026 respec-
tively. This is a clear improvement to the CAPM, but also to the three-factor model,
when we base ourselves on absolute values of the average of the intercepts. Looking at
the intercepts of each of the portfolios, we see that they all are far from significant, ex-
cept for portfolio 3 which would have been on a 10 % significance level. This is the case
for whatever the sort we use for the regression. Nevertheless, there is still one portfolio
(portfolio 5) that has a significant constant term when we sort on market beta. Table
13 shows good diversion of the market factor, and it is significant regardless of how we
sort. Furthermore, the estimation shows that portfolio 2 and portfolio 3 has significant
exposure to both the SMB and the HML-factor, while all portfolios, besides portfolio 3,
have significant exposure to the momentum factor when we sort on momentum. This
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picture varies to some extent depending on which of the characteristic we sort on. We
refer to the appendix for more detailed information regarding these results. Adjusted
R2 is lowest for portfolio 1 when we sort on market beta, with a value of 0,70. The
highest adjusted R2 for this estimation, and for all of our estimations whatever model,
is found in portfolio 5 sorted on firm size, with a value of 0,95.

Once again the risk premiums can be seen in an summary table, 14. The table
shows that whatever sorting, none of the portfolios give a significant difference from
zero when it comes to the SMB, which suggests that this is not a priced risk factor.
However, we see that there might be weak evidence that HML and PR1YR can be.
HML appears to be a priced risk factor when we sort of market beta, while PR1YR
indicates the same thing when we sort on momentum. If we had chosen to use a
significance level of 10 %, we would have found two additional significant differences
from zero for these factors. Looking at the α we have significance when we sort on firm
size, and once again when we sort on market beta. Nevertheless, the four-factor model
seems to fit the Norwegian stock market better than both the CAPM and the three-
factor model based on the absolute values of the alphas, R2 and the Fama MacBeth
(1973) cross-sectional regression.
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Table 13: A multifactor model for the OSE - Momentum portfolios

Panel A shows the results from estimating Carhart’s four-factor model as in equation 3.3.5 for a portfolio
sorted on momentum. The momentum portfolio is equal weighted. Columns two and three show the
estimated constant with the associated p-value for each portfolio. Constants that are significantly different
from zero indicate a wrongly specified model. The remaining columns show the estimated βk

i and their
associated p-values. Panel B show the risk premiums estimated for the intercept and each factor. These
risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions are run on the
monthly excess return of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is
zero. The factor is priced if the, λ[i], is significantly different from zero

Momentum constant p-value β[1] p-value β[2] p-value β[3] p-value β[4] p-value R2
adj

1 (low momentum) -0.000 (0.95) 1.000 (0.00) 0.004 (0.92) -0.052 (0.17) -0.627 (0.00) 0.94
2 -0.001 (0.65) 0.948 (0.00) -0.123 (0.00) 0.083 (0.03) -0.199 (0.00) 0.89
3 0.003 (0.07) 0.849 (0.00) -0.085 (0.01) 0.113 (0.00) 0.019 (0.51) 0.87
4 0.000 (1.00) 0.859 (0.00) -0.057 (0.09) 0.064 (0.06) 0.232 (0.00) 0.86
5 0.000 (0.85) 1.150 (0.00) -0.028 (0.39) -0.048 (0.14) 0.567 (0.00) 0.92

Risk premia Rew
m

Factor premium p-value
α -0.028 (0.30)
λ[1](erm) 0.031 (0.27)
λ[2](SMB) 0.085 (0.13)
λ[3](HML) 0.127 (0.09)
λ[4](PR1Y R) 0.022 (0.00)

44



Table 14: Asset pricing tests for different test assets

Fama/French + PR1YR CAPM
Portfolio erewm SMB HML PR1YR erewm
sort α λ[1] λ[2] λ[3] λ[4] α λ[1]

Size (ew) 0.048 -0.052 -0.005 0.063 -0.084 0.002 -0.000
t-value 0.03 0.04 0.15 0.16 0.39 0.93 0.99

BE/ME (ew) -0.035 0.039 -0.012 0.017 0.082 0.035 -0.034
t-value 0.65 0.61 0.79 0.33 0.20 0.00 0.00

Momentum (ew) -0.028 0.031 0.085 0.127 0.022 0.042 -0.041
t-value 0.30 0.27 0.13 0.09 0.00 0.00 0.00

Market beta (ew) 0.056 -0.056 0.012 -0.207 -0.034 0.013 -0.012
t-value 0.00 0.00 0.63 0.01 0.10 0.00 0.03

6.4.4 CAPM including BAB

Finally, we have devoted a last section to a model consisting of the CAPM plus the
BAB-factor, which comes from a recent research by Frazzini and Pedersen (2013). The
BAB-factor is claimed to have a positive average return and the return should be in-
creasing in the ex-ante tightness of constraints and in the spread in betas between high-
and low-beta securities. To investigate whether the BAB-factor is a priced risk factor
in the Norwegian market, we have constructed a BAB-factor for which we have chosen
to use in a regression together with the market factor. Results from this estimation
are shown in table 15, and in table 37 to 38 in the appendix section 8.8.

The absolute values of the average of the intercepts are 0,003, 0,003, 0,0086, and
0,0036 for portfolios sorted on firm size, book-to-market equity, momentum, and market
beta respectively. The values are higher compared to the other multifactor models,
but in line with CAPM. Table 15 shows a poor dispersion of the market factor, not
surprisingly, but the factor is significant for all of the portfolios. Portfolio 1, portfolio
2, and portfolio 5 do all have an exposure to the BAB-factor when sorted on market
beta. This is not the case when we sort on our other characteristics. In fact it is few
portfolios that has an exposure to the factor. The adjusted R2 is lowest for portfolio
1 when we sort on firm size, with a value of 0,77. The highest adjusted R2 is found in
portfolio 5 sorted on market beta, with a value of 0,91. Consistent with previous tests
of the BAB-factor in this paper, this suggests that there are few signs of any BAB effect
in the Norwegian market. Moving on to table 16 which summarizes the estimates of
the risk premiums and the alphas, we see that the BAB-factor is only significant when
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we sort on momentum and none of the other characteristics. The model where we
sort on momentum is also the only model with significant alpha. Correspondingly, we
observe that the CAPM has significant alphas on all portfolios whatever characteristics
we chose to sort on, besides when we sort on size. Based on these estimations, we find
small to no evidence that there is a betting-against-beta effect, but the model may
appear to price the Norwegian market marginally better than CAPM.

