
 

 

 

 

 

 
Ragnhild Holgersen 

________________________________ 
 

Prototyping a Decision Support System 

Based on Semantic Web Technologies to 

Aid Consumers with Food Sensitivities  

in their Assessment of Product Safety 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Master thesis 2013  

Master in Library and Information Science 

Oslo and Akershus University College of Applied Sciences,  

Department of Archivistics, Library and Information Sciences  



 

 2 

Abstract  

The thesis depicts the information need people with food sensitivities experience in the 

shopping situation. Diversity within the group is illustrated through five personas. Existing 

measures aimed at helping affected individuals in their search for safe food – ranging from 

labeling requirements and practices to various forms of information systems – are 

exemplified. Shortcomings of existing solutions are discussed from an information science 

perspective. An alternative approach based on Semantic Web technologies and Linked data 
is proposed, underpinning a decision support system. The Boolean interpretation of food 

safety is rejected in favor of a division that accounts for the need for human assessment of 

uncertain cases. SPARQL and automatic inference, relying on a dataset holding facts about 

allergen occurrence in various ingredients, is used to automatically classify products as safe, 

uncertain or unsafe for individual users. Proof of concept for the proposed approach is 

provided through a prototype web application. The automated classification is used to 

communicate the safety of each product, using familiar traffic light colors. Tailored decision 

support is provided on-demand, emphasizing information that is likely to impact the users 

assessment of uncertain products while limiting “information overload”. The development 

process behind the ontology and web application is discussed in detail, followed by a 

discussion about how to establish the required data sets. 

 

 

Sammendrag  

Masteroppgaven skildrer det informasjonsbehovet mennesker med matoverfølsomhet 

opplever når de skal handle mat. Mangfoldet innen gruppen illustreres gjennom fem 

”personas”. Eksisterende tiltak med hensikt å hjelpe personer med matoverfølsomhet i 

jakten på trygg mat – fra merkeregler og praksiser til forskjellige former for 

informasjonssystemer – eksemplifiseres. Svakheter ved eksisterende løsninger drøftes utfra 

et informasjonsvitenskapelig perspektiv. En alternativ tilnærming basert på Semantisk Web 

teknologier og Lenkede Data introduseres og danner grunnlaget for et 

beslutningsstøttesystem for personer med matoverfølsomhet. Den Boolske tilnærmingen til 

mattrygghet forkastes til fordel for en tredeling som ivaretar behovet for skjønnsmessig 

vurdering i usikre tilfeller. SPARQL og automatisk inferens, basert på en kjerne av data om 

allergenforekomst i ingredienser, benyttes til å klassifisere produkter som trygge, usikre og 

utrygge. ”Proof of concept” for den foreslåtte tilnærmingen oppnås ved å prototype en 

webapplikasjon. Den automatiske klassifikasjonen blir brukt til å kommunisere i hvilken grad 

produkter er antatt å være trygge for den enkelte, ved bruk av kjente trafikklysfarger. 

Skreddersydd beslutningsstøtte tilbys, der informasjon som trolig vil påvirke brukerens 

manuelle vurdering av usikre produkter fremheves, mens andre opplysninger holdes tilbake 

for å unngå støy. Utviklingsprosessen bak ontologi og webapplikasjon drøftes inngående, 
etterfulgt av en diskusjon av hva som må til for å skaffe til veie og kvalitetssikre de 

datasettene som modellen baserer seg på.  

 

 

Oslo and Akershus University College of Applied Sciences,  

Department of Archivistics, Library and Information Sciences 

Oslo 2013



 

 3 

PREFACE 

My perspective on library and information science is influenced by the fact that I have a 

multidisciplinary educational background, incorporating courses from computer science and 

entrepreneurship. I believe that insights from the library and information sciences have 

applications far beyond the traditional library setting. People continually experience 

information needs in all kinds of everyday situations and increasingly rely on information 

technology as an aid. Thus, the need for efficient information systems, based on a thorough 

understanding of users’ information needs and behaviors, is evident. 

 

Growing up in a family where both milk allergy and severe nut allergy were represented, I 

myself was diagnosed with coeliac disease as an adult. This background has made me 

painfully aware of the problems that arise in the grocery-shopping situation as a consequence 

of food sensitivities.  

 

Although food labeling is highly regulated and industry actors take various measures to 

accommodate the needs of people with food allergies or intolerances, the task of identifying 

safe products in the grocery store remains challenging. The problem is not necessarily a lack 

of available information, but rather the feeling of “information overload” that arises from 

having to interpret endless food declarations in order to assess whether products are safe. Fine 

print, lack of standardized presentation and presence of unfamiliar terms require substantial 

cognitive effort and specialized domain knowledge on the customer side.  

 

In this thesis, I have applied insights from the library and information sciences and Semantic 

Web technologies in order to develop a system meant to support people with food sensitivities 

in their search for safe foods.  

 

I would like to thank my teachers and fellow students for their input and encouragement 

during my work with this thesis, and my dear husband and son for their everlasting patience 

and inspiration.   



 

 4 

TABLE OF CONTENTS 

PREFACE .............................................................................................................................................................. 3 

TABLE OF CONTENTS ...................................................................................................................................... 4 

1 INTRODUCTION ......................................................................................................................................... 8 

1.1 INFORMATION NEEDS EXPERIENCED BY CONSUMERS AFFECTED BY FOOD SENSITIVITIES ....................... 8 

1.1.1 Food sensitivity prevalence and consequences for affected individuals ................................. 8 

1.1.2 Information need in the shopping situation ........................................................................................ 8 

1.1.3 Observations from The Norwegian Coeliac Society’s Facebook forum .................................10 

1.1.4 Personas illustrating diversity within the customer segment ...................................................11 

2 BACKGROUND ......................................................................................................................................... 14 

2.1 EXISTING MEASURES AIMED AT HELPING PEOPLE WITH FOOD SENSITIVITIES ......................................... 14 

2.1.1 Labeling requirements and practices ...................................................................................................14 

2.1.2 Elimination of common allergens in mainstream products .......................................................18 

2.1.3 Physical organization of grocery stores...............................................................................................20 

2.1.4 Printed material and “brochure websites” .........................................................................................21 

2.1.5 Online stores .....................................................................................................................................................22 

2.1.6 Interactive information systems ..............................................................................................................25 

2.2 SHORTCOMINGS OF EXISTING SOLUTIONS – SEEN FROM AN INFORMATION SCIENCE PERSPECTIVE ..... 32 

2.2.1 Use of broad, predefined categories .......................................................................................................32 

2.2.2 Suboptimal precision and recall ..............................................................................................................32 

2.2.3 The fuzzy nature of product safety .........................................................................................................35 

2.2.4 Context sensitive relevance perception ................................................................................................35 

2.2.5 Data vs. information......................................................................................................................................36 

2.2.6 Problems with manual assignment of allergens ..............................................................................37 

2.2.7 Lack of standardization regarding practice of allergen warnings .........................................37 

2.2.8 Vendor-specific sources and systems – lack of industry collaboration ..................................38 

2.2.9 Information loss ..............................................................................................................................................38 

2.2.10 Understanding users’ goals .....................................................................................................................40 

3 INTRODUCING AN ALTERNATIVE APPROACH – A DECISION SUPPORT SYSTEM BASED 

ON SEMANTIC WEB TECHNOLOGIES AND LINKED DATA ................................................................ 42 

3.1 REJECTING THE BOOLEAN INTERPRETATION OF PRODUCT SAFETY ........................................................... 42 

3.2 DESIGN GOALS ..................................................................................................................................................... 42 



 

 5 

3.2.1 Reliable precision and recall performance .........................................................................................42 

3.2.2 Matching based on semantics rather than text ................................................................................43 

3.2.3 Reducing information overload by differentiating between data and information .......43 

3.2.4 Integrating data from multiple industry actors ..............................................................................43 

3.3 DECISION SUPPORT SYSTEMS ............................................................................................................................ 44 

3.3.1 Definition ............................................................................................................................................................44 

3.3.2 Vast and increasing amounts of data....................................................................................................44 

3.3.3 Identifying parts that can be left to machines ..................................................................................44 

3.3.4 User interface ...................................................................................................................................................45 

3.3.5 Core data set administered by a governmental agency ...............................................................45 

3.4 A MODEL BASED ON SEMANTIC WEB AND LINKED DATA ............................................................................ 46 

3.4.1 Common domain ontology and authoritative knowledge base ................................................46 

3.4.2 Automatic inference ......................................................................................................................................47 

3.4.3 Preprocessing the data ................................................................................................................................47 

3.4.4 Traffic light colors for quick feedback ..................................................................................................48 

3.4.5 Smartphone app ..............................................................................................................................................48 

4 PROVIDING A PROOF OF CONCEPT .................................................................................................. 49 

4.1 KNOWLEDGE PREREQUISITES AND REFERENCES ........................................................................................... 49 

4.2 PROTOTYPE DEVELOPMENT PROCESS ............................................................................................................. 50 

5 ONTOLOGY DEVELOPMENT ............................................................................................................... 51 

5.1 THE WEB ONTOLOGY LANGUAGE (OWL) ..................................................................................................... 51 

5.2 PROTÉGÉ ONTOLOGY EDITOR ............................................................................................................................ 51 

5.3 DATA MODELING ................................................................................................................................................. 51 

5.3.1 Classes ..................................................................................................................................................................52 

5.3.2 Properties ...........................................................................................................................................................54 

5.3.3 Semantic relationships between allergen instances ......................................................................56 

5.4 PROBLEMS AND WORKAROUNDS ...................................................................................................................... 57 

5.4.1 Remodeling the relationship between products and ingredients to enable inference ...57 

5.5 DISCUSSION AND SUGGESTIONS FOR FUTURE WORK ..................................................................................... 59 

5.5.1 Issues with “free from” modeling ............................................................................................................59 

5.5.2 Consequences of semantic relationships between allergen instances ...................................60 

5.5.3 Semantic relationships between ingredient instances ..................................................................60 

5.5.4 Refining the ontology to take into account that products may change over time ...........62 

5.5.5 Modeling of binary vs. N-ary relations .................................................................................................62 

5.5.6 Reuse and mapping to existing vocabularies and ontologies ....................................................64 



 

 6 

6 APPLICATION LAYER DOCUMENTATION ...................................................................................... 66 

6.1 IMPLEMENTED USE CASES ................................................................................................................................. 66 

6.1.1 Scan an individual product ........................................................................................................................67 

6.1.2 Categorize all products by safety ............................................................................................................68 

6.2 TECHNOLOGY CHOICE ......................................................................................................................................... 69 

6.3 OVERALL APPLICATION ARCHITECTURE ......................................................................................................... 69 

6.4 JSP AND JAVA BEANS .......................................................................................................................................... 70 

6.5 UML CLASS DIAGRAM ........................................................................................................................................ 72 

6.5.1 The RdfHandler class ....................................................................................................................................74 

6.5.2 The User class ...................................................................................................................................................75 

6.5.3 The Resource class .........................................................................................................................................75 

6.5.4 The Allergen class ...........................................................................................................................................76 

6.5.5 The Product class ............................................................................................................................................76 

6.5.6 The Ingredient class ......................................................................................................................................76 

6.6 UML SEQUENCE DIAGRAM ................................................................................................................................ 77 

6.6.1 Reading the UML sequence diagram .....................................................................................................77 

6.6.2 Walkthrough of the sequence diagram ................................................................................................80 

6.7 DISCUSSION AND FUTURE WORK ................................................................................................................... 100 

6.7.1 Optimizing execution time ...................................................................................................................... 100 

6.7.2 Enabling distributed data ....................................................................................................................... 100 

6.7.3 User testing ..................................................................................................................................................... 101 

6.7.4 Utilizing the smartphone camera as a barcode scanner .......................................................... 101 

6.7.5 Serialization of user data ......................................................................................................................... 101 

6.7.6 Refined user profiles ................................................................................................................................... 102 

6.7.7 Open source API ........................................................................................................................................... 103 

7 ESTABLISHING THE REQUIRED DATA SETS – DISCUSSION AND FUTURE WORK .........104 

7.1 ESTABLISHING THE AUTHORITATIVE DATA CORE....................................................................................... 104 

7.1.1 Original strategy – semi-automated conversion of existing data source .......................... 104 

7.1.2 Revised strategy – bottom up, frequency-based population ................................................... 105 

7.2 SELECTION OF ALLERGENS ............................................................................................................................. 106 

7.3 SEMANTIC DISTINCTION BETWEEN FUNCTIONALLY EQUIVALENT INGREDIENTS .................................. 106 

7.4 DATA QUALITY AND AUTOMATED INFERENCE ............................................................................................ 107 

7.5 CRITICAL MASS OF PRODUCT DATA ............................................................................................................... 108 

7.6 RELIABLE DATA, INFERENCE AND ALGORITHMS ......................................................................................... 108 

7.7 USER INTERFACE FOR DATA PROVIDERS ...................................................................................................... 108 



 

 7 

7.8 FACILITATING EFFICIENT FEEDBACK FROM USERS TO DATA PROVIDERS ............................................... 108 

7.9 DEALING WITH UNRELIABLE DATA PROVIDERS .......................................................................................... 109 

7.10 RDF-BASED CERTIFICATE SPECIFYING LABELING PRACTICE ................................................................. 109 

7.11 INCENTIVIZING ACCURATE ALLERGEN LABELING..................................................................................... 110 

7.12 MULTILINGUAL SUPPORT ............................................................................................................................. 110 

7.13 MULTIPLE APPLICATION LAYERS BASED ON THE SAME DATA ............................................................... 111 

8 CONCLUSION ..........................................................................................................................................112 

9 REFERENCE LIST ..................................................................................................................................114 

ATTACHMENTS ...................................................................................................................................................  

JAVA SOURCE CODE ..............................................................................................................................................................  

RdfHandler.java ...................................................................................................................................................................  

User.java ..................................................................................................................................................................................  

Resource.java ........................................................................................................................................................................  

Allergen.java ..........................................................................................................................................................................  

Ingredient.java .....................................................................................................................................................................  

Product.java ...........................................................................................................................................................................  

JSP AND CSS.........................................................................................................................................................................  

home.jsp ...................................................................................................................................................................................  

display_filter.jsp ...................................................................................................................................................................  

available_actions.jsp ..........................................................................................................................................................  

filter.jsp ....................................................................................................................................................................................  

categorized_products.jsp .................................................................................................................................................  

product_details.jsp ..............................................................................................................................................................  

style.css .....................................................................................................................................................................................  

OWL ONTOLOGY ..................................................................................................................................................................  

Ontology.owl (manually abridged version) ............................................................................................................  

ONLINE PROTOTYPE AVAILABLE AT http://ekko.hioa.no:8090/Prototype/ ..................................................  

 

http://ekko.hioa.no:8090/Prototype/


 

 8 

1 INTRODUCTION  

In this thesis, I start by briefly depicting how food sensitivities lead to information needs in 

the shopping situation and discuss shortcomings of existing measures, seen from an 

information science perspective. Based on this, I propose a novel approach based on a 

Semantic Web and Linked Data. I proceed to elaborate on the development process behind a 

decision support system prototype that I have developed in order to provide proof of concept 

for the model.  

 

1.1 Information needs experienced by consumers affected by food sensitivities  

1.1.1 Food sensitivity prevalence and consequences for affected individuals 

Many people experience adverse reactions to foods, and the problem appears to be increasing 

in the population. According to Chief Physician Roald Bolle, about 1.5-2.5% of the adult 

population and about 5-8% of young kids have reactions that can be demonstrated 

objectively. Food sensitivities may have many different manifestations, ranging from mild 

symptoms to life-threatening allergic shock. In many cases, the mechanisms behind the 

reactions are unclear, thus the exact prevalence of food hypersensitivity is hard to determine. 

Estimates vary, depending on the definition and methods used. Food allergies, in the strict 

medical sense, only account for a subset of the cases. Conversely, as much as one fourth of 

the adult population self report that they have experienced some form of adverse reaction 

towards food. (Bolle, 2012) 

 

Currently, no pharmacological treatments can prevent the problem – the only solution for the 

affected people is to avoid the substances that cause their symptoms (Bolle, 2012; Bueso, 

2012a).  

 

1.1.2 Information need in the shopping situation 

For people who are affected by food allergies or intolerances – directly or indirectly – grocery 

shopping can be quite challenging and time consuming. The process of identifying safe 

products shares many characteristics with information seeking. The consumer experiences a 



 

 9 

“knowledge gap”, and may engage in several different activities in order to satisfy her 

information need:  

 

 Seeking out the specialized “free from” shelves to increase the likelihood of finding 

relevant products 

 Consulting information material such as printed brochures and company web sites 

 Posting questions at online forums or social networking sites, such as Facebook 

 Picking out desirable products and evaluating them based on their product declarations 

 Falling back on a limited set of products already known to be safe 

 

In order to identify safe products, a consumer may need substantial knowledge about what 

ingredients are safe for her to eat and not. Several different ingredients may pose a risk, so it 

is not enough to quickly skim read the content declaration, looking for the exact terms that 

represent the substance one is allergic to. Figure 1 illustrates how a person who is allergic to 

milk has to look out for a large set of ingredients, some of which are less obvious. It’s easy to 

see how this can create a feeling of “information overload”. 

 

Figure 1 Word cloud illustrating the variety of terms that may appear in a product declaration 

representing a common allergen such as “Milk”. 

A large number of people are indirectly affected by the problems that arise from conditions 



 

 10 

such as food allergies, coeliac disease and severe cases of food intolerance – as parents, 

grandparents and people who prepare foods for others as part of their job.  

 

The described customer segment is extremely diverse, ranging from people with severe 

allergic reactions such as anaphylactic shock, to people who experience mild discomfort after 

ingesting too much of a particular substance. Some have allergies diagnosed by medical 

doctors. Others go through rigorous testing without finding any explanation for the symptoms 

they experience, but still decide to avoid certain substances because they believe that it makes 

them feel better.  

 

The customer segment is also diverse in the sense that people may be allergic or intolerant to 

a wide specter of substances, and combinations of these. It is therefore hard to predict 

individual customers’ needs. 

 

For actors in the food industry, it is irrelevant whether a customer’s dietary need is formally 

diagnosed or perceived – it is in their commercial interest to accommodate all their customers 

in the best possible way.  

 

1.1.3 Observations from The Norwegian Coeliac Society’s Facebook forum 

As part of my exploration of this domain, I have been regularly following The Norwegian 

Coeliac Society’s (Cøliakiforeningen) forum on Facebook. The forum has just over 3.500 

members as of January 2013, and is just one out of many social networks available for people 

with food sensitivities.  

 

I started following the forum because I thought it would be a valuable source of insight into 

the situation that people with food sensitivities find themselves in, and the information needs 

they experience. Without performing any systematic, in-depth research about the use of this 

forum, I have observed some patterns and recurring request types. The users appear to be a 

mix of people that either have coeliac disease themselves, or have kids or other family 

members with the diagnoses. Some have had their diagnosis for years, while others are newly 

diagnosed or still in the process of verifying the condition. Some have even tested negative 



 

 11 

for coeliac disease, but still feel the need to avoid gluten in their diet, and thus find the forum 

a useful source of information and knowledge exchange.  

 

There are many different types of posts every day, spanning from people asking for advice on 

places to eat in a foreign country they are about to visit, to tips about gluten free products and 

recipes. One recurring request type of special interest to my project follows the pattern: “Is it 

safe for us to eat X?” First of all, it is interesting to observe that in spite of product 

declarations readily available, some people still prefer to ask their forum peers for a second 

opinion.  

 

It seems that quite a few people are uncertain about which ingredients represent a risk, and 

thus find the food declarations hard to interpret. Secondly, the answers they get upon posting 

a request like this uncover one basic fact; in spite of having the same medical diagnosis, 

people seem to have very different tolerance levels and thus different practices when it comes 

to evaluating the safety of foods.  

 

There is no formal moderation of the forum, so any member is free to share his or her advice, 

anecdotal evidence and opinions, often leading to long discussions between forum members. 

Instead of reaching a consensus, these discussions tend to culminate with a shared 

understanding that people have different needs, even if they share the same diagnosis. In the 

end, every person has to find out what works for him or her. 

 

1.1.4 Personas illustrating diversity within the customer segment  

The following personas are meant to illustrate the diverse needs of people with various food 

sensitivities. Persona A and B are inspired by my observations from NCF’s Facebook forum. 

Persona C, D and E exemplify people with food allergies and intolerances.  



 

 12 

 
  Persona A Persona B Persona C Persona D Persona E 

Gender, age, 

language 

proficiency 

Female, 35 years old, 

Norwegian native speaker. 

Female, 22 years old, Italian 

exchange student with very 

limited Norwegian skills. 

Male, 43 years old, Norwegian 

native speaker. 

Female, 70 years old, 

Norwegian native speaker. 

Male, 15 years old, Norwegian 

native speaker. 

Background, 

"problematic 

situation" 

Mother of a newly diagnosed 

coeliac toddler. The child is 

lactose intolerant due to 

temporary damages to the 

intestinal wall. Doctors have 

routinely advised to avoid oats 

in the child’s diet for the first 6 

months. The parents thus need to 

double-check all products, even 

if labeled “gluten free”. Has 

been told that trace amounts of 

gluten are OK, but is otherwise 

unwilling to take any risks on 

the child’s behalf.  

Experienced coeliac, possible 

also allergic to wheat. Extremely 

sensitive, needs to avoid all 

ingredients derived from gluten-

containing grains (even if the 

ingredients’ gluten content is 

below the threshold set to label a 

substance “gluten free”) and all 

trace amounts from production 

environments. Needs to double-

check all products, even if they 

are labeled “gluten free”. May 

choose to eat something that is 

labeled with the warning “may 

contain traces of wheat” on rare 

occasions, if no other options are 

available and she doesn't have a 

"big day" coming up. 

About to arrange a birthday 

party for his seven year old son. 

Has been informed in a PTA 

meeting that three of the 

classmates suffer from food 

allergies or intolerances. The 

kids are too young to give 

reliable accounts about what 

foods they can or cannot eat. 

Grandmother of a child who has 

been suffering from bloating and 

stomachaches for some time. 

Several tests have been carried 

out with negative results. The 

MD suspects that the symptoms 

may be caused by some form of 

food intolerance. It has therefore 

been decided that lactose should 

be eliminated from the girl’s diet 

for a trial period.  

Severe allergy towards eggs, 

fish, milk and nuts. Especially 

sensitive to nuts during the 

pollen-season due to cross-

sensitization. Wants to be 

independent and hang out with 

his friends without having to 

worry about access to safe food. 

His parents worry that he 

doesn’t always bother to double-

check foods when he is away 

from home.  

Dietary restrictions Gluten, oats, lactose. Gluten (incl. trace amounts), 

wheat (incl. trace amounts). 

Milk, eggs, peanuts. Lactose. Eggs (incl. trace amounts), fish 

(incl. trace amounts), milk and 

nuts. 

Preferences Looks for child friendly food, 

such as fish cakes or meatballs 

with pasta and sauce, which the 

whole family can enjoy together. 

On a budget. Likes to cook 

“from scratch”. Tired of the 

typical “free from” products. 

Willing to experiment with new 

ingredients. Wants healthy food. 

Eager to find a meal that 

everyone can enjoy without too 

much fuss. Looks for semi-

finished products such as 

hotdogs and cake mix where 

milk, eggs and peanuts have 

been eliminated. Wants to “play 

it safe” by completely avoiding 

foods that may cause reactions 

in some of the kids. 

Wants to continue using her own 

traditional recipes and favorite 

products. Looks for satisfactory 

replacements for key ingredients 

such as butter and double cream 

and her grand kids' favorite 

treats.  

Doesn't want to stick out. Prefers 

to eat the same type of food as 

his mates or not at all. 



 

 13 

 

  Persona A Persona B Persona C Persona D Persona E 

Knowledge and 

experience base,  

"knowledge gap" 

Unfamiliar with which 

ingredients are safe or not for 

her child. Insecure about product 

choices and finds little or no 

help in the store. Uses vendors’ 

brochures aimed at people with 

food sensitivities and the 

Coeliac Society’s magazine as 

main sources of product 

information. 

Substantial knowledge about 

food and allergens in own 

language. Unfamiliar with 

Norwegian terminology. 

No personal experience with 

food allergies or intolerances. 

Has been given some basic 

advice in a PTA-meeting. 

Substantial knowledge about 

traditional food and cooking. 

Not aware of "hidden allergens" 

in industrial products. 

Lacks sufficient knowledge and 

patience to recognize all risk 

factors.  

Additional 

challenges affecting 

search behavior 

Finds it hard to concentrate on 

interpreting the labels when she 

shops with her toddler. 

Insufficient Norwegian skills to 

"decode" all the ingredient terms 

occurring in the product 

declarations. 

Pressured for time. Lacks 

incentive to acquire in-depth 

knowledge about food allergies 

and intolerances, as it doesn't 

affect him on a regular basis. 

Has trouble reading the fine 

print used on product 

declarations. Struggles a bit with 

short-time memory.  

Gets extremely bored with 

reading product declarations. 

Possibly dyslectic. In denial 

about the whole problem.  

Consequences “Plays it safe” by choosing the 

same products over and over 

again. 

Sticks to brands that she's 

familiar with from home or 

other imported products with 

multilingual declarations. 

Considers calling the parents of 

the affected children, asking 

them to bring their own safe 

food. 

Has inadvertently given the 

granddaughter candy without 

checking for occurrence of 

lactose. Extremely cautious due 

to earlier mistakes. Eliminates 

far more foods than strictly 

necessary, affecting the whole 

family’s joy of food. 

Mishaps happen a lot, making 

him ill for days. Ends up eating 

the same products over and over 

again. His parents are worried 

about the lack of variation in his 

diet.  

Smartphone access 

and mastery 

Owns an iPhone, but doesn’t 

have time to use it while grocery 

shopping.  

Owns an Android phone. Uses 

Google to find information 

about unfamiliar ingredients and 

products while in the store, but 

finds it time consuming to go 

through the information. 

Owns an iPhone. Expert user. 

Always online, “googling” or 

using various “apps” in order to 

solve tasks. 

Owns an iPhone, but rarely uses 

any advanced functions. Her 

kids has installed a few apps and 

taught her how to use them. She 

is willing to use the ones that 

she immediately recognizes the 

value of (e.g. a weather forecast 

app). 

Owns a new Android phone and 

is extremely eager to use it. 



 

 14 

2 BACKGROUND 

2.1 Existing measures aimed at helping people with food sensitivities  

In this chapter, I’ll briefly depict some of the ways in which different actors in the food 

industry are currently attempting to aid users in their search for safe products. 

 

2.1.1 Labeling requirements and practices 

The only available treatment for a person with food hypersensitivity is to avoid the foods that 

he or she is sensitive to. Food declarations provide consumers with vital information and are 

the only utility available for determining whether products contain substances that cause 

adverse reactions. Labeling is especially important for composite industrial products where 

common sense falls short and consumers may be oblivious to “hidden” allergens. Companies 

that manufacture or import foods are responsible for ensuring that their food is labeled 

according to current legislation. (Bueso, 2012b). 

 

2.1.1.1 EU’s common regulatory framework 

Not being a member of the European Union, Norway largely follows EU’s directives 

regarding food labeling due to the EEA agreement. (Løvik, 2012a). Harmonized regulations 

facilitate free flow of goods between member states and EEA countries while ensuring a high 

level of food safety for consumers (Mattilsynet, 2012). 

 

2.1.1.2 Regulatory development process 

The regulatory development is a complex process engaging multiple stakeholders such as 

business associations, patient organizations, scientists and policymakers. In the EU system, 

risk assessment and risk management are separate processes that are performed by different 

entities. A panel of independent experts subordinated The European Food Safety Authority 

(EFSA) is responsible for the risk assessment based on thorough analysis of current scientific 

documentation. The European Commission is responsible for the risk management, i.e. 

identifying and enforcing measures to reduce the risks. Having to balance several different 



 

 15 

interests in a pragmatic way, The European Commission’s regulations largely reflect EFSA’s 

advice. (Løvik, 2012a).  

 

2.1.1.3 Current labeling requirements 

In Norway, the Food Act with regulations implement the current EU-directives regarding 

food labeling (Matloven, 2003; Merkeforskriften, 1993; Næringsmiddelhygieneforskriften, 

2008). 

 

Matportalen.no, an online portal to quality information about food and health from the public 

authorities in Norway, sums up the regulations as follows: 

 

The labeling shall include information that enables consumers to avoid foods they cannot 

tolerate. 

 

According to the regulations, all packaged food must be labeled with specific 

information about the product, such as product description and ingredient list. The 

ingredient list should include all ingredients that occur in the product. Some 

exceptions exist, but do not apply to allergenic ingredients.  

