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Abstract

Background and Aims: Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role
in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study
in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes.

Methods: Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP,
phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled
substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured
by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by
electrophoresis and immunoblotting.

Results: High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP
and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose
metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase
complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome
C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTrackerHRed FM was doubled after
48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells.

Conclusions: Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes
may be used to study effects of exercise.
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Introduction

Physical training leads to extensive adaptations in skeletal

muscles [1-4]. Regular physical activity plays central role in both

prevention and improvement of many chronic diseases, improve-

ment of life-style and increased life expectancy [2]. However,

molecular mechanisms underlying these adaptations are still

poorly understood, emphasizing the requirement for a cell culture

model resembling training ex vivo.

Motor neuron activation of muscle fibres can be replaced by

electrical pulse stimulation (EPS) of differentiated skeletal muscle

cells (myotubes) in culture [5,6]. Metabolic and genetic adapta-

tions caused by EPS in vitro have previously been described in

murine C2C12 cells [7-9], in L6 cells [10] and in primary rat

skeletal muscle cells [11]. In vivo, immediate effects of EPS, such as

activation of glucose uptake and glycogenolysis [12] can be clearly

distinguished from more profound changes in the metabolic and

transcriptional phenotypes of muscles occurring as a result of

chronically increased contractile activity evoked by chronic, low-

frequency EPS [12]. Likewise, acute changes in skeletal muscle

after a single bout of exercise in vivo differ considerably from those

observed after regular training, which, obviously, confers for the

most of the beneficial health effects of exercise in vivo [2,13].

Adaptations of metabolic properties in skeletal muscles after

exercise are reflected by both increased mitochondrial content

[14,15] and improved oxidative capacity [4,16,17]. Several

signalling pathways have been proposed to be involved in the

stimulation of mitochondrial biogenesis in a contracting muscle

[18-20]. Exercise has also been shown to enhance both lipid

synthesis and lipid oxidation [20-23]. As a consequence of these

metabolic adaptations, trained muscle takes more of its required

energy from lipids and less from carbohydrate compared to

untrained muscle during submaximal work (i.e. work performed

below the maximal oxygen utilization capacity) [24]. In addition to

fatty acids, trained fibers import and use more glucose than

untrained muscle fibers [25,26]. Glucose transporters 1 and 4

(GLUT1 and GLUT4) are the major glucose transporters in the

cell membrane of skeletal muscle cells [27], and regular physical
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activity improves the ability of insulin to stimulate the uptake of

glucose at rest [28-30].

Plasticity of skeletal muscles in response to endurance exercise

extends beyond the metabolic changes. In human skeletal muscles,

three main muscle fiber types, type I (oxidative, slow twitch), IIa

(intermediate) and IIx (glycolytic, fast twitch), can be delineated

based on histochemical, functional and biochemical properties

[31]. Type I fibers are characterized by higher mitochondrial

content and increased glucose transport compared to type II

fibers, and whole-body insulin-sensitivity has been positively

correlated with the proportion of slow-twitch oxidative fibers in

humans [32]. Conversion from type II to type I muscle phenotype

has been shown in animals [33], but there is little evidence that this

type of transition actually happens in adult humans [15,24].

Chronic, low-frequency EPS in vivo has been shown to lead to the

transformation of fast-twitch glycolytic muscle fibres into slow-type

oxidative fibres [12]. Moreover, skeletal muscle has recently been

identified as an organ that produces and releases several cytokines,

which are termed ‘‘myokines’’, among these are interleukins 6, 8

and 5 (IL-6, IL-8 and IL-5) [34]. It has been demonstrated that

plasma concentration of IL-6 increases during muscular exercise

[35,36], and IL-6 appears to have positive effects on skeletal

muscle glucose metabolism [37,38]. These findings suggest that

also the immune system is affected by physical exercise; however,

the implications this might have on the metabolic responses are

not yet understood.

We have previously reported effects of acute electrical

stimulation on glucose metabolism in cultured human skeletal

muscle cells, both at high and low glucose concentrations [39].

In the past years, reports of several EPS models applied to cultured

skeletal muscle cells have increased in number, suggesting that

there is growing interest in establishing a method that would allow

to study cellular mechanisms of exercise under controlled

conditions in vitro [6-9,11,40]. However, to our knowledge, no

model of EPS has been applied to primary human skeletal muscle

cells. Cell culture systems derived from muscle biopsies have been

used to study glucose and lipid metabolism over the past 30 years.

Differentiated primary human myotubes represent the best

available alternative system to intact human skeletal muscle. They

have the most relevant genetic background to study human disease

as opposed to rodent culture systems, and they also display the

morphological, metabolic and biochemical properties of adult

skeletal muscles [41,42].

In the present study, we aimed to develop an in vitro model of

exercise in cultured human skeletal muscle cells, with main focus

on metabolic effects of chronic, low-frequency EPS. This model

could be used to study adaptive responses of skeletal muscle cells to

different types of contractile activity applied by electrical pulse

stimulation (EPS).