Table 15: A multifactor model for the OSE - Beta portfolios

Panel A shows the results from estimating a multifactor model containing the market factor and the BAB-
factor for a portfolio sorted on beta. The beta portfolio is equal weighted. Columns two and three show the
estimated constant with the associated p-value for each portfolio. Constants that are significantly different
from zero indicate a wrongly specified model. The remaining columns show the estimated βk

i and their
associated p-values. Panel B show the risk premiums estimated for the intercept and each factor. These
risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions are run on the
monthly excess return of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is
zero. The factor is priced if the, λ[i], is significantly different from zero

Beta constant p-value β[1] p-value β[2] p-value R2
adj

1 (low beta) 0.002 (0.06) 0.266 (0.00) 0.187 (0.00) 0.82
2 0.005 (0.00) 0.537 (0.00) 0.083 (0.00) 0.78
3 0.002 (0.20) 0.891 (0.00) -0.011 (0.67) 0.86
4 0.005 (0.01) 1.077 (0.00) 0.002 (0.92) 0.87
5 -0.004 (0.05) 1.593 (0.00) -0.123 (0.00) 0.91

Risk premia Rew
m

Factor premium p-value
α 0.014 (0.09)
λ[1](erm) -0.013 (0.17)
λ[2](BAB) -0.018 (0.61)
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Table 16: Asset pricing tests for different test assets

CAPM + BAB CAPM
Portfolio erewm BAB erewm
sort α λ[1] λ[2] α λ[1]

Size (ew) -0.020 0.020 0.053 0.002 -0.000
p-value 0.21 0.24 0.12 0.93 0.99

BE/ME (ew) 0.033 -0.034 -0.054 0.035 -0.034
p-value 0.09 0.09 0.58 0.00 0.00

Momentum (ew) 0.047 -0.046 -0.160 0.042 -0.041
p-value 0.00 0.00 0.00 0.00 0.00

Market beta (ew) 0.014 -0.013 -0.018 0.013 -0.012
p-value 0.09 0.17 0.61 0.00 0.03

7 Conclusion
In this research we document an empirical study of stock pricing at the Oslo Stock
Exchange. We have analyzed what factors systematically affect the exchange, using
methods of analysis where these factors are allowed to affect different assets differently
(cross-sectional analysis). An interesting goal of the work has been to see whether
asset-pricing results from other countries, which are widely known in finance theory,
carry over to the Norwegian stock market as well. To our knowledge such an extensive
empirical analysis of the Oslo Stock Exchange has only been done before by Randi Næs,
Johannes A. Skjeltorp and Bernt Arne Ødegaard (2009), using different assumptions.

The results of our paper may be of interest and importance because such factors can
be used to set required returns for investments, and to evaluate a stock’s contribution to
a portfolio. The research has investigated whether those risk factors typically used in-
ternationally for such purposes also are relevant in the Norwegian setting. This applies
to factors as an overall market factor, and factors related to firm size, book-to-market
equity, and momentum. We also include the recently invention of the betting-against-
beta factor. Our results document that in addition to the local market, empirically
motivated factors related to book-to-market equity, and especially momentum seem
to be factors demanding risk compensation at the Oslo Stock Exchange. Unlike the
recent research by Frazzini and Pedersen (2013), this paper provides evidence that
there is no betting-against-beta effect in the Norwegian market. Based on estimation
of different asset pricing models, we have found that Carhart’s (1997) standard four-
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factor model containing the market factor, size-factor, book-to-market factor, and a
momentum factor provides a reasonable fit for the cross-section of Norwegian stock
returns.

For possible further research we would like to use a longer sample period for our
analysis, and it would be valuable to seal our missing data to make the dataset more
complete. To test the various models, we would have liked to apply the Generalized
Method of Moments method (GMM). By using GMM one can estimate the two steps
in Fama Macbeth (1973) regressions simultaneously, thereby accounting for the errors
in variables problem. In addition, the GMM method is more robust to time series
and distributional properties of the error terms. In terms of our momentum findings
it would be interesting to further study this phenomena and to quantify the downside
risk. Hongwei Chuang and Hwai-Chung Ho (2014) has found a way to determine
whether the price of winning stocks in the momentum strategy reach the level where
risk incurred from the falling of prices is imminent. They constructed an implied risk
index to quantify the downside risk of a stock and used it to manage the tail risk from
the momentum strategy. This method will help to identify those stocks that are less
likely to be overpriced and have more momentum left to sustain their trends. The
results from their study achieved impressing improvement on the overall performance,
but also avoided the big losses suffered from financial crises. A construction of this
implied price risk (IPR-factor) would be interesting for further work on the momentum
effect at Oslo Stock Exchange.
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8 Appendix

8.1 Efficient frontier
In finance theory it is common to assume that investors are risk-averse. They want
to reduce the standard deviation of return while increasing expected return. This is
something that can be done by moving as far as possible in a ”northwest” direction in
figure 1. If we consider that every possible portfolio is available to the investors, we
can obtain what is known as efficient frontier. As illustrated in figure 1, the efficient
frontier represents the limit of how far an investor can move in a northwest direction.
There is no investment that dominates a point on the efficient frontier in the sense that
it has both a higher return and a lower standard deviation of return. The attainable
set can be found in the area southeast of the efficient frontier. For any point in this
area there is a point on the efficient frontier that has a higher expected return and
lower standard deviation of return.