 

Some ingredients known to cause allergy and hypersensitivity reactions are subject to 

particular labeling requirements. These ingredients should always be declared in the 

ingredient list on the package with a clear reference to the raw material . . . . 

 

Allergenic ingredients with special labeling requirements are gluten-containing grains, 

fish, crustaceans, molluscs, eggs, peanuts, lupine, soy, milk (including lactose), nuts, 

celery, mustard, sesame and sulfites. Products made from these foods should also be 

labeled with allergenic ingredients. 



 

 16 

 

New labeling regulations that will be effective from December 2014, require that 

ingredients that may cause allergies or intolerances should be highlighted in the 

labeling. This can be done using for example bold or italic, for increased visibility. 

Some products are already labeled this way. 

 

(Mattilsynet, 2013, own translation). 

 

In The Norwegian Health Library's special issue on food allergy, food intolerance and other 

hypersensitivity reactions to food, Bueso (2012a) exemplifies how the labeling requirements 

should be practiced. Each ingredient should be labeled in a way that is understood by the 

consumer. Foreign phrases such as “couscous” or “tahini” should be replaced by more 

familiar terms from the national language. The term “nuts” is too general and should be 

replaced by a more specific term (e.g. walnut, pistachio or almond). When listing gluten-

containing ingredients, it should be made clear which specific grain they originate from (e.g. 

wheat, barley or rye). Food-additives derived from allergenic substances should also state the 

origin, e.g. “E322 (soy lecithin)”. All ingredients derived from allergenic substances should 

be declared both by their own name and the name of the substance they are derived from. 

Ingredients not included in the list of allergens mentioned above, should be declared if they 

constitute more than 2% of the product’s total weight. Some foods contain composite 

ingredients such as margarine, jam, mayonnaise, mustard or marzipan. In these cases, the 

name of the composite ingredient should be followed by a specification of the components. 

General terms such as “spices” or “breadcrumbs” are allowed, but allergenic components 

should be specified in brackets, e.g. “breadcrumbs (with wheat, eggs and soy)” or  “spices 

(celery)”. 

 

Products aimed at people with coeliac disease or gluten-intolerance are subject to additional 

regulations (Forskrift om glutenfrie varer, 2009). The label “gluten-free” should only be used 

on products that contain less than 20 mg gluten per kilo, whereas the label “very low gluten 

content” should only be used on products that contain less than 100 mg gluten per kilo. 

Gluten-free products can either be products where the gluten has been removed in order to 



 

 17 

satisfy the aforementioned requirements or products without gluten-containing ingredients 

where special measures have been taken to avoid contamination. 

 

For comprehensive information about the current labeling requirements, please refer to  

Directive 2000/13/EC of the European Parliament and of the Council of 20 March 2000 on 

the approximation of the laws of the Member States relating to the labeling, presentation and 

advertising of foodstuffs (European Parliament, Council, 2000). Allergens that are subject to 

special requirements are listed in ANNEX IIIa. 

 

2.1.1.4 Voluntary labeling of contaminants 

The aforementioned regulations ensure that products are labeled according to their recipe. 

However, the production environment may cause products to be contaminated by allergens 

during the manufacturing process because several different foods are produced using the same 

production facilities. In such cases, the allergens won’t be reflected in the ingredient list. 

 

Food manufacturers are required to provide documented procedures that address both hygiene 

requirements and appropriate labeling (Mattilsynet 2012; Næringsmiddelhygieneforskriften, 

2008; Internkontrollforskriften for næringsmidler, 1994). Allergenic substances should be 

labeled regardless of the amount.  

 

Many products are currently labeled with warnings such as “May contain traces of X,Y and 

Z”. Food manufacturers use these warnings as a means of informing consumers about 

possible allergenic contaminants. This is a voluntary labeling practice and there is no formal 

definition declaring what a “trace” amounts to or how frequently the allergenic substance 

should occur in order for a product to be assigned such a warning. (Mattilsynet, 2012) 

 

The Norwegian Food Safety Authority (Mattilsynet) has investigated the use of such 

warnings as part of a larger Nordic study (Mattilsynet, 2012). According to the study, many 

different formulations are currently in use, such as “may contain traces of …”, “may contain 

…”, “produced on a production line that also produces products containing …” and 

“produced in a facility that also produces products containing …”. Some manufacturers 

instead refer consumers to specific websites for more information about allergens. Others 



 

 18 

explicitly warn about all allergens occurring in the product, even if the allergens are already 

evident from the ingredient list. The study uncovered highly variable labeling practices across 

the industry, ranging from omission of allergenic substances in the ingredient list to excessive 

use of allergen warnings without proper cause. (Mattilsynet, 2012). 

 

The Norwegian Food Safety Authority notes that food producers should take adequate 

measures to prevent unintentional presence of allergens in foods. Both manufacturers and 

importers should have knowledge about the risks and take precautions to minimize it. 

Labeling should not be used as an excuse for poor control and hygiene management. 

(Mattilsynet, 2012). 

 

Unfounded warnings may unnecessarily constrict the range of products available to people 

with food sensitivities and in the long run decrease consumers’ trust in allergen labeling 

altogether. Allergen warnings should thus only be used when it is absolutely necessary. 

(Mattilsynet, 2012). Løvik (2012b) points out that excessive labeling may even have the 

adverse effect of making consumers less attentive towards labels, causing them to miss out on 

or disregard essential information. 

 

2.1.2 Elimination of common allergens in mainstream products 

Vendors increasingly offer “mainstream” products where some of the most common allergens 

have been eliminated. In a press release from 2012, NHO Mat og drikke (a subdivision of The 

Confederation of Norwegian Enterprise concerned with the food industry) describes the 

current trend: “There is a market out there for food free of allergens. The industry has adapted 

to consumers' needs and desires. More and more produce food for allergy sufferers.” (NHO 

Mat og drikke, 2012, own translation). 

 

Example: Toro 

TORO is one of the largest and best-known food brands in Norway, with more than 750 

individual products on the market (Toro, n.d.). The aforementioned press release describes 

Toro as an industry pioneer: “Toro has gone one step further, thinking that every new product 

they develop should suit everyone, including people with allergies.” (NHO Mat og drikke, 

2012, own translation). 



 

 19 

 

It is, however, conceivable that emphasizing the fact that a mainstream product is free from 

common allergens may put other customers off, believing that that the taste or texture may be 

inferior to alternative products. It appears that vendors sometimes choose to “downplay” the 

fact that their mainstream products are suitable for people with food sensitivities in marketing 

efforts aimed at the general population. Vendors like Toro reach people affected by food 

sensitivities by targeted marketing through patient organizations, printed brochures listing 

products free from specific allergens, interactive online services and “word of mouth” in 

social media.  

 

Example: Coop  

Coop is one of the major supermarket operators in Norway and currently runs 840 

supermarkets. The following is an excerpt from a recent press release: 

 

…Coop’s goal is that as many of their own brand products as possible should be available to 

all customers. Therefore, the grocery operator continuously strives to remove allergens 

from their products. This fall, all Coop’s own sausages were made guaranteed free 

from gluten and lactose.  

 

Now Coop has eliminated gluten from all breaded pork products and changed the 

production of these to clean manufacturing facilities. These products are thus 100 

percent gluten-free. The products are labeled “Mat UTEN gluten” (Eng.:“Food 

WITHOUT gluten”) in order to inform the customers. 

 

  –With us, customers should be able to shop for all the family. We want to give 

families living with allergies and intolerance a simpler life. We know that breaded 

products are popular everyday food, especially among young people, so it is important 



 

 20 

to make these available to more people, says Hege Berg-Knutsen, who is responsible 

for Coop's own brands. . . . 

 

–Another positive effect of the change to gluten free production is that we can now 

guarantee that many of our other processed meat products . . . are 100 percent gluten-

free. Our customers will therefore experience greater flexibility and more options 

when they shop in our stores, says Berg-Knutsen. . . . . 

 

(Coop, 2013, own translation). 

 

For people with allergies, it is a positive trend that more vendors are taking their needs into 

account by producing food that most people can eat. However, since these products are 

distributed throughout the grocery store, the problem of identifying the products remains. 

 

2.1.3 Physical organization of grocery stores 

Most grocery stores accommodate people with food allergies and intolerances by offering 

separate shelves reserved for products free from common allergens. In practice, this helps 

these users to narrow down the “search” to a subset of products that are more likely to be safe. 

There are several reasons why this approach, by itself, is suboptimal.  

 

Firstly, most people with allergies are able to eat products from several other parts of the 

store, such as fresh produce, refrigerated and frozen goods and canned goods. Referring all 

these people to the “free from” shelves may create the impression that the remainder of the 

store is “off limits” – which is fortunately not the case. This approach may thus contribute to 

an unnecessary limitation the customer’s choice, since he or she may be unaware of all the 

other safe products that are placed elsewhere in the store, or just put off by the thought of 

investigating each individual product to judge whether it’s safe to eat or not.  

 



 

 21 

Figure 2 Example of "free from" shelves at the high-end grocery store Meny
1
 

 

 

Secondly, the “free from” shelves are often placed next to other niche products, such as 

organic, vegetarian, “low-carb” and so-called “super-food” products. This may create 

confusion among inexperienced customers and entails a risk of selecting unsafe products, 

such as spelt (which is a special type of wheat) instead of gluten-free flour. 

 

Lastly, commonly used categories such as “milk-free” or “gluten-free”, are insufficient to 

help people with multiple or atypical allergies or intolerances. They will still need to double-

check each individual product declaration.  

 

It is in everyone’s interest that all customers gain access to all products that they can safely 

eat, and the “free from”-shelves offers limited support in this regard.  

 

2.1.4 Printed material and “brochure websites” 

Many different actors, ranging from governmental agencies to patient interest groups to 

vendors and shops offer digital and/or printed material specifically aimed at people with food 

allergies and intolerances and their friends and family. Such resources can be very helpful for 

newly diagnosed patients who want to learn more about their own diagnosis or consumers 

who e.g. want a complete list of all gluten-free products from a particular vendor. However, 

factors such as format (ranging from verbose texts to spreadsheets), ties to specific vendors 

and/or lack of customization may limit the usefulness of such resources during the actual 

                                                 
1
 The image is copied from http://www.meny.no/Info/Miljo-og-helse/Allergi/ 



 

 22 

shopping situation. Web pages containing spreadsheets or scripts may be ill combined with 

smartphones. Printed material, on the other hand, easily gets outdated. 

 

Example: Toro’s brochure about products free from gluten 

This brochure provides consumers with a comprehensive list of Toro’s gluten-free products. 

For each product group, a simple table indicates which products are free from gluten, wheat 

starch, milk and eggs. Moreover, small pictures of the products help users know what to look 

for in the store. 

 

Figure 3 Excerpt of Toro’s brochure of products free from gluten 

   

 

This approach is very helpful, but only directs customers towards products from a particular 

vendor. 

 

2.1.5 Online stores  

Some online stores allow the customer to filter products by allergens. One problem with this 

solution is that it assumes a finite set of allergies. This is not the case in real life, as people 

may be over-sensitive towards virtually any substance. Also, it appears that these solutions 

are based on manual assignment of allergen information to each product. Again, this approach 

does not suit people with atypical dietary needs. The manual effort involved leads to 

scalability-problems and makes solutions like these prone to human error.  

 



 

 23 

Example: Allergimat.no (Eng. trans.: Allergy foods) 

Allergimat.no is an online grocery store directed at people with PKU (Phenylketonuria)
2
, 

coeliac disease and food allergies
3
. On the welcome page, users are presented with a simple 

form where they can specify their dietary needs. The available options only partially overlap 

with the allergens that are subject to mandatory labeling. Allergens like nuts, sesame, 

crustaceans, mollusks and fish are left out, while wheat and low-protein (for PKU patients) 

are added to meet customers’ needs. 

 

 

Once the user has submitted the form, the website “remembers” the settings for the remainder 

of the session and when the user returns on later occasions. Only foods that are in line with 

the specified dietary needs are presented to the user when browsing or searching for foods. 

The presentation of individual products contains a field specifying that the product is 

manufactured without some specified allergens and/or is low-protein. These “facets” appear 

to have been assigned manually and constitute the basis for the refinement of presented 

products according to the user’s settings. 

 

Manual assignment of data about products’ suitability for special dietary needs requires 

specialized expertise and accuracy. This approach is adequate in the case of Allergimat.no, 

because the store specializes in dietetic food and thus has in-depth insights into their customer 

                                                 
2
 PKU (Phenylketonuria) is a rare metabolic disease that is treated with a lifelong low protein diet 

(Senter for sjeldene sykdommer, 2012). 
3
 The service was tested in May 2013. 

Figure 4 Excerpt of screen shot showing substances that can be eliminated at Allergimat.no 



 

 24 

segments’ dietary needs. For ordinary grocery stores with far greater range of products, this 

approach would probably not suffice, because of scalability issues and risk of human error.  

 

The limited set of allergens available for selection means that some users may be unable to 

adequately express their needs to the system. Persona A would for instance need to double-

check all gluten free products for any occurrence of oats, because oats is not provided as an 

option. 

 

Figure 5 Screen shot from Allergimat.no showing example of a gluten-free product that contains 

oats 

 

 



 

 25 

2.1.6 Interactive information systems 

2.1.6.1 Dynamic websites 

Some vendors use dynamic web sites as a means to help users with special dietary needs. 

 

Example: Gilde’s product search.  

Gilde is one of the largest suppliers of meat products in Norway. In an attempt to 

accommodate people with food sensitivities, the company offers an online product search on 

their web page
4.

 The search form contains a search box and a checklist of 14 substances that 

are known to cause allergic reactions. All products containing the checked substances are 

filtered out from the result set. The user is required to provide a search string of at least three 

letters in order for the search to be carried out. This makes the service unable to provide the 

user with a complete overview of safe products.  

 

Again, the filter is based on a finite list of allergenic substances. The list contains all the 

allergens form Annex IIIa, with the addition of paprika. 

 

Figure 6 Excerpt of screen shot of Gilde’s product search 

 

                                                 
4
 The service was tested July 11, 2012. 



 

 26 

In the example shown in Figure 6, I made a search for products without gluten and milk 

products, corresponding to the typical needs of a person with celiac disease, like Persona A’s 

child.  

 

However, both the products in the result set contain wheat starch, which a subset of people 

with celiac disease, like Persona B, need to avoid due to trace amounts of gluten. This group 

of people will still need to manually evaluate the ingredient list of each product. The limited 

amount of available categories leads to low precision, because the user is unable to 

communicate her actual needs to the search engine. This may lead to purchasing patterns 

where customers with special needs end up buying the same products over and over again, to 

save time and effort. 

 

In the list of substances that can be filtered out from the result set, all milk protein and lactose 

are merged into one category. Newly diagnosed coeliacs like Persona A’s child, are often 

temporarily lactose intolerant, but still able to ingest milk protein. This means that some 

people may end up with an unnecessary narrow result set due to over-generalization. In 

information retrieval terms, this corresponds to low recall. 

 

Example: Matvareguiden.no (Eng. trans.: The food guide) 

Matvareguiden.no is a privately run, ad-funded website with food-related information
5
. The 

website conveys detailed information about a wide range of products across multiple vendors. 

Many different features are offered, and for the purpose of this thesis, I have briefly tested the 

search function aimed at people with allergies or other dietary restrictions. 

 

The search form contains several dropdown menus where the user may select a main 

category, a sub category, a particular vendor, a main group, a dietary restriction or allergy, a 

search string or any combination of these criterions. The main categories available are 

beverages, health foods, foods and food supplements. I find it a bit confusing that the sub 

categories presented in the form is a conglomerate of sub categories belonging to all of the 

mentioned main categories, regardless of what main category has already been selected. The 

search function requires that all of the criteria specified by the user be satisfied (i.e. there is an 

                                                 
5
 The service was tested May 7, 2013. 



 

 27 

implicit AND operator between the criteria). Several combinations of main categories and sub 

categories thus lead to zero hits. 

 

The dietary restrictions the user may choose from range from allergens subject to mandatory 

labeling requirements to fair trade, ecological, vegetarian, halal, low-carb, sugar free, fat 

free and yeast free products. However, it is not possible to select more than one dietary 

restriction in the same search, so people with multiple food sensitivities will need to double 

check the results manually. Product entries reveal that the underlying data model allows 

products to be assigned more than one dietary restriction (e.g. gluten free and milk free). This 

shows that the problem arises from the implementation of the search function (or the design 

of the user interface) and not the data model.  

 

I carried out some searches for products from a specific vendor (Finax), alternating the dietary 

restriction between “milk free”, “lactose free” and “without milk protein” in turn. I wanted to 

see if products that were defined as milk free would also turn up in the result sets of the more 

specific searches. Unfortunately, I found examples of the opposite (see Figure 7 - Figure 10). 

This problem is due to lack of semantic relationships between the set of dietary restrictions 

that the user may choose from. Eliminating this problem would require changes in both the 

data model and application layer. 

 

Users are notified in the search form that only products with asserted allergy or dietary 

properties are included in the result set. This implies that the result will leave out many 

products that would have been safe for the user because the products were not labeled 

specifically as “free from” the particular allergen. 

 



 

 28 

 

Figure 7 Screen shot showing the search form 

and the dietary restrictions the user may 

choose from  

 

  

Figure 8 Screen shot showing a search for 

milk free products from Finax  

 

  

Figure 9 Screen shot showing product details 

for the first product in the result set from 

Figure 8 

 

  

Figure 10 Screen shot showing a search for 

lactose free products from Finax. Observe 

that the result set does not overlap with 

the result set for milk free products. 

 



 

 29 

2.1.6.2 Smartphone applications (“apps”) 

Norway has very high prevalence of smartphones and availability of wireless Internet access. 

The international market for smartphone applications is huge, and many different actors 

develop “apps” for all kinds of purposes. A full review of the apps targeted at people with 

food sensitivities is beyond the scope of this thesis. However, I have chosen to present one 

example that stands out, being developed here in Norway in collaboration with major patient 

organizations.  

 

Example: CheckContent 

CheckContent is a smartphone application available for both iPhone and Android phones. The 

app offers various features meant to help users shop and cook for people with food allergies, 

intolerances or coeliac disease. Experts representing the Norwegian Asthma and Allergy 

Association (NAAF) and the Norwegian Coeliac Society (NCF) perform quality assurance of 

the underlying data. (NAAF, 2013; CheckContent, n.d.) 

 

The app lets the user specify which allergens he or she wants to be warned about. The 

available options are consistent with the list of allergens that are subject to mandatory 

labeling. The user may proceed to scan product barcodes or QR-codes in the grocery store in 

order to get immediate feedback about whether the product contains any of the specified 

allergens. The app utilizes the smartphone’s built-in camera as a scanner. 

 

The first time I tried the app, I was a bit confused by the user interface. Upon scanning a 

product, some basic information was displayed, followed by a list of the allergens I had 

selected, paired with green “check” signs. I was uncertain whether to interpret the check sign 

as “Yes, we found this allergen in the product” or “Yes, the product is cleared”. However, 

after scanning a couple of products, the meaning became obvious after seeing examples of red 

caution triangles used to communicate that a specified allergen was found in the product.  

 

The screen shots in Figure 11 illustrate scanning of a liver pate from Gilde after checking 

gluten and nuts in the settings
6
. The app displays a red warning triangle for gluten. This 

conflicts with the product declaration provided on the package and on the vendor’s website 

(Gilde, n.d.). Gilde specifically asserts that all of the product’s ingredients are gluten free. The 

                                                 
6
 The service was tested May 9, 2013. 



 

 30 

ingredient list includes wheat starch, but this is allowed under the current regulations for 

gluten free food.  

 

Figure 11 Screen shots from CheckContent for iPhone 

    

 

In the CheckContent app, users may click on the name of an allergen, either in the settings or 

in the product view, to read a brief note explaining the criteria used to interpret a product as 

free from the given allergen. In the case of gluten, it is stated that wheat starch is regarded as 

gluten free. Even if this would cause problems for extremely sensitive people like Persona B, 

this practice is to be expected due to the current labeling regulations. However, I was 

surprised to learn that CheckContent also regards products that “may contain traces of gluten” 

as gluten free. My impression from the Coeliac Society’s Facebook forum is that many 

coeliacs need to stay clear of trace amounts.  

 

According to the Norwegian Coeliac Society, CheckContent uses the following practice for 

indicating gluten content in products:  

 

 A green check symbol: the product contains less than 20 ppm gluten (gluten free) 

 An unfilled red warning triangle: the product contains between 20-100 ppm (very low 

gluten content). 

 A solid red warning triangle: the product contains gluten and should not be eaten by 

coeliacs. 

 

(NCF, 2013, own translation). 



 

 31 

 

I did not find a similar explanation of the practice within the application or on 

CheckContent’s own website.  

 

According to CheckContent’s specification of what constitutes a gluten free product, the 

gluten warning assigned to the liver pate is definitely misleading.  

 

For each product, the interface specifies whether the manufacturer has supplied information to 

CheckContent and whether the product declaration has been reviewed by NAAF or NCF. 

Judging from my own limited testing it appears as though few vendors have disclosed their 

data to CheckContent at this point.  

 

The CheckContent app provides several functions and social features. Among other things, 

users are in some cases referred from an unsafe product to a safe alternative within the same 

product group. 

 

CheckContent strongly encourages users to manually double check products because vendors 

may have changed recipes after their products were evaluated.  

  



 

 32 

2.2 Shortcomings of existing solutions – seen from an information science 

perspective 

2.2.1 Use of broad, predefined categories 

Both physical organization of grocery stores and information systems aimed at this group tend 

to rely on broad, predefined categories, such as “milk-free” and “gluten-free”. In practice, 

people have unique needs based on what combination of substances they need to avoid, how 

sensitive they are to trace amounts etc. This means that any solution relying on broad, 

predefined categories is of limited value. 

 

2.2.2 Suboptimal precision and recall 

Information retrieval (IR) systems are traditionally evaluated by their ability to return relevant 

items. Lancaster defines two of the key measurements as follows: 

 

Precision – The extent to which the items retrieved in a search of a database are considered 

relevant or pertinent. A search achieving high precision will be one in which most, if 

not all, of the items retrieved are judged relevant or pertinent. The precise ratio, a 

measure of the extent to which precision is achieved, is the number of relevant (or 

pertinent) items retrieved divided by the total number of items retrieved. 

 

Recall – The extent to which all the items in a database that are considered as relevant or 

pertinent are retrieved in a search of that database. A “high recall” search will be one 

in which most, if not all, of the relevant (pertinent) items are retrieved. The recall 

ratio, a measure of the extent to which the retrieval of relevant (pertinent) items 

occurs, is the number of relevant (pertinent) items retrieved divided by the total 

number of relevant (pertinent) items in the database. 

 

(Lancaster, 1991, Appendix 3, pp. 291-292) 

 



 

 33 

By repeating precision and recall calculations over a large set of search queries and respective 

relevance assessments made in advance by an independent party, one gets a good indication 

of a system’s performance. Precision and recall measurements may be combined in various 

ways to generate a score used to compare different systems. 

 

An ideal system would retrieve all of the relevant documents, and none of the irrelevant ones. 

In practice, most IR systems score relatively low on both. If modifications are done in order 

to increase a system’s recall, precision is likely to suffer – and vice versa (Lancaster, 1991, 

pp. 4). The two performance measures need to be weighed against each other for each IR-

system being developed. For some applications, few but pertinent items are preferable. For 

other applications, a certain degree of noise is an acceptable price to pay to increase the 

likelihood that all relevant items are recalled.  

 

The purpose of traditional IR systems is to distinguish between relevant and irrelevant 

documents in relation to specific users’ information needs. Similarly, the purpose of 

information systems aimed at helping people with food sensitivities in the shopping situation 

is to distinguish between safe and unsafe products.  

 

Figure 12 “Corpus” of products. Green stars represent safe products; red squares represent 

unsafe products, for a given user. 

 

 

In this context, erroneously presenting unsafe products as safe is intolerable, due to the 

serious consequences of misguiding people with severe food allergies in their food choices. 



 

 34 

On the other hand, presenting safe products as unsafe needlessly constraints the available 

product selection for people who already have a limited choice. 

 

Figure 13 High recall, low precision. The result set contains all safe products, but also includes 

some unsafe products. In many search systems, some degree of noise would be tolerable. In this 

situation, however, it would be unacceptable, as a system that presents allergic consumers with 

products that are unsafe for them would do more harm than good.  

 

 

 

Figure 14 High precision, low recall. The result set contains only safe products. However, some 

safe products are left out. This is acceptable safety-wise, but imposes unnecessary constraints in 

the consumer’s available choice. 

 

 

In both cases, a system’s ability to distinguish between relevant and irrelevant, or safe and 

unsafe for a real-life user, presupposes that the user is able to adequately express his or her 

need to the system. Some of the examples shown in this thesis illustrate that consumers with 



 

 35 

multiple or atypical food allergies or intolerances are unable to convey their needs due to the 

limited number of allergens available for choice or because the allergens listed are too general 

to represent the real needs. This may lead to false positive and false negative results, 

respectively. 

 

For people with food sensitivities, safety is a prerequisite for regarding a product as relevant. 

Optimal precision is an absolute requirement for an information system aimed at this group. 

At the same time, the system should provide high recall in order to give every customer 

access to the largest possible share of the product range. 

 

2.2.3 The fuzzy nature of product safety 

For a person with food sensitivities, assessment of product safety is not necessarily a Boolean 

“yes or no” question. Between the two extremes definitely unsafe and definitely safe, there 

may be a wide range of ambiguous cases. Many different factors may impact a person’s 

assessment of a product, and not all of these factors can be successfully modeled in an 

information system.  

 

2.2.4 Context sensitive relevance perception  

Many different factors affect how individuals perceive the relevance of information material. 

Some of these factors have already been mentioned. A vast amount of printed and online 

sources about food allergies and intolerances are available, but a person is not likely to show 

any interest in these until she finds herself in a problematic situation (Wersig, 1971, as cited 

by Belkin, 2005) where existing knowledge falls short. A person’s willingness to spend time 

and effort reading up on the subject will likely depend on whether he or she will have long-

term use of the newly acquired knowledge, like Persona A or D, or only needs a short-term 

“easy fix”, like Persona C.  

 

Even a person who is genuinely interested in acquiring new knowledge will have trouble 

utilizing many of the available sources in the actual grocery-shopping situation. The 

information need regarding safety assessment of individual products requires a source that can 

be utilized with minimal cognitive effort and time consumption. This implies that information 

needs to be tailored to the specific consumer’s needs in order to limit unnecessary noise.  



 

 36 

 

In the shopping situation, informing a consumer about products that are safe, but not available 

on the spot may cause frustration. This would typically occur if a consumer has used vendor 

brochures in order to identify safe products and it turns out that the local shop doesn’t carry 

the items. An information source aimed at helping consumers in the shopping moment should 

ideally be based on what is physically available at the very time and place he or she is 

shopping. Products that are excluded from the shop’s assortment or temporarily out of stock 

should be possible to filter out. 

 

2.2.5 Data vs. information  

In this thesis, I have already used the term “information” many times in different contexts. In 

everyday language, the meaning of the term is quite fuzzy. Different professional disciplines 

have traditionally ascribed slightly different meanings to the word. The diversity reflects the 

particular objectives and viewpoints of practitioners of various disciplines revolving around 

information, such as journalists, computer scientists, marketers and librarians.  

 

In his PHD thesis, Information-Kommunikation-Dokumentation (Eng. trans.: Information-

Communication-Documentation), Gernot Wersig identified and classified a wide range of 

information definitions. A critical analysis of the classes of definitions identified led him to 

dismiss all but the “Wirkung” definitions. “Wirkung” is a German word that can be translated 

to “effect” or “impact” in English. The Wirkung definitions are oriented towards the receiver, 

and emphasize the impact a message has on the receiver in a problematic situation. Wersig 

proposed his own Wirkung oriented definition: “Information is communication-based 

reduction of uncertainty.” (Wersig, 1971, as cited by Ongstad, 1987) 

 

The personas presented in this thesis illustrate how people affected by food sensitivities 

experience a problematic situation when they are shopping for food. Increasing amounts of 

data is made available to consumers through various communication channels. However, only 

a subset has the potential to influence an individual consumer’s decision-making process. In 

line with Wersig’s definition, only data that helps reduce a particular consumer’s uncertainty 

about product safety can be considered information in this context. The same data may have 

information value for one person, but be perceived as noise for others. This calls for 



 

 37 

individualized presentation of available data, bringing attention to that which constitutes 

information for each individual. 