Materials and Methods

Materials
Dulbeccòs modified Eaglès medium (DMEM-GlutamaxTM),

heat-inactivated fetal calf serum (FCS), penicillin/streptomycin

(P/S) and amphotericin B were purchased from Gibco (Gibco,

Life Technologies Paisley, UK). BSA (Bovine Serum Albumin)

(essentially fatty acid-free), L-carnitine, and Dulbecco’s phosphate-

buffered saline (DPBS; with Mg2+ and Ca2+), oleic acid,

extracellular matrix (ECM) gel and HEPES were obtained from

Sigma (St Louis, MO). Ultroser G was purchased from Ciphergen

(Cergy-Saint-Christophe, France), and insulin (ActrapidH) was

from NovoNordisk (Bagsvaerd, Denmark). [1-14C]oleic acid

(55 mCi/mmol) and D-[14C(U)]glucose (5 mCi/mmol) were from

NEN Radiochemicals, PerkinElmer (Boston, MA). [3H]deoxyglu-

cose (10 Ci/mmol) was from American Radiolabeled Chemicals

Inc. (St. Louis, MO). Ecoscint A scintillation solution was from

National diagnostics (Hessle, England, UK). Glass bottom plates

were from MatTek (Ashland, MA). Protein assay reagens was

purchased from BioRad (Copenhagen, Denmark). Phospho-Akt

(Ser473) and Akt antibodies were from Cell Signaling Technology

(Beverly, MA), OXPHOS human cocktail antibodies were from

MitoSciences (Eugene, OR) and Anti-Myosin, slow muscle

(MAB1628) was from Millipore (Billerica, MA). MitoTrackerHRed

FM and Hoechst 33258 were obtained from Molecular Probes,

Invitrogen (Carlsbad, CA). NuPAGEH 4–12% (w/v) Bis-Tris Gel,

1 mm612 well was from Invitrogen (Carlsbad, CA). Citrate

Synthase Activity Assay Kit was from Sigma-AldrichH (St. Louis,

MO). Cytotoxicity Detection Kit Plus (LDH) was from Roche

Applied Science, Mannheim, Germany. The primers for TaqMan

Real Time PCR were provided by Invitrogen (Carlsbad, CA).

SYBR green and TaqMan reverse transcription kit reagents were

obtained from Applied Biosystems (Warrington, UK). Agilent

Total RNA isolation Kit was purchased from Agilent Technolo-

gies (Santa Clara, CA). All chemicals used were of standard

commercial high-purity quality.

Ethics statement
The biopsies were obtained with informed written consent and

approval by the National Committee for Research Ethics (Oslo,

Norway). The research performed in this study was approved, as a

part of a larger project, by the National Committee for Research

Ethics (Oslo, Norway).

Human skeletal muscle cell cultures
A cell bank of satellite cells was established from muscle biopsy

samples of the Musculus obliquus internus abdominis of twelve healthy

volunteers (10 females, 2 males), age range 34–70 years (50.969

years), body mass index (BMI) range 19.6–29.7 kg/m2

(23.960.9 kg/m2), fasting glucose range range 4.9–6.9 mM

(5.260.2 mM), and plasma lipids and blood pressure within

normal range. Not all donors were used in each experiment.

Muscle cell cultures free of fibroblasts were established by the

method of Henry et al [42]. Briefly, muscle tissue was dissected in

Ham’s F-10 medium at 4uC and dissociated by three successive

treatments with 0.05% trypsin/EDTA, and satellite cells were

resuspended in skeletal muscle DMEM-GlutamaxTM with 2%

FCS, 2% Ultroser G, 50 U/mL penicillin, 50 mg/mL streptomy-

cin, 1.25 mg/mL amphotericin B, and no added insulin. The cells

were grown on culture wells or flasks coated with extracellular

matrix gel [43]. After 1–2 weeks, at ,80% confluence, growth

medium was replaced by DMEM-GlutamaxTM with 2% FCS,

50 U/mL penicillin, 50 mg/mL streptomycin, 1.25 mg/mL am-

photericin B and 25 pM insulin to induce the differentiation of

myoblasts into multinucleated myotubes. The cells were cultured

in a humidified 5% CO2 atmosphere at 37uC, and medium was

changed every 2–3 days. All myotube cultures were used for

analysis on day 8 or 9 after the onset of differentiation.

Electrical pulse stimulation of muscle cells
Multinucleated myotubes grown in ECM-coated 6-well plates

were stimulated via carbon electrodes either by applying acute,

high-frequency EPS (pulse trains of bipolar pulses 100 Hz for

200 ms given every 5th second, 30 V, for 5–60 min), or by

applying chronic, low-frequency EPS (single, bipolar pulses of

2 ms, with 30 V and 1 Hz continuously for the last 24 or 48 h of

differentiation period). Culturing medium was changed every

12th h during chronic, low-frequency EPS. Electrical pulses were
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generated by a muscle stimulator built at the Electronics Lab,

Institute of Chemistry, University of Oslo.

Contents of ATP, PCr and lactate
The myotubes were preincubated for 1 h (37uC, 5% CO2) with

DMEM-GlutamaxTM. Medium was then changed to fresh

DMEM-GlutamaxTM and acute, high-frequency EPS was applied

for 5–60 min. After stimulation, the cells were immediately placed

on ice, the media were removed, and the cells were washed three

times with ice-cold phosphate-buffered saline (PBS) before being

harvested in 200 mL of ice-cold perchloric acid (3 M). Analyses of

ATP, PCr and lactate contents were performed at the Institute for

Experimental Medical Research, Ullevål University Hospital,

Oslo. The cells were analyzed for ATP and PCr levels with

luminescence spectrometry, and lactate content in cells was

analyzed with fluorescence spectrometry as described by Lowry

et al. [44].