Figure 1

Only risky investment is considered in figure 1. Suppose that we also include a risk-
free investment that yields a return of RF to be combined into a portfolio. This will
give us a new efficient frontier, as shown in figure 2. There the risk-free investment is
denoted by point F, and there is drawn a tangent from point F to the efficient frontier
of risky investments that was developed in figure 1. M becomes the point of tangency,
and FJ will end up as our new efficient frontier.
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Figure 2

This can be shown by considering that we form an investment I by investing βI
of our funds in the risky portfolio, M, and the remaining 1 − βI funds in the risk-
free investment F (0 < βI < 1). From equation 3.1.1 the expected return from the
investment, E(RI), is then given by:

E(Ri) = (1− βI)RF + βIE(RM )

and from equation 3.1.2, because the risk-free investment has zero standard devia-
tion, the return RI has standard deviation of

βIσM

where σM is the standard deviation of return for portfolio M. This combination of
risk and return will correspond to the point labelled I in figure 2. The point I will then
be βI of the way from F to M. By choosing a suitable combination of the investment
represented by point F and the investment represented by point M, all points on the
line FM can be obtained. The points on this new efficient frontier will dominate all
the points on the previous efficient frontier based on a better risk-return combination.
The straight line FM is therefore part of the new efficient frontier. By making an
assumption that we can both borrow and invest at the risk-free rate of RF, we can
create investments beyond M. We can, for example, create the investment represented
by the point J in figure 2 where the distance of J from F is βJ times the distance from
F (βJ > 1). To make this happen we borrow βJ of the amount that we have available
for investment at rate RF, and invest both original funds and the borrowed funds in
the investment represented by point M. The investment will then, after allowing for
the interest paid, have an expected return E(RJ) given by

E(RJ) = (βJ)E(RM )− (βJ − 1)RF
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and the standard deviation of the return will be

βJσM

The expected risk-return combination will then correspond to point J. This example
shows that when risk-free investment is considered, the efficient frontier must be a
straight line (Capital Market Line). This means that it should be a linear trade-off
between expected return and the standard deviation of returns, as indicated in figure
2. Further, this implies that all investors should choose the same portfolio of risky
assets, represented by M (which usually is referred to as the market portfolio). Also,
their appetite for risk should therefore reflect a combination of a risky investment with
borrowing or lending at the risk-free rate.
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8.2 The Capital Assets Pricing Model’s assumptions
CAPM assumes investors are risk averse and, when investors are choosing among port-
folios, they only care about the mean and variance of their one-period investment
return. As a result of this, investors choose mean-variance-efficient portfolios, in the
sense that the portfolios minimize the variance of portfolio return, given expected
return, and maximize expected return, given variance. Consequently, the Markowitz
approach is often called a mean-variance model (French, 2004). Also, all investors have
homogeneous beliefs about the risk/reward tradeoffs in the market (Borchert, 2003).

CAPM assumes that all investors can borrow and lend at a risk-free rate, which does
not depend on the amount borrowed or lent. Only one risk factor is common to a broad-
based market portfolio. This risk factor is the systematic market risk, which drives
non-diversifiable volatility. Investors are assumed to hold diversified portfolios, as the
market does not reward investors for the bearing of diversifiable risk. In addition there
is an assumption about no distortionary taxes or transaction costs (Borchert, 2003).
All investors have the same expectations about security rewards, and all investors have
identical expectations about security risk. Markets are perfect where each investor is
a price-taker who does not believe he can influence price (Rosenberg, 1981).

In short, the CAPM assumptions imply that the market portfolio must be on the
minimum variance frontier if the asset market is to clear. This means that the alge-
braic relation that holds for any minimum variance portfolio must hold for the market
portfolio. Another assumption is that short selling is unrestricted, and this assumption
is as unrealistic as unrestricted risk-free borrowing and lending (French, 2004).
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8.3 Filtering and exclusions

Table 17: Filtering and exclusions

Filtering the dataset using preconditions like Ødegaard

Year-end Total stocks Missing stocks Penny stocks Micro caps. Iliquid stocks
1991 143 20 44 0 0
1992 157 11 50 0 2
1993 162 18 37 0 7
1994 173 14 37 0 0
1995 177 14 31 0 4
1996 187 18 23 0 1
1997 236 18 26 0 7
1998 251 15 60 0 0
1999 229 40 46 0 0
2000 226 33 49 0 4
2001 223 28 61 0 0
2002 212 27 83 0 0
2003 187 36 50 0 2
2004 196 17 49 0 3
2005 229 22 39 0 9
2006 235 23 31 0 5
2007 273 23 44 0 7
2008 265 29 109 0 0
2009 241 32 92 0 0

The table provides some descriptive statistics for the sample of equities traded on the Oslo Stock Exchange
in the period 1991 to 2010. The first column lists the year. The second column lists the number of stocks
available in our dataset with daily prices. The third column lists how many stocks that are missing in our
accounting information. The fourth column lists how many stocks that are excluded for having to low stock
price. The fifth column lists how many stocks that are excluded regarding market capitalization. The final
column lists how many stocks that are excluded based on trading days.
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8.4 Asset pricing factors

Table 18: Descriptive statistics for asset pricing factors

Average - With similar assumptions to Ødegaard

SMB HML PR1YR BAB
1992-2010* -0.48 (0.10) 0.68 (0.03) 2.09 (0.00) -0.29 (0.80)
1992-1995* 0.33 (0.68) -0.10 (0.91) 1.19 (0.09) 2.39 (0.08)
1996-2000 -0.16 (0.75) 0.78 (0.14) 1.42 (0.01) -0.51 (0.65)
2001-2005 -0.58 (0.27) 1.47 (0.02) 3.50 (0.00) 0.24 (0.94)
2006-2010 -1.26 (0.03) 0.35 (0.50) 2.09 (0.00) -1.12 (0.33)

*The BAB value are not available in all of the sub-periods due to three years of beta construction.