 

2.2.6 Problems with manual assignment of allergens  

Most information services aimed at people with food sensitivities seem to rely on manual 

assignment of allergens to individual products. Allergens may occur in products either 

directly as ingredients (e.g. milk or eggs), indirectly as components of other ingredients (e.g. 

gluten in flour or nuts in chocolate chips), or unintentionally as contaminants from the 

production environment. In the case of contaminants, the need for manual risk assessment and 

subsequent assignment of allergen warnings on the products level is obvious.  

 

However, in the case of allergens that occur as a direct consequence of a product’s 

ingredients, relying on manual assignment of allergens to individual products would mean 

redundant efforts and risk of human error. The same ingredients may occur in multiple 

products, and relying solely on manual assignment on the product level would mean drawing 

the same conclusions over and over again.  

 

A computer-based tool could possibly reduce the manual effort involved by identifying 

known allergenic ingredients. However, the same allergen may occur in a wide range of 

ingredients, and their names aren’t always “telling”. A computer-based tool relying on finite 

lists of ingredients or string matching could thus miss obscure manifestations of allergens.  

 

Humans, on the other hand, may miss allergens as a result of a misdemeanor or insufficient 

domain knowledge.  

 

2.2.7 Lack of standardization regarding practice of allergen warnings 

Many vendors now provide warnings about allergens that may occur as contaminants in the 

product. Some even provide explicit warnings about allergens that are already reflected in the 

ingredient list. This way of labeling has the potential to eliminate consumers’ need for reading 

the full ingredient list. However, since the vendor’s labeling practice is not explicitly stated, it 

is hard for the consumer to know whether no warning about an allergen he or she needs to 



 

 38 

avoid means that it doesn’t occur in the product, or that the vendor presupposes that the 

consumer reads the whole product declaration, and not just the warnings.  

 

Some vendors voluntarily warn consumers about allergens that are not included in the list of 

allergens subject to special labeling requirements. Others provide no allergen warnings at all, 

leaving the consumer wondering whether to interpret this as a sign that the product is free 

from all allergens or that the vendor does not particularly cater for people with special dietary 

needs. Some vendors label products as “free from” various allergens, while a great deal of 

products may be free from the same allergens without explicitly asserting the fact. 

 

The presentation of allergen warnings given also varies across vendors. Consumers will often 

need to look several places on the package to ensure that no relevant information is missed. 

Some products even carry product declarations in several different languages side by side, so 

a consumer will have to identify the right one. 

 

2.2.8 Vendor-specific sources and systems – lack of industry collaboration 

A wide range of sources and services aimed at people with special dietary needs are available. 

However, in the shopping situation, having to consult multiple sources and services is 

obviously very impractical. Brochures and websites tend to be oriented towards specific 

vendors’ product selection and cater for predefined needs that may or may not correspond to 

individual consumers’ actual needs. The fact that different vendors convey the same type 

information in different ways means that consumers have to spend extra cognitive effort 

adjusting to each case. This problem applies to both product declarations and allergen 

warnings found on physical products’ packages and the wide selection of information material 

and services available. Further standardization and collaboration across the industry is 

necessary to provide consumers with special dietary needs with a practical aid in the shopping 

situation. 

 

2.2.9 Information loss 

Manufacturers possess unique inside knowledge about their products’ recipes, production 

processes, possible contaminants in the production environment, etc. Individual consumers, 

on the other hand, possess unique knowledge about the dietary needs they have to take into 



 

 39 

account when shopping for food. Unfortunately, manufacturer representatives and consumers 

are unable to communicate directly during grocery shopping.  

 

Instead, product declarations represent the manufacturer’s knowledge about the physical 

products. The presentation is impacted by current labeling requirements as well as the need to 

protect trade secrets. Thus, an information loss occurs when the manufacturer’s knowledge 

about a product is translated into a textual product declaration. 

 

When an information system is used to aid the matching of consumers and products, 

additional sources of information loss occur.  

 

Conveying implicit knowledge about own dietary needs and consequent shopping practices 

can be difficult even when talking to another human being. After all, many contextual factors 

may impact the assessment of each individual product in each individual shopping instance. 

Translating all of this into a set of absolute rules would be extremely difficult because the 

consumer may not even be conscious of all of the factors that impact her decisions. 

 

When the consumer has to express her needs to a computer-based system, the overly 

simplified representation constitutes another source of information loss. The interactive 

information systems discussed in this thesis require users to express their needs as a finite set 

of allergens. Based on this, the systems operate with a Boolean interpretation of product 

safety. The user has no way of specifying whether trace amount are OK or not – the systems 

operate based on their own definitions of what it means that a product contains the given 

allergens. 

 

In some cases, the allergens available for selection can be too general to fit the users true 

needs. In other cases, the substances that the user needs to avoid are not even available for 

choice.  

 

False negative match resulting from information loss (hypothetical example)  

Persona D is shopping on behalf of her lactose intolerant granddaughter. She spots a product 

she fancies, and wonders whether it’s safe for her granddaughter. The product declaration is 

extensive and in fine print, so she decides to use an information system to aid her decision. 



 

 40 

The system doesn’t provide lactose as an option, so she checks the more general milk option. 

According to the manufacturer’s product declaration (which Persona D never reads), the 

product she considers buying contains milk protein (but no lactose). The system warns her 

that the product contains milk, so she puts the product aside and moves on. 

 

This hypothetical example illustrates how information loss may contribute to unnecessary 

limitations of the number of products that consumers affected by food sensitivities would 

perceive as safe. 

 

False positive match resulting from information loss (hypothetical example) 

Persona A shops on behalf of her kid who has coeliac disease. She has been advised to stay 

clear of oats for the first six months. Persona A uses an information system to check whether 

products are gluten free, because she finds it tiring to read all of the declarations. Whether or 

not products contain oats is evident from the ingredient lists. Persona A sees a product that 

her daughter used to like before she was diagnosed, and wonders whether she will still be able 

to eat it. The product’s ingredient list is available both on the physical product and in a digital 

format that the system has imported. However, because oats are not included in the list of 

allergens that are subject to special labeling requirements, the system’s list of allergens 

available for choice also omits the substance. The system is thus unable to match products 

against Persona A’s real needs, and she will therefore have to manually double check 

products that the system presents as safe according to her current settings. 

 

This example illustrates how the value of an information system may be limited if the user is 

unable to adequately express her needs to the system and the system is unable to utilize the 

available data in the matching process.  

 

2.2.10 Understanding users’ goals 

Not all people are particularly interested in food or nutrition, but they still have to eat. For 

people with food sensitivities, spending time and cognitive effort reading and interpreting 

product declarations is merely a means to an end. In the shopping situation, customers need to 

make informed decisions regarding product safety in limited time. Ideally, the user would 

prefer a straight yes or no answer as to whether a given product is safe, thus eliminating the 



 

 41 

need for manually interpreting each product declaration. However, in many cases it would be 

impossible for a system to predict what the customers own assessment would have been in a 

given situation. The persona descriptions provide some examples of contextual factors that 

may affect a user’s decision. 

 

Based on the personas representing the diversity of individual needs and the examples of 

existing systems, it seems impossible to provide each individual user with a clear yes/no 

answer without sacrificing either precision (presenting products that in reality are unsafe as 

safe) or recall (presenting products that in reality are safe as unsafe). 

 



 

 42 

3 INTRODUCING AN ALTERNATIVE APPROACH – A DECISION 

SUPPORT SYSTEM BASED ON SEMANTIC WEB TECHNOLOGIES 

AND LINKED DATA 

In the previous chapters, I have demonstrated that consumers with multiple or atypical food 

sensitivities experience information needs in the shopping situation that existing information 

systems are unable to accommodate in a satisfactory manner.  

 

In this chapter, I argue that the highly individual and context sensitive nature of this problem 

calls for a tailored decision support system that facilitates users’ own assessment of product 

safety. I proceed to propose a new model based on Semantic Web and Linked Data, which 

would enable efficient information transfer between vendors and consumers with special 

dietary needs through such a decision support system.  

 

3.1 Rejecting the Boolean interpretation of product safety  

The personas presented in this thesis illustrate the diversity within this customer segment. It 

seems impossible to provide each individual user with a definite yes/no answer regarding 

product safety without sacrificing either precision or recall. In my endeavor to develop an 

alternative solution, I therefore reject the Boolean safe/unsafe approach in favor of a tailored 

decision support system. The system is not meant to replace the user’s safety assessment, but 

rather to support the manual decision making process. 

 

3.2 Design goals 

3.2.1 Reliable precision and recall performance 

The system needs to be reliable in its ability to identify risks associated with a given product 

for a given user, based on the vendors product declaration and the user’s individual needs – 

expressed as a set of allergens. The system should be able to categorize the product as either 

unsafe – if at least one of the allergens definitely occurs in the product, uncertain – if at least 

one of the allergens may occur and the user may want to assess the risk manually, or safe – if 

no risks have been identified.  



 

 43 

 

Optimal precision, i.e. making sure that all unsafe and uncertain products are identified as 

such, is an absolute requirement for this system. High recall, i.e. avoiding that products that 

are actually safe are erroneously categorized as unsafe or uncertain is a secondary, but 

important goal. It is important to avoid that people who already have a restricted diet incur 

further unnecessary limitations of their available options. 

 

Both precision and recall performance is essential in order to get users to trust the system. 

 

3.2.2 Matching based on semantics rather than text 

Users must be able to adequately express their individual needs to the system and the system 

must be able to match these needs against product declarations provided by vendors – 

independent of the actual terms used by both parties. The sought allergen terms rarely occur 

explicitly in the vendors’ product declarations, but are rather “masked” by a variety of more 

or less familiar terms identifying ingredients in which they appear. The system thus needs to 

operate on a semantic level, in order to make the deductions necessary to match the users’ 

expressed needs against the vendors’ product descriptions.  

 

3.2.3 Reducing information overload by differentiating between data and information 

In cases where the system is unable to draw any conclusion about product safety, the system 

should provide the user with decision support by enhancing relevant pieces of information. In 

order to avoid “information overload”, only data relevant to the users risk assessment should 

be emphasized.  

 

3.2.4 Integrating data from multiple industry actors 

The system should not be limited to any specific food vendor, as consumers should be able to 

solve their task without juggling several different information systems. Ideally, the system 

should also work across different supermarket chains. This implies that the system should be 

based on Linked Data principles, with shared references to entities in the real world, such as 

allergens and ingredients. 

 



 

 44 

3.3 Decision support systems 

3.3.1 Definition  

Druzdzel & Flynn define decision support systems (DSS) as “…interactive computer-based 

systems that aid users in judgment and choice activities.” (Druzdzel & Flynn, 2012, pp. 464).  

 

They also refer to knowledge-based systems as a synonym to DSS, emphasizing their “… 

attempt to formalize domain knowledge so that it is amenable to mechanized reasoning.” 

(Druzdzel & Flynn, 2012, pp. 462). In line with this, I have chosen to model the domain 

knowledge using semantic web standards and utilize automatic inference for mechanized 

reasoning. 

 

Druzdzel & Flynn describe how stress and complexity impacts decision-making. In the 

shopping-situation, people with food sensitivities have to assess the safety of multiple 

products under pressure. According to Druzdzel & Flynn “… human intuitive judgment and 

decision making can be far from optimal, and it deteriorates even further with complexity and 

stress.” (Druzdzel & Flynn, 2012, pp. 461). 

 

3.3.2 Vast and increasing amounts of data 

The amount of data available with the potential to influence decision-making is growing 

incredible fast. However, the human capacity for processing data and taking things into 

consideration is limited and stable. In the words of Druzdzel & Flynn “[Decision support 

systems] are especially valuable in situations in which the amount of available information is 

prohibitive for the intuition of an unaided human decision maker, and in which precision and 

optimality are of importance. Decision support systems can aid human cognitive deficiencies 

by integrating various sources of information, providing intelligent access to relevant 

knowledge, and aiding the process of structuring decisions. They can also support choice 

among well-defined alternatives . . .” (Druzdzel & Flynn, 2012, pp. 462) 

 

3.3.3 Identifying parts that can be left to machines 

It is useful to analyze which parts of the process can be left to machines and which parts still 

need to be performed by humans. In the case of food sensitivities, a system can be used to 



 

 45 

identify which products are definitely unsafe for a given user. By flagging unsafe products as 

such, the system saves consumers a lot of time reading product declarations in vane. 

However, in many cases, the safety of a given product for a given consumer is less certain. It 

is extremely important to respect the limitations of automated deduction. There will always be 

some nuances that only humans are able to interpret and assess. Since every consumer has 

unique needs, there are many cases where it is impossible to predict whether a consumer will 

regard a product as safe or not.  

 

3.3.4 User interface 

Druzdzel & Flynn emphasizes the importance of the user interface. “Because DSSs do not 

replace humans but rather augment their limited capacity to deal with complex problems, their 

user interfaces are critical. The user interface determines whether a DSS will be used at all, 

and if so, whether the ultimate quality of decisions will be higher than that of an unaided 

decision maker.” (Druzdzel & Flynn, 2012, pp. 471). 

 

I have therefore chosen to develop a decision support system that automatically categorizes 

products as unsafe, uncertain or safe for a given user and emphasizes facts that has 

information value in regard to that user’s manual assessment. 

 

3.3.5 Core data set administered by a governmental agency 

Establishing and maintaining all the data needed to underpin a semantic web based decision 

support system would be a huge task for any single actor in the food industry. A core data set, 

holding facts that are common to all, should therefore be administered by governmental 

agency in collaboration with industry actors. Relationships between ingredients and allergens 

would be established and maintained by domain experts in one authoritative data core. 

Vendors would point to these resources in their product descriptions. This approach would 

reduce the burden on each actor of developing and maintaining data sources expressing 

detailed domain knowledge. The same data core could underpin both smartphone apps and 

dynamic websites. 



 

 46 

3.4 A model based on Semantic Web and Linked Data  

3.4.1 Common domain ontology and authoritative knowledge base 

My proposed model relies on a common ontology and an authoritative knowledge base 

holding authenticated data about allergen occurrence in various ingredients.  

 

Figure 15 A Linked Data based model. Circles represent datasets. Arrows between the circles 

symbolize that one dataset references RDF resources in another. The largest circle represents 

the common authoritative data core. Both vendors and stores reference its resources.  

 
 

Vendors express their product declarations as RDF instead of free text. The RDF statements 

refer to ingredient and allergen resources in the authoritative knowledge base and predicates 

Authoritative core dataset

Centralized data about the occurrence 

of allergens in common ingredients. 

Administered and quality assured by a 

govermental agency (i.e. Mattilsynet), in 

cooperation with industry- and consumer 

organizations.

Vendor A's dataset

Data about A's products;

product descriptions,

ingredient lists, 

allergen information,

nutritional information,

 etc. 

Store Y's dataset

Data about Y's product range,

products categorization,

inventory, shelf placement,

prices, campaigns, etc.

Store X's dataset

Data about X's product range,

product categorization,

inventory, shelf placement, 

prices, campaigns, etc.

Vendor B's dataset

Data about B's products;

product descriptions,

ingredient lists, 

allergen information,

nutritional information,

 etc. 

Vendor C's dataset

Data about C's products;

product descriptions,

ingredient lists, 

allergen information,

nutritional information,

 etc. 

re
fe
re

nc
es

 to
 in

gr
ed

ie
nt

s 
an

d 
al
le
rg

en
s

references to products



 

 47 

from the domain ontology. Physical and online grocery stores similarly express their product 

selections as RDF, referring to vendors’ product resources.  

3.4.2 Automatic inference 

The predicates available for expressing relationships between products or ingredients and 

allergens are defined as transitive. This means that allergen occurrence in products can be 

inferred automatically from allergen occurrence in their ingredients.  

 

Figure 16 The solid arrows represent transitive properties in asserted statements. The dashed 

arrow illustrates how new statements can be inferred from asserted statements using transitive 

properties. 

 

3.4.3 Preprocessing the data 

The proposed model underpins a decision support system that preprocesses data in order to 

efficiently identify and communicate risk associated with products to individual users, based 

on their dietary needs.  

 

Of course, some products can automatically be “written off” as unsafe without any human 

intervention. This alone, may save the user a lot of time reading and interpreting products’ 

declarations; only to find out that one of the last ingredients listed pose a risk. On the other 

hand, some products have no relation to any of the allergens in question, and are most likely 

safe. However, many products are uncertain. Based on the user’s expression of his or her own 

dietary restrictions, products are categorized into three disjunctive sets; unsafe, uncertain and 

safe.  

 

Product P Ingredient I Allergen Acontains

(asserted)

contains 

(asserted)

contains 

(inferred)



 

 48 

3.4.4 Traffic light colors for quick feedback 

Traffic light colors are used to quickly communicate whether products are unsafe (red), 

uncertain (yellow) or safe (green). Users like Persona C would possibly stick to green 

products and disregard the rest to stay on the safe side, while more experienced and/or 

dedicated users would at least occasionally want to manually assess the risks associated with 

yellow products. 

 

Figure 17 Traffic light colors used to convey safety status 

 

Unsafe Avoid  

 

 

Uncertain Needs manual assessment 

 

 

 

Safe No risk detected 

 

 

If the user opts to view detailed information about a product, tailored decision support is 

provided by emphasizing data that is likely to affect the particular user’s safety assessment, 

while filtering out noise. That is, the system provides and draws the user’s attention to 

detailed information about any occurrence of the specified allergens, while withholding facts 

that are irrelevant to the particular user’s decision, such as occurrence of other allergens. 

 

3.4.5 Smartphone app 

The system should be easily available to consumers while shopping. Given the high 

prevalence of smartphones with built-in cameras and Internet access, utilizing these as a 

physical medium would be a natural choice. The decision support system is therefore 

intended to run on the user’s smartphone, utilizing the built-in camera to scan product 

barcodes.  

 



 

 49 

4 PROVIDING A PROOF OF CONCEPT 

I have developed a prototype application in order to provide proof of concept for my proposed 

model. For the purpose of this thesis I have chosen to implement the prototype as a web 

application, rather than a smartphone app. The prototype solves the core problem of matching 

users’ needs – expressed as a set of allergens they need to avoid – with vendors’ product 

descriptions. The application classifies products as unsafe, uncertain or safe, and quickly 

communicates the status of each product using familiar traffic light colors – red, yellow and 

green – using CSS formatting. Tailored decision support is provided on demand, emphasizing 

facts that are likely to affect the users assessment of uncertain products.  

 

At this point, product descriptions are not available as Linked Data. I have therefore put 

together a small dataset representing some products available on the Norwegian market for 

the purpose of the prototype. 

 

4.1 Knowledge prerequisites and references 

The following presentation assumes basic knowledge of the ideas behind Semantic Web and 

Linked Data, and familiarity with RDF and SPARQL. Readers new to this field are referred to 

a popularized introduction published in Scientific American (Berners-Lee, Hendler & Lassia, 

2001), as well as Berners-Lee’s guidelines for publishing Linked Data (Berners-Lee, 2006). 

The World Wide Web Consortium (W3C) provides comprehensible introductions to the 

Resource Description Framework (RDF) and SPARQL query language (W3C, 2004c, 2008) 

and related W3C recommendations. 

 

My work with ontology development and Semantic Web programming is based on insights 

gained from textbooks such as Semantic Web for the Working Ontologist by Allemang & 

Hendler (2011), Semantic web programming by Hebler, Fisher, Blace & Perez-Lopez (2009), 

Programming the Semantic Web by Segaran, Evans & Taylor (2009) and Web Technologies: 

A Computer Science Perspective by Jackson (2007) – as well as documentation published by 

W3C (W3C, 2004a, 2004b, 2004c, 2006, 2008, 2009a, 2009b) and the Jena community 

(Apache Jena, n.d.; McBride, 2010). 

 



 

 50 

 

4.2 Prototype development process  

In my attempt to provide proof of concept for the proposed model, I decided to work with 

ontology development and application layer development in parallel. This iterative process 

made me able to recognize undesired consequences of my design choices and make the 

necessary adjustments along the way.  

 

I quickly realized that simplicity was a key success factor, because overly complex SPARQL 

queries in the application layer would make it near impossible to heuristically verify that the 

application would provide the expected result in all possible cases. On the other hand, an 

overly simplified ontology would make it impossible for data providers to describe their 

products without loosing nuances that might be relevant to the end user.  

 

OWL modeling involves use of sub-classes and sub-properties, which means that resources 

and the relationships between them can be expressed with a high degree of specificity and still 

“respond” to more general queries, characterizing resources and relationships by their super-

classes and super-properties. 

 

In this thesis, I have developed an ontology that satisfies both the need for simplicity and the 

need for minimizing information loss between the information providers and the end users. 

The ontology could easily be extended with further use of sub-classes and sub-properties, or 

with additional classes and properties, describing other aspects of the domain that are outside 

the scope of my prototype. 

 



 

 51 

5 ONTOLOGY DEVELOPMENT 

5.1 The Web Ontology Language (OWL)  

The Web Ontology Language is a W3C recommendation for defining ontologies that 

underpins the Semantic Web (W3C, 2004a). An OWL ontology describes a domain in terms 

of classes, properties and their instances in a way that machines are able to interpret. The 

formal semantics of OWL defines how logical consequences can be derived from a given 

ontology, entailing facts not literally stated. The process of deriving such entailments is called 

inference, and can be implemented in different ways. OWL provides mechanisms for 

combining multiple distributed ontologies. (W3C, 2004a, 2004b) 

 

Different sub-languages of OWL are available, each with their own advantages and 

drawbacks. For this project I have chosen to use the OWL DL (DL is an acronym for 

Description Logic), because it provides a high degree of expressiveness, but with some 

constraints that guarantee that inference computation will finish within finite time and that all 

entailments will be computed. (W3C, 2004b) 

 

5.2 Protégé ontology editor 

I have used Protégé, which is a free open source ontology editor, to develop and maintain the 

ontology for this project (Protégé, n.d.). After trying out different versions, I found that 

Protégé version 3.4.8 had most of the features I needed, such as a comprehensible GUI with 

adjustable forms for entering instance data, and support for transitive properties and ordered 

lists.  

 

5.3 Data modeling 

Data modeling involves making a representation of reality and always involves some degree 

of simplification. It is therefore important to evaluate which aspects of the domain need to be 

expressed in the ontology.  

 



 

 52 

5.3.1 Classes 

5.3.1.1 Product, Substance, Ingredient and Allergen 

In this setting, everything revolves around products and the occurrence of allergens. Thus 

products, ingredients and allergens stand out as real-world entities that have a natural place in 

the ontology. Since some resources (e.g. eggs or nuts), may occur both as ingredients or as 

allergens, I have chosen to generalize the two classes Allergen and Ingredient into a 

common super-class named Substance, which again sub-classes the external class 

skos:Concept. 

 

5.3.1.2 Ingredient list  

The food labeling regulations are developed to accommodate consumers’ need for 

information, without forcing food manufacturers to reveal all of their trade secrets. Food 

manufacturers are thus not required to disclose their complete recipes, but instead required to 

specify each product’s ingredients in descending order (Merkeforskriften, 1993). For a 

consumer with food sensitivities, the amount of a substance that a product contains may be 

decisive to whether or not she will risk eating the given product. As an example, a coeliac 

sensitive to wheat starch may choose to avoid a gluten-free loaf based mainly on wheat starch, 

but still choose to eat a pate that contains a small amount of the same substance. Both the 

concentration of the substance in the product and the amount of product consumed will affect 

the user’s decision. 

 

Since the vendor is normally not required to specify the exact amount of each ingredient, the 

order of the ingredients specified in a product declaration is the best available indicator of the 

relative amount of a given substance in a product. The order of the ingredients is thus clearly 

of high relevance to a consumer assessing a product, and needs to be conserved in the data 

model for presentation to the user as an instance of the class IngredientList.  

 

An OWL-based data model is a graph, where “nodes” (RDF-resources and literals) are 

connected by “edges” (predicates) in a multi-dimensional space. Such a graph has no inherent 

order when mapped to a one-dimensional representation, such as an ordered list. This can be 

observed when Protégé or Jena serializes a graph, as the triples may show up in completely 

different orders from one time to the next. 



 

 53 

 

The RDF-vocabulary supports a class named rdf:List, which can be used to store ordered 

lists in RDF. An rdf:List always consists of two elements; a rdf:first element and a 

rdf:rest element, which in turn refers to another rdf:List-element (W3C, 2004c). The 

IngredientList sub-classes rdf:List, and thus inherits its structure and properties.  

 

I found the current user interface for entering lists in Protégé to be quite impractical for 

products with more than a couple of ingredients, since each entry in itself comprises a new list 

and thus requires a new window. Being an open source tool, Protégé could be developed 

further in the future to provide a more practical user interface for this task, hiding unnecessary 

implementation details from the user.   

 

Figure 18 Ontology outline 

 

Brand

Product

IngredientList

Ingredient

Allergen

rdf:List

Substance

skos:Concept

skos:narroverTransitive / 

skos:broaderTransitive

contains / 

mayContain

rdf:member*

hasIngredientList

rdfs:subClassOf

hasBrand

hasIngredientList

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

contains / 

mayContain



 

 54 

 

5.3.1.3 Users 

I have chosen not to represent users in the ontology at this point, because the current 

prototype application does not store user data in between sessions. Before extending the 

ontology to represent user data, it should first be investigated whether the RDF format is 

suitable for storing sensitive data.  

 

5.3.2 Properties 

Since the model is meant for decision support, the nature of the relationship between a 

product and an allergen is also important to communicate. It is not sufficient to tell the user 

that Product P has a relationship to Allergen A, because the user needs more detailed 

information to assess the safety of the product.  

 

It is important that the properties in the RDF model are specific enough to express all vital 

information, in order to avoid information loss. Any nuance relevant to an individual’s 

evaluation of a product needs to be communicated so that the user can make an informed 

decision. For instance, a user may decide that a product produced alongside an allergen may 

be worth the risk, but choose not to eat a product with ingredients derived from the same 

allergen. After all, each individual should be able to make their own decision, based on 

experience of how sensitive they are, and to what extent they are willing to take risk in a 

given situation. 

 

5.3.2.1 Certain and uncertain relationships 

I have chosen to establish two main properties between products or substances and allergens; 

contains and mayContain. These two properties are both transitive, and are used as super-

properties for more expressive sub-properties. The contains-property expresses a certain 

relationship between a product (or substance) and an allergen (or other substance), and will 

deem the product unsafe to a user who is sensitive to the given allergen. The mayContain-

property, however, expresses an uncertain relationship between a product (or substance) and 

an allergen (or other substance). That is, a risk factor that may or may not lead an allergic 

person to avoid the product. Any sub-property of mayContain will lead the model to 



 

 55 

categorize a product as uncertain for a person allergic to the allergen in question. It will then 

be up to the user to assess the risk and whether she is willing to take it or not. 

 

Both the contains-property and the mayContain-property and thus all of their sub-

properties can be assigned either directly to a Product-resource or to a Substance-resource 

(or both). Typically, the vendor will specify an ingredient list where one or more 

Ingredient-resources have a relationship to some of the allergens in question. Based on the 

ontology and the available data, the model will infer that the product has a relationship to 

these allergens. However, the vendor may identify risk factors that cannot be derived from 

ingredients, such as contaminants in the production environment. Therefore, the vendor can 

optionally assign allergen relationships directly to the product level. 

 

5.3.2.2 Transitive properties 

My model relies on the use of transitive properties. Figure 19 illustrates how new statements 

can be automatically inferred from asserted statements based on transitive properties. Figure 

20 shows the transitive properties that occur in the ontology and how they relate to each other. 

 

Figure 19 The solid arrows represent asserted statements. The dashed arrow illustrates how new 

statements are automatically inferred based on transitive properties. 

 

Product P Ingredient I Allergen Acontains

(asserted)

contains 

(asserted)

contains 

(inferred)



 

 56 

Figure 20 Transitive properties used in the ontology.  

 

 

Other properties used can be seen in the ontology outline in Figure 18. 

 

5.3.3 Semantic relationships between allergen instances 

I have chosen to express hierarchical relationships between some allergens. The labeling 

requirements oblige vendors to label occurrence of milk and nuts. However, both user needs 

and product declarations tend to be more specific (e.g. milk protein or hazelnut). Utilizing the 

specificity of the available product declarations and enabling users to express their actual 

needs with higher granularity (i.e. lactose instead of milk) is an important measure to avoid 

unnecessary limitation of users’ selection. 