Measurement of lactate dehydrogenase (LDH)
in culture media from myotubes treated with chronic,
low-frequency EPS

Cytotoxic effect of EPS was determined in a colorimetric assay

based on the measurement of lactate dehydrogenase (LDH)

activity in the supernatant with the use of Cytotoxicity Detection

KitPLUS (LDH) (Roche Applied Science, Mannheim, Germany).

Multinucleated myotubes grown in ECM-coated 6-well plates

were stimulated via carbon electrodes by applying chronic, low-

frequency EPS continuously for the last 24 h or 48 h of the

differentiation, and LDH activity in the supernatant was

determined according to the supplier’s protocol. Triton-X-100-

lysed cells were used for determination of maximum values.

Glucose metabolism
Initial experiments with frequency-dependent deoxy-

glucose uptake: The myotubes were starved for 60 min in serum-

free DMEM-GlutamaxTM (5.5 mM glucose) in a 5% CO2

incubator at 37uC. Then, the medium was changed to serum-free

DMEM-GlutamaxTM with [3H]deoxyglucose (1 mCi/mL) +/2

cytochalasin B (20 mM), and acute EPS was applied for the first

15 min of the 60 min deoxyglucose uptake period, using frequen-

cies of 2 to 10 Hz. Deoxyglucose uptake at acute, high-
frequency EPS: The myotubes were starved for 60 min in serum-

free DMEM-GlutamaxTM (5.5 mM glucose) in a 5% CO2

incubator at 37uC. Then, the medium was changed to serum-free

DMEM-GlutamaxTM with [3H]deoxyglucose (1 mCi/mL) +/2

insulin (100 nM) and +/2 cytochalasin B (20 mM), and acute, high-

frequency EPS was applied for 5–60 min. Deoxyglucose uptake
after chronic, low-frequency EPS: Chronic, low-frequency

EPS was applied to myotubes continuously for the last 24–48 h of

the differentiation period. After ended EPS, the myotubes were

starved for 60 min in serum-free DMEM-GlutamaxTM (5.5 mM

glucose) in a 5% CO2 incubator at 37uC, and then exposed to

[3H]deoxyglucose (1 mCi/mL) +/2 insulin (100 nM) and +/2

cytochalasin B (20 mM). Deoxyglucose uptake was measured for

60 min for both acute, high-frequency EPS and chronic, low-

frequency EPS. After ended uptake, the cells were immediately

placed on ice and washed three times with ice-cold PBS, lysed with

0.05 M NaOH, and radioactivity was counted by liquid scintilla-

tion. The protein content of each sample was measured according

to Bradford [45]. Non-carrier-mediated uptake was determined in

the presence of cytochalasin B and subtracted from all presented

values. Glucose oxidation after chronic, low-frequency
EPS: Chronic, low-frequency EPS was applied to myotubes for 24

or 48 h. Then, the myotubes were incubated with glucose-free

DMEM and D-[14C(U)]glucose (2 mCi/mL) (1 mL/well) in a 5%

CO2 incubator at 37uC. After 2 h, 500 mL cell medium was

transferred to airtight flasks, and 300 mL of phenyl ethylamine-

methanol (1:1, v/v) was added with a syringe to a center well

containing a folded filter paper. Subsequently, 100 mL of 1 M

perchloric acid was added to the media through the stopper tops

using a syringe. The flasks were placed for a minimum of 2 h at

room temperature to trap labeled CO2, and radioactivity was

counted by liquid scintillation The protein content of each sample

was measured according to Bradford [45].

Fatty acid metabolism after chronic, low-frequency EPS
After 24–48 h of chronic, low-frequency EPS, the myotubes

were exposed to 1 mL/well of DPBS supplemented with HEPES

(10 mM), NaHCO3 (44 mM), [1-14C]oleic acid (1 mCi/mL,

0.1 mM), 0.24 mM BSA and 1 mM L-carnitine in a 5% CO2

incubator at 37uC. After 2 h, 500 mL of cell medium was

transferred to airtight flasks, and 300 mL of phenyl ethylamine-

methanol (1:1, v/v) was added with a syringe to a center well

containing a folded filter paper. Subsequently, 100 mL of 1 M

perchloric acid was added to the media through the stopper tops

using a syringe. The flasks were placed for a minimum of 2 h at

room temperature to trap labeled CO2. To measure ß-oxidation

products (acid-soluble metabolites (ASMs)), aliquots of 250 mL of

the cell media were precipitated with 100 mL of 6% BSA and

1 mL of 1 M perchloric acid. After centrifugation (20000 g,

10 min, 4uC, Heraues Fresco21 Centrifuge, Thermo Scientific),

250 mL of the supernatant was counted by liquid scintillation. No-

cell controls were included and subtracted from all presented

values. The cells were placed on ice and washed three times with

ice-cold PBS, lysed with 0.05 M NaOH, and cell-associated (CA)

radioactivity was counted by liquid scintillation to determine the

uptake of oleic acid. The protein content of each sample was

measured according to Bradford [45].

Immunoblotting after chronic, low-frequency EPS
Aliquots of 40 mg cell protein from total cell lysates prepared in

Laemmli buffer were electrophoretically separated on NuPAGEH 4–

12%(w/v) Bis-Tris Gel (Invitrogen) followed by immunoblotting with

antibodies recognizing total Akt kinase [protein kinase B (PKB)], Akt

phosphorylated at Ser478, and protein complexes of the electron

transport chain (OXPHOS human cocktail containing antibodies

against Complex I subunit NDUFB8, Complex II subunit, Complex

III subunit core 2, Complex IV subunit II and ATP synthase subunit

alpha) and Myosin, slow muscle (MHCI). Immunoreactive bands

were visualized with enhanced chemiluminescence and quantified

with Gel-Pro Analyzer (version 2.0) software.