Correlations
SMB HML PR1YR BAB

SMB 1
HML -0,085 1
PR1YR -0,097 0,080 1
BAB -0,185 0,056 -0,263 1

The table describes the calculated asset pricing factors. SMB and HML are the Fama and French (1996)
pricing factors. PR1YR is the Carhart (1997) factor. BAB is the recently betting-against-beta factor
documented by Frazzini and Pedersen (2013). The table lists the average percentage monthly return, and
in the parenthesis the p-value for a test of difference from zero. The table also list an overview of the
correlation between the factors.
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Table 19: Descriptive statistics for asset pricing factors

Average - Without assumptions

SMB HML PR1YR BAB
1992-2010* -0.56 (0.05) 0.83 (0.01) 2.28 (0.00) 0.53 (0.48)
1992-1995* 0.49 (0.49) -0.16 (0.80) 0.82 (0.37) 4.81 (0.00)
1996-2000 -0.37 (0.44) 0.57 (0.30) 1.28 (0.02) -0.75 (0.46)
2001-2005 -0.74 (0.21) 2.25 (0.00) 4.11 (0.00) 2.02 (0.29)
2006-2010 -1.29 (0.03) 0.28 (0.60) 2.60 (0.00) -1.12 (0.30)

*The BAB value are not available in all of the sub-periods due to three years of beta construction.

Correlations
SMB HML PR1YR BAB

SMB 1
HML -0,010 1
PR1YR -0,229 0,135 1
BAB -0,110 -0,036 -0,261 1

The table describes the calculated asset pricing factors. SMB and HML are the Fama and French (1996)
pricing factors. PR1YR is the Carhart (1997) factor. BAB is the recently betting-against-beta factor
documented by Frazzini and Pedersen (2013). The table lists the average percentage monthly return, and
in the parenthesis the p-value for a test of difference from zero. The table also list an overview of the
correlation between the factors.
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8.5 Simple portfolio sort based on Market Beta

Table 20: Beta portfolios 1995(1997) – 2010

Three years of monthly returns - With similar assumptions to Ødegaard

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.46 (3.26) -12.67 0.90 7.81 15 24 27
2 0.68 (4.35) -16.97 1.42 9.01 15 24 27
3 0.15 (5.63) -29.81 0.99 11.40 15 24 27
4 0.47 (6.96) -33.86 1.17 14.85 15 24 27
5 -1.14 (9.75) -41.62 0.53 18.75 15 24 28

Five years of monthly returns - With similar assumptions to Ødegaard

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.40 (3.32) -13.22 0.51 8.79 14 19 24
2 0.72 (4.29) -18.95 1.25 11.93 14 19 24
3 0.63 (5.63) -27.57 1.02 11.87 14 19 24
4 0.43 (6.91) -27.99 0.79 14.52 14 19 24
5 -1.10 (10.00) -42.62 0.67 20.84 13 19 25

Returns are percentage monthly returns. The returns are not annualized. Data for stocks listed at the
Oslo Stock Exchange during the period 1991-2010. Calculations use the stocks satisfying the ”filter” criteria
discussed in 4.2. When the portfolios are constructed, we rank the numerical values and divide the securities
into 5 portfolios based on the ranking. When dividing by 5 we use a round function for the first 4 portfolios.
The fifth portfolio is defined as the sum of the first four portfolios subtracted by the total number. This is
why the number of stocks in portfolio 5 can vary with +/- 1 stocks.
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Table 21: Beta portfolios 1995(1997) – 2010

Three years of monthly returns - Without assumptions

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.48 (3.65) -12.50 1.05 7.97 19 30 39
2 0.66 (4.61) -18.38 1.04 10.21 19 30 39
3 0.22 (6.10) -27.68 1.36 12.45 19 30 39
4 0.41 (7.44) -33.06 1.25 19.14 19 30 39
5 -0.75 (9.89) -37.05 0.74 23.61 18 30 39

Five years of monthly returns - Without assumptions

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.46 (3.52) -12.85 0.73 12.33 16 26 29
2 0.81 (4.73) -18.77 1.77 12.46 16 26 29
3 0.45 (6.28) -28.43 1.08 14.51 16 26 29
4 -0.01 (7.88) -34.70 0.97 21.11 16 26 29
5 -0.99 (10.04) -38.39 0.87 21.54 15 25 30

Returns are percentage monthly returns. The returns are not annualized. Data for stocks listed at the
Oslo Stock Exchange during the period 1991-2010. Calculations use the stocks satisfying the ”filter” criteria
discussed in 4.2. When the portfolios are constructed, we rank the numerical values and divide the securities
into 5 portfolios based on the ranking. When dividing by 5 we use a round function for the first 4 portfolios.
The fifth portfolio is defined as the sum of the first four portfolios subtracted by the total number. This is
why the number of stocks in portfolio 5 can vary with +/- 1 stocks.
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8.6 Fama French portfolios

Table 22: Average returns for the six portfolios used in the FF construction

1992 - 2010
SL SM SH

-0.54 (8.23) -0.04 (6.85) 0.59 (6.70)
BL BM BH

0.04 (7.73) 0.86 (6.83) 0.74 (8.10)

1992 - 1995
SL SM SH

1.51 (7.23) 0.95 (6.28) 1.42 (8.51)
BL BM BH

1.21 (5.46) 0.61 (6.35) 0.92 (8.39)

1996 - 2000
SL SM SH

0.17 (7.13) 0.61 (5.28) 0.79 (4.58)
BL BM BH

-0.06 (6.90) 1.07 (6.20) 0.87 (6.34)

2001 - 2005
SL SM SH

-1.62 (10.37) 0.01 (7.38) 1.64 (6.03)
BL BM BH

0.13 (7.09) 1.07 (6.93) 1.27 (8.33)

2006 - 2010
SL SM SH

-1.42 (7.07) -1.33 (7.96) -1.31 (7.42)
BL BM BH

-0.71 (10.25) 0.50 (7.82) -0.16 (9.25)

The table shows average returns for the six portfolios S/L, S/M, S/H, B/L, B/M and B/H.
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Table 23: Average returns for the six portfolios used in the FF construction

1992 - 2010 - With similar assumptions to Ødegaard

SL SM SH
-0.38 (7.70) -0.16 (6.55) 0.48 (6.41)

BL BM BH
0.05 (7.76) 0.77 (6.85) 0.55 (8.17)

1992 - 1995 - With similar assumptions to Ødegaard

SL SM SH
0.80 (8.45) 1.11 (5.62) 1.09 (9.41)

BL BM BH
0.98 (5.26) 0.56 (6.20) 0.49 (8.80)

1996 - 2000 - With similar assumptions to Ødegaard

SL SM SH
0.23 (6.66) 0.63 (5.21) 0.75 (4.84)