 

The Substance-class sub-classes the skos:Concept-class. I did this because the SKOS-

ontology (W3C, 2009a, 2009b) provides a wide set of properties that can be used to describe 

semantic relationships between resources. I decided to use the properties 

owl:TransitiveProperty

contains

mayContain

derivedFrom

mayBeContaminatedBy

a

rdfs:subPropertyOf

producedAlongside

mayContainTracesOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdf:Thing

Substance

a

rdfs:subPropertyOf

rdfs:domain

rdfs:range

rdfs:domain

rdfs:range



 

 57 

skos:broaderTransitive and skos:narrowerTransitive to describe the relationship 

between nuts (in general) and all the specific types of nuts, such as cashew nuts, hazelnuts etc. 

and between milk (in general) and the two components that people tend to be sensitive 

towards; lactose and milk protein. 

 

A person allergic to all nuts will thus not need to specify every single type to make sure that 

all are eliminated. On the other hand, a person who is only allergic to a specific type of nut 

will still be presented with products containing other types of nuts. The vendors, on the other 

hand, can assign relationships to either the general or specific allergens, depending on what is 

appropriate in each case. 

 

All SPARQL-queries in the application layer take into account that a user should be warned 

about occurrence of any of the specified allergens’ broader or narrower allergens. This 

provides additional safety, compared to skim-reading declarations manually and possibly 

missing unexpected phrasings representing an allergen-variant. 

 

The hierarchical relationships between allergens facilitate a user-friendly presentation layer, 

where hierarchically related allergens are presented together. 

 

5.4 Problems and workarounds 

As mentioned before, I have aimed to limit the complexity of the SPARQL queries in the 

application layer, in order to make troubleshooting and verification manageable. I therefore 

implemented a couple of “workarounds” in the application layer that algorithmically construct 

and add additional RDF-statements to the dataset before requests from users are handled. The 

additional statements ensure that the subsequent SPARQL queries can rely on inference over 

transitive properties and that the query formulation doesn’t have to account for all specialized 

scenarios. 

 

5.4.1 Remodeling the relationship between products and ingredients to enable inference 

This nested list structure of the ingredient list conserves the order of elements, but is 

regrettably ill combined with automatic reasoning.  

 



 

 58 

Fortunately, I was able to solve this by making a workaround in the application layer. The 

transitive properties are essential in order to compute whether a given product has any 

relationship to a given allergen. However, when the product’s ingredients are stored as 

rdf:List, the direct relationships between the product and its individual ingredients are 

lost. In the application layer, I solve this by initially constructing a small graph that re-

establishes the direct connection between each product and the members of its ingredient list 

(i.e. the ingredients) as contains-relations.  

 

CONSTRUCT {  

  ?product ao:contains ?ingredient .  

 }  

 WHERE {  

  ?product a ao:Product .  

  ?product ao:hasIngredientList ?ingredientList .  

  ?ingredientList list:member ?ingredient . 

 }  

 
 

The resulting graph is added to the application’s ontology model, so that the transitive 

properties can be exploited in subsequent SPARQL queries. Similarly, statements asserting 

that each substance contains itself are added to the model. These statements make it 

unnecessary to take into account when formulating subsequent SPARQL queries that some 

substances, such as eggs and fish, can occur either as ingredients or as allergens. This is yet 

another workaround since I was unable to define contains as a reflexive property in Protégé.  

 

Since SPARQL queries do not differentiate between statements originating from the data 

source and statements added later on, the application layer actually holds two different 

ontology models. The original model is based on the serialized dataset for Protégé, and is 

queried whenever exclusively asserted statements are of interest. This is currently utilized to 

render allergen information according to the vendor’s explicit warnings. The thought behind 

this is that the user may assign different weights to warnings made explicit by the vendor as 

opposed to warnings based on inference over the transitive properties in the dataset. After all, 

some broadly defined substances may produce warnings because contamination of a given 

allergen cannot be ruled out, and probably pose a minor risk for most people. 

 



 

 59 

In other cases, the extended ontology model that is based on the original model as well as 

inferred statements based on the transitive properties from the ontology and the 

algorithmically added statements mentioned above, is queried.  

 

5.5 Discussion and suggestions for future work 

5.5.1 Issues with “free from” modeling  

Some vendors explicitly label their products as e.g. “free from gluten” or “free from milk”. I 

have not provided a corresponding “free from” property in the ontology at this point.  

 

Theoretically, products asserted to be “free from Allergen A” should constitute the logical 

compliment of products that “contains Allergen A” or “may contain Allergen A”. Maintaining 

this logical divide in the dataset would require non-trivial, rule-based reasoning.  

 

I could have added a “is free from” property to the ontology straightforward, but then nothing 

would stop vendors from stating that “Product P is free from Allergen A” while inference 

would uncover that “Product P contains Allergen A” or “Product P may contain Allergen A”. 

Such conflicts would typically occur if the vendor has added ingredient resources to the 

ingredient list that has a relationship to the given allergen. I have encountered several 

examples of such conflicts in text-based product declarations, i.e. products that are labeled 

“gluten free” while the ingredient list shows that the product contains “wheat flower”.  It is 

impossible for consumers to know whether the “free from” claim or the ingredient list is 

correct. A Semantic Web based system should, however, be able to detect and eliminate such 

logical inconsistencies. One solution would be to automatically detect conflicts as products 

are being entered into the dataset, stopping vendor representatives from entering contradictory 

data. 

 

Products that are labeled “free from” tend to be developed with special care for people with 

food sensitivities. Automatically adding statements asserting that all products that neither 

“contain” nor “may contain” a given allergen (according to the inference model) are “free 

from” the given allergen would be misleading. Particularly sensitive individuals would 

probably prefer products that are both classified as “safe” by the decision support system 

(because no risks were detected) and explicitly labeled “free from” the allergens in question. 



 

 60 

 

5.5.2 Consequences of semantic relationships between allergen instances 

In spite of the mentioned workarounds, the SPARQL queries in the application layer are still 

quite extensive. The main factor complicating the query formulations is that they account for 

the fact that a product or ingredient may have a relationship to a broader or narrower form of 

a checked allergen. This too could possibly be simplified by adding extra statements to the 

model. However, this would involve some degree of interpretation: If the vendor states that a 

product contains nuts (general allergen), this may or may not mean that the product contains 

all of the narrower types of nuts. Adding statements claiming so could thus mislead the user. 

If the vendor has referred to a general allergen, the correct interpretation is that any of its 

more specific forms cannot be ruled out.  

 

However, I have chosen to simplify the presentation of cases like these so that the user is 

always presented with the allergen term that she checked (e.g. nuts), rather than the form that 

actually occurs in the data set (e.g. hazelnuts). The idea behind this is that reusing the checked 

term makes it easier for the user to spot it when skim reading the page. Since the semantics of 

the data core is left intact, the presentation of the data could easily be changed. 

Another problem with adding extra statements to the data set is that they could easily lead to 

erroneous deductions either by automated inference or in single queries. If occurrence of 

lactose (specific allergen) implies occurrence of milk (general allergen) and occurrence of 

milk implies occurrence of milk protein (specific allergen), we would get the conclusion that 

occurrence of lactose implies occurrence of milk protein, which is obviously wrong.  

 

5.5.3 Semantic relationships between ingredient instances 

Originally, I wanted to express semantic relationships between related ingredients, as well as 

related allergens, using the SKOS vocabulary. My hope was that this would enable more 

efficient assignment of allergens to ingredients by exploiting hierarchical relationships and 

inference based on transitive properties. By explicitly asserting a relationship between a 

general ingredient and an allergen, the same relationship could automatically be inferred for 

the more specific ingredients, thus saving valuable resources.  

 



 

 61 

However, I soon realized that this could lead to unexpected errors, due to processes that 

reduce or completely eliminate the presence of components normally found in a substance. 

For instance, while cow’s milk naturally contains lactose, milk products like lactose free milk 

and some cheeses do not. Likewise, most ingredients based on wheat contain gluten, but 

wheat starch and substances such as glucose and dextrose are considered gluten free 

according to current regulations. That is, the gluten content is within the allowed 

concentration. Conversely, even though most gluten-containing products contain wheat, some 

contain gluten from other sources such as barley or rye, and may thus be safe for a person 

who is allergic to wheat but not a coeliac. Examples like these lead me to believe that 

assignment of allergens to hierarchically related groups of ingredients could easily contribute 

to unnecessary limitation of users’ options. This is contrary to what I am trying to achieve. 

 

Even though I decided not to model semantic relationships between ingredients at this point, 

it should be mentioned that this approach would have considerable advantages for the user 

interface that needs to be developed for the vendor representatives. The semantic relationships 

between ingredients could support browsing and presentation of search results, helping these 

users identify the correct RDF resources in cases where similar substance resources may 

easily be mistaken for one another. 

 

Even though manual assignment of allergens to each individual ingredient is quite resource 

intensive, I still think this practice would be more efficient and possibly safer than relying 

solely on manual assignment of allergens to individual products. Clearly, both methods are 

vulnerable to human error. However, when allergens are assigned to ingredients once and for 

all, an error will affect all products containing that ingredient, and thus have greater 

consequences than an error regarding a single product only. On the other hand, this may 

increase the likelihood that the error is identified and corrected within reasonable time, given 

that a good feedback system is provided. 

 

My ontology only includes the classes and properties that were absolutely necessary to solve 

the core problem I aimed to solve in my thesis.  

 



 

 62 

5.5.4 Refining the ontology to take into account that products may change over time 

As the developers of the CheckContent application have pointed out, a product may undergo 

changes in either recipe or production environment without being assigned a new barcode. 

(CheckContent, n.d.). The product name, brand, description and packaging may remain the 

same, thus making it difficult for a customer to detect any change.  

 

In a real world setting, it would therefore be necessary to distinguish between a branded 

product and different versions of it. This refinement of the ontology could be inspired by the 

FRBR model developed within the library sector to express the relationship between a work 

and its expressions, manifestations and items. (IFLA Study Group on the Functional 

Requirements for Bibliographic Records, 2009). Careful analysis would determine what 

classes and properties are needed and what “levels” in the model the different properties 

(GTIN code, name, brand, ingredients, allergens etc.) should be assigned to. 

 

The product version problem can’t be solved adequately until regulators require vendors to 

assign a new GTIN code whenever changes in the recipe or production circumstances occur. 

Until that time, my model could be adapted to give the user a warning whenever different 

versions of a product exist.  The user could be presented with an easy way of determining the 

version of the product she is holding, such as batch number or production date intervals, and 

be guided to the correct instance based on that.  

 

Similar refinement to the ontology would be necessary to support data about food traceability. 

Whereas I have only included one class to represent the product brand, it would be necessary 

to distinguish between different actors (manufacturer, distributor) and physical production 

environments etc. This is a complex modeling task that goes beyond the scope of this thesis. 

 

5.5.5 Modeling of binary vs. N-ary relations 

Food declarations are not just aimed at people with food sensitivities. They play an important 

role in consumers’ assessment of food quality. In some cases, vendors are obliged to specify 

the relative amount of key ingredients in a product. Examples are the amount of chicken meat 

in a chicken salad or the amount of blueberry in blueberry yoghurt.  

 



 

 63 

In OWL, properties link together two individuals (or an individual and a value). Properties are 

thus said to express binary relations. This is sufficient for expressing simple facts like 

“Product P contains Substance S”. However, in some cases it may be desirable to model more 

complex relations like “Product P contains 5 grams of Substance S”. This is an example of a 

so-called N-ary relation. W3C has provided patterns for representing N-ary relations in OWL 

(W3C, 2006). In the case of my ontology, it would require remodeling the relation between a 

product and a substance by remodeling the class Ingredient so that it would have a relation 

to a substance and a relation to a specification of the amount. 

 

Figure 21 A possible re-modeling to enable N-ary relations. Observe that model allows 

expression of several aspects of each ingredient, not just its composing substance. 

 

 

 

 

 

Product

IngredientList

Ingredient

Substance

skos:narroverTransitive / 

skos:broaderTransitive

rdf:member*

hasIngredientList

hasIngredientList

contains / 

mayContain

Allergen

contains / 

mayContain

hasAmount

Quantity Process

exposedToProcess



 

 64 

Product P contains Ingredient I 
7
 

Ingredient I contains Substance S 

Ingredient I hasAmount “5 grams” 
8
 

 

This type of data structure would also enable expression of other aspects of an ingredient, 

such as the fact that an ingredient is organic or that it has been processed in a certain way 

(smoked, irradiated etc.). By reusing the contains-property, I would still be able to exploit the 

transitivity to infer that Product P contains Ingredient I. However, I have not remodeled my 

ontology to support N-ary relations at this point, partly because labeling exact amounts is 

rarely required and partly because it would make the inference and SPARQL-queries slightly 

more complicated to verify. 

 

5.5.6 Reuse and mapping to existing vocabularies and ontologies 

Reuse of established vocabularies and ontologies is strongly encouraged in Semantic Web 

development because it makes it easier to link together distributed data sets (Heath, T., & 

Bizer, C., 2011). Existing vocabularies and ontologies can be used directly, combined with 

each other, extended with additional classes and properties or mapped to more specialized 

vocabularies or ontologies. There are many considerations to make in this process, which is 

why I decided to first model the core ontology for this project “from scratch” using pen and 

paper, and only then proceed to consider which existing ontologies and vocabularies could 

provide some of the desired features.  

 

A couple of well-adopted vocabularies stand out as good candidates for future integration 

with the core ontology: 

 

Good Relations (GR) is a controlled vocabulary for providing detailed descriptions of product 

offerings on the web (Hepp, 2011). Google, Yahoo! and other major players currently utilize 

GR-encoded data embedded in web pages to provide users with more precise search results 

than unstructured free text pages would allow. The product and brand classes in my ontology 

                                                 
7
 In this simplified example, I have abstracted away from the fact that in my ontology, products and 

ingredients are not directly connected, rather indirectly via the ingredientList. 

 
8
 The literal in the last statement could be replaced by a resource in order to preserve the semantics 

unit of measurement and number value. 



 

 65 

could easily by mapped to or replaced with corresponding classes in GR. GR also provides 

classes and properties for expressing facets that I have omitted from my core ontology, such 

as GTIN code, price, quantity, dimensions, reviews and information about business entities. 

 

Quantities/Units/Dimensions/Types (QUDT) is an alternative vocabulary that could be used to 

express quantitative attributes of products, such as weight (Allemang & Hendler, 2011). 

  

The Simple Knowledge Organization System (SKOS) is a W3C Recommendation for 

representing knowledge organization systems such as controlled vocabularies, thesauri and 

taxonomies. (Allemang & Hendler, 2011). In my ontology, SKOS is used to express thesaurus 

relations between Allergen instances. Similarly, SKOS properties such as skos:related, 

skos:broader and skos:narrower could be utilized to improve browsing and searching 

of Ingredient resources in the authoritative data core. SKOS could also be used to solve 

issues relating to synonymy, by defining preferred, alternate and hidden labels for the same 

substances.  

 

The RDF language itself provides a simple way of specifying the language used in literal 

values, so the same ontology and instance data could be used across multiple countries.  

  



 

 66 

6 APPLICATION LAYER DOCUMENTATION 

6.1 Implemented use cases 

The application prototype currently implements two use cases that represent the core 

capabilities of the suggested model. Both use cases start with the same steps: 

 

1. A user enters the web site.  

2. The system presents the user with a list of allergens and prompts the user to check the 

ones that apply to her. 

 

Figure 22 Create profile – Persona A 

 

Figure 23 Create profile – Persona B 

 

 

3. The user checks one or more allergens and submits the form.  

4. The system presents the user with her current settings and available actions; scan an 

individual product or categorize all products. 



 

 67 

Figure 24 View profile – Persona A 

 

Figure 25 View profile – Persona B 

 

 

6.1.1 Scan an individual product  

If the user chooses to scan a product, the interaction continues as follows: 

5a. The user scans a product (barcode or QR-code) and presses “Go!”.  

6a. The system presents the user with detailed information about the given product, such 

as indication of product safety (green, yellow or red) and an ingredient list where any 

occurrence of the allergens in question is pointed out. The nature of the relationship 

between the product or individual ingredients and the allergens is stated and enhanced 

by CSS formatting. 



 

 68 

Figure 26 Product details – Persona A 

 

Figure 27 Product details – Persona B 

 

 

6.1.2 Categorize all products by safety 

If the user chooses to categorize all products, the interaction instead continues as follows: 

5b. The user presses the “Go!”-button following the text “Categorize all products”. 

6b. The system presents the user with three lists of products. CSS-formatting is used to 

communicate which products are safe, uncertain and unsafe respectively. 

 

Figure 28 Categorized products – Persona A 

 

Figure 29 Categorized products – Persona B 

 

 



 

 69 

7b. The user may proceed to request detailed information about a product, in which case 

the system presents her with the same page as if she has scanned that product (see 

previous use case). 

 

6.2 Technology choice 

I have chosen to implement the prototype as a web application based on Java and JSP, 

running in an Apache Tomcat environment. The main rationale for this decision is that Java 

provides extensive support for working with RDF through the Jena package. (Jena: A 

Semantic Web Framework for Java, n.d.). By implementing Java classes according to the 

JavaBeans standard, I enable users to interact with the application via dynamic JSP pages. 

(Jackson, 2007). The client side is HTML/CSS, which is device independent and easily 

portable to mobile devices. 

 

6.3 Overall application architecture 

The overall architecture of the prototype, where the user interface, functionality and data are 

separated into independent layers, is illustrated in Figure 30. Low coupling between the layers 

is a design goal that makes it possible to make changes in one layer without redesigning the 

others. (Mathiassen, Munk-Madsen, Nielsen, & Stage, 2000, pp. 272-273.). 

 

The user’s web browser communicates with the web server over the HTTP protocol. The 

application running inside the web server queries the RDF data using SPARQL.  

 



 

 70 

Figure 30 Overall application architecture 

 

 

6.4 JSP and Java beans 

The source code of the JSP pages contains a mixture of HTML-tags and specialized JSP-tags. 

The JSP-tags are resolved on the server-side before the resulting web page is served to the 

client. Each JSP page initially declares which JavaBeans are in use, which Java class each 

bean instantiate and its scope (i.e. application, session or request). The scope 

determines both the accessibility and lifetime of a bean.  

 

The example below shows the declaration of a bean identified as user, which instantiates the 

User class. The user bean will have the lifetime and accessibility of an individual HTTP-

session.  

 
Example JSP source code (excerpt) 

 

<jsp:useBean id="user" class="myBeans.User" scope="session" /> 

 

 



 

 71 

The JavaBeans standard requires all classes to provide a zero-argument constructor. If, when 

a JSP-page is resolved, a declared bean does not already exist, it is automatically created 

using the zero-argument constructor. Furthermore, the JavaBeans standard require all objects 

to have a public accessor and mutator method (“getter” and “setter”) for each variable, and 

that these follow the naming/typing convention that a variable named firstName has getter 

named getFirstName and setter and setFirstName.  

 

Example source code of a Java bean 

 

package myBeans; 

 

public class User { 

 

// Public zero-argument constructor 

public User() {  

 

 } 

 

// JavaBeans variables should always be private  

 private String firstName = "";  

 

 // Accessor method (“getter”) 

 public String getFirstName() {  

  return firstName; 

 } 

 

// Mutator method (“setter”) 

 public void setFirstName(String firstName) {  

  this.firstName = firstName; 

 } 

} 

 

 

 

Getter-methods are called when bean properties are presented to the user and setter-methods 

are called when bean properties are modified through user input.  

 

Example JSP source code (continued). Presentation and modification of a bean property  

 

<jsp:setProperty name="user" property="*"/>  

 

<form name="input" action="modifyFirstName.jsp" method="post"> 

Example: <input type="text" name="firstName" value="${user.firstName}" size="20" ><br> 

<input type="submit" value="Modify the firstName-property!"/> 

</form> 

 

 

Instead of merely getting and setting variables straightforward, I exploit some of these 

required methods to trigger more complex actions in the background. This way, simple user 

input provided through the JSP interface is able to trigger the actions that are needed in order 



 

 72 

to solve the task of presenting users with tailored information about product safety. The JSP 

layer is used solely as a user interface, leaving all complex tasks for the Java “back-end”.  

 

6.5 UML Class diagram 

The UML class diagram in Figure 31 shows the classes I have developed for this application 

and the dependencies between them. In addition to these classes, the application relies on 

several classes from the Jena library and other utility libraries that are not included in the 

diagram. 

 

In the following, I will briefly introduce the responsibilities of the classes shown in the 

diagram, before I proceed to explain how the application works, exemplified by a use case 

expressed as a UML sequence diagram. 



 

 73 

Figure 31 UML class diagram 



 

 74 

6.5.1 The RdfHandler class 

The Java class named RdfHandler performs all actions that involve dealing with the RDF 

data directly, and is the core component of the whole application. When a user interacts with 

the JSP interface, getter and setter methods in the Java beans are called, which in turn make 

calls to methods in the RdfHandler class. These methods perform extensive, tailored 

SPARQL queries and set operations in order to initialize other bean properties. Observe that 

the JSP layer never interacts directly with the class; only indirectly by calling getters and 

setters in the Java beans, which in turn make calls to methods in the RdfHandler.  

 

The RdfHandler holds two different Jena ontology models: basicModel and 

inferenceModel.  

 

Jena Models are sets of RDF-statements that, among other things, can be queried using 

SPARQL. The Jena library provides several different types of models, each with different 

capabilities. Ontology models (OntModel) can be used for data sets that refer to a specified 

ontology vocabulary. In this case, the data source is an OWL file that holds both ontology and 

instances, serialized by Protegé. Moreover, when the basicModel is initialized with the 

OWL-file, the asserted statements are supplemented with additional statements – expressing 

the resources’ membership to super classes, according to the specified ontology.  

 

Asserted statement:  Resource R type Allergen 

 

Ontology statements: Class Allergen subClassOf Class Substance 

Class Substance subClassOf Class Thing 

 

Inferred statements:  Resource R type Substance 

Resource R type Thing 

 

This extension of the model makes it possible to write simple SPARQL queries that return the 

expected results. A query for all substances would also return all allergens, even though 

the allergens’ membership to the Substance class was not explicitly expressed in the 

original dataset, but rather expressed as a relationship between the two classes Allergen and 

Substance in the ontology. 



 

 75 

 

The inferenceModel is based on the basicModel, but the supplied reasoner (Apache 

Jena, n.d.) performs additional inference over the transitive properties (contains, 

mayContain etc.). The inferenceModel is queried whenever the inferred statements are 

relevant, while the basicModel is queried if only asserted statements are of interest. 

 

Due to the small scale of the test data set, I have chosen to use Jena Models that are kept “in 

memory”. 

 

For reasons of efficiency, the RdfHandler class performs every operation that can be 

performed once and for all, independently of individual users’ settings. The RdfHandler 

class is never instantiated, thus all variables and methods are static.  

 

6.5.2 The User class 

The User class is used to store information provided by individual users throughout the 

HTTP session. When a user enters the web site, a user bean is created. This Java bean is 

available throughout the remaining session. As the class diagram shows, the user bean holds 

three lists of Product objects: safeProducts, uncertainProducts and 

unsafeProducts. These lists are initialized by the RdfHandler class based on the user’s 

input, and are used to present the status (safe, uncertain or unsafe) of products for the given 

user. 

 

6.5.3 The Resource class 

The Resource class is a super class used to define common properties of all the objects that 

originate from the RDF model: products, ingredients and allergens. These objects all have a 

unique uri, a label and a description. The Resource class provides constructors for 

initializing these variables, as well as setters and getters. It also defines a sorting criterion that 

makes it possible to order a list of resource objects by their label. This is used to present 

lists of allergens or products in an alphabetical order in the user interface. 

 



 

 76 

6.5.4 The Allergen class 

Instances of the Allergen class are used to store basic information about allergens. In 

addition to the properties inherited from the Resource super class (uri, label and 

description), allergen objects may hold a list of narrower allergens and a list of broader 

allergens. These lists are used to display allergens in a hierarchical way, so that a user may for 

instance check “nuts” (in general), instead of checking every specific nut-type in the form. 

The RdfHandler class queries the Jena Model in order to create a static map of allergen 

objects. These objects are copied into the users allergen maps upon request, so that it is 

unnecessary to query the model again for each new user.  

 

6.5.5 The Product class 

Instances of this class are used to store information about products. The RdfHandler class 

queries the Jena Model in order to obtain a static map of products represented in the dataset. 

The product map contains Product objects that are initialized with basic information such 

as uri, label, brandUri and brandLabel. When a user is presented with lists of safe, 

uncertain and unsafe products, the product objects in the user bean’s lists are initialized by 

copying these property values from of the corresponding product objects in the global product 

map. This is likely to be more efficient than making new SPARQL-queries each time a new 

user bean needs this basic information. If, however, the user clicks the link to view detailed 

information about a specific product, or alternatively scans a product directly, a Product 

bean is created and initialized further, with tailored information about the products ingredients 

and any occurrence the allergens in questions. Since this operation requires several 

personalized SPARQL-queries to be performed by the RdfHandler, it is not carried out until 

a user actually requests to see this information.  

 

6.5.6 The Ingredient class 

Instances of the Ingredient class are used to store information about products’ ingredients. 

Ingredient objects are created only when a user actively requests detailed information about a 

given product. In addition to the basic properties inherited from the super class Resource 

(uri, label and description), Ingredient objects hold a list of Allergen objects. 

Only allergens sought by the user in question are kept in the allergen list. Information about 



 

 77 

the nature of the relationship between a given ingredient and an allergen (contains, 

mayBeContaminatedBy etc.) is stored in each allergen object. 

 

6.6 UML Sequence diagram  

Sequence diagrams can be quite extensive, and in this case, my aim has been to communicate 

and visualize the overall flow of the program and the interaction between objects and classes 

that I have developed, without delving into unnecessary details. By grouping together blocks 

of code into private methods with verbose names that represent the functionality of the 

method bodies, I was able to create a relatively high-level sequence diagram using a semi-

automated sequence diagram generator in Eclipse. For every method displayed in the 

diagram, I had the option of adding the method calls they lead to. I chose to stop at a quite 

high abstraction level to make sure that the overall flow wouldn’t be lost in unnecessary 

details. 

 

The sequence diagram in Figure 32 (continued in Figure 36) represents the use case that 

illustrates the functionality of the program the best: Scan an individual product. 

 

6.6.1 Reading the UML sequence diagram 

I have split the sequence diagram into two figures for the sake of readability. The yellow 

rectangles at the top represent classes and objects that play an important role in the execution 

of the program. The left-most rectangle does not correspond to any particular Java class or 

object, but it a simplified representation of the JSP-based user interface, which in it self 

consists of several different components. The other rectangles correspond to classes or 

instances of classes already seen in the UML class diagram.  

 

Below each rectangle is a dotted vertical line that changes appearance to indicate that the 

class or object is active. The sequence diagram is read starting in the upper left corner, 

following the arrows that represent method calls that are sent between the components. The 

arrows are labeled with the name of the given method, including indication of any parameters, 

followed by the methods return value (if any), corresponding to the Java source code. 

 



 

 78 

A thick vertical line represents a running method and the termination of such a line indicates 

that the given method finishes and sends the specified return value (if any) to the calling 

place. Moreover, when a running method generates another method call and waits for the 

result, another thick line is drawn partly overlapping with the existing line.  

 



 

 79 

Figure 32 UML sequence diagram (continued in Figure 36) 

 

Enter website

Display profile form

Check allergens and submit form

Display profile and actions



 

 80 

6.6.2 Walkthrough of the sequence diagram9 

A new user enters the website (Ref. use case step 1) 

A new user enters the web site after a server restart. The web application is set up to welcome 

the user with the dynamic web page home.jsp. Before the page is served to the user, a 

number of things happen in the background. 

 

The JSP source code declares the use of a Java bean named user, which has session-scope.  

 

<jsp:useBean id="user" scope="session" class="myBeans.User"/>  

 

Since our user is a first-time visitor, there is no pre-existing user bean to be found. Thus a 

fresh user-bean is created, using the User class’ zero-argument constructor User(). 

  

User() 

The constructor creates a new user object and initializes two of its variables: allergensMap 

and allergens. Both represent the Allergen resources from the dataset, but their data 

structures and usage differ. The former is a hash map where Allergen objects can be looked 

up by uri. The latter is an ordered list of Allergen objects that is used for neat presentation 

in the JSP-layer. Both variables are initialized with return values from the getter-methods of 

corresponding Allergen objects in the RdfHandler’s static allergensMap. 

 

public User() { 

this.allergensMap=RdfHandler.getAllergensMap();  

 this.allergens=RdfHandler.getAllergens();  

} 

 

RdfHandler.getAllergensMap():Map<String, Allergen> 

Normally the getAllergensMap() method would simply return the values of the 

RdfHandler’s static allergensMap, as the method name indicates. However, since our 

user is the first to use the application after a server restart, the RdfHandler class first needs 

to initialize itself by calling the static method initializeRdfHandlerClass(). 