Staining and live imaging of mitochondria and enzyme
activity assay after chronic, low-frequency EPS

Myotubes were cultured in ECM-coated 6-well glass bottom

plates. Chronic, low-frequency EPS was applied to cultured

myotubes for the last 48 h of the differentiation period, and in

addition, on day 8 of the differentiation, myotubes were incubated

at 37uC and 5% CO2 with MitoTrackerHRed FM (100 nM) for

15 min to stain mitochondria and Hoechst 33258 (2.5 mg/mL) for

15 min to stain nuclei and washed with PBS in between.

Automated image acquisition was performed in culture medium

without phenol red with an Olympus Scan̂R platform (Olympus

IX81 inverted fluorescence microscope) equipped with a temper-

ature and CO2-enrichment incubator for long-term live imaging,

as described in Hessvik et al [46]. We used a 20X objective and
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live images were aquired in 25 positions per well and 3 wells per

treatment per donor were examined. The background-subtracted

maximal intensity projection from 7 images taken in z-direction

(1 mm apart) was used for both color channels at each position.

Olympus Scan̂R software was used for automated image analysis,

using edge detection algorithm for object segmentation to quantify

the number of nuclei and mitochondrial content(total intensity of

MitoTrackerHRed) per image. After gating out aggregates and

dead cells the results were determined from about 386 images per

treatment (average of 3964 nuclei per image). After 48 h of

chronic, low-frequency EPS, citrate synthase (CS) activity was

determined spectrophotometrically from cell homogenates pre-

pared from the myotubes according to the supplier’s protocol

(Citrate Synthase Activity Assay Kit, Sigma-AldrichH, St. Louis,

MO). Citrate synthase activity in cell homogenates from myotubes

stimulated for 48 h was compared to activity in homogenates from

unstimulated control myotubes.

RNA isolation and analysis of gene expression by
TaqManH Real-Time RT-PCR

Cells were harvested and total RNA was isolated by Agilent

Total RNA isolation kit according to the supplier’s total RNA

isolation protocol. Total RNA was reverse-transcribed with oligo

primers using a Perkin-Elmer Thermal Cycler 9600 (25uC for

10 min, 37uC for 1 h 20 min, and 85uC for 5 min) and a TaqMan

reverse transcription reagents kit. Two micrograms of total RNA

were added per 20 mL of total TaqMan reaction solution. Real-

time PCR was performed using an ABI PRISMT 7000 Detection

System (Applied Biosystems, Warrington, UK). RNA expression

was determined by SYBRT Green, and primers were designed

using Primer ExpressT (Applied Biosystems, Warrington, UK).

Each target gene was quantified in triplicate and carried out in a

25 mL reaction volume according to the supplier’s protocol. All

assays were run for 40 cycles (95uC for 12 s followed by 60uC for

60 s. The transcription levels were normalized to the housekeeping

control gene 36B4. Another housekeeping control gene tested,

GAPDH, gave similar results as 36B4. Following forward and

reverse primers were used at concentration of 30 mM: 36B4
(acc_no M17885): F:CCATTCTATCATCAACGGGTACAA,

R: AGCAAGTGGGAAGGTGTAATCC; GAPDH (acc_no
NM002046): F: TGCACCACCAACTGCTTAGC, R: GGC-

ATGGACTGTGGTCATGAG; CPT1b (acc_no : L39211): F:

GAGGCCTCAATGACCAGAATGT, R: GTGGACTCGCTG-

GTACAGGAA; cytochrome C (acc_no NM001916): F: CT-

GCCAACAACGGAGCATT, R: CGTGAGCAGGGAGAAGA-

CGTA; PGC-1a (acc.no NM013261.3): AAAGGATGCGC-

TCTCGTTCA, R: TCTACTGCCTGGAGACCTTGATC; IL-
6 (acc_no NM000600): F: CGGGAACGAAAGAGAAGCTC-

TAT, R: AGGCGCTTGTGGAGAAGGA; PDK4 (acc_no
BC040239): F: TTTCCAGACCAACCAATTCACA, R: TGC-

CCGCATTGCATTCTTA; GLUT1 (acc_no K03195): F: CA-

GCAGCCCTAAGGATCTTCTCA, R: CCGGCTCGGCT-

GACATC; GLUT4 (acc_no M20747): F: ACCCTGGTC-

CTTGCTGTGTT, R: ACCCCAATGTTGTACCCAAACT;

MHCI (acc_no NM005963) : F: CCAGACTGTGTCTGCTC-

TCTTCAG, R: CAGGACAAGCTCATGCTCC-AT; MHCIIa
(acc_no NM017534): F: AAGGTCGGCAATGAGTATGTCA,

R: CAACCATCCACAGGAACATCTTC.

Data presentation and statistics
Statistical analysis of the overall effects of acute, high-frequency

EPS on the contents of ATP, PCr and lactate was performed using

linear mixed models (LMM) (SPSS version 17, SPSS Inc.,

Chicago, IL). In experiments where effects of 24 h and 48 h

EPS were compared to unstimulated control cells, data were

analyzed using non-parametric Kruskal-Wallis test, while in

experiments where two groups were compared (EPS-treatment

versus unstimulated control cells), non-parametric Wilcoxon

matched pair tests were performed (GraphPad Prism 5.0 for

Windows, GraphPad Software Inc., San Diego, CA). All values in

figures are presented as means6SEM, with n representing the

number of experiments performed, each experiment were

performed with cells from separate (different) donors, with

triplicate samples in each experiment. Statistical significance was

set at P,0.05. In most experiments, results are presented

normalized to unstimulated control cells, and the absolute values

of unstimulated control cells are stated in the figure text.