BL BM BH
0.16 (7.10) 0.84 (6.33) 0.81 (6.47)

2001 - 2005 - With similar assumptions to Ødegaard

SL SM SH
-1.01 (9.09) 0.11 (6.68) 1.09 (4.63)

BL BM BH
0.20 (7.06) 1.02 (6.97) 0.79 (8.29)

2006 - 2010 - With similar assumptions to Ødegaard

SL SM SH
-0.97 (6.30) -2.11 (7.82) -1.03 (6.62)

BL BM BH
-0.80 (10.30) 0.50 (7.82) -0.04 (9.19)

The table shows average returns for the six portfolios S/L, S/M, S/H, B/L, B/M and B/H.
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Table 24: Average returns for the six portfolios used in the FF construction

1992 - 2010 - Without assumptions

SL SM SH
-0.56 (8.56) -0.05 (6.85) 0.52 (6.91)

BL BM BH
0.10 (7.69) 0.80 (6.73) 0.68 (8.07)

1992 - 1995 - Without assumptions

SL SM SH
1.31 (7.58) 1.34 (6.60) 1.45 (8.90)

BL BM BH
1.23 (5.45) 0.62 (6.24) 0.77 (8.51)

1996 - 2000 - Without assumptions

SL SM SH
0.60 (7.33) 0.08 (5.10) 0.63 (4.51)

BL BM BH
0.18 (6.91) 0.90 (6.23) 0.93 (6.27)

2001 - 2005 - Without assumptions

SL SM SH
-1.81 (10.96) 0.23 (7.64) 1.61 (6.21)

BL BM BH
0.10 (7.13) 1.00 (6.62) 1.17 (8.16)

2006 - 2010 - Without assumptions

SL SM SH
-1.52 (6.97) -1.40 (7.65) -1.41 (7.71)

BL BM BH
-0.71 (10.11) 0.50 (7.81) -0.25 (9.27)

The table shows average returns for the six portfolios S/L, S/M, S/H, B/L, B/M and B/H.
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8.7 Simple portfolio sorts based on CAPM anomalies

Table 25: Monthly returns for portfolios sorted on company value

Panel A shows the monthly percentage returns for 5 portfolios constructed based on market value. The
results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the end of each
year. Panel B shows the average monthly return for the portfolios containing the 20 percent smallest firms
(portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-periods. The table
also show p-values from a test of whether the return difference between the portfolios is zero.

Panel A: Whole sample 1992 - 2010 - With similar assumptions to Ødegaard

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.40 (5.98) -20.46 -0.06 20.28 12 27 43
2 -0.28 (6.57) -30.50 0.54 17.08 15 26 43
3 0.06 (6.96) -32.85 0.81 14.39 16 27 43
4 0.49 (6.71) -27.26 1.13 18.19 17 27 43
5 0.24 (7.65) -32.89 1.04 16.54 16 28 43

Panel B: Sub-periods - With similar assumptions to Ødegaard

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 0.91 0.64 0.27 0.84
1996 - 2000 0.19 0.03 -0.30 0.63
2001 - 2005 -0.62 0.00 -0.64 0.37
2006 - 2010 -1.67 -0.06 -1.61 0.06
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Table 26: Monthly returns for portfolios sorted on company value

Panel A shows the monthly percentage returns for 5 portfolios constructed based on market value. The
results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the end of each
year. Panel B shows the average monthly return for the portfolios containing the 20 percent smallest firms
(portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-periods. The table
also show p-values from a test of whether the return difference between the portfolios is zero.

Panel A: Whole sample 1992 - 2010 - Without assumptions

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.03 (7.04) -31.58 0.06 17.87 19 38 53
2 -0.05 (6.96) -23.21 0.65 21.66 24 37 53
3 -0.06 (7.08) -31.51 0.59 16.43 25 37 53
4 0.53 (6.84) -29.39 1.53 13.62 25 37 53
5 0.32 (7.45) -32.16 1.21 16.76 23 38 51

Panel B: Sub-periods - Without assumptions

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 1.70 0.82 0.89 0.50
1996 - 2000 0.65 0.57 0.08 0.89
2001 - 2005 -0.09 0.23 -0.33 0.69
2006 - 2010 -1.87 -0.19 -1.67 0.02
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Table 27: Monthly returns for portfolios sorted on BE/ME

Panel A shows the monthly percentage returns for 5 portfolios constructed based on Book to Market value
(BE/ME). The results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the
end of each year. Panel B shows the average monthly return for the portfolios containing the 20 percent
smallest firms (portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-
periods. The table also show p-values from a test of whether the return difference between the portfolios is
zero.

Panel A: Whole sample 1992 - 2010 - With similar assumptions to Ødegaard

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.74 (8.07) -33.42 0.36 17.54 16 27 43
2 0.23 (6.59) -30.38 0.94 13.56 15 27 43
3 0.10 (6.49) -31.22 0.87 14.11 15 27 43
4 0.24 (6.10) -23.21 1.11 13.52 16 27 43
5 0.30 (6.05) -30.92 0.93 18.22 15 28 43

Panel B: Sub-periods - With similar assumptions to Ødegaard

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 0.82 0.20 -0.62 0.47
1996 - 2000 -0.31 1.11 1.42 0.05
2001 - 2005 -1.65 1.00 2.65 0.00
2006 - 2010 -1.34 -1.15 0.19 0.74
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Table 28: Monthly returns for portfolios sorted on BE/ME

Panel A shows the monthly percentage returns for 5 portfolios constructed based on Book to Market value
(BE/ME). The results are for the whole sample period 1992 - 2010. The portfolios are re-balanced at the
end of each year. Panel B shows the average monthly return for the portfolios containing the 20 percent
smallest firms (portfolio 1) and the 20 percent largest firms (portfolio 5) on the exchange for four sub-
periods. The table also show p-values from a test of whether the return difference between the portfolios is
zero.