 

  

                                                 
9
 Setters and getters that don’t affect the program flow or perform operations beyond that 

which their names imply are omitted from the sequence diagram. Some private methods are 

also omitted from the diagram for the sake of simplicity. 



 

 81 

RdfHandler.initializeRdfHandlerClass():boolean 

The initializeRdfHandlerClass() method performs several tasks to prepare the 

RdfHandler to serve the Java beans.  

 

RdfHandler.openDataSourceAndCreateModels():void 

This method starts by initializing the basic ontology model with the serialized dataset from 

Protegé, which contains both ontology and instance data.  

 

The ontology model contains explicitly asserted statements with the addition of statements 

that can be derived from the ontology’s definition of super-classes and super-properties. If, 

for instance, a resource has type Allergen, the model automatically adds statements 

expressing that the resource has type Substance and type Thing, because these are super-

classes of Allergen. 

 

The method proceeds to declare all prefixes used in the ontology and SPARQL queries 

once and for all, before it calls a method that algorithmically adds additional statements to the 

ontology model. 

 

RdfHandler.constructAndAddAdditionalStatements():void 

This method adds additional statements to the ontology model that are needed to simplify 

subsequent SPARQL queries. The first part adds direct contains-relations between products 

and the ingredients in their respective ingredient lists. The second part adds statements that in 

effect make contains a reflexive property. Both these subtasks are solved by running 

SPARQL construct queries against the ontology model, thus constructing graphs containing 

new statements that are subsequently added to the model.  

   

RdfHandler.createInferenceModel():void 

This method initializes a second ontology model based on the basic ontology model, but with 

a reasoner that performs additional inference over transitive properties.  

 

  



 

 82 

RdfHandler.setAllergensMap():void 

This method initiates the static map of allergens by querying the basic ontology model.  

 

 String queryString =  

  prefixes + 

 

  " SELECT  ?allergen ?label " + 

 

  " WHERE { " + 

  " ?allergen a ao:Allergen . " + 

  " ?allergen rdfs:label ?label . " + 

"  FILTER (lang (?label) = '" + displayLanguage + "') " + 

  " } " + 

 

  " ORDER BY ASC(?label) "; 

 

 

For each Allergen resource in the model, a Java Allergen object is created. Before the 

Allergen object is added to the allergensMap, additional queries are made against the 

basicModel in order to identify and store the allergen’s relationship to any broader or 

narrower allergens (see source code for query details). 

 

RdfHandler.setAllergens():void 

This method simply iterates over the aforementioned allergensMap and copies the objects 

to a list of Allergen objects, which is then sorted by the allergens’ labels. 

 

RdfHandler.setProductsMap():void 

This method initializes the static map of Product objects by querying the basicModel. 

 

 String queryString =  

  prefixes+ 

 

  " SELECT ?product ?label ?brand ?brandLabel " + 

 

  " WHERE { " + 

  "   ?product a ao:Product . " + 

  " ?product rdfs:label ?label . " + 

  "   ?product ao:hasBrand ?brand . " + 

  "   ?brand rdfs:label ?brandLabel . " + 

  " } " + 

 

  "ORDER BY ASC(?label)" ; 

 

For each Product resource in the dataset, a Java Product object is created and added to the 

productsMap with product uri as key.  

 

RdfHandler.initializeRdfHandlerClass():Boolean (cont.) 

When all the subtasks of this method has completed, the method returns “true”, updating the 

flag indicating that the class has now been initialized. 



 

 83 

 

RdfHandler.getAllergensMap():Map<String, Allergen> (cont.) 

When the initialization of the class is finished, the static allergensMap is returned to the 

calling user object, which copies it into its own corresponding allergensMap. 

 

RdfHandler.getAllergens():List<Allergen> 

This method simply returns the static ordered list of Allergen objects to the calling object, 

which in turn, copies it into its own corresponding variable. 

 

User() (cont.) 

The constructor finishes and the new object or bean is available to all the JSP-files in the 

session-scope. 

 

user.getAllergens():List<Allergen> 

This method is called by the home.jsp to access the user-bean’s list of allergens for 

presentation in the user interface. 

 

The system displays the profile form (Ref. use case step 2) 

The dynamic web page is generated and served to the user. 

 



 

 84 

Figure 33 Create profile – Persona E 

 

 

The user checks some allergens and submits the form (Ref. use case step 3) 

When the form is submitted, the user bean’s array named allergensToBeHighlighted is 

initialized with the URIs of the checked allergens. The URIs are hidden from the user. 

 

user.setAllergensToBeHighlighted(String[] 

allergensToBeHighlighted):void 

This method first initializes the allergensToBeHighlighted array with the URIs of the 

checked allergens, as the method name indicates. Then a call is sent to the setter-method of 

allergensToBeHighlightedList, which represents the same allergens as an ordered list 

of Allergen objects for presentation in the JSP. Last but not least, a call is sent to the 

RdfHandler method that performs the core functionality of classifying all products in the 

dataset into the categories safe, uncertain and unsafe, based on the user’s input.  



 

 85 

 

user.setAllergensToBeHighlightedList(String[] 

allergensToBeHighlighted):void 

This method initializes the user bean’s allergensToBeHighlightedList, which is 

simply an ordered list of Allergen objects corresponding to the allergens checked by the 

user. This is done by iterating over the allergensToBeHighlighted to get hold of the 

URIs and looking up each URI in the allergensMap to access to the corresponding 

Allergen object, which is then added to the list. Finally, the list of allergen objects is sorted 

according to the specifications given in the Allergen class (by label). 

 

RdfHandler.categorizeProductsForSpecificUserBasedOnAllergenOccurence 

(User user):void 

This method categorizes all products in the dataset into three disjoint categories (safe, 

uncertain and unsafe) based on the submitted user object’s current settings.  

 

SPARQL construct queries are used to construct sub-graphs containing unsafe and uncertain 

products respectively. The SPARQL queries rely on automatic inference over transitive 

properties and are thus run against the inferenceModel. The safe products sub-graph is not 

constructed with SPARQL, but instead derived by taking the difference between a graph 

including all products and the two constructed sub-graphs. 



 

 86 

 

 

Figure 34 Venn diagrams showing how uncertain and safe products are derived 

 



 

 87 

user.getAllergensToBeHighlighted():String[] 

This method simply gets the checked allergens from the supplied user bean so that 

RdFHandler can loop through the values in the parameterized the SPARQL queries. 

 

RdfHandler.constructSubGraphOfAllProducts():Model 

This method constructs a sub-graph of all the products in the inferenceModel. It is used 

later on as a basis to derive the sub-graph of all safe products as mentioned above.  

 

RdfHandler.constructSubGraphOfAllUnsafeProducts(String[] 

allergensToBeHighlighted):Model 

This method constructs a sub-graph of all products that are definitely unsafe. That is, the 

product itself or at least one of its ingredients has a certain relationship to (i.e. contains) at 

least one of the checked allergens (or a broader or narrower form of the allergen). Details of 

the query are explained in comments underway. 

 

// SPARQL CONSTRUCT that generates a sub-graph of all unsafe products in the inference 

model 

 

String constructString =  

prefixes+ 

 

// Construct a graph of products and their respective labels 

" CONSTRUCT { " + 

"   ?product a ao:Product . " + 

"   ?product rdfs:label ?label . " + 

" } " + 

 

// That fulfill these conditions: 

" WHERE { " + 

"   { " + 

// The product resources belong to the product class and have a label... 

"    ?product a ao:Product . " + 

"    ?product rdfs:label ?label . " + 

 

// AND meet at least one of these additional criterion: 

 

// The product contains the allergen 

"    { " + 

"     ?product ao:contains ?allergen . " +  

"    } " + 

// OR the product contains a broader variant of the allergen   

"    UNION " + 

"  { " +  

"     ?product ao:contains ?broaderAllergen . " +  

"   ?broaderAllergen skos:narrowerTransitive ?allergen . " + 

"   ?broaderAllergen a ao:Allergen . " + 

"    } " + 

// OR the product contains a narrower variant of the allergen 

"    UNION " + 

"  { " +  

"     ?product ao:contains ?narrowerAllergen . " +  

"   ?allergen skos:narrowerTransitive ?narrowerAllergen . " + 

"   ?narrowerAllergen a ao:Allergen . " + 

"    } " + 

"   } " ;  

 



 

 88 

// Finally, narrow down the resulting graph to include only matches where the allergen 

// URI correspond to an allergen in the submitted array 

if (allergensToBeHighlighted.length>0){ 

 constructString += "  FILTER ( "; 

for (int i=0; i < allergensToBeHighlighted.length; i++) { 

  constructString += " ?allergen = <" + allergensToBeHighlighted[i] + ">"; 

  if(i < (allergensToBeHighlighted.length - 1)) {   

   constructString += " || " ;  

  } 

 } 

 constructString += " ) "; 

} 

constructString += " } "; 

 

The resulting graph is stored as a Jena model named unsafeProductsGraph. 

 

RdfHandler.constructSubGraphOfAllUncertainProducts(String[] 

allergensToBeHighlighted, Model unsafeProductsGraph):Model 

This method constructs a sub-graph of all products that are uncertain. That is, the product 

itself or at least one of its ingredients has an uncertain relationship to at least of the checked 

allergens (or a broader or narrower form of the allergen). Details of the query are explained in 

comments underway. 

 

// SPARQL CONSTRUCT that generates a sub-graph of all uncertain products in the 

inference model 

 

String constructString = 

prefixes+ 

 

// Construct a graph of products and their respective labels 

" CONSTRUCT { " + 

"  ?product a ao:Product . " + 

"    ?product rdfs:label ?label . " + 

" } " + 

  

// That fulfill these conditions: 

" WHERE { " + 

// The product resources belong to the product class and have a label... 

"   { " + 

"    ?product a ao:Product . " + 

"    ?product rdfs:label ?label . " + 

"   } " + 

    

// AND meet at least one of these additional criterion: 

"   { " +    

    

// The product has an uncertain relationship to the allergen 

"    { " + 

"     ?product ao:mayContain ?allergen . " +  

"    } " + 

    

// OR the product has an uncertain relationship to a broader or narrower variant of the 

allergen 

"    UNION " + 

"    { " +  

"     ?product ao:mayContain ?allergenVariant  . " +  

"     ?allergen a ao:Allergen . " + 

"    { " + 

"     { ?allergenVariant skos:narrowerTransitive ?allergen . } 

" + 

"    UNION " + 

"     { ?allergenVariant skos:broaderTransitive ?allergen . } " 

+ 



 

 89 

"    UNION " + 

"      { FILTER ( ?allergenVariant = ?allergen ) } " + 

"   } " + 

"  } " + 

 

// OR the product has a certain relationship to at least one substance that in turn has 

an uncertain relationship to the allergen 

"    UNION " + 

"    { " + 

"     ?product ao:contains ?substance . " + 

"    ?substance ao:mayContain ?allergenVariant ." + 

"     ?allergen a ao:Allergen . " + 

"    { " + 

"     { ?allergenVariant skos:narrowerTransitive ?allergen . } 

" + 

"    UNION " + 

"     { ?allergenVariant skos:broaderTransitive ?allergen . } " 

+ 

"    UNION " + 

"      { FILTER ( ?allergenVariant = ?allergen ) } " + 

"   } " + 

"   } " + 

" } " ; 

   

// Finally, narrow down the resulting graph to include only matches where the allergen 

URI correspond to an allergen in the submitted array 

 

if (allergensToBeHighlighted.length>0){ 

constructString += "FILTER ( "; 

 for (int i=0; i < allergensToBeHighlighted.length; i++) { 

  constructString += " ?allergen = <" + allergensToBeHighlighted[i] + 

">  "; 

  if(i < (allergensToBeHighlighted.length - 1)){  

    constructString += " || " ;  

} 

 } 

 constructString += "  ) "; 

} 

constructString += " } "; 

 

The resulting graph is stored as a Jena model named uncertainProductsGraph. 

 

Observe that it is quite possible for a product to have a certain relationship to one of the 

checked allergens and an uncertain relationship to another (or even the same) allergen at the 

same time. Products like these would match the graph patterns of both the SPARQL 

constructs just presented, and would thereby be included in both the unsafe and uncertain sub-

graphs. Of course, if a product qualifies as both unsafe and uncertain, it should be interpreted 

as unsafe. This is ensured by performing a difference operation reinitializing the uncertain 

product sub-graph to hold all products that were included in the original uncertain products 

sub-graph except the ones that were also included in the unsafe products graph.  

 

uncertainProductsGraph=uncertainProductsGraph.difference(unsafeProductsGraph); 

 

This operation ensures that the two categories are disjoint.  

 



 

 90 

constructSubGraphOfAllSafeProducts(Model allProductsGraph, Model  

unsafeProductsGraph, Model uncertainProductsGraph):Model 

This method initializes the sub-graph of safe products by taking the difference between the 

sub-graph containing all products and the two sub-graphs that were constructed with 

SPARQL queries.  

 

Model  safeProductsGraph = allProductsGraph.difference(unsafeProductsGraph); 

safeProductsGraph = safeProductsGraph.difference(uncertainProductsGraph); 

 

RdfHandler.createProductList(Model graph, String 

status):List<Product> 

This method accepts a Jena Model and a string indicating whether the model consists of safe, 

uncertain or unsafe products as parameters. The method queries the submitted Jena Model for 

Product resources and converts these into Product objects that are put into an ordered list 

and returned. This method is called three times, once for the graph of safe products, once for 

the graph of uncertain products and once for the graph of unsafe products. 

 

user.setUnsafeProducts(List<Product> unsafeProducts):void 

user.setUncertainProducts(List<Product> uncertainProducts):void 

user.setSafeProducts(List<Product> safeProducts):void 

These methods set the user-bean’s lists of unsafe, uncertain and safe product objects 

respectively. 

 

When the categorization is finished and the calling user bean’s variables has been set the  

categorizeProductsForSpecificUserBasedOnAllergenOccurence method 

returns. 

 

The calling method user.setAllergensToBeHighlighted also returns, leaving control 

to the JSP layer. 

 

The JSP-layer calls several getters in the user bean in order to generate the next page. Most of 

these are omitted from the sequence diagram. 

 

user.getAllergensToBeHighlightedList():List<Allergen> 

This method gets the user beans ordered list of allergens.  



 

 91 

 

The JSP layer displays the user’s current profile and available actions (Ref. use case 

step 4) 

 

Figure 35 Display filter – Persona E 

 

 

The user scans a product (Ref. use case step 5a) 

Note that because the prototype is implemented as a web application running in the browser, I 

have not been able to access the built-in camera found in most smartphones. For now, the 

barcode scanning is therefore mimicked by manually typing the URI of a product. 

 

When the user submits the URI, the JSP product_details.jsp is generated. The page 

declares use of an additional Java bean. The product bean instantiates the Product class 

and has request scope.  

 

<jsp:useBean id="product" scope="request" class="myBeans.Product"/> 

 



 

 92 

This means that the page will be generated again every time the user enters the page. This 

design choice ensures that the product information will always be presented in accordance 

with the users current settings. 

 

Figure 36 UML sequence diagram (continued from Figure 32) 

 

 

Product() 

The constructor calls the super-class Resource’s empty constructor. The returned object’s 

variables are not initialized. 

 



 

 93 

The JSP declares that the Product bean’s uri property should be initialized with the 

submitted URI: 

 

<jsp:setProperty name="product" property="uri"/>    

 

product.setUri(String uri):void 

This method sets the Product bean’s uri property and proceeds to call a method in the 

RdfHandler class that initializes some other basic properties of the bean before it returns. 

 

RdfHandler.initializeBasicInfoAboutProduct(Product product):void 

This method initializes Product bean properties that are independent of the user’s choice, 

namely product label, description, brandUri and brandLabel. RdfHandler looks 

up the submitted product bean’s uri in its own static map of products and sets the product 

bean’s properties equal to the property values of the corresponding object in the static map.  

 

I have implemented it this way because the other implemented use case needs fast access to 

basic information about all products in order to present the lists of safe, uncertain and unsafe 

products. Since the basic information doesn’t need to be adapted to each user’s needs, the 

information can be reused instead of querying the model multiple times for the same 

information. The compilation of tailored detailed information, on the other hand, is a 

relatively time consuming process that has to be done for each user and, and is therefore done 

“on the fly” if and when the user requests it. 

 

The method initializes the product bean’s properties by calling its setter methods: 

 

product.setLabel(String label):void 

product.setBrandLabel(String brandLabel):void 

These methods are straightforward setters that don’t perform additional operations.  

 

The JSP also declares that the product bean’s allergensToBeHighlighted property 

should be set to the value of the calling user bean’s corresponding property. This property 

will later be used to tailor the presentation of the product for the specific user’s needs. 

 



 

 94 

<jsp:setProperty name="product" property="allergensToBeHighlighted" 

value="${user.allergensToBeHighlighted}"/>  

 

The JSP calls the user bean’s getter to access the array of URIs representing the checked 

allergens: 

 

user.getAllergensToBeHighlighted():String[] 

This method is a straightforward getter that doesn’t perform any additional operations.  

 

The array of checked allergens is passed on to the product bean’s setter: 

 

product.setAllergensToBeHighlighted(String[] 

allergensToBeHighlighted):void 

This method is a straightforward setter that doesn’t perform any additional operations.  

 

product.getStatus():String 

This method returns a string indicating whether the given product is safe, uncertain or unsafe 

for the current user. The value determines which parts of the CSS will take effect, enhancing 

the status of the product with green, yellow or red border and heading. 

 

<div class="${product.status}" >…</div> 

 

The method needs data about which allergens occur in the product in order to determine its 

safety status. Thus, the method that initializes the detailed information about the product is 

called. 

 

RdfHandler.initializeDetaliedInfoAboutProductContentAndAllergens(Pro

duct product):void 

This method is responsible for initializing the submitted product bean’s lists of ingredients 

and allergens, according to the user’s settings. That is, only allergens that were checked by the 

user are taken into account. 

 

The task is split into two methods that perform the tasks of initializing the product’s 

ingredientList and allergenList respectively. 

 



 

 95 

RdfHandler.initializeTailoredIngredientList(Product product):void 

This method initializes the product bean’s ingredientList according to the current filter 

using SPARQL.   

 

First, all the ingredients in the ingredient list are identified (see SPARQL query below). 

 

// SPARQL SELECT query that returns a table of all ingredients in a given product's 

ingredient list 

   

String queryString =  

prefixes+ 

    

" SELECT ?ingredient ?ingredientLabel " + 

    

" WHERE { " + 

"  { " + 

"    ?product a ao:Product . " + 

"    ?product ao:hasIngredientList ?ingredientList . " + 

"    ?ingredientList list:member ?ingredient . " +  

"    ?ingredient rdfs:label ?ingredientLabel . " + 

"   } " + 

    

"   FILTER ( ?product = <" + product.getUri() + "> ) " +  

   " }" ;  

 

The ingredients are stored as an ordered list of Ingredient objects.  

 

For each ingredient, a new SPARQL query is run in order to identify if they are linked to any 

of the allergens in question, or any broader or narrower forms of these (see SPARQL query 

below). The SPARQL query is explained in the comments along the way. 

 

// SPARQL SELECT query that returns a table of allergens occurring in an ingredient and 

a verbal description of the relationship between the ingredient and each allergen 

(contains, may be contaminated by etc.). 

 

String  nestedQueryString =  

prefixes+ 

    

// Select all distinct allergen resources, allergen labels and property labels 

" SELECT DISTINCT ?allergen ?allergenLabel ?propertyLabel  " + 

      

// That fulfill these conditions: 

" WHERE { " + 

      

// The ingredient belongs to the Substance-class, the allergen belongs to the Allergen-

class and both resources have labels 

"  ?ingredient a ao:Substance . " + 

"    ?allergen a ao:Allergen . " + 

"    ?allergen rdfs:label ?allergenLabel . " + 

"  ?property rdfs:label ?propertyLabel . " + 

 

      

// AND meet at least one of these additional criterion: 

      

// The ingredient has a certain relationship to the allergen 

"  { " + 

"   ?ingredient ?property ?allergen . " + 

"   FILTER (?property = ao:contains ) " + 

"  } " + 



 

 96 

      

// OR the ingredient has an uncertain relationship to the allergen (i.e. the property 

linking them is a subproperty of may contain) 

"  UNION " + 

"  { " + 

"   ?ingredient ?property ?allergen . " + 

"   ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"  } " + 

      

// OR the ingredient has a certain relationship to a narrower version of the allergen  

"  UNION " + 

"  { " + 

"  ?allergen skos:narrowerTransitive  ?narrowerAllergen . " + 

"  ?narrowerAllergen a ao:Allergen . " + 

"   ?ingredient ?property ?narrowerAllergen . " + 

"   FILTER (?property = ao:contains ) " + 

"  } " + 

      

// OR the ingredient has an uncertain relationship to to a narrower version of the 

allergen  

"  UNION " + 

"  { " + 

"  ?allergen skos:narrowerTransitive  ?narrowerAllergen . " + 

"  ?narrowerAllergen a ao:Allergen . " + 

"   ?ingredient ?property ?narrowerAllergen . " + 

"   ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"  } " + 

      

// OR the ingredient has a certain relationship to a broader version of the allergen  

"  UNION " + 

"  { " + 

"  ?allergen skos:broaderTransitive  ?broaderAllergen . " + 

"  ?broaderAllergen a ao:Allergen . " + 

"   ?ingredient ?property ?broaderAllergen . " + 

"   FILTER (?property = ao:contains ) " + 

"  } " + 

      

// OR the ingredient has an uncertain relationship to a broader version of the allergen 

"  UNION " + 

"  { " + 

"  ?allergen skos:broaderTransitive  ?broaderAllergen . " + 

"  ?broaderAllergen a ao:Allergen . " + 

"   ?ingredient ?property ?broaderAllergen . " + 

"   ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"  } " + 

 

// Only include results where the ingredient resource has a certain URI 

"   FILTER ( ?ingredient = <" + querySolution.getResource("ingredient").toString() + "> 

) " ; 

 

// Only include results where the allergen is included in the current filter. 

// Iterate array of checked allergens to create filter clause 

if (allergensToBeHighlighted.length>0){ 

 nestedQueryString += "  FILTER ( "; 

 for (int i=0; i < allergensToBeHighlighted.length; i++) { 

  nestedQueryString +=  

" ?allergen = <" + allergensToBeHighlighted[i] + ">  " ; 

  if(i < (allergensToBeHighlighted.length - 1)){ 

   nestedQueryString += " || " ; 

  } 

 } 

 nestedQueryString += " ) "; 

} 

nestedQueryString += " } "; 

 

The allergens are stored as a list of Allergen objects belonging to the given ingredient. The 

nature of the relationship between the ingredient and the allergen is stored as a property of the 

Allergen object.  



 

 97 

 

The method sets the product bean’s ingredientList and returns. 

 

product.setIngredients(List<Ingredient> ingredients):void 

This method is a straightforward setter that doesn’t perform any additional operations.  

 

RdfHandler.initializeTailoredAllergenList(Product product):void 

This method initializes the product bean’s allergenList according to the current filter 

using SPARQL.   

 

// SPARQL SELECT query that returns a table of allergens that have a directly asserted 

relationship to the product and a verbal description of the relationship between the 

product and each allergen (produced alongside, may be contaminated by etc.). 

 

String queryString =  

prefixes+ 

    

// Select all distinct allergen resources, allergen labels and property labels 

" SELECT DISTINCT ?allergen ?allergenLabel ?propertyLabel " + 

    

// That fulfill these conditions: 

" WHERE { " + 

    

// The product belongs to the Product-class, the allergen belongs to the Allergen-class 

and both resources have labels 

"   ?product a ao:Product . " +   

"   ?allergen a ao:Allergen . " +  

"   ?allergen rdfs:label ?allergenLabel . " + 

" ?property rdfs:label ?propertyLabel . " + 

    

// AND meet at least one of these additional criterion: 

       

// The product has an uncertain relationship to the allergen (i.e. the property linking 

them is a subproperty of may contain) 

" { " + 

"     ?product ?property ?allergen . " + 

"  ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"   } " + 

    

// OR the product has an uncertain relationship to a narrower version of the allergen  

"  UNION " + 

"  { " + 

"  ?allergen skos:narrowerTransitive  ?narrowerAllergen . " + 

"  ?narrowerAllergen a ao:Allergen . " + 

"     ?product ?property ?narrowerAllergen . " + 

"  ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"  } " + 

    

// OR the product has an uncertain relationship to a broader version of the allergen  

"  UNION " + 

"  { " + 

"  ?allergen skos:broaderTransitive  ?broaderAllergen . " + 

"  ?broaderAllergen a ao:Allergen . " + 

"   ?product ?property ?broaderAllergen . " + 

"   ?property rdfs:subPropertyOf ao:mayContain . " + 

"   FILTER (?property != ao:mayContain ) " + 

"  } " + 

    

// Only include result where the product resource's URI correspond to the product 

object's URI 

"   FILTER ( ?product = <" + product.getUri() + "> ) " ;  

 



 

 98 

// Only include results where the allergen is included in the current filter. 

if (allergensToBeHighlighted.length>0){ 

queryString += "  FILTER ( "; 

 

 for (int i=0; i < allergensToBeHighlighted.length; i++) { 

  queryString +=  

" ?allergen = <" + allergensToBeHighlighted[i] + ">  " ; 

  if(i < (allergensToBeHighlighted.length - 1)){ 

   queryString += " || " ; 

  } 

 } 

 

 queryString += "  ) "; 

} 

queryString += "      }" ; 

 

 

The allergens are stored as an ordered list of Allergen objects. The nature of the 

relationship between the product and the allergen is stored as a property of the allergen object.  

 

The method sets the product bean’s allergenList and returns. 

 

product.setAllergens(List<Allergen> allergens):void 

This method is a straightforward setter that doesn’t perform additional operations.  

 

When the initializeTailoredIngredientList(Product product) method returns, 

the product.getStatus() method has the necessary data to determine the correct safety 

status of the given product for the given user and return it to the JSP layer. 

 

The JSP calls the product bean’s getters in order to access the ingredientList and 

allergenList. 

 

product.getIngredients():List<Ingredient> 

product.getAllergens():List<Allergen> 

These methods are straightforward getters that don’t perform additional operations.  

 

The JSP code iterates over the product bean’s ingredientList and presents their labels as 

a HTML list. For each ingredient, it then checks if the ingredient’s allergenList contains 

any allergen objects, and if so, these are presented in brackets with CSS-based coloring 

indicating whether the relationship is of a certain (red) or uncertain (yellow) nature. The JSP 

code proceeds to iterate over the product bean’s allergenList in order to display any 



 

 99 

allergen information that is directly related to the product (not via its ingredients). The 

resulting webpage is served to the browser. 

 

The system displays detailed information about the scanned product (Ref. use case step 

6a) 

 

Figure 37 Product details – Persona E 

 

 

For more details about the implementation, please refer to the attached source code. 

 

  



 

 100 

6.7 Discussion and future work 

The prototype is currently based on a small and centralized test dataset. The products in the 

dataset were handpicked to illustrate particular problems in order to verify that the algorithms 

would produce the expected results.  

 

6.7.1 Optimizing execution time 

If a user has checked many allergens (especially allergens that have broader or narrower 

forms) and proceeds to scan a product that has a very long ingredient list, the execution time 

to produce the page with detailed product information increases noticeably due to the 

increased number and complexity of the underlying SPARQL queries.  

 

Extensive logging and timing of the different parts of the algorithm could be performed in 

order to reveal more information about how the execution time develops as a function of the 

number of allergens the user has checked and the number of ingredients in the scanned 

product. Testing the application on real users and a more representative dataset would provide 

valuable information about how many allergens most users would typically check, and how 

many ingredients an average product contains, so that the algorithms could be optimized for 

the most likely scenarios. 

 

6.7.2 Enabling distributed data 

Moving on from one centralized data source to incorporate multiple distributed data sets 

wouldn’t necessary require fundamental changes in the application layer, given that the 

datasets rely on the same ontology and are considered trustworthy.  

 

Each RDF dataset constitutes a graph, and multiple graphs can indeed be merged together to 

form a new larger graph. The new graph could be serialized as before and used as the data 

source in the current prototype. 

 

Alternatively, the RDF datasets could be harvested regularly and maintained in a common 

specialized “triple store”. A SPARQL-endpoint could be set up and the application could be 

modified to run the queries against the SPARQL-endpoint instead of keeping the model in 



 

 101 

memory. This solution would require some changes in the application layer, but would 

probably scale better as the amount of data and number of requests increase. 