Results

Effects of acute, high-frequency EPS on deoxyglucose
uptake, cell contents of ATP, PCr and lactate
in cultured myotubes

To verify that electrical stimulation of cultured human

myotubes leads to expected metabolic changes, the myotubes

were exposed to acute, high-frequency EPS, and deoxyglucose

uptake and cellular contents of ATP, PCr and lactate were

examined. Frequency-dependence of deoxyglucose uptake dur-

ing EPS is showed in Figure 1A. Acute, high-frequency EPS

increased deoxyglucose uptake in cultured myotubes (Fig. 1B).

This uptake was specific, since it was inhibited by cytochalasin B

(20 mM) (data not shown). In addition, the amount of

deoxyglucose taken up by electrically stimulated myotubes

correlated positively with the duration of stimulation. Cell

contents of ATP and PCr in electrically stimulated myotubes

were compared to unstimulated control cells incubated for the

same period of time. In response to 5–60 min of electrical

stimulation, the contents of both ATP and PCr decreased

significantly (P = 0.001 and P = 0.007, respectively), while the

amount of lactate significantly increased (P = 0.03) (Figure 1C,

overall effect, linear mixed model, SPSS). Together, these

findings indicated that the cells were contracting and consuming

energy, and that they responded to acute EPS in a similar way as

a single bout of exercise in vivo.

Effects of chronic, low-frequency EPS on glucose
metabolism in cultured human skeletal muscle cells

We were further interested in whether the effects of chronic,

low-frequency EPS on cultured human skeletal cells could mimic

the effects of regular exercise in vivo. A movie showing contractions

of cultured skeletal muscle cells under EPS is attached as Video S1.

Deoxyglucose uptake was significantly increased (P = 0.004) in

cultured myotubes after both 24 and 48 h of chronic, low-

frequency EPS by 96% and 145%, respectively, compared to

unstimulated control cells. The insulin effect was unaffected by

EPS (data not shown). As with acute, high-frequency EPS, the

observed increase in deoxyglucose uptake after chronic, low-

frequency EPS was specific, since it was inhibited by cytochalasin

B (20 mM) (data not shown). Glucose oxidation, measured as the

amount of CO2 produced, was also significantly increased

(P = 0.008) after 48 h of chronic, low-frequency EPS compared

to unstimulated control (Fig. 2A).

Effects of chronic, low-frequency EPS on fatty acid
metabolism in cultured myotubes

A known effect of exercise is to increase oxidative capacity of the

cells, resulting in increased oxidation of both glucose and fatty

In Vitro Exercise of Human Skeletal Muscle Cells
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acids. We examined the effect of chronic, low-frequency EPS on

oleic acid metabolism by measuring uptake, and production of

acid soluble metabolites (ASMs) and CO2. Complete oleic acid

oxidation, measured as the amount of produced CO2, was

significantly increased (P = 0.04) after 48 h of EPS by 35%

compared to control cells (Fig. 2B). Uptake of oleic acid was

unaffected by EPS compared to unstimulated control cells

(Fig. 2B). b-oxidation, measured as the amount of ASMs, also

remained unchanged after EPS compared to unstimulated control

cells (Fig. 2B).

Effects of chronic, low-frequency EPS on mitochondrial
content and citrate synthase activity

To support the results obtained in the metabolic experiments

with glucose and oleic acid, we investigated effects of chronic, low-

frequency stimulation for 48 h on mitochondrial content in

cultured myotubes. Representative images are presented for

control, unstimulated myotubes in figure 3A (left), and for

electrically stimulated myotubes in figure 3A (right). Total intensity

of MitoTrackerHRed FM per nucleus was significantly increased

(2.2-fold, Fig. 3B, P = 0.03), and the citrate synthase activity

tended to increase (P = 0.1, Fig. 3C) in EPS-treated cells compared

to unstimulated control cells.

Effects of chronic, low-frequency EPS on gene
and protein expression in cultured myotubes

The observed functional changes in fatty acid and glucose

metabolism were accompanied by a range of changes in mRNA

expressions (Fig. 4). mRNA expression level of pyruvate

dehydrogenase complex kinase 4 (PDK4) was significantly

increased (P = 0.04) after 24 h of EPS (Fig. 4). mRNA expression

levels of following genes also tended to increase: CPT1b (P = 0.06),

Figure 1. Frequency-dependence of deoxyglucose uptake (A)
effects of acute, high-frequency EPS on deoxyglucose uptake
(B) and cell contents of ATP, PCr and lactate (C). A: Frequency-
dependence of deoxyglucose uptake: Eight days after the onset of
differentiation, cultured myotubes were incubated in serum-free DMEM
(5.5 mmol/L glucose) for 1 h in a 5% CO2 incubator at 37uC, before
addition of [3H]deoxyglucose (1 vmCi/mL). Electrical pulse stimulation
(30 V, pulse trains of 200 ms) was applied to the cells using frequencies
of either 2, 5 or 10 Hz for the first 15 min of the deoxyglucose uptake
period (60 min). Values are presented as means6SEM of 4 experiments,
normalized to unstimulated control cells (absolute values 56.4–
333.6 nmol/mg). B:Deoxyglucose uptake: Eight days after the onset of
differentiation period, cultured myotubes were incubated in serum-free
DMEM (5.5 mmol/L glucose) for 1 h in a 5% CO2 incubator at 37uC,
before addition of [3H]deoxyglucose (1 mCi/mL). Electrical pulse
stimulation (100 Hz, 30 V, pulse trains of 200 ms given every 5th