Panel A: Whole sample 1992 - 2010 - Without assumptions

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.69 (8.42) -36.89 0.24 17.55 24 38 53
2 0.20 (7.04) -31.95 0.95 14.74 25 37 53
3 0.30 (6.45) -31.78 1.10 13.89 22 38 53
4 0.39 (6.57) -23.57 1.23 18.01 23 37 53
5 0.49 (6.36) -27.79 0.86 18.28 21 38 51

Panel B: Sub-periods - Without assumptions

Small (Portf. 1) Large (Portf. 5) Diff t-test: diff=0
1992 - 1995 1.09 0.75 -0.34 0.68
1996 - 2000 0.03 1.03 1.00 0.17
2001 - 2005 -1.64 1.35 2.99 0.00
2006 - 2010 -1.66 -1.12 0.54 0.31
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Table 29: Momentum sorted portfolios

5 Portfolios - With similar assumptions to Ødegaard: 6 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.70 (8.98) -37.33 -0.02 16.71 17 29 42
2 0.11 (5.85) -24.73 0.69 18.03 17 29 42
3 0.39 (5.25) -24.95 0.91 13.28 17 29 42
4 0.56 (5.69) -29.69 1.25 14.73 17 29 42
5 0.68 (6.86) -27.78 0.84 17.95 17 29 44

5 Portfolios - With similar assumptions to Ødegaard: 12 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.80 (9.34) -41.05 0.16 20.92 17 28 40
2 -0.08 (6.32) -28.66 0.36 18.24 17 28 40
3 0.57 (5.32) -24.84 1.01 12.45 17 28 40
4 0.56 (5.10) -18.81 0.94 14.98 17 28 40
5 0.96 (6.86) -27.90 1.67 18.84 16 28 41

5 Portfolios - With similar assumptions to Ødegaard: 24 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.74 (8.82) -36.43 0.45 19.72 16 26 34
2 0.37 (5.87) -20.18 0.60 21.17 16 26 34
3 1.08 (5.07) -21.74 1.58 12.93 16 26 34
4 0.84 (5.04) -25.94 1.52 12.86 16 26 34
5 0.28 (6.57) -34.62 1.15 16.32 14 26 34

5 Portfolios - With similar assumptions to Ødegaard: 36 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) 0.43 (3.28) -13.70 0.77 7.80 15 24 27
2 0.59 (4.49) -16.74 1.08 10.71 15 24 27
3 0.22 (5.57) -29.05 1.32 12.89 15 24 27
4 0.47 (6.68) -32.24 1.14 14.63 15 24 27
5 -1.09 (9.68) -40.87 0.49 19.86 15 24 28
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Table 30: Momentum sorted portfolios

5 Portfolios - Without assumptions: 6 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.45 (9.94) -33.88 -0.11 24.68 28 41 54
2 -0.35 (6.78) -26.22 0.87 13.98 28 41 54
3 0.53 (5.68) -27.40 1.25 12.87 28 41 54
4 0.60 (5.76) -26.92 1.28 12.77 28 41 54
5 0.83 (7.06) -24.58 1.51 19.54 27 40 55

5 Portfolios - Without assumptions: 12 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -1.57 (10.22) -38.57 -0.11 23.57 26 38 50
2 -0.49 (7.21) -31.95 0.62 15.36 26 38 50
3 0.53 (5.80) -29.52 0.79 12.30 26 38 50
4 0.69 (5.50) -20.49 1.54 13.59 26 38 50
5 1.15 (6.95) -27.60 1.96 20.50 26 38 52

5 Portfolios - Without assumptions: 24 months

Returns Number of securities
Portfolio Mean (Std) Min Med Max Min Med Max
1 (Smallest) -0.81 (9.87) -39.82 0.97 22.83 23 34 45
2 0.48 (6.76) -31.01 0.81 18.29 23 34 45
3 0.86 (5.40) -21.58 1.35 15.17 23 34 45
4 0.99 (5.18) -25.87 1.55 12.10 23 34 45
5 0.46 (6.70) -31.61 1.32 17.55 22 34 46
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8.8 Fama MacBeth regression

Table 31: A multifactor model for the OSE - Size portfolios

Panel A shows the results from estimating the Fama French three-factor model as in equation 3.3.3 for a
portfolios sorted on size. Firm size is measured as the market capitalization, and the portfolio are equal
weighted. For the portfolio, columns two and three show the estimated constant with the associated p-
value for the portfolio. Constants that are significantly different from zero indicate a wrongly specified
model. The remaining columns show the estimated beta βk

i and associated p-value. Panel B shows the
risk premium estimated for the intercept and each factor. These risk premiums are estimated with the
Fama MacBeth (1973) regression. The regressions are run on the monthly excess return of the portfolio on
the estimated factor(s). If the model is true, the intercept, α, is zero. The factor is priced if the, λ[i], is
significantly different from zero.

Size constant p-value β[1] p-value β[2] p-value β[3] p-value R2
adj

1 (low MCAP) -0.001 (0.76) 0.935 (0.00) 0.437 (0.00) -0.046 (0.37) 0.80
2 0.002 (0.22) 0.958 (0.00) 0.261 (0.00) -0.019 (0.62) 0.88
3 -0.001 (0.55) 1.056 (0.00) 0.090 (0.02) 0.078 (0.06) 0.88
4 0.003 (0.06) 0.960 (0.00) -0.283 (0.00) 0.104 (0.00) 0.91
5 -0.001 (0.44) 1.046 (0.00) -0.629 (0.00) -0.018 (0.52) 0.94

Risk premia Rew
m

Factor premium p-value
α 0.033 (0.06)
λ[1](erm) -0.032 (0.08)
λ[2](SMB) -0.007 (0.04)
λ[3](HML) 0.022 (0.10)

70



Table 32: A multifactor model for the OSE - BE/ME portfolios

Panel A shows the results from estimating the Fama French three-factor model as in equation 3.3.3 for a
portfolio sorted on BE/ME. BE/ME is measured by the ratio between a firms book value relative to market
value, and the BE/ME portfolios are equal weighted. For the portfolios, columns two and three show the
estimated constant with the associated p-value for each portfolio. Constants that are significantly different
from zero indicate a wrongly specified model. The remaining columns for each set of portfolios show the
estimated beta βk

i and associated p-value. Panel B shows the risk premium estimated for the intercept and
each factor. These risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions
are run on the monthly excess return of the portfolio on the estimated factor(s). If the model is true, the
intercept, α, is zero. The factor is priced if the, λ[i], is significantly different from zero.