 

6.7.3 User testing 

The prototype should be tested on real users to see if any changes should be made to make it 

more usable. For instance, I suspect that the yellow color I have used to communicate that a 

product is uncertain, might be difficult to read for some. Fortunately, the layered architecture 

makes it easy to change the presentation layer (JSP and CSS) without changing the 

underlying algorithms. Moreover, the presentation of the user’s current settings and the menu 

presenting available actions are stored in separate JSP-files that can easily be reused and 

moved around by use of import statements. 

 

User testing could also determine what use-cases should be developed next, based on the 

users’ expectations to an application like this. 

 

6.7.4 Utilizing the smartphone camera as a barcode scanner 

Because the current prototype is implemented as a web application running in the browser, I 

was unable to utilize the built-in camera found in most smartphones as a scanner. Requiring 

users to manually type in GTIN codes or search for products by title would be too time 

consuming in the long run, and users may feel that they are better off reading the textual 

product declarations. Scanning of product barcodes is an essential feature in order to provide 

fast feedback about individual products and should therefore be provided in the future 

implementations of the decision support system.  

 

6.7.5 Serialization of user data 

The current prototype does not store users’ settings in-between sessions. Food sensitivity is a 

private matter, so the data should be handled with caution. In the future, the application 

should provide a secure login feature and offer to serialize user data when the user logs out. 

When the settings can be stored permanently, users will probably be willing to spend more 

time and effort setting up their profile. This would allow for more advanced options, such as 

elimination of particular vendors and specification of which warnings should be taken into 



 

 102 

account. Additional services such as a personalized newsletter with tips about safe products 

and campaigns could also be provided on the basis of the stored user profiles. 

 

6.7.6 Refined user profiles 

6.7.6.1 Facilitating a more accurate representation users’ of dietary needs 

In my prototype, I have sought to enable users to express their needs more accurately by 

providing an extended set of allergens and letting the user chose specific components of milk 

and specific types of nuts. The extended list of allergens is inspired by TORO’s labeling 

practice, where selected substances not included in Annex IIIa are labeled with particular care 

because they are known to cause adverse reactions in some individuals. It would be possible 

not only to let users “check” various allergens, but to specify whether trace amounts are OK 

or not for each instance. Persona A would probably check “Allow trace amounts” for gluten 

while Persona B would check “Zero tolerance” for the same substance. Such an adaptation 

would make the user interface slightly more complicated, but would enable more precise 

predictions about food safety for each individual. More products would be classified as either 

safe or unsafe, reducing the number of uncertain products that the user would need to assess 

manually. 

 

6.7.6.2 Providing support for other dietary needs 

The ontology could be extended to allow representation of additional product attributes, such 

as “organic”, “fair-trade”, “vegetarian”, “vegan”, “halal” and “kosher”. Based on this, the 

application layer could be adapted to facilitate the needs of other groups with special dietary 

needs and/or preferences.  

 

However, the proposed model is not suitable for evaluating whether products are “low-fat”, 

“low-carb”, “high protein” etc., because this would require quantification of ingredients 

beyond that which vendors are required to submit and subsequent calculation of whether the 

relative amount of a group of substances in within some ill-defined threshold. 

 



 

 103 

6.7.6.3 Sub-filters representing the needs of friends and family-members 

The application could be extended to let users operate multiple sub-filters, representing the 

dietary needs of particular friends and family members. Social features could be provided, 

enabling people to share their filters with each other. In the shopping situation, users could 

“check” people who are attending the meal they are planning from a list of “friends”, and 

have their respective filters combined. This would make it easier for people like Persona C to 

deal with multiple and changing dietary needs within a group and identify products that all the 

guests could safely eat.  

 

6.7.7 Open source API 

The same core dataset and algorithms could underpin online shops, apps for use in physical 

stores and vendors’ websites. The application layer containing the algorithms necessary to 

categorize the products for individual consumers based on their dietary needs could be made 

available as an open source package that different actors could build on when creating their 

own services. 

 



 

 104 

7 ESTABLISHING THE REQUIRED DATA SETS – DISCUSSION AND 

FUTURE WORK 

In the limited scope of my thesis, my main focus has been to provide proof of concept for the 

suggested model. In the previous chapters, I have demonstrated that it is possible to utilize 

Semantic Web standards to create an information system that provides on-demand feedback 

about product safety for individual people. My prototype relies on a small set of test data 

consisting of sample products chosen to exemplify some of the issues that the portrayed 

personas would typically experience. However, if my model were to be used in real life and 

on a larger scale, major issues concerning data acquisition strategies and data provenance 

would first need to be addressed. 

 

7.1 Establishing the authoritative data core 

7.1.1 Original strategy – semi-automated conversion of existing data source 

When I started working on this project, I remembered having seen an ingredient encyclopedia 

in booklet format, aimed at people with the most common food allergies. I took for granted 

that either governmental bodies or stakeholders in the research community would maintain an 

extensive data bank holding structured data about allergen occurrence in foods. Even though 

my preliminary research didn’t give evidence of any such large-scale data source, my hope 

was that one would exist for internal use somewhere, and that I could encourage the owner to 

make the data available for re-use through an open data license. 

 

If this had been the case, it would have been possible to utilize pre-existing tools such as 

D2RQ (Bizer, Cyganiak, Garbers, Maresch & Becker, 2009) to do a semi-automated 

conversion of data from existing formats (relational database, XML, etc.) to OWL and RDF. I 

had made successful use of this approach in a previous project (Holgersen, Preminger & 

Massey, 2012), and had hoped to build on this experience in the current project. The D2RQ-

based approach would involve manual mapping of the data source’ underlying data structure 

to the suggested ontology and subsequent batch conversion of instance data to RDF. 

However, since most data sources lack sufficient semantics to work outside of its original 

context, this approach would require a great deal of time-consuming manual proofing.  



 

 105 

 

I tried inquiring both the Norwegian Food Safety Authority (Mattilsynet) by e-mail and the 

National Register of Severe Allergic Reactions to Food (Matallergiregisteret) in a personal 

meeting – concerning existing structured data sources that could be used as a basis for the 

authoritative data core that underpins the suggested model. However, since none of them 

knew of any structured data sets that could be used for this purpose, I stopped pursuing this 

approach for the time being. 

 

7.1.2 Revised strategy – bottom up, frequency-based population  

Since my model relies heavily on semantics and automated deduction, the safest approach 

would probably be a more controlled “bottom up” strategy, where domain specialists 

manually assign allergens to every ingredient as it is entered into the data set.  

 

In order to make this task manageable, it would be possible to use ingredient frequency as a 

basis for prioritizing the order in which ingredients should be added to the model. Some 

ingredients occur in far more products than others, and some products are sold in much larger 

quantities than others. By combining these two factors, the occurrence of ingredients could be 

estimated and plotted. The frequencies would most likely follow a classical “long tail” 

distribution curve.  

 

It would be feasible to start by adding the high-frequent ingredients from the “head” of the 

distribution curve into the data set, and then continue systematically in descending order until 

the majority of ingredients were covered. For the least frequent ingredients it would make 

more sense to offer vendors a good interface for suggesting new ingredients that are lacking 

in the data set, than to go through them systematically. An extremely low frequency may 

indicate that an ingredient is simply a misspelled version of a more common ingredient. The 

expert team would need to evaluate the suggestions as they come in, and decide in each case 

whether the new ingredient should be added to the data set or not. If the new ingredient turns 

out to be synonymous with an existing ingredient, a same-as relation should be created 

between the two resources. The application layer should be adapted to warn users 

indiscriminately about products where one or more ingredients can’t be identified in the core 

data set because the expert team hasn’t analyzed them and assigned allergens to them yet. 



 

 106 

7.2 Selection of allergens 

Deciding which semantic entities should be represented in the datasets is a non-trivial 

process. Biochemists, medical doctors and laymen have different perceptions about what 

constitutes an allergen.  

 

In some cases, scientists have identified particular proteins or parts of proteins that account 

for the adverse reactions some people experience. Two people allergic to peanuts may even 

be sensitive towards different proteins occurring in peanuts. For most people, however, 

distinguishing between the different proteins would have no practical significance. The 

consequences would be the same in both cases – avoiding peanuts.  

 

In other cases, people experience adverse reactions to substances such as lactose, which is not 

actually an allergen in the medical sense. However, the practical consequence for a person 

suffering from severe lactose intolerance is the same as for people suffering from food 

allergies – eliminating the substance that causes the reaction.  

 

In the dataset developed for the purpose of the prototype, I therefore made a pragmatic choice 

of assigning all substances that users may want to eliminate due to either food allergy, food 

intolerance or coeliac disease to the Allergen class. 

 

In the dataset, I have represented allergens as they are listed in Annex IIIa – with the addition 

of more specific components of milk and specific types of and nuts. I believe that this is a 

conceptual level that most users would be familiar with and find useful. Inspired by Toro and 

Gilde, I have included additional allergens that are known to cause allergic reactions, but not 

currently included in Annex IIIa. The extended list of allergens enables users to provide a 

more accurate description of their dietary needs to the system. 

 

7.3 Semantic distinction between functionally equivalent ingredients 

In product declarations, the same ingredient term may refer to several different “things” in the 

real world. That is, there is no one to one relationship between terms and semantic entities.  

 



 

 107 

Examples  

 “Starch” may be derived from different foods such as wheat, corn or potato. 

 “Margarine” may be based on either milk fat or vegetable oils. 

 “Pesto” is traditionally made with pine nuts, but other types of nuts may occur. 

 

Most people would probably consider the different forms of an ingredient to be equivalent. 

For people with severe food sensitivities, however, the differences in origin and/or 

composition may be crucial. In the authoritative data core, generic ingredients like these 

therefore need to be represented as multiple RDF resources with identical labels. The different 

resources must be assigned appropriate relationships to allergens individually. RDF 

descriptions should be used to define the “scope” of each resource, so that vendor 

representatives composing the product descriptions are able to select the correct RDF 

resources.  

 

Moreover, vendors may lack sufficient documentation about the exact composition or origin 

of ingredients bought from suppliers. Different forms of the same ingredient may also be used 

interchangeably, because they serve the same function in the recipe. In the authoritative data 

core, each generic ingredient should therefore also be represented with an RDF resource that 

accounts for this type of uncertainty. All allergens that are known to occur in the various 

forms of the ingredient should be assigned to this RDF resource. Since end users only see the 

labels of the RDF resources, the differentiation between nearly equivalent “things” would not 

result in extra noise.  

 

7.4 Data quality and automated inference 

It is important to keep in mind that a Semantic Web based system cannot claim anything 

about the real world – only what follows from the statements contained in the model. If the 

data put into the model are of low quality, the automated deductions cannot be trusted. A 

singe error may propagate throughout the model as a consequence of the automatic inference. 

Measures must thus be taken to reduce the chances of erroneous assertions being added to the 

data sets and to ensure that any existing errors can be detected and addressed efficiently. 



 

 108 

7.5 Critical mass of product data 

In order to get users to adopt the proposed decision support system, the underlying datasets 

need to cover the majority of products available. If users scan products only to find that they 

are not included in the dataset, they will be frustrated and less likely to use the tool again. 

 

7.6 Reliable data, inference and algorithms 

Reliability is an absolute requirement for the proposed decision support system, since the 

consequences of giving misinformation about whether a product is safe for an allergic person 

is severe. If users can’t trust the system, it’s worthless. Both the datasets and the automated 

deductions made by the system needs to be trustworthy.  

 

7.7 User interface for data providers 

It is crucial that the people responsible for the various data sets are provided with a user-

friendly and efficient system for entering and maintaining data. Assigning RDF resources 

with SKOS hidden alternative labels would facilitate identification of resources through text-

based search. The system should aid users in selecting the correct RDF resources in cases 

where several nearly equivalent options are available, such as different variants of “starch” or 

“margarine”. This could be facilitated by SKOS-based references between related resources, 

allowing users to browse the model. The user interface should display relevant entailments of 

statements as they are added to the system. E.g. a vendor representative entering a product 

declaration, specifying that the product contains a particular ingredient, should be made aware 

that this implies that the product contains or may contain the allergens that are associated with 

the given ingredient.  

 

7.8 Facilitating efficient feedback from users to data providers 

It is important that users are able to report errors they encounter to the data providers in an 

efficient manner. Both the ontology and application layer should be extended to provide 

infrastructure to handle such feedback. Product-entries that have been reported as erroneous 

could be flagged with a warning until the issue has been resolved by the data providers. The 

warning could momentarily lead the product to be classified as uncertain (at best) for all 

users. 



 

 109 

 

7.9 Dealing with unreliable data providers 

Vendors known to provide inadequate or misleading data could be flagged as unreliable either 

by the Norwegian Food Safety Authority (Mattilsynet) or by patient organizations. The 

warnings could be transferred to all of the vendor’s products through automatic inference, 

leading the products to be classified as uncertain – regardless of whether the allergens 

specified by the user have any relationship to the products according to the inference model. 

Particularly unserious vendors could be blacklisted, leading all of their products to be 

classified as unsafe or simply eliminated from the data set.  

 

Users could be allowed to specify whether or not they want to take different types of warnings 

into account. Fewer people would probably be interested in warnings given by e.g. the 

Norwegian Coeliac Society than the Norwegian Food Safety Authority.  

 

7.10 RDF-based certificate specifying labeling practice  

Vendors follow different practices regarding allergen warnings. In an ideal world, all vendors 

could be required to follow the same standard. I believe that this would be unrealistic in 

practice, unless the standard was set quite low. It is clear that some vendors are more oriented 

towards customers with special dietary needs than others, and the extra allergen warnings and 

guarantees they provide should not be withheld for the sake of consistency.  

 

Instead, I propose that individual product declarations should be assigned with a RDF-based 

certificate, specifying which standard has been followed. The certificate should state which 

allergens the vendor has committed to warn about.  

 

The lowest permissible standard should require mandatory declaration of all allergens 

included in Annex IIIa, but no warnings about possible contaminants. Vendors like Toro and 

Gilde, who have chosen to specify trace amounts of additional substances, would specify this 

in the individual product certificates – regardless of whether the substances occur or not. This 

way, a customer who is allergic to e.g. paprika or citrus (which is not included in Annex IIIa) 

would know for certain whether these product are safe or not. Products from vendors who 

haven’t committed to label trace amounts of the given allergens could contain trace amounts 



 

 110 

without it being evident from the product declarations. These products would therefore be 

classified as uncertain (at best). The user should obviously be informed about the reason why 

the product has been classified as uncertain; “The vendor has not committed to label trace 

amounts of X. Trace amounts of X therefore cannot be ruled out.”. 

 

7.11 Incentivizing accurate allergen labeling  

Both under-use and over-use of allergen warnings is a problem. Since the proposed model is 

meant to be collaborative, such that different vendors and grocery stores contribute with their 

own data, it would be possible to allow individual users to eliminate products from vendors 

they don’t trust. Information about which vendors people consider trustworthy or not when it 

comes to food labeling and unexpected allergen occurrence spreads fast through social media. 

Conversely, over-use of allergen warnings will make users choose alternative products and 

thus decrease sales. It’s likely that at least the most sensitive people will opt for products 

classified as safe (green), instead of investigating the specific risk factors associated with a 

product classified as uncertain (yellow). The proposed model thus reinforces the competitive 

advantage of providing users with precise and exhaustive allergen information.  

 

7.12 Multilingual support 

Semantic Web standards are meant to capture the semantics of a domain in a way that 

computers are able to process. However, all RDF classes, properties and instances can be 

assigned textual labels in order to make the content more comprehensible to people. Literal 

values can optionally contain a standardized language tag, such as @no (Norwegian) or @en 

(English). SPARQL queries can filter results by the value of the language tag, thus 

disregarding labels in all but one language. RDF can therefore be an excellent basis for multi-

lingual applications. 

 

Persona B exemplifies a person who is unable to fully comprehend product descriptions given 

in Norwegian only. In the development of the prototype application, I therefore wanted to 

explore the multilingual potential of my proposed model. However, translating the 

rdfs:label of all resources and properties in the test data set would be too time consuming 

at this point. I therefore made the choice to provide both English and Norwegian labels for all 

Allergen resources and all properties that are rendered in the user interface, while leaving 



 

 111 

the language of Ingredient labels unspecified. The unspecified Ingredient labels are all 

in Norwegian because the dataset was constructed based on products with Norwegian 

labeling. The screen shots provided in this thesis therefore contain a mixture of Norwegian 

and English terms (i.e. English Allergen and property labels and 

Norwegian Ingredient labels.) 

 

The preferred language is currently specified once and for all in the application layer. In the 

future, users should obviously be allowed to choose which language they prefer. 

 

7.13 Multiple application layers based on the same data 

The cooperative model allows individual stakeholders to develop their own application layers, 

utilizing the authoritative data core in combination with other available data sets. Different 

applications may provide specialized features directed at their particular target audience. 

Some examples are features that aid the users’ ability to identify and retrieve products by 

searching and browsing, such as multi-facetted categorization of products with references to 

the products’ location in a specific physical store, references to other available safe products 

within the same category and full text search for both categories and individual products. 

Social features such as product ratings and reviews could help users when choosing between 

similar products. For commercial actors, in-app commercials, campaigns and pricing 

information could support business goals and increase sales.   



 

 112 

8 CONCLUSION  

In this thesis, I have shown that food sensitivities such as allergies, intolerances and coeliac 

disease lead to information needs in the shopping situation. Five personas, developed for the 

purpose of the project, were provided to illustrate the diversity of problematic situations and 

information needs experienced by people directly or indirectly affected by food sensitivities.  

Examples of various measures taken to aid these customers in their search for safe foods were 

given, followed by a discussion of their shortcomings seen from an information science 

perspective.  

 

An alternative approach based on Semantic Web technologies and Linked Data was proposed. 

I have argued that public authorities should establish and maintain an authoritative data core, 

representing knowledge about allergen occurrence in ingredients occurring in foods on the 

market. This would enable vendors to publish product descriptions as RDF with references to 

ingredient and allergen resources in the authoritative data core. Using transitive properties 

from the common domain ontology would reduce the need for manual assignment of 

allergens to individual products, because this could be automatically inferred from the 

allergen occurrence in the products’ ingredients. Grocery stores would in turn be able to 

utilize the available datasets to provide customized information services to their customers. 

The Linked Data approach calls for a comprehensive restructuring of the cooperation between 

the various players in the food industry.  

 

The proposed model underpins a decision support system that automatically classifies 

products as safe, uncertain or unsafe for individual users, and communicates the safety status 

using familiar traffic light colors. Information that is likely to influence the user’s manual 

assessment of uncertain products is emphasized – while other facts are held back to avoid 

“information overload”. Information loss between the vendor and end user is limited by 

offering a wide range of properties to express the nature of the relationships between products 

or ingredients and allergens. An extended and hierarchically structured list of allergens 

available for selection in the user interface enables users to express their dietary need with 

greater accuracy, thus enabling better prediction of product safety for each person. 

 



 

 113 

A proof of concept for the decision support system has been provided through a prototype 

web application. The development process behind the ontology and application layer has been 

discussed in detail, followed by a discussion of how the required authoritative data core and 

vendor datasets could be established and quality assured. Suggestions for future work 

regarding particular aspects of the ontology, application layer and datasets were discussed in 

the respective chapters. 

 

The prototype application is available for testing at http://ekko.hioa.no:8090/Prototype/ as of 

June 2013. The source code is attached at the end of the thesis.  

 

There is still a long way to go before the decision support system could be made available to 

people with food sensitivities, mainly because the required datasets are not available at this 

point. However, I hope that my work will inspire industry actors to focus on semantics, 

standardization and open data in the future, and that emerging information services will be 

based on a thorough understanding of users’ information needs. 

 

 

 

 

 

 

 

http://ekko.hioa.no:8090/Prototype/


 

 114 

9 REFERENCE LIST 

 

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist: Effective 

Modeling in RDFS and OWL (2nd ed.). Amsterdam: Elsevier. 

 

Apache Jena. (n.d.). Reasoners and rule engines: Jena inference support. Retrieved June 6, 

2013, from http://jena.apache.org/documentation/inference/ 

 

Belkin, N. J. (2005). Anomalous State of Knowledge. In K. E. Fisher, S. Erdelez and L. 

McKechnie (Eds.), ASIST monograph series: Theories of information behavior (pp. 

44-48). Medford, N.J.: Published for the American Society for Information Science 

and Technology by Information Today. 

 

Berners-Lee, T. (2006). Linked Data. Retrieved June 6, 2013, from 

http://www.w3.org/DesignIssues/LinkedData.html 

 

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. In Scientific American 

Magazine, May 2001. Retrieved June 6, 2013, from 

http://www.scientificamerican.com/article.cfm?id=the-semantic-web 

 

Bizer, C., Cyganiak, R., Garbers, J., Maresch, O., Becker, C. (2009). The D2RQ Platform 

v0.7: Treating Non-RDF Relational Databases as Virtual RDF Graphs. [User Manual 

and Language Specification]. Retrieved June 6, 2013, from http://www4.wiwiss.fu-

berlin.de/bizer/d2rq/spec/20090810/ 

 

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International 

Journal on Semantic Web and Information Systems (IJSWIS), 5(3), 1-22. 

doi:10.4018/jswis.2009081901 

 

Bolle, R. (2012). Reaksjoner på mat – et folkehelseproblem med mange uttrykksformer. 

Helserådet rapport, 20, 3-12. 

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/20090810/
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/20090810/


 

 115 

 

Bueso, A. (2012a). Merking av allergener i mat. Helserådet rapport, 20, 28-29. 

 

Bueso, A. (2012b). Nordisk tilsynsrapport viser feilmerking. Helserådet rapport, 20, 29-30. 

 

Coop. (2013). Nyheter: Coop fjerner gluten fra alle sine panerte svineprodukter [Press 

release]. Retrieved May 7, 2013, from https://coop.no/Om-

Coop/Nyheter/?prId=828183&type=pressrelease   

 

Druzdzel, M. J., & Flynn, R. R (2012). Decision Support Systems. In M. J. Bates (Ed.), 

Understanding information retrieval systems: management, types, and standards (pp. 

461-472). Boca Raton, FL : CRC Press. 

 

European Parliament, Council. (2000). Directive 2000/13/EC of the European Parliament and 

of the Council of 20 March 2000 on the approximation of the laws of the Member 

States relating to the labeling, presentation and advertising of foodstuffs. Retrieved 

April 30, 2013, from http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02000L0013-

20110120:EN:NOT 

 

Forskrift om glutenfrie varer. (2009). Forskrift om sammensetning og merking av 

næringsmidler til personer med glutenintoleranse. Retrieved June 6, 2013, from 

http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20090710-0999.html 

 

Gilde. (n.d.). Go' og Mager Leverpostei. Retrieved May 9, 2013 from 

http://www.gilde.no/posteier/go-og-mager-leverpostei-article23930-10190.html 

 

Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space (1st 

edition). Morgan & Claypool Publishers. 

doi:10.2200/S00334ED1V01Y201102WBE001 

 

Hebler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2009). Semantic web programming. 

Indianapolis, Ind. : Wiley. 



 

 116 

 

Hepp, M. (2011). GoodRelations Language Reference. Retrieved June 6, 2013, from 

http://purl.org/goodrelations/v1 

 

Holgersen, R., Preminger, M., & Massey, D. (2012). Using Semantic Web Technologies to 

Collaboratively Collect and Share User-Generated Content in Order to Enrich the 

Presentation of Bibliographic Records : Development of a Prototype Based on RDF, 

D2RQ, Jena, SPARQL and WorldCat’s FRBRization Web Service. Code4Lib Journal 

(17). Retrieved June 1, 2013, from http://journal.code4lib.org/articles/6695 

 

IFLA Study Group on the Functional Requirements for Bibliographic Records. (2009). 

Functional Requirements for Bibliographic Records: Final Report (Rev. ed.). 

Retrieved June 7, 2013, from http://www.ifla.org/files/cataloguing/frbr/frbr_2008.pdf 

 

Internkontrollforskriften for næringsmidler. (1994). Forskrift om internkontroll for å oppfylle 

næringsmiddellovgivningen (Internkontrollforskriften for næringsmidler). Retrieved 

June 6, 2013, from http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-19941215-

1187.html 

 

Jackson, J. C. (2007). Web Technologies: A Computer Science Perspective. Upper Saddle 

River, N.J. : Pearson/Prentice Hall. 

 

Jena: A Semantic Web Framework for Java. (n.d.). Retrieved June 6, 2013, from 

http://jena.sourceforge.net/ 

 

Lancaster, F. W. (1991). Indexing and abstracting in theory and practice. London: Library 

Association. 

 

Løvik, M. (2012a). Hvordan bestemmes marking av allergener i mat?. Helserådet rapport, 

20, 27-28. 

 

Løvik, M. (2012b). Ny mat, nye allergiar. Helserådet rapport, 20, 15-16. 

 



 

 117 

Mathiassen, L., Munk-Madsen, A., Nielsen, P. A., & Stage, J. (2000). Object Oriented 

Analysis & Design (3rd ed.). Ålborg: Marko.  

 

Matloven. (2003). Lov om matproduksjon og mattrygghet mv. (matloven). Retrieved June 6, 

2013, from http://www.lovdata.no/all/hl-20031219-124.html 

 

Mattilsynet. (2012). Nordisk tilsynsprosjekt 2010 - 2012 allergenmerking : Norsk rapport. 

Retrieved May 2, 2013, from 

http://www.mattilsynet.no/mattilsynet/multimedia/archive/00080/Norsk_sluttrapport_t

_80153a.pdf 

 

Mattilsynet. (2013). Matallergi - merking av matvarer. Retrieved April 30, 2013, from 

http://www.matportalen.no/rad_til_spesielle_grupper/tema/allergikere/matallergi_-

_merking_av_matvarer 

 

McBride, B. (2010). An Introduction to RDF and the Jena RDF API. Retrieved May 29, 

2011, from http://jena.sourceforge.net/tutorial/RDF_API/index.html 

 

Merkeforskriften. (1993). Forskrift om merking mv av næringsmidler. Retrieved June 6, 2013 

from http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-19931221-1385.html 

 

NAAF. (2013). CheckContent. Retrieved June 6, 2013, from 

http://www.naaf.no/no/aktuelt/Nyhetsarkiv/CheckContent/ 

 

NCF. (2013). App for allergikere. Retrieved May 10, 2013, from 

http://www.ncf.no/Nyheter/App-for-allergikere.aspx 

 

NHO Mat og drikke. (2012). Pressemelding: Allergener [Press release]. Retrieved May 7, 

2013, from 

http://www.nhomatogdrikke.no/article.php/category/Pressemeldinger/article/Presseme

lding%3A%20Allergener/?articleID=764&categoryID=264 

 



 

 118 

Næringsmiddelhygieneforskriften. (2008). Forskrift om næringsmiddelhygiene 

(næringsmiddelhygieneforskriften). Retrieved June 6, 2013, from 

http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20081222-1623.html 

 

CheckContent. (n.d.). Retrieved May 20, 2013 from www.checkcontent.no 

 

Ongstad, P. (1987). Hva er informasjon? Transcript of speech presented NSI’s info-

konferanse, Norway. 

 

Protégé. (n.d.). What is protégé?. Retrieved June 6, 2013, from 

http://protege.stanford.edu/overview/ 

 

Segaran, T., Evans, C., & Taylor, J. (2009). Programming the Semantic Web. Sebastopol, 

Calif. : O'Reilly. 

 

Senter for sjeldne diagnoser. (2012). PKU (Fenylketonuri). Retrieved May 8, 2013, from 

http://www.sjeldnediagnoser.no/?k=PKU%20Fenylketonuri%20&aid=8731 

 

Toro. (n.d.). Om Toro. Retrieved May 7, 2013, from http://www.toro.no/om-toro/Om_TORO 

 

W3C. (2004a). OWL Web Ontology Language  Guide: W3C Recommendation. Retrieved 

June 6, 2013, from http://www.w3.org/TR/2004/REC-owl-guide-20040210/ 

 

W3C. (2004b). OWL Web Ontology Language Reference: W3C Recommendation. Retrieved 

June 6, 2013, from http://www.w3.org/TR/owl-ref/ 

 

W3C. (2004c). RDF Primer: W3C Recommendation. Retrieved June 6, 2013, from 

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ 

 

W3C. (2006). Defining N-ary Relations on the Semantic Web: W3C Working Group Note. 