second) was applied to the cells the first 5-15-30 min of the
deoxyglucose uptake period or during the whole period (60 min) of
deoxyglucose uptake. Values are presented as means6SEM of 6
experiments, normalized to unstimulated control cells (57.9–92.5 nmol/
mg). C: Cell contents of ATP, phosphocreatine (PCr) and lactate: Eight
days after the onset of differentiation period, the myotubes were
preincubated for 1 h (37uC, 5% CO2) with DMEM and high-frequency
electrical stimulation (100 Hz, 30 V, pulse trains of 200 ms given every
5th second) was applied for 5–60 min. The cells were analyzed for ATP
and PCr levels with luminescence spectrometry, and cell content of
lactate was analyzed with fluorescence spectrometry as described in
Materials and Methods. Values are presented as means6SEM of 3
experiments, normalized to unstimulated control cells (absolute values:
ATP; 42.5–73.9 nmol/mg, PCr; 48.4–169.1 nmol/mg and lactate; 1.9–
87.6 nmol/mg). Overall effect of electrical pulse stimulation on cells was
statistically significant (linear mixed model, SPSS) compared to
unstimulated control cells (P = 0.001 for ATP, P = 0.007 for PCr and
P = 0.03 for lactate).
doi:10.1371/journal.pone.0033203.g001
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Cytochrome c (P = 0.07), PGC-1a (P = 0.2) and IL-6; a myokine

reported to be secreted from contracting skeletal muscles in vivo

[35,36] (P = 0.07) (Fig. 4). GLUT1 and GLUT4 were not affected

by EPS (Fig. 4). The results from immunoblots of phosphorylated

Akt to total Akt ratio, showed no effect of electrical pulse

stimulation (data not shown). Protein expressions of the complexes

in the electron transport chain were unchanged by EPS (data not

shown).

Effects of chronic, low-frequency EPS on the markers
of slow-oxidative (MHCI) and fast glycolytic (MHCIIa)
fiber type

To assess the effect of EPS on fiber type markers in myotubes,

we further investigated expression of genes and proteins

specifically enriched in either type I (slow) fibers (MHCI) or type

IIa (fast) fibers (MHCIIa). Expressions of MHCI and MHCIIa

appeared to increase and decrease, respectively, thus the MHCI/

MHCIIa mRNA ratio tended to increase (P = 0.06) in electrically

stimulated myotubes (Fig. 5A). Protein expression of MHCI was

significantly increased (P = 0.03) by 45% after 24–48 h of EPS

(Fig. 5B, C).

Evaluation of toxic effects of EPS on cultured myotubes
Protein contents of the cells were unaffected by acute, high-

frequency as well as chronic, low-frequency EPS under the

conditions used in the experiments (data not shown). Further,

lactate dehydrogenase content was unchanged in media from

myotubes exposed to chronic, low-frequency EPS for both 24 h

and 48 h compared to unstimulated control cells (data not shown).

Number of nuclei in myotubes after 48 h of chronic, low-

frequency EPS, determined by live imaging of the cells, did not

differ from unstimulated control cells (data not shown). After

staining with trypan blue, a low percentage (less than 1%) was

stained, both in control cells and in electrically stimulated

myotubes, with no difference between the two groups (data not

shown). In conclusion, EPS did not induce toxic effects to cultured

human skeletal muscle cells.

Discussion

Cultured myotubes are a valuable tool for investigation of

metabolic processes in skeletal muscles. In the present study, we

demonstrate how a cell model of human myotubes can be

established as an in vitro model of exercise, which can be used to

study some of the adaptations seen in trained skeletal muscles.

Two different patterns of electrical pulse stimulation (EPS) were

applied: acute, high-frequency EPS (bipolar pulse trains of 200 ms,

100 Hz, given every 5th second, 30 V for 5–60 min) to simulate a

single bout of exercise; and chronic, low-frequency EPS (single,

bipolar pulses of 2 ms, 1 Hz at 30 V for 24 or 48 h) to simulate

regular exercise.