BE/ME constant p-value β[1] p-value β[2] p-value β[3] p-value R2
adj

1 (low BE/ME) -0.002 (0.28) 1.163 (0.00) 0.117 (0.01) -0.433 (0.00) 0.90
2 0.002 (0.08) 1.009 (0.00) -0.095 (0.00) -0.199 (0.00) 0.92
3 0.000 (0.87) 0.889 (0.00) -0.212 (0.00) 0.028 (0.41) 0.88
4 0.000 (0.79) 0.943 (0.00) -0.002 (0.96) 0.215 (0.00) 0.89
5 0.001 (0.54) 0.833 (0.00) 0.049 (0.17) 0.472 (0.00) 0.88

Risk premia Rew
m

Factor premium p-value
α -0.051 (0.50)
λ[1](erm) 0.051 (0.49)
λ[2](SMB) -0.040 (0.31)
λ[3](HML) 0.023 (0.18)
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Table 33: A multifactor model for the OSE - Beta portfolios

Panel A shows the results from estimating the Fama French three-factor model as in equation 3.3.3 for a
portfolio sorted on beta. The beta portfolio is equal weighted. Columns two and three show the estimated
constant with the associated p-value for each portfolio. Constants that are significantly different from zero
indicate a wrongly specified model. The remaining columns show the estimated βk

i and their associated
p-values. Panel B show the risk premiums estimated for the intercept and each factor. These risk premiums
are estimated with the Fama MacBeth (1973) regression. The regressions are run on the monthly excess
return of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is zero. The factor
is priced if the, λ[i], is significantly different from zero

Beta constant p-value β[1] p-value β[2] p-value β[3] p-value R2
adj

1 (low beta) 0.002 (0.24) 0.497 (0.00) -0.010 (0.79) -0.131 (0.00) 0.69
2 0.004 (0.02) 0.640 (0.00) -0.132 (0.00) 0.083 (0.04) 0.78
3 0.001 (0.73) 0.881 (0.00) -0.175 (0.00) 0.043 (0.28) 0.87
4 0.004 (0.03) 1.076 (0.00) -0.105 (0.03) 0.000 (1.00) 0.87
5 -0.005 (0.02) 1.447 (0.00) -0.130 (0.02) -0.027 (0.63) 0.90

Risk premia Rew
m

Factor premium p-value
α 0.056 (0.00)
λ[1](erm) -0.046 (0.00)
λ[2](SMB) 0.021 (0.30)
λ[3](HML) -0.214 (0.01)
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Table 34: A multifactor model for the OSE - Size portfolios

Panel A shows the results from estimating Carhart’s four-factor model as in equation 3.3.5 for a portfolio
sorted on size. The size portfolio is equal weighted. Columns two and three show the estimated constant
with the associated p-value for each portfolio. Constants that are significantly different from zero indicate
a wrongly specified model. The remaining columns show the estimated βk

i and their associated p-values.
Panel B show the risk premiums estimated for the intercept and each factor. These risk premiums are
estimated with the Fama MacBeth (1973) regression. The regressions are run on the monthly excess return
of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is zero. The factor is
priced if the, λ[i], is significantly different from zero

Size constant p-value β[1] p-value β[2] p-value β[3] p-value β[4] p-value R2
adj

1 (low MCAP) -0.000 (0.93) 0.927 (0.00) 0.433 (0.00) -0.044 (0.40) -0.025 (0.57) 0.80
2 0.003 (0.10) 0.941 (0.00) 0.252 (0.00) -0.015 (0.70) -0.048 (0.14) 0.88
3 -0.001 (0.68) 1.051 (0.00) 0.088 (0.03) 0.079 (0.05) -0.015 (0.66) 0.88
4 0.003 (0.10) 0.962 (0.00) -0.282 (0.00) 0.103 (0.00) 0.005 (0.85) 0.91
5 0.000 (0.86) 1.025 (0.00) -0.640 (0.00) -0.013 (0.65) -0.063 (0.01) 0.95

Risk premia Rew
m

Factor premium p-value
α 0.048 (0.03)
λ[1](erm) -0.052 (0.04)
λ[2](SMB) -0.005 (0.15)
λ[3](HML) 0.063 (0.16)
λ[4](PR1Y R) -0.084 (0.39)
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Table 35: A multifactor model for the OSE - BE/ME portfolios

Panel A shows the results from estimating Carhart’s four-factor model as in equation 3.3.5 for a portfolio
sorted on BE/ME. The BE/ME portfolio is equal weighted. Columns two and three show the estimated
constant with the associated p-value for each portfolio. Constants that are significantly different from zero
indicate a wrongly specified model. The remaining columns show the estimated βk

i and their associated
p-values. Panel B show the risk premiums estimated for the intercept and each factor. These risk premiums
are estimated with the Fama MacBeth (1973) regression. The regressions are run on the monthly excess
return of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is zero. The factor
is priced if the, λ[i], is significantly different from zero.

BE/ME constant p-value β[1] p-value β[2] p-value β[3] p-value β[4] p-value R2
adj

1 (low BE/ME) -0.000 (0.84) 1.132 (0.00) 0.101 (0.02) -0.425 (0.00) -0.087 (0.02) 0.90
2 0.002 (0.10) 1.008 (0.00) -0.096 (0.00) -0.198 (0.00) -0.003 (0.92) 0.92
3 0.000 (0.90) 0.889 (0.00) -0.211 (0.00) 0.028 (0.42) 0.002 (0.94) 0.88
4 0.001 (0.60) 0.936 (0.00) -0.006 (0.86) 0.217 (0.00) -0.023 (0.45) 0.87
5 0.002 (0.34) 0.929 (0.00) 0.043 (0.24) 0.475 (0.00) -0.034 (0.27) 0.88