Retrieved June 6, 2013, from http://www.w3.org/TR/swbp-n-aryRelations/ 

 



 

 119 

W3C. (2008). SPARQL Query Language for RDF: W3C Recommendation. Retrieved June 6, 

2013, from http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ 

 

W3C. (2009a). SKOS Simple Knowledge Organization System Primer: W3C Working Group 

Note. Retrieved June 6, 2013, from http://www.w3.org/TR/skos-primer/ 

 

W3C. (2009b). SKOS Simple Knowledge Organization System Reference: W3C 

Recommendation. Retrieved June 6, 2013, from http://www.w3.org/TR/skos-

reference/ 

 

Wandel, M. (1997). Food labeling from a consumer perspective. British Food Journal, 99(6), 

212-219. doi:10.1108/00070709710181559 

 

Wersig, G. (1971).  Information – Kommunikation – Dokumentation. Pullach bei Munchen: 

Verlag Dokumentation. 



RdfHandler.java

package myBeans;

import java.io.InputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.log4j.Logger;
import com.hp.hpl.jena.ontology.OntModel;
import com.hp.hpl.jena.ontology.OntModelSpec;
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.Syntax;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.util.FileManager;

public class RdfHandler {

// Status indicator
private static boolean classInitialized = false;

// Logging class
private static Logger classLogger = Logger.getLogger("myBeans.rdfHandler");

// Data source - ontology and instances serialized by Protegé
private static String dataSource = "/home/michaelp/Graph20130516kl0044.owl"; // Linux server
// private static String dataSource = "C:\\Users\\Michael\\Downloads\\Graph20130516kl0044.owl"; // Windows server
// private static String dataSource = "/Users/ragnhildholgersen/Documents/innlevering/Prototype/Graph20130516kl0044.owl"; // Devlopment environment 
private static String prefixes; // Prefixes used in SPARQL-queries

// Display language
private static String displayLanguage = "en"; // "en" or "no" supported

// Ontology models
private static OntModel basicModel; // Model containing asserted statements
private static OntModel inferenceModel; // Same model as above, but with inference.

// Allergens and Products from data set
private static Map<String, Allergen> allergensMap; // Used for look-up by URI

Page 1



RdfHandler.java

private static List<Allergen> allergens; // Used for alphabetized presentation
private static Map<String, Product> productsMap; // Used for look-up by URI

private static boolean initializeRdfHandlerClass() { 
// This method prepares the class to handle requests from Java Beans

openDataSourceAndCreateModels();
setAllergensMap();
setAllergens();
setProductsMap();

// Update the flag to indicate that the class has been initialized
return classInitialized=true;

}

private static void openDataSourceAndCreateModels() {
// This method opens the data source (currently a OWL file)

// Open the data source 
InputStream inputStream = FileManager.get().open(dataSource);
if (inputStream == null) {

throw new IllegalArgumentException("File: " + dataSource + " not found");
}

// Create an empty Jena ontology model and initialize it with the data set from the OWL-file
basicModel = ModelFactory.createOntologyModel();
basicModel.read(inputStream, null);

// Define prefixes used in the subsequent SPARQL-queries
prefixes = 

" prefix ao: <http://www.inferenceTest.owl#> " +
" prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  " +
" prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>  " +
" prefix list:  <http://jena.hpl.hp.com/ARQ/list#> " +
" prefix skos:  <http://www.w3.org/2004/02/skos/core#> ";

constructAndAddAdditionalStatements();
createInferenceModel();

}

private static void constructAndAddAdditionalStatements() {
// This method adds some additional statements needed to simplify subsequent SPARQL queries

Page 2



RdfHandler.java

addContainsRelationsBetweenProductsAndTheirListedIngredients();
addContainsRelationsBetweenResourcesAndThemselves();

}

private static void addContainsRelationsBetweenProductsAndTheirListedIngredients() {
// This method adds direct contains-relations between products and the ingredients in their respective ingredient lists to the basic model

// SPARQL CONSTRUCT query
String constructString =

prefixes +

" CONSTRUCT { " +
"   ?product ao:contains ?ingredient . " +
" } " +

" WHERE { " +
"   ?product a ao:Product . " +
"   ?product ao:hasIngredientList ?ingredientList . " +
"   ?ingredientList list:member ?ingredient . " + 
"   } " ;

// Create the query
Query query = QueryFactory.create(constructString, Syntax.syntaxARQ);

// Execute the query against the basic model
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Initialize a new model with the resulting graph
Model productContainsItsIngredientsStatements = queryExecution.execConstruct();

// Add the new model to the basic model
basicModel.add(productContainsItsIngredientsStatements);

}

private static void addContainsRelationsBetweenResourcesAndThemselves() {
// This method adds statements to the basic model that in effect make contains a reflexive property

// SPARQL CONSTUCT query
String constructString =

prefixes +

" CONSTRUCT { " +
"   ?a ao:contains ?a . " +
" } " +

Page 3



RdfHandler.java

" WHERE { " +
"  { ?a a ao:Substance } UNION { ?a a ao:Allergen }  " +
" } " ;

// Create the query
Query query = QueryFactory.create(constructString, Syntax.syntaxARQ);

// Execute the query against the basic model
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Initialize a new model with the resulting graph
Model substancesContainThemSelvesStatements = queryExecution.execConstruct();

// Add the new model to the basic model
basicModel.add(substancesContainThemSelvesStatements);

}

private static void createInferenceModel() {
// This method initializes a second ontology model based on the basic model, but with a reasoner that performs additional inference

inferenceModel = ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM_MICRO_RULE_INF, basicModel);
classLogger.debug("OWL_MEM_MICRO_RULE_INF: " + inferenceModel.size() + " ");

}

private static void setAllergensMap() { 
// This method initiates the static map of allergens by querying the basic model

// The allergen map has URI as key
allergensMap =  new HashMap<String, Allergen>();

// SPARQL SELECT query
String queryString = 

prefixes +

" SELECT DISTINCT ?allergen ?label " +

" WHERE { " +
" ?allergen a ao:Allergen . " +
" ?allergen rdfs:label ?label . " +
" FILTER (lang (?label) = '" + displayLanguage + "') " +

" } " +

Page 4



RdfHandler.java

" ORDER BY ASC(?label) ";

// Create the query
Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);

// Execute the query against the basic model
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Put the results into the allergens map
try {

ResultSet resultSet = queryExecution.execSelect() ;

while (resultSet.hasNext()) {

QuerySolution querySolution = resultSet.nextSolution();

// Create a new allergen object
Allergen allergen = new Allergen (querySolution.getResource("allergen").toString(), querySolution.getLiteral("label").getValue().toString

(), "Description of the allergen....");

// SPARQL SELECT query that returns any narrower allergens
String nestedQueryString = 

prefixes+

" SELECT  ?narrowerAllergen ?label " +

" WHERE  { " +
" ?allergen a ao:Allergen . " +
" ?narrowerAllergen a ao:Allergen . " +
" ?allergen skos:narrowerTransitive ?narrowerAllergen . " +
" ?narrowerAllergen rdfs:label ?label . " +
"  FILTER ( ?allergen = <" + allergen.getUri() + "> ) .  " +
" FILTER (lang (?label) = '" + displayLanguage + "') " +
" } " +

"ORDER BY ASC(?label) ";

// Create the query
Query nestedQuery = QueryFactory.create(nestedQueryString, Syntax.syntaxARQ);

// Execute the query against the inference model
QueryExecution nestedQueryExecution = QueryExecutionFactory.create(nestedQuery, inferenceModel);

// Go through the result set 
try {

Page 5



RdfHandler.java

ResultSet nestedResultSet = nestedQueryExecution.execSelect() ;
ArrayList<Allergen> narrowerAllergens = new ArrayList<Allergen>();
while (nestedResultSet.hasNext()) {

QuerySolution nestedQuerySolution = nestedResultSet.nextSolution();
// Create a new object representing the narrower allergen and add it to the list
Allergen narrowerAllergen = new Allergen(nestedQuerySolution.getResource("narrowerAllergen").toString(), 

nestedQuerySolution.getLiteral("label").getValue().toString(), "Description of the allergen...");
narrowerAllergens.add(narrowerAllergen);

}
// Set the original allergen's list of narrover allergens
allergen.setNarrowerAllergens(narrowerAllergens);

}

finally { 
nestedQueryExecution.close(); 

}

// SPARQL SELECT query that returns any broader allergens 
nestedQueryString = 

prefixes+

" SELECT  ?broaderAllergen ?label " +

" WHERE { " +
" ?allergen a ao:Allergen . " +
" ?broaderAllergen a ao:Allergen . " +
" ?allergen skos:broaderTransitive ?narrowerAllergen . " +
" ?broaderAllergen rdfs:label ?label . " +
"  FILTER ( ?allergen = <" + allergen.getUri() + "> ) .  " +
" FILTER (lang (?label) = '" + displayLanguage + "') " +
" } " +

"ORDER BY ASC(?label) ";

// Create the query
nestedQuery = QueryFactory.create(nestedQueryString, Syntax.syntaxARQ);

// Execute the query against the inference model
nestedQueryExecution = QueryExecutionFactory.create(nestedQuery, inferenceModel);

// Go through the result set 
try {

ResultSet nestedResultSet = nestedQueryExecution.execSelect();
ArrayList<Allergen> broaderAllergens = new ArrayList<Allergen>();
while (nestedResultSet.hasNext()) {

Page 6



RdfHandler.java

QuerySolution nestedQuerySolution = nestedResultSet.nextSolution();
// Create a new object representing the broader allergen and add it to the list
Allergen broaderAllergen = new Allergen(nestedQuerySolution.getResource("broaderAllergen").toString(), 

nestedQuerySolution.getLiteral("label").getValue().toString(), "Description of the allergen...");
broaderAllergens.add(broaderAllergen);

}
// Set the original allergen's list of broader allergens
allergen.setBroaderAllergens(broaderAllergens);

}

finally { 
nestedQueryExecution.close(); 

}

// Add the allergen object to the map of all allergens
allergensMap.put(allergen.getUri(), allergen);

}
} 
finally { 

queryExecution.close(); 
}

}

public static Map<String, Allergen> getAllergensMap() { 
// This method returns the allergens map

// Check if the class has been initialized. If not, call the method that does.
if (!classInitialized) {

initializeRdfHandlerClass();
}

return allergensMap;
}

private static void setAllergens() {
// This method initializes the ordered list of allergen objects
allergens = new ArrayList<Allergen>();

// Go through the allergens map and add the allergen objects to the allergen list 
for (Map.Entry<String, Allergen> entry : allergensMap.entrySet()) {

allergens.add(entry.getValue());
}

Page 7



RdfHandler.java

// Sort the list of allergen objects according to the specification given in the allergen object (by the allergens' label)
Collections.sort(allergens);

}

public static List<Allergen> getAllergens() {
// This method returns the list of allergen objects
return allergens;

}

private static void setProductsMap() { 
// This method initializes the static map of product objects by querying the basic model

productsMap = new HashMap<String, Product>();

// SPARQL SELECT query that returns basic information about all products in the basic model
String queryString = 

prefixes+

" SELECT ?product ?label ?brand ?brandLabel ?description " +

" WHERE { " +
" { " +
"   ?product a ao:Product . " +
" ?product rdfs:label ?label . " +
"   ?product ao:hasBrand ?brand . " +
"   ?brand rdfs:label ?brandLabel . " +
" ?product ao:hasProductDescription ?description . " +
" } " +
" FILTER (BOUND(?description)) " +
" } " +
"ORDER BY ASC(?label)" ;

// Create the query
Query query = QueryFactory.create(queryString); 

// Execute the query against the basic model
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Go through the result set
try {

ResultSet results = queryExecution.execSelect() ;

while (results.hasNext()) {
QuerySolution querySolution = results.nextSolution() ;
// Create a new product object and add it to the product map

Page 8



RdfHandler.java

Product p = new Product(querySolution.getResource("product").toString(), querySolution.getLiteral("label").getValue().toString(), 
querySolution.getLiteral("description").getValue().toString(), querySolution.getResource("brand").toString(), querySolution.getLiteral
("brandLabel").getValue().toString());

productsMap.put(p.getUri(), p);
}

} finally { 
queryExecution.close(); 

}
}

public static void categorizeProductsForSpecificUserBasedOnAllergenOccurence (User user) {
// This method categorizes all products into three categories (safe, uncertain and unsafe) based on a given user's settings

// Get the user's settings (i.e. the allergens selectd in the JSP-layer
String[] allergensToBeHighlighted = user.getAllergensToBeHighlighted();

// Categorize the products for the given user by constructing sub-graphs
Model allProductsGraph = constructSubGraphOfAllProducts();
Model unsafeProductsGraph = constructSubGraphOfAllUnsafeProducts(allergensToBeHighlighted);
Model uncertainProductsGraph = constructSubGraphOfAllUncertainProducts(allergensToBeHighlighted, unsafeProductsGraph );
Model safeProductsGraph = constructSubGraphOfAllSafeProducts(allProductsGraph, unsafeProductsGraph, uncertainProductsGraph);

// Create an ordered list for each category 
List<Product> unsafeProducts = createProductList(unsafeProductsGraph, "unsafe");
List<Product>  uncertainProducts = createProductList(uncertainProductsGraph, "uncertain");
List<Product>  safeProducts = createProductList(safeProductsGraph, "safe");

classLogger.debug("Safe: " + safeProducts.size() + " ");
classLogger.debug("Uncertain: " + uncertainProducts.size() + " ");
classLogger.debug("Unsafe: " + unsafeProducts.size() + " ");
classLogger.debug("Total: " + safeProducts.size()+uncertainProducts.size()+unsafeProducts.size() + " \n");

// Set the corresponding lists in the calling user bean
user.setUnsafeProducts(unsafeProducts);
user.setSafeProducts(safeProducts);
user.setUncertainProducts(uncertainProducts);

}

private static Model constructSubGraphOfAllProducts() {
// This method constructs a sub-graph of all products in the inference model

Page 9



RdfHandler.java

// SPARQL CONSTRUCT query that generates a graph of all products found in the inference model
String constructString =

prefixes+

" CONSTRUCT { " +
"   ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +
"   ?product ao:hasBrand ?brand . " +
" } " +

" WHERE  " +
"   { " +
"   ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +
"   ?product ao:hasBrand ?brand . " +
"   } " ;

// Create the query
Query query = QueryFactory.create(constructString, Syntax.syntaxARQ);

// Execute the query against the inference model and put the resulting graph in a new Jena model
QueryExecution queryExecution = QueryExecutionFactory.create(query, inferenceModel);
Model allProductsGraph = queryExecution.execConstruct();

// Return the sub-graph of all products
return allProductsGraph;

}

private static Model constructSubGraphOfAllUnsafeProducts(String[] allergensToBeHighlighted) {

if (allergensToBeHighlighted.length==0) {
Model empty = ModelFactory.createDefaultModel();
return empty;

}

// This method constructs a sub-graph of all products that are unsafe, i.e. the product itself or at least one of its ingredients has a certain 
relationship to (i.e. contains) one or more of the supplied allergens.

// SPARQL CONSTRUCT that generates a sub-graph of all unsafe products in the inference model
String constructString = 

prefixes+

// Construct a graph of products and their respective labels

Page 10



RdfHandler.java

" CONSTRUCT { " +
"   ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +
" } " +

// That fulfill these conditions:
" WHERE { " +
"   { " +
// The product resources belong to the product class and have a label...
"   ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +

// AND meet at least one of these additional criterion:

// The product contains the allergen
"   { " +
"   ?product ao:contains ?allergen . " + 
"   } " +
// OR the product contains a broader variant of the allergen  
"   UNION " +
" { " + 
"   ?product ao:contains ?broaderAllergen . " + 
" ?broaderAllergen skos:narrowerTransitive ?allergen . " +
" ?broaderAllergen a ao:Allergen . " +
"   } " +
// OR the product contains a narrower variant of the allergen
"   UNION " +
" { " + 
"   ?product ao:contains ?narrowerAllergen . " + 
" ?allergen skos:narrowerTransitive ?narrowerAllergen . " +
" ?narrowerAllergen a ao:Allergen . " +
"   } " +
"   } " ;

// Finally, narrow down the resulting graph to include only matches where the allergen URI correspond to an allergen in the submitted array
if (allergensToBeHighlighted.length>0){

constructString += 
"  FILTER ( ";

for (int i=0; i < allergensToBeHighlighted.length; i++) {
constructString += " ?allergen = <" + allergensToBeHighlighted[i] + "> ";
if(i < (allergensToBeHighlighted.length - 1)) {  

constructString += " || " ; 
}

}
constructString += " ) ";

Page 11



RdfHandler.java

}
constructString += " } ";

classLogger.debug("Construct-string: " + constructString + "\n");

// Create the query
Query query = QueryFactory.create(constructString, Syntax.syntaxARQ);

// Execute the query against the inference model and put the resulting sub-graph in a new Jena graph
QueryExecution queryExecution = QueryExecutionFactory.create(query, inferenceModel);
Model unsafeProductsGraph = queryExecution.execConstruct();

// Return the sub-graph of unsafe products
return unsafeProductsGraph;

}

private static Model constructSubGraphOfAllUncertainProducts(String[] allergensToBeHighlighted, Model unsafeProductsGraph) {
// This method constructs a sub-graph of all products that are uncertain, i.e. the product itself or at least one of its ingredients has an 

uncertain relationship at least of the supplied allergens.

if (allergensToBeHighlighted.length==0) {
Model empty = ModelFactory.createDefaultModel();
return empty;

}

// SPARQL CONSTRUCT that generates a sub-graph of all uncertain products in the inference model
String constructString =

prefixes+

// Construct a graph of products and their respective labels
" CONSTRUCT { " +
" ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +
" } " 
+
// That fulfill these conditions:
" WHERE { " +
// The product resources belong to the product class and have a label...
"   { " +
"   ?product a ao:Product . " +
"   ?product rdfs:label ?label . " +
"   } " +

// AND meet at least one of these additional criterion:
"   { " +   

Page 12



RdfHandler.java

// The product has an uncertain relationship to the allergen
"   { " +
"   ?product ao:mayContain ?allergen . " + 
"   } " +

// OR the product has an uncertain relationship to a broader or narrower variant of the allergen
"   UNION " +
"   { " + 
"   ?product ao:mayContain ?allergenVariant  . " + 
"  ?allergen a ao:Allergen . "+
" { " +
" { ?allergenVariant skos:narrowerTransitive ?allergen . } " +
" UNION " +
" { ?allergenVariant skos:broaderTransitive ?allergen . } " +
" UNION " +
"   { FILTER ( ?allergenVariant = ?allergen ) } " +
" } " +
" } " +

// OR the product has a certain relationship to at least one substance that in turn has an uncertain relationship to the allergen
"   UNION " +
"   { " +
"   ?product ao:contains ?substance . " +
" ?substance ao:mayContain ?allergenVariant ." +
"  ?allergen a ao:Allergen . "+
" { " +
" { ?allergenVariant skos:narrowerTransitive ?allergen . } " +
" UNION " +
" { ?allergenVariant skos:broaderTransitive ?allergen . } " +
" UNION " +
"   { FILTER ( ?allergenVariant = ?allergen ) } " +
" } " +
" } " +
" } " ;

// Finally, narrow down the resulting graph to include only matches where the allergen URI correspond to an allergen in the submitted array
if (allergensToBeHighlighted.length>0){

constructString += 
"  FILTER ( ";

for (int i=0; i < allergensToBeHighlighted.length; i++) {
constructString += " ?allergen = <" + allergensToBeHighlighted[i] + ">  ";
if(i < (allergensToBeHighlighted.length - 1)){  constructString += " || " ; }

}
constructString +="  ) ";

Page 13



RdfHandler.java

}
constructString += " } ";

classLogger.debug("Construct-string: " + constructString);

// Create the query
Query query = QueryFactory.create(constructString, Syntax.syntaxARQ);

// Execute the query against the inference model and put the resulting sub-graph in a new Jena graph
QueryExecution queryExecution = QueryExecutionFactory.create(query, inferenceModel);
Model uncertainProductsGraph = queryExecution.execConstruct();

// Remove all products that are already classified as uncertain 
uncertainProductsGraph=uncertainProductsGraph.difference(unsafeProductsGraph);

// Return the sub-graph of uncertain products
return uncertainProductsGraph;

}

private static Model constructSubGraphOfAllSafeProducts(Model allProductsGraph, Model unsafeProductsGraph, Model uncertainProductsGraph) {
// This method constructs a sub-graph of all products that are safe, i.e. neither the product itself or any of its ingredients have any 

relationship to any of the specified allergens

// The sub-graph of safe products is found by taking the difference between the graph containing all products and the two graphs containing unsafe 
and uncertain products.

Model safeProductsGraph = allProductsGraph.difference(unsafeProductsGraph);
safeProductsGraph = safeProductsGraph.difference(uncertainProductsGraph);

// Return the sub-graph of safe products
return safeProductsGraph;

}

private static List<Product> createProductList(Model graph, String status) {
// This method returns an ordered list of product objects by querying the supplied graph. 
// The status variable indicates whether the supplied graph consists of safe, uncertain or unsafe products.
// The status is set in each product object, enabling CSS-based formatting communicating products safety with traffic light colors.

List<Product> productList= new ArrayList<Product>();

// SPARQL SELECT query that returns all product resources and their labels
String queryString =

prefixes +

" SELECT ?product ?label " +

Page 14



RdfHandler.java

" WHERE { " +
"   ?product a ao:Product . " +
" ?product rdfs:label ?label . " +
" } " +

" ORDER BY ASC(?label) " ;

// Create the query
Query query = QueryFactory.create(queryString); 

// Execute the query against the supplied graph
QueryExecution queryExecution = QueryExecutionFactory.create(query, graph);

// Go through the result set, create product objects and add them to the product list
try {

ResultSet results = queryExecution.execSelect() ;

while (results.hasNext()) {
QuerySolution querySolution = results.nextSolution() ;
// Create a new product object and set its status
Product p = new Product(querySolution.getResource("product").toString(), querySolution.getLiteral("label").getValue().toString()) ;
p.setStatus(status);
productList.add(p);

}

} finally { 
queryExecution.close(); 

}

// Return the product list
return productList;

}

public static void initializeBasicInfoAboutProduct(Product product) {
// This method initializes the submitted product object with values from the corresponding product object in the static product map 

if(productsMap.get(product.getUri())!=null) {
product.setLabel(productsMap.get(product.getUri()).getLabel());
product.setDescription(productsMap.get(product.getUri()).getDescription());
product.setBrand(productsMap.get(product.getUri()).getBrand());
product.setBrandLabel(productsMap.get(product.getUri()).getBrandLabel());

}
}

public static void initializeDetaliedInfoAboutProductContentAndAllergens(Product product) {

Page 15



RdfHandler.java

// This method initializes the submitted product object with detailed information about ingredients and allergen occurrence according to the its 
current filter

initializeTailoredIngredientList(product);
initializeTailoredAllergenList(product);

}

private static void initializeTailoredIngredientList(Product product) {
// This method initializes the product's ingredient list according to the current filter

// Obtain the product bean's current filter (which again originates from the user bean)
String[] allergensToBeHighlighted = product.getAllergensToBeHighlighted();

// SPARQL SELECT query that returns a table of all ingredients in the product's ingredient list
String queryString = 

prefixes+

" SELECT ?ingredient ?ingredientLabel " +

" WHERE {" +
" { " +
"   ?product a ao:Product . " +
"   ?product ao:hasIngredientList ?ingredientList . " +
"   ?ingredientList list:member ?ingredient . " + 
"   ?ingredient rdfs:label ?ingredientLabel . "+
"  } "+
"   FILTER ( ?product = <" + product.getUri() + "> ) " + 
" }" ;

// Create the query
Query query = QueryFactory.create(queryString); 

// Execute the query against the basic model (inference is not needed for this query)
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Make a list for the ingredient objects
List<Ingredient> ingredients = new ArrayList<Ingredient>();

// Go through the ingredients in the result set and find any occurrence of the allergens in question
try {

ResultSet results = queryExecution.execSelect() ;

Page 16



RdfHandler.java

while (results.hasNext()) {
QuerySolution querySolution = results.nextSolution();

// SPARQL SELECT query that returns a table of allergens occurring in an ingredient and a verbal description of the relationship between 
the ingredient and each allergen (contains, may be contaminated by etc.).

String  nestedQueryString = 
prefixes+

// Select all distinct allergen resources, allergen labels and property labels
" SELECT DISTINCT ?allergen ?allergenLabel ?propertyLabel  " +

// That fulfill these conditions:
" WHERE { " +

// The ingredient belongs to the Substance-class, the allergen belongs to the Allergen-class and both resources have labels
" ?ingredient a ao:Substance . " +
"   ?allergen a ao:Allergen . "+
"   ?allergen rdfs:label ?allergenLabel . " +
" ?property rdfs:label ?propertyLabel . " +

// AND meet at least one of these additional criterion:

// The ingredient has a certain relationship to the allergen
" { " +
" ?ingredient ?property ?allergen . " +
" FILTER (?property = ao:contains ) " +
" } " +

// OR the ingredient has an uncertain relationship to the allergen (i.e. the property linking them is a subproperty of may contain)
" UNION "+
" { " +
" ?ingredient ?property ?allergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
" } " +

// OR the ingredient has a certain relationship to a narrower version of the allergen 
" UNION "+
" { " +
" ?allergen skos:narrowerTransitive  ?narrowerAllergen . "+
" ?narrowerAllergen a ao:Allergen . "+
" ?ingredient ?property ?narrowerAllergen . " +
" FILTER (?property = ao:contains ) " +
" } " +

Page 17



RdfHandler.java

// OR the ingredient has an uncertain relationship to to a narrower version of the allergen 
" UNION "+
" { " +
" ?allergen skos:narrowerTransitive  ?narrowerAllergen . "+
" ?narrowerAllergen a ao:Allergen . "+
" ?ingredient ?property ?narrowerAllergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
" } " +

// OR the ingredient has a certain relationship to a broader version of the allergen 
" UNION "+
" { " +
" ?allergen skos:broaderTransitive  ?broaderAllergen . "+
" ?broaderAllergen a ao:Allergen . "+
" ?ingredient ?property ?broaderAllergen . " +
" FILTER (?property = ao:contains ) " +
" } " +

// OR the ingredient has an uncertain relationship to a broader version of the allergen
" UNION "+
" { " +
" ?allergen skos:broaderTransitive  ?broaderAllergen . "+
" ?broaderAllergen a ao:Allergen . "+
" ?ingredient ?property ?broaderAllergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
" } " +

// Only include results where the ingredient resource has a certain URI
"   FILTER ( ?ingredient = <" + querySolution.getResource("ingredient").toString() + "> ) " ;

// Only include results where the allergen is included in the current filter.
// Iterate array of checked allergens to create filter clause
if (allergensToBeHighlighted.length>0){

nestedQueryString +=
"  FILTER ( ";

for (int i=0; i < allergensToBeHighlighted.length; i++) {
nestedQueryString +=

" ?allergen = <" + allergensToBeHighlighted[i] + ">  " ;
if(i < (allergensToBeHighlighted.length - 1)){

nestedQueryString += " || " ;
}

}

Page 18



RdfHandler.java

nestedQueryString += " ) ";
}
nestedQueryString += 
" FILTER (lang (?allergenLabel) = '" + displayLanguage + "') " +
" FILTER (lang (?propertyLabel) = '" + displayLanguage + "') ";

nestedQueryString += " } ";

// Create the query
Query nestedQuery = QueryFactory.create(nestedQueryString); 

// Execute the query against the inference model
QueryExecution nestedQueryExecution = QueryExecutionFactory.create(nestedQuery, inferenceModel);

// Make a list to store the allergen objects
List<Allergen> allergens = new ArrayList<Allergen>();

// Go through the reseult set, create allergen objects and add them to the list of allergens
try {

ResultSet nestedResults = nestedQueryExecution.execSelect() ;

while (nestedResults.hasNext()) {
QuerySolution nestedQuerySolution = nestedResults.nextSolution();
Allergen a = new Allergen(nestedQuerySolution.getResource("allergen").toString(), nestedQuerySolution.getLiteral

("allergenLabel").getValue().toString(), "Description here...", nestedQuerySolution.getLiteral("propertyLabel").getValue().toString());
allergens.add(a);

}

} finally { 
nestedQueryExecution.close(); 

}

// Create a new ingredient object and initialize it with data obtained from the SPARQL queries
Ingredient i = new Ingredient(querySolution.getResource("ingredient").toString(), querySolution.getLiteral("ingredientLabel").getValue

().toString(), allergens);

// Add the new ingredient object to the list
ingredients.add(i);

}

} finally { 
queryExecution.close(); 

}

// Set the product's ingredient list

Page 19



RdfHandler.java

product.setIngredients(ingredients);

}

private static void initializeTailoredAllergenList(Product product) {
// This method initializes the product's allergen list based on the current filter

// Obtain the product bean's current filter (which again originates from the user bean)
String[] allergensToBeHighlighted = product.getAllergensToBeHighlighted();

// SPARQL SELECT query that returns a table of allergens that have a directly asserted relationship to the product and a verbal description of the 
relationship between the product and each allergen (produced alongside, may be contaminated by etc.).

String queryString = 
prefixes+

// Select all distinct allergen resources, allergen labels and property labels
" SELECT DISTINCT ?allergen ?allergenLabel ?propertyLabel " +

// That fulfill these conditions:
" WHERE { " +

// The product belongs to the Product-class, the allergen belongs to the Allergen-class and both resources have labels
"   ?product a ao:Product . " +
"   ?allergen a ao:Allergen . " +
"   ?allergen rdfs:label ?allergenLabel . "+
" ?property rdfs:label ?propertyLabel . " +

// AND meet at least one of these additional criterion:

// The product has an uncertain relationship to the allergen (i.e. the property linking them is a subproperty of may contain)
" { "+
"   ?product ?property ?allergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
"  } " +

// OR the product has an uncertain relationship to a narrower version of the allergen 
" UNION "+
" { " +
" ?allergen skos:narrowerTransitive  ?narrowerAllergen . "+
" ?narrowerAllergen a ao:Allergen . "+
"   ?product ?property ?narrowerAllergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
" } " +

Page 20



RdfHandler.java

// OR the product has an uncertain relationship to a broader version of the allergen 
" UNION "+
" { " +
" ?allergen skos:broaderTransitive  ?broaderAllergen . "+
" ?broaderAllergen a ao:Allergen . "+
" ?product ?property ?broaderAllergen . " +
" ?property rdfs:subPropertyOf ao:mayContain . " +
" FILTER (?property != ao:mayContain ) " +
" } " +

// Only include result where the product resource's URI correspond to the product object's URI
"   FILTER ( ?product = <" + product.getUri() + "> ) " ; 

// Only include results where the allergen is included in the current filter.
if (allergensToBeHighlighted.length>0){

queryString +=
"  FILTER ( ";

// Iterate array of checked allergens to create filter clause
for (int i=0; i < allergensToBeHighlighted.length; i++) {

queryString +=
" ?allergen = <" + allergensToBeHighlighted[i] + ">  " ;

if(i < (allergensToBeHighlighted.length - 1)){
queryString += " || " ;

}
}
queryString += "  ) ";

}

queryString +=
" FILTER (lang (?allergenLabel) = '" + displayLanguage + "') " +
" FILTER (lang (?propertyLabel) = '" + displayLanguage + "') ";

queryString +=
"      }" ;

// Create the query
Query query = QueryFactory.create(queryString); 

// Execute the query against the basic model
QueryExecution queryExecution = QueryExecutionFactory.create(query, basicModel);

// Crete a list of allergens
List<Allergen> allergens = new ArrayList<Allergen>();

Page 21



RdfHandler.java

// Go through the result set, create new allergen objects based on the SPARQL query and add them to the allergen list
try {

ResultSet results = queryExecution.execSelect() ;

while (results.hasNext()) {
QuerySolution querySolution = results.nextSolution();
Allergen a = new Allergen(querySolution.getResource("allergen").toString(), querySolution.getLiteral("allergenLabel").getValue().toString

(), "Description here...", querySolution.getLiteral("propertyLabel").getValue().toString());
allergens.add(a);

}

} finally { 
queryExecution.close(); 

}

// Set the product's allergen list
product.setAllergens(allergens);

}

}

Page 22



User.java

package myBeans;

import java.util.ArrayList;

public class User {

private Map<String, Allergen> allergensMap = new HashMap<String, Allergen>(); // A map of all allergens originating from the Jena model. Used for 
looking up allergen objects by URI.

private List<Allergen> allergens = new ArrayList<Allergen>(); // An ordered list of the same allergens, used for presentation in JSP.

private String firstName = "";
private String lastName = "";
private String email = "";

private String[] allergensToBeHighlighted = new String[0]; // An array of URIs to the allergens selected by the user

private List<Allergen> allergensToBeHighlightedList = new ArrayList<Allergen>();  // An ordered list of objects representing the same allergens as 
above. Used for presentatin in JSP

// These maps are initialized with basic data about the products, meant for presentation.
private List<Product> safeProducts=null;
private List<Product> uncertainProducts=null;
private List<Product> unsafeProducts=null;

public User() {
this.allergensMap=RdfHandler.getAllergensMap(); // Used for look-up by URI
this.allergens=RdfHandler.getAllergens(); // Used for ordered presentation

}

public List<Allergen> getAllergens() {
return allergens;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

Page 1



User.java

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public void setAllergensToBeHighlighted(String[] allergensToBeHighlighted) {
// This method triggers the initial categorization of products based on the user's settings

this.allergensToBeHighlighted=allergensToBeHighlighted;
if (allergensToBeHighlighted.length>0){

setAllergensToBeHighlightedList(allergensToBeHighlighted);
}

// Request RdfHandler to categorize all products for this user
RdfHandler.categorizeProductsForSpecificUserBasedOnAllergenOccurence(this);

}

private void setAllergensToBeHighlightedList(String[] allergensToBeHighlighted) {
this.allergensToBeHighlightedList = new ArrayList<Allergen>();
for (int i=0; i< this.allergensToBeHighlighted.length; i++){

allergensToBeHighlightedList.add((Allergen) allergensMap.get(allergensToBeHighlighted[i]));
}

Collections.sort(allergensToBeHighlightedList);
}

public String[] getAllergensToBeHighlighted() { // Used by RdfHandler in tailored SPARQL queries
return this.allergensToBeHighlighted;

}

public List<Allergen> getAllergensToBeHighlightedList() { // Used by JSP User-bean to retrieve a Map of all allergens that were selected by the user
if (allergensToBeHighlighted.length<1){ // Nothing was sent with the form...

setAllergensToBeHighlighted(allergensToBeHighlighted);
}
return allergensToBeHighlightedList;

}

Page 2



User.java

public void setSafeProducts(List<Product> safeProducts) {
this.safeProducts = safeProducts;

}

public List<Product> getSafeProducts() {
return safeProducts;

}

public void setUncertainProducts(List<Product> uncertainProducts) {
this.uncertainProducts = uncertainProducts;

}

public List<Product> getUncertainProducts() {
return uncertainProducts;

}

public void setUnsafeProducts(List<Product> unsafeProducts) {
this.unsafeProducts = unsafeProducts;

}

public List<Product> getUnsafeProducts() {
return unsafeProducts;

}

}

Page 3



Resource.java

package myBeans;

public class Resource implements Comparable<Resource> {

private String uri;
private String label;
private String description;

public Resource() {
super();

}

public Resource(String uri, String label, String description) {
super();
this.uri = uri;
this.label = label;
this.description = description;

}

public Resource(String uri, String label) {
super();
this.uri = uri;
this.label = label;

}

public String getUri() {
return uri;

}
public void setUri(String uri) {

this.uri = uri;
}
public String getLabel() {

return label;
}
public void setLabel(String label) {

this.label = label;
}
@Override
public int compareTo(Resource r) {

// Sort objects by label
return this.label.compareToIgnoreCase(r.getLabel());

}
public String getDescription() {

return description;
}

Page 1



Resource.java

public void setDescription(String description) {
this.description = description;

}
}

Page 2



Allergen.java

package myBeans;

import java.util.ArrayList;

public class Allergen extends Resource {

private ArrayList<Allergen> narrowerAllergens = new ArrayList<Allergen>();
private ArrayList<Allergen> broaderAllergens = new ArrayList<Allergen>();
private String relation = null;
private String status = null;

public Allergen(String uri, String label) {
super(uri, label);

}

public Allergen(String uri, String label, String description) {
super(uri, label, description);

}

public Allergen(String uri, String label, String description, String relation) {
super(uri, label, description);
this.setRelation(relation);

}

public void setNarrowerAllergens(ArrayList<Allergen> narrowerAllergens) {
this.narrowerAllergens = narrowerAllergens;

}

public ArrayList<Allergen> getNarrowerAllergens() {
return narrowerAllergens;

}

public void setBroaderAllergens(ArrayList<Allergen> broaderAllergens) {
this.broaderAllergens = broaderAllergens;

}

public ArrayList<Allergen> getBroaderAllergens() {
return broaderAllergens;

}

public String getRelation() {
return relation;

}

public void setRelation(String relation) {

Page 1



Allergen.java

this.relation = relation;
if (relation.equals("contains")){

this.setStatus("unsafe");
}
else
{

this.setStatus("uncertain");
}

}

private void setStatus(String status) {
this.status=status;

}

public String getStatus() {
return status;

}

}

Page 2



Ingredient.java

package myBeans;

import java.util.List;

public class Ingredient extends Resource {

private List<Allergen> allergens;

public Ingredient(String uri, String label, List<Allergen> allergens) {
super(uri, label);
this.allergens=allergens;

}

public List<Allergen> getAllergens() {
return allergens;

}

public void setAllergens(List<Allergen> allergens) {
this.allergens = allergens;

}

}

Page 1



Product.java

package myBeans;

import java.util.List;

public class Product extends Resource{

private String brand;
private String brandLabel;

private String status="unknown";

private List<Ingredient> ingredients; // Product's ingredients
private List<Allergen> allergens; // Product's allergens, incl. data about their realtionship to the product

private String[] allergensToBeHighlighted; // Used to customize presentation accordning to a specific user's filter

public Product() {
super();

}
public Product(String uri, String label) {

super(uri, label);
}

public Product(String uri, String label, String description, String brand, String brandLabel) {
super(uri, label, description);
this.brand = brand;
this.brandLabel = brandLabel;

}

public void setUri(String uri) {
super.setUri(uri);
RdfHandler.initializeBasicInfoAboutProduct(this);

}

public String getBrand() {
return brand;

}

public void setBrand(String brand) {
this.brand = brand;

}

public String getBrandLabel() {
if(brandLabel==null){

Page 1



Product.java

RdfHandler.initializeBasicInfoAboutProduct(this);
}
return brandLabel;

}

public void setBrandLabel(String brandLabel) {
this.brandLabel = brandLabel;

}

public String[] getAllergensToBeHighlighted() {
return allergensToBeHighlighted;

}

public void setAllergensToBeHighlighted(String[] allergensToBeHighlighted) {
this.allergensToBeHighlighted = allergensToBeHighlighted;

}

public void setAllergens(List<Allergen> allergens) {
this.allergens = allergens;

}

public List<Allergen> getAllergens() {
if (allergens==null){

RdfHandler.initializeDetaliedInfoAboutProductContentAndAllergens(this);
}
return allergens;

}

public void setIngredients(List<Ingredient> ingredients) {
this.ingredients=ingredients;

}

public List<Ingredient> getIngredients() {
if (ingredients==null){

RdfHandler.initializeDetaliedInfoAboutProductContentAndAllergens(this);
}
return ingredients;

}

public String getStatus() {
if (status=="unknown"){

RdfHandler.initializeDetaliedInfoAboutProductContentAndAllergens(this);
for(Allergen a : allergens) {

if (a.getRelation().equals("contains")){
return status="unsafe";  

Page 2



Product.java

}
else {

status="uncertain";
}

}
for(Ingredient i : ingredients) {

for(Allergen a : i.getAllergens()) {
if (a.getRelation().equals("contains")){

return status="unsafe";  
}
else {

status="uncertain";
}

}
}

}
if (status.equals("unknown")){

return "safe";
}
return status;

}

public void setStatus(String status) {
this.status = status;

}

}

Page 3



home.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Pragma" content="no-cache"/>
<meta http-equiv="Cache-Control" content="no-cache"/>
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT"/>

<link rel="stylesheet" href="${pageContext.request.contextPath}/style.css" />

<title>Welcome</title>

</head>

<body>

<jsp:useBean id="user" scope="session" class="myBeans.User"/> 
<jsp:setProperty name="user" property="*"/> 

<h1>Create your profile</h1>

<form name="input" action="display_filter.jsp" method="post">
<table>
<tr><td>First name: </td><td><input type="text" name="firstName" size="50" value="${user.firstName}"/></td></tr>
<tr><td>Last name: </td><td><input type="text" name="lastName" size="50" value="${user.lastName}"/></td></tr>
<tr><td>E-mail address: </td><td><input type="text" name="email" size="50" value="${user.email}"/></td></tr>
</table>
<h2>Check everything you want to be warned about </h2>

<c:forEach items="${user.allergens}" var="current" >

<c:if test="${empty current.broaderAllergens}"> 
<input type="checkbox" id="allergensToBeHighlighted" name="allergensToBeHighlighted" value="${current.uri}"
<c:forEach items="${user.allergensToBeHighlighted}" var="allergenToBeHighlighted" >
<c:if test="${current.uri == allergenToBeHighlighted}">checked</c:if>

Page 1



home.jsp

</c:forEach>
/>
<label for="allergensToBeHighlighted"><c:out value="${current.label}"/><c:if test="${!empty current.narrowerAllergens}"> (all)</c:if></label><br/>

<c:forEach items="${current.narrowerAllergens}" var="item">
<input type="checkbox" id="allergensToBeHighlighted" name="allergensToBeHighlighted" value="${item.uri}"
<c:forEach items="${user.allergensToBeHighlighted}" var="allergenToBeHighlighted" >
<c:if test="${item.uri == allergenToBeHighlighted}">checked</c:if>
</c:forEach>
/>
<label for="allergensToBeHighlighted">--- <c:out value="${item.label}"/></label><br/>
</c:forEach>
</c:if>
</c:forEach>
<br/>

<input type="submit" value="Create profile!" class="button"/>
    </form>

<br/>
</body>
</html>

Page 2



display_filter.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
    
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Pragma" content="no-cache" />
<meta http-equiv="Cache-Control" content="no-cache" />
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT" />
 
<link rel="stylesheet" href="${pageContext.request.contextPath}/style.css" />
 
<title>Display filter</title>

</head>

<body>

<jsp:useBean id="user" scope="session" class="myBeans.User"/> 
<jsp:setProperty name="user" property="*"/> 

<h1>Your profile</h1>
<div class="filter">

    <p>Name: <jsp:getProperty name="user" property="firstName" /> 
    <jsp:getProperty name="user" property="lastName" /></p>
    <p>E-mail: <jsp:getProperty name="user" property="email" /> </p>
    <p>Filter: <c:if test="${empty user.allergensToBeHighlightedList}">Your filter is not set. </c:if></p>
    <ul>
    <c:forEach items="${user.allergensToBeHighlightedList}" var="item"> 
    <li><c:out value="${item.label}"/><br/></li>

</c:forEach>  
</ul>
<span class="unsafe">NB! Not all vendors label trace amounts of allergens. If you are highly sensitive, be cautious!</span><br/><br/>
<form action="home.jsp" >

    <input type="submit" value="Edit profile" tabindex="1" class="button"/>
    </form>

</div>
<br/>

Page 1



display_filter.jsp

   <jsp:include page="available_actions.jsp"/>
   
   </body>
</html>

Page 2



available_actions.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
    
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Pragma" content="no-cache"/>
<meta http-equiv="Cache-Control" content="no-cache"/>
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT"/>
 

<link rel="stylesheet" href="${pageContext.request.contextPath}/style.css" />
 
<title>Available actions</title>

</head>

<body>
<jsp:useBean id="user" scope="session" class="myBeans.User"/> 
<jsp:setProperty name="user" property="*"/> 

    <h1>Find out what products are safe for you</h1>
    <div class="filter">
    <form action="product_details.jsp" >
    Scan an individual product:
    <input type="text" name="uri"/>
  
    <input type="submit" value="Go! " tabindex="2" class="button"/>
    </form>
    or 
    <form action="categorized_products.jsp" >
    Categorize all available products 
    <input type="submit" value="Go!" tabindex="2"  class="button" />
    </form>
    </div>
    </body>
</html>

Page 1



filter.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>   

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />

</head>

<body>

<jsp:useBean id="user" scope="session" class="myBeans.User"/> 

<div class="filter">
<c:if test="${!empty user.firstName && !empty user.lastName}">
Hi, <c:out value="${user.firstName}"/> <c:out value="${user.lastName}"/>!<br/>
</c:if>

<c:if test="${!empty user.allergensToBeHighlightedList}">
Your profile is set up to warn about any occurrence of 
 <c:forEach items="${user.allergensToBeHighlightedList}" var="item" varStatus="status"> 

    <c:out value="${item.label}"/><c:if test="${not status.last}">, </c:if>
</c:forEach> 
<a href="home.jsp">Edit profile</a>  

</c:if>
<c:if test="${empty user.allergensToBeHighlightedList}">

For a tailored experience, please <a href="home.jsp">create a filter</a>!
</c:if>
</div>
<br/>
</body>
</html>

Page 1



categorized_products.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>    
    
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Pragma" content="no-cache"/>
<meta http-equiv="Cache-Control" content="no-cache"/>
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT"/>

<link rel="stylesheet" href="${pageContext.request.contextPath}/style.css" />

<title>Categorized products</title>

</head>

<body>

<jsp:useBean id="user" scope="session" class="myBeans.User"/> 

<h1>Categorized products</h1>

<jsp:include page="filter.jsp"/>

<c:if test="${not empty user.safeProducts}">
<h2>Safe products</h2>
<div class="safe">
 <ul>

<c:forEach items="${user.safeProducts}" var="item" >
<li>
<form name="input" action="product_details.jsp" method="get" >

   <c:out value="${item.label}"/> by <c:out value="${item.brandLabel}"/>
        <input type="hidden" name="uri" value="<c:out value='${item.uri}'/>"/>
        <input type="hidden" name="status" value="<c:out value='${item.status}'/>"/>
        <input type="submit" value="View details" />
      </form>

</li>
</c:forEach>   

Page 1



categorized_products.jsp

</ul>
</div>
<br/>
</c:if>

<c:if test="${not empty user.uncertainProducts}">
<h2>Uncertain products</h2>
<div class="uncertain">
 <ul>

<c:forEach items="${user.uncertainProducts}" var="item" >
<li>
<form name="input" action="product_details.jsp" method="get" >

   <c:out value="${item.label}"/> by <c:out value="${item.brandLabel}"/>
        <input type="hidden" name="uri" value="<c:out value='${item.uri}'/>"/>
        <input type="hidden" name="status" value="<c:out value='${item.status}'/>"/>
        <input type="submit" value="View details" />
      </form>

</li>
</c:forEach>   
</ul>

</div>
<br/>
</c:if>

<c:if test="${not empty user.unsafeProducts}">
<h2>Unsafe products</h2>
<div class="unsafe">
 <ul>

<c:forEach items="${user.unsafeProducts}" var="item" >
<li>
<form name="input" action="product_details.jsp" method="get" >

   <c:out value="${item.label}"/> by <c:out value="${item.brandLabel}"/>
        <input type="hidden" name="uri" value="<c:out value='${item.uri}'/>"/>
        <input type="hidden" name="status" value="<c:out value='${item.status}'/>"/>
        <input type="submit" value="View details" />
      </form>

</li>
</c:forEach>   
</ul>

</div>
<br/>
</c:if>

<br/>

Page 2



categorized_products.jsp

</body>
</html>

Page 3



product_details.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>    
     
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Cache-Control" content="no-cache">
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT">

<link rel="stylesheet" href="${pageContext.request.contextPath}/style.css" />

<title>Product details</title>

</head>

   <body>
   <jsp:useBean id="user" scope="session" class="myBeans.User"/> 

<jsp:setProperty name="user" property="*"/> 
   <jsp:useBean id="product" scope="request" class="myBeans.Product"/> 
   <jsp:setProperty name="product" property="uri"/>  
   <jsp:setProperty name="product" property="allergensToBeHighlighted" value="${user.allergensToBeHighlighted}"/> 
 
      <h1>Product details</h1> 
      <jsp:include page="filter.jsp"/>

<br/>

<c:if test="${!empty product.label}">      
      <div class="${product.status}" >
     <h2 class="${product.status}"><c:out value="${product.label}"/> by <c:out value="${product.brandLabel}"/> </h2>
      <p><c:out value="${product.description}"/></p>
     
     <h3>Ingredients</h3>
     <ul>
     <c:forEach items="${product.ingredients}" var="current">
        <li> 
        <c:out value="${current.label}"/> 
   <c:if test="${!empty current.allergens}">

Page 1



product_details.jsp

   <c:out value="("/><c:forEach items="${current.allergens}" var="item" varStatus="status"><c:out value="${item.relation}"/><span class="$
{item.status}"> <c:out value="${item.label}"/></span><c:if test="${not status.last}"><c:out value=", "/></c:if></c:forEach><c:out value=")"/>
   </c:if>
   </li>
        </c:forEach>
        </ul>
        
        <c:if test="${!empty product.allergens}">
        <h3>Contamination issues</h3>
   <p>
   <c:forEach items="${product.allergens}" var="item" varStatus="status">This product <c:out value="${item.relation}"/> <span class="$
{item.status}" ><c:out value="${item.label}"/></span>
   </c:forEach>
   </p>

</c:if>
</div>

</c:if>

<c:if test="${empty product.label}">
<div class="uncertain" >
<p>Sorry, the product you scanned is not included in the data set. Please review it manually.</p>
</div>
</c:if>
<br/>
<jsp:include page="available_actions.jsp"/>

   </body>
</html>

Page 2



style.css

@CHARSET "UTF-8";

body{
font-family:Verdana,Helvetica,sans-serif;
font-size:90%;
margin-left:50px;
margin-right:50px;
}
h1{
font-size:1.2em;
}
h2{
font-size:1.1em;
}
div.filter 
{
padding:20px;
border-style:solid;
border-width:medium;
border-color:#696969;
}
div.safe 
{
padding:20px;
border-style:solid;
border-width:medium;
border-color:#228B22;
}
h2.safe 
{
color:#228B22;
}
div.uncertain 
{
padding:20px;
border-style:solid;
border-width:medium;
border-color:#FFD700;
}
span.uncertain
{
color:#FFD700;
font-weight:bold;
}
h2.uncertain

Page 1



style.css

{
color:#FFD700;
}
div.unsafe
{
padding:20px;
border-style:solid;
border-width:medium;
border-color:#CD2626;
}
span.unsafe
{
color:#CD2626;
font-weight:bold;
}
h2.unsafe
{
color:#CD2626;
}
span.info
{
color:#696969;
}

div.debug 
{
padding:20px;
border-style:solid;
border-width:medium;
border-color:#696969;
}
.button 
{
border-style:solid;
border-width:medium;
border-color:#696969;
background: white;
padding: 5px 10px;
color: black;
font-size: 1em;
font-family:Verdana,Helvetica,sans-serif;
text-decoration: none;
vertical-align: middle;
}
.button:hover 

Page 2



style.css

{
background: white;
}
.button:active 
{
background: white;
}

Page 3



Ontology.owl.xml

<?xml version="1.0"?>
<!-- Abridged version -->
<rdf:RDF
    xmlns:skos="http://www.w3.org/2004/02/skos/core#"
    xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
    xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
    xmlns:assert="http://www.owl-ontologies.com/assert.owl#"
    xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
    xmlns:ao="http://www.inferenceTest.owl#"
    xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
    xmlns:swrl="http://www.w3.org/2003/11/swrl#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#"
  xml:base="http://www.inferenceTest.owl">
  <owl:Ontology rdf:about="">
    <owl:imports rdf:resource="http://www.w3.org/2004/02/skos/core"/>
    <owl:imports rdf:resource="http://www.owl-ontologies.com/assert.owl"/>
    <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/>
    <owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl"/>
  </owl:Ontology>
  <!-- CLASSES -->
  <owl:Class rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
  <owl:Class rdf:ID="Brand"/>
  <owl:Class rdf:ID="Product"/>
  <owl:Class rdf:about="#Substance">
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2004/02/skos/core#Concept"/>
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Substance</rdfs:label>
  </owl:Class>
  <owl:Class rdf:ID="Ingredient">
    <rdfs:subClassOf rdf:resource="#Substance"/>
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Ingredient</rdfs:label>
  </owl:Class> 
  <rdfs:Class rdf:ID="IngredientList">
    <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/>
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Ingredient list</rdfs:label>
  </rdfs:Class>
  <owl:Class rdf:ID="Allergen">
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Allergen</rdfs:label>
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Allergens are displayed to the user for possible exclusion</rdfs:comment>
    <rdfs:subClassOf rdf:resource="#Substance"/>
  </owl:Class>

Page 1



Ontology.owl.xml

  <!-- PROPERTIES -->
  <owl:FunctionalProperty rdf:ID="hasIngredientList">
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">hasIngredientList</rdfs:label>
    <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:domain rdf:resource="#Product"/>
  </owl:FunctionalProperty>
  <owl:InverseFunctionalProperty rdf:about="#hasBrand">
    <rdfs:domain rdf:resource="#Product"/>
    <rdfs:range rdf:resource="#Brand"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
  </owl:InverseFunctionalProperty>
  <owl:FunctionalProperty rdf:ID="isBrandOf">
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:domain rdf:resource="#Brand"/>
    <rdfs:range rdf:resource="#Product"/>
    <owl:inverseOf>
      <owl:InverseFunctionalProperty rdf:ID="hasBrand"/>
    </owl:inverseOf>
  </owl:FunctionalProperty>
  <owl:DatatypeProperty rdf:ID="hasProductDescription">
    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has product description</rdfs:label>
    <rdfs:domain rdf:resource="#Product"/>
  </owl:DatatypeProperty>
  <owl:TransitiveProperty rdf:ID="contains">
    <rdfs:label xml:lang="en">contains</rdfs:label>
    <rdfs:label xml:lang="no">inneholder</rdfs:label>
    <rdfs:range rdf:resource="#Substance"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
  </owl:TransitiveProperty>
  <owl:TransitiveProperty rdf:about="#mayContain">
    <rdfs:label xml:lang="en">may contain</rdfs:label>
    <rdfs:label xml:lang="no">kan inneholde</rdfs:label>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:range rdf:resource="#Substance"/>
  </owl:TransitiveProperty>
  <owl:TransitiveProperty rdf:ID="mayBeContaminatedBy">
    <rdfs:subPropertyOf>
      <owl:TransitiveProperty rdf:ID="mayContain"/>
    </rdfs:subPropertyOf>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:label xml:lang="en">may be contaminated by</rdfs:label>

Page 2



Ontology.owl.xml

    <rdfs:label xml:lang="no">kan være kontaminert av</rdfs:label>
    <rdfs:range rdf:resource="#Substance"/>
  </owl:TransitiveProperty>
  <owl:TransitiveProperty rdf:ID="mayContainTracesOf">
    <rdfs:label xml:lang="en">may contain traces of</rdfs:label>
    <rdfs:label xml:lang="no">kan inneholde spor av</rdfs:label>
    <rdfs:subPropertyOf>
      <owl:TransitiveProperty rdf:about="#mayContain"/>
    </rdfs:subPropertyOf>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
  </owl:TransitiveProperty> 
  <owl:TransitiveProperty rdf:ID="derivedFrom">
    <rdfs:range rdf:resource="#Substance"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:subPropertyOf>
      <owl:TransitiveProperty rdf:about="#mayContain"/>
    </rdfs:subPropertyOf>
    <rdfs:label xml:lang="en">is derived from</rdfs:label>
    <rdfs:label xml:lang="no">er laget av</rdfs:label>
  </owl:TransitiveProperty>
  <owl:TransitiveProperty rdf:ID="producedAlongside">
    <rdfs:subPropertyOf rdf:resource="#mayContain"/>
    <rdfs:label xml:lang="en">is produced alongside</rdfs:label>
    <rdfs:label xml:lang="no">er produsert i en fabrikk som også produserer proudkter som inneholder</rdfs:label>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
  </owl:TransitiveProperty>
  <owl:TransitiveProperty rdf:ID="mayContainUpTo20ppm">
    <rdfs:subPropertyOf rdf:resource="#mayContain"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
    <rdfs:label xml:lang="en">may contain up to 20 ppm</rdfs:label>
    <rdfs:label xml:lang="no">kan inneholde inntil 20 ppm</rdfs:label>
  </owl:TransitiveProperty>
</rdf:RDF>

Page 3


	Thesis 20130611kl0022.pdf
	RdfHandler.java.pdf
	User.java.pdf
	Resource.java.pdf
	Allergen.java.pdf
	Ingredient.java.pdf
	Product.java.pdf
	home.jsp.pdf
	display_filter.jsp.pdf
	available_actions.jsp.pdf
	filter.jsp.pdf
	categorized_products.jsp.pdf
	product_details.jsp.pdf
	style.css.pdf
	Ontology.owl.pdf