By acutely stimulating cultured myotubes with high-frequency

EPS, glucose uptake and cell lactate content increased, while ATP

and PCr contents decreased. By continuously applying chronic,

low-frequency EPS, we successfully increased oxidative capacity of

the cells by increasing glucose metabolism and complete oleic acid

oxidation. Further, these functional changes in the metabolic

processes were accompanied by doubling of mitochondrial

content, measured as total intensity of MitoTrackerHRed, after

48 h of EPS. Citrate synthase activity tended to increase in EPS-

treated myotubes, although not significantly. Increased mitochon-

Figure 2. Effects of chronic, low-frequency EPS on glucose (A) and oleic acid metabolism (B). Cultured myotubes were electrically
stimulated (1 Hz, 2 ms pulses, 30 V), for the last 24 h or 48 h of the differentiation period. (A) Deoxyglucose uptake: After termination of electrical
stimulation (day 8 of differentiation), uptake of [3H]deoxyglucose (1 mCi/mL) was measured for 1 h as described in Materials and Methods. Values are
presented as means6SEM of 6 experiments. *Significantly different from unstimulated control cells (absolute values 28.0–170.5 nmol/mg protein)
(P = 0.004, non-parametric Kruskall-Wallis test). Glucose oxidation: After termination of electrical stimulation (day 8 of differentiation), the rate of D-
[14C(U)]glucose (2 mCi/mL) oxidation was measured as described in Materials and Methods. Values are presented as means6SEM of 4 experiments.
*Statistically significant compared to unstimulated control cells (absolute values 2.7–28.4 nmol/mg protein) (P = 0.008, non-parametric Kruskall-Wallis
test). (B) Oleic acid metabolism: Eight or nine days after the onset of differentiation, myotubes were exposed to [1-14C]OA (1 mCi/mL) for 2 h, and
CO2, ASMs and cell-associated (CA) radioactivity were measured as described in Materials and Methods. Values are presented as means6SEM of 8
experiments. *Statistically significant vs. unstimulated control myotubes (absolute values 15.0–166.8 nmol/mg protein for CA, 0.6–4.0 nmol/mg
protein for ASMs and 0.2–2.9 nmol/mg protein for CO2) (P = 0.04, non-parametric Kruskall-Wallis test).
doi:10.1371/journal.pone.0033203.g002
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drial content in skeletal muscles after exercise is believed to result

from the cumulative effects of transient increases in mRNA

transcripts encoding mitochondrial proteins after repeated exercise

sessions [3,47]. Temporal sequences of molecular effects that

occur in human muscle when mitochondrial biogenesis is induced

with exercise training were investigated in a study by Perry et al.

[48]. Although CS mRNA increased already after first training

session, increase in the activity of CS was not observed until the

end of the 3rd of the seven performed training sessions. In general,

repeated transient bursts of mRNA were shown to occur in the

early phases of training, before increases in the activities of

mitochondrial proteins, but the time and magnitude of mRNA

and protein responses of different transcriptional and mitochon-

drial proteins also showed considerable variation, depending on

the phase of the exercise they were measured in [48]. Thus, the

lack of significant increase in CS activity in our experiments after

only 48 hours of EPS is in agreement, or at least reflects the

complexity and precise time-dependence of molecular events that

were described to occur in mitochondrial biogenesis during

exercise in human skeletal muscles. At applied conditions, we

did show expected functional changes (lipid oxidation and glucose

metabolism), as well as changes in mRNA and protein expressions

of some factors, but in order to demonstrate other changes, both

on mRNA and protein level, we would perhaps have to use

different patterns and time periods, and with the present model,

this is something that can be done in the future work. The same

inconsistency between citrate synthase activity and MitoTrack-

erHRed intensity has also been reported in a recent work

presenting a novel, exercise-mimicking approach to remodel lipid

metabolism in cultured human myotubes [49]. Interestingly, this

was a cell system like ours, but the exercise-mimicking effects were

induced by a pharmacological activation. Thus, for future studies,

time aspect may be an important factor to be considered when

performing exercise-mimicking studies in cell cultures.

Changes in expression levels of a range of genes were also

observed after chronic EPS. mRNA level of PDK4 was

significantly increased in electrically stimulated cells, while mRNA

levels of Cytochrome c and CPT1b also tended to increase.

Figure 3. Effects of 48 h of chronic, low-frequency EPS on mitochondrial content and citrate synthase activity. Low-frequency EPS was
applied to cultured myotubes for the last 48 h of the eight days differentiation period as described in Materials and Methods. (A) Live imaging of
mitochondria: The cells were stained for nuclei (blue) and mitochondria (red) as described in Materials and Methods. Scale bar is 50 mm. Left:
Unstimulated control myotubes. Right: Myotubes after 48 h of chronic, low-frequency EPS. (B) Mitochondrial content in electrically stimulated
myotubes: Mitochondrial content was measured by live imaging after 48 h of chronic, low-frequency EPS. Values are presented as means6SEM of 6
experiments. *Statistically significant vs. unstimulated control (P = 0.03, non-parametric Wilcoxon matched pair test). (C) Citrate synthase activity
in electrically stimulated myotubes: Enzyme activity was determined spectrophotometrically from cell homogenates prepared from the
myotubes after 48 h of chronic, low-frequency EPS as described in Materials and Methods, and compared to activity in unstimulated control cells.
Values are presented as means6SEM of 5 experiments.
doi:10.1371/journal.pone.0033203.g003
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GLUT1 and GLUT4 did not appear to be affected by EPS.

Moreover, the ratio of the mRNA level of MHCI (a gene marker

of type I, slow oxidative fiber type), to that of MHCIIa (a gene

marker of glycolytic, fast-twitch skeletal muscle fibers) tended to

increase in electrically stimulated myotubes, and this finding was

also supported by increased protein expression of MHCI in EPS-

treated cells. Further, mRNA expression of peroxisome prolif-

erator-activated receptor c coactivator-1a (PGC-1a), a transcrip-

tional cofactor referred to as the master regulator of mitochondrial

function and biogenesis [50]; which is frequently considered as an

important factor in cellular mechanisms evoked by exercise,

tended to increase, although not significantly, as well as mRNA

level of IL-6, an interleukin known to be secreted by skeletal

muscles after exercise in vivo, strengthening the conclusion that our

model of EPS may resemble trained muscle.

The relative contribution of fatty acid oxidation to total fuel

demand is increased in healthy subjects performing moderate-

intensity exercise, and several studies support that exercise reduces

the reliance on carbohydrates as an energy source and increases

fatty acid oxidation [51,52]. The rate of oleic acid oxidation was

significantly increased after 48 h of EPS in our cell culture model,

while the uptake of oleic acid was unchanged. Although exercise

has been shown to increase uptake of fatty acids in humans,

cellular mechanisms of elevated uptake are still not clear, since

inconsistencies exist due to different duration and intensity of

training studies [53]. A key factor facilitating transport of fatty

acids through the carnitine shuttle over the outer mitochondrial

membrane, CPT1b, has been shown to be increased in an in vivo

human training study with moderate-intensity exercise for a

shorter duration (2 months), accompanied by an increase in

mitochondrial fatty acid oxidation rate [54]. Although not

significantly, mRNA expression level of CPT1b tended to increase

in our EPS cell model as well.

Our model of chronic, low-frequency EPS showed both

increased import and oxidative metabolism of glucose, and these

effects are also known from in vivo trained fibers [25,26]. However,

we did not observe any additional effect of insulin and EPS on

glucose uptake, nor was phosphorylation of Akt affected by EPS.

These observations are in agreement with suggestions of an

insulin-independent pathway to enhance glucose uptake [55,56].

In addition, there are proposals that some key metabolic

substances typically triggered by insulin, may also be activated

during muscle contractions in the absence of this hormone [26].

mRNA expression levels of GLUT1 and GLUT4 were unaffected

by EPS. GLUT4 is often deficient in cultured skeletal muscle cells

[57], and in primary human myotubes, basal glucose uptake is

generally mediated by other glucose transporters, such as GLUT1

and GLUT3 [58,59]. Inconsistencies between mRNA levels of

Figure 4. Effects of chronic, low-frequency EPS on gene
expression. Low-frequency EPS was applied to cultured myotubes
for the last 24 h or 48 h of the eight days differentiation period. mRNA
was isolated and expression assessed by real time RT-PCR as described
in Materials and Methods, and values are presented as means6SEM of
3–6 experiments, normalized to levels of housekeeping genes 36B4. The
ranges of the fold changes of the mRNA expression levels in the control
groups normalized to the level of housekeeping gene 36B4 were as
follows: 0.3–1.9 for CPT1b, 0.4–1.3 for cytochrome C, 0.001–0.6 for PGC-
1a, 0.6–1.2 for GLUT1, 0.2–2.6 for GLUT4, 0.7–1.0 for PDK4 and 0.1–1.1
for IL-6. *Statistically significant vs. unstimulated control cells (P = 0.04,
non-parametric Kruskall-Wallis test).
doi:10.1371/journal.pone.0033203.g004

Figure 5. Effects of chronic, low-frequency EPS on markers of slow-oxidative (MHCI) and fast-glycolytic (MHCIIa) muscle fiber types.
Low-frequency EPS was applied to cultured myotubes for the last 24 h or 48 h of the eight days differentiation period as described in Materials and
Methods before the cells were harvested. (A) MHCI/MHCIIa mRNA ratio: mRNA was isolated from cultured myotubes after the EPS treatment.
Expression was assessed by RT-PCR as described in Materials and Methods, and values are presented as means6SEM of 4 experiments, normalized to
levels of housekeeping genes 36B4. (B) (C) Immunoblot analysis of MHCI after 24–48 h of EPS: Aliquots of 40 mg cell protein from total cell
lysates prepared in Laemmli buffer were electrophoretically separated on NuPAGEH 4–12% (w/v) Bis-Tris Gel, followed by immunoblotting with
specific antibody for slow-oxidative MHCI. (B) One representative immunoblot. (C) Densitometric analysis of immunoblots, values are presented as
means6SEM of 6 experiments. *Statistically significant vs. unstimulated control cells (P = 0.03, non-parametric Wilcoxon matched pair test).
doi:10.1371/journal.pone.0033203.g005
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GLUTs and functional data have previously been reported in

cultured human skeletal muscle cells [60,61]. On the other hand,

PDK4, an inhibitor of pyruvate dehydrogenase complex, which is

an important factor in switching oxidation towards fatty acids [62],

was significantly increased in EPS-treated cells, indicating a

possible switch in the fuel preference of the myotubes. When

grown in culture, satellite cells mature to myotubes that generally

display the characteristics of glycolytic type II muscle fibers [41],

and are characterized by low mitochondrial oxidative capacity

[63,64], with higher fuel preference for carbohydrates over lipids

[65]. This could be due to lack of proliferation of mitochondria in

vitro in the absence of appropriate environmental signals, such as

contractions. Thus, approaches that increase mitochondrial

oxidative potential of human myotubes are highly relevant with

respect to studies on cellular energy metabolism.

Even though it is difficult to directly compare effects of in vivo

exercise to the observed effects in our model of EPS in cultured

human myotubes, several of our observations display important

aspects of the in vivo effects of exercise. In summary, by applying

our model of chronic continuous, low-frequency EPS, we observed

important functional changes in cell culture: improved lipid

oxidation and glucose metabolism, which are known effects of

exercise in vivo. Further, we also demonstrated a possible fiber-type

switch, measured by increased protein expression of MHCI in

EPS-treated cells. To our knowledge, such changes have not

previously been reported in human cell cultures. Thus, we believe

that our model of EPS in cultured human skeletal muscle cells

represents a unique, physiologically relevant ex vivo model, which

can be used to further study interrelationship between exercise-

induced cellular mechanisms and underlying signalling