Risk premia Rew
m

Factor premium p-value
α -0.035 (0.65)
λ[1](erm) 0.039 (0.61)
λ[2](SMB) -0.012 (0.79)
λ[3](HML) 0.017 (0.33)
λ[4](PR1Y R) 0.082 (0.20)
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Table 36: A multifactor model for the OSE - Beta portfolios

Panel A shows the results from estimating Carhart’s four-factor model as in equation 3.3.5 for a portfolio
sorted on beta. The beta portfolio is equal weighted. Columns two and three show the estimated constant
with the associated p-value for each portfolio. Constants that are significantly different from zero indicate
a wrongly specified model. The remaining columns show the estimated βk

i and their associated p-values.
Panel B show the risk premiums estimated for the intercept and each factor. These risk premiums are
estimated with the Fama MacBeth (1973) regression. The regressions are run on the monthly excess return
of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is zero. The factor is
priced if the, λ[i], is significantly different from zero

Beta constant p-value β[1] p-value β[2] p-value β[3] p-value β[4] p-value R2
adj

1 (low Beta) 0.001 (0.57) 0.511 (0.00) -0.002 (0.96) 0.123 (0.00) 0.044 (0.06) 0.70
2 0.003 (0.06) 0.649 (0.00) -0.127 (0.00) 0.078 (0.05) 0.029 (0.37) 0.78
3 -0.001 (0.54) 0.908 (0.00) -0.160 (0.00) 0.029 (0.46) 0.083 (0.01) 0.87
4 0.005 (0.01) 1.062 (0.00) -0.112 (0.02) 0.007 (0.89) -0.042 (0.29) 0.87
5 -0.003 (0.16) 1.415 (0.00) -0.146 (0.01) -0.011 (0.84) -0.097 (0.04) 0.90

Risk premia Rew
m

Factor premium p-value
α 0.056 (0.00)
λ[1](erm) -0.048 (0.00)
λ[2](SMB) 0.012 (0.63)
λ[3](HML) -0.207 (0.01)
λ[4](PR1Y R) -0.034 (0.10)
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Table 37: A multifactor model for the OSE - Size portfolios

Panel A shows the results from estimating a multifactor model containing the market factor and the BAB-
factor for a portfolio sorted on size. The size portfolio is equal weighted. Columns two and three show the
estimated constant with the associated p-value for each portfolio. Constants that are significantly different
from zero indicate a wrongly specified model. The remaining columns show the estimated βk

i and their
associated p-values. Panel B show the risk premiums estimated for the intercept and each factor. These
risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions are run on the
monthly excess return of the portfolio on the estimated factor(s). If the model is true, the intercept, α, is
zero. The factor is priced if the, λ[i], is significantly different from zero

Size constant p-value β[1] p-value β[2] p-value R2
adj

1 (low MCAP) -0.005 (0.03) 0.862 (0.00) 0.019 (0.52) 0.77
2 -0.000 (0.92) 0.938 (0.00) 0.009 (0.67) 0.88
3 -0.001 (0.71) 1.082 (0.00) -0.049 (0.03) 0.89
4 0.006 (0.00) 0.934 (0.00) 0.018 (0.41) 0.88
5 0.003 (0.20) 1.031 (0.00) 0.050 (0.07) 0.85

Risk premia Rew
m

Factor premium p-value
α -0.020 (0.21)
λ[1](erm) 0.020 (0.24)
λ[2](BAB) 0.053 (0.12)
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Table 38: A multifactor model for the OSE - BE/ME portfolios

Panel A shows the results from estimating a multifactor model containing the market factor and the BAB-
factor for a portfolio sorted on BE/ME. The BE/ME portfolio is equal weighted. Columns two and three
show the estimated constant with the associated p-value for each portfolio. Constants that are significantly
different from zero indicate a wrongly specified model. The remaining columns show the estimated βk

i and
their associated p-values. Panel B show the risk premiums estimated for the intercept and each factor.
These risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions are run on
the monthly excess return of the portfolio on the estimated factor(s). If the model is true, the intercept, α,
is zero. The factor is priced if the, λ[i], is significantly different from zero

BE/ME constant p-value β[1] p-value β[2] p-value R2
adj

1 (low BE/ME) -0.006 (0.01) 1.298 (0.00) -0.054 (0.08) 0.86
2 0.001 (0.46) 1.029 (0.00) 0.003 (0.89) 0.90
3 0.002 (0.23) 0.874 (0.00) 0.028 (0.18) 0.88
4 0.001 (0.42) 0.856 (0.00) 0.043 (0.05) 0.87
5 0.005 (0.01) 0.786 (0.00) 0.031 (0.22) 0.80

Risk premia Rew
m

Factor premium p-value
α 0.033 (0.09)
λ[1](erm) -0.034 (0.09)
λ[2](BAB) -0.054 (0.58)
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Table 39: A multifactor model for the OSE - Momentum portfolios

Panel A shows the results from estimating a multifactor model containing the market factor and the BAB-
factor for a portfolio sorted on momentum. The momentum portfolio is equal weighted. Columns two
and three show the estimated constant with the associated p-value for each portfolio. Constants that
are significantly different from zero indicate a wrongly specified model. The remaining columns show the
estimated βk

i and their associated p-values. Panel B show the risk premiums estimated for the intercept and
each factor. These risk premiums are estimated with the Fama MacBeth (1973) regression. The regressions
are run on the monthly excess return of the portfolio on the estimated factor(s). If the model is true, the
intercept, α, is zero. The factor is priced if the, λ[i], is significantly different from zero

Momentum constant p-value β[1] p-value β[2] p-value R2
adj

1 (low Momentum) -0.014 (0.00) 1.368 (0.00) -0.025 (0.49) 0.84
2 -0.004 (0.01) 0.918 (0.00) 0.072 (0.00) 0.88
3 0.005 (0.00) 0.803 (0.00) 0.028 (0.18) 0.88
4 0.007 (0.00) 0.726 (0.00) 0.020 (0.35) 0.83
5 0.013 (0.00) 1.020 (0.00) -0.027 (0.40) 0.78

Risk premia Rew
m

Factor premium p-value
α 0.047 (0.00)
λ[1](erm) -0.046 (0.00)
λ[2](BAB) -0.160 (0.00)
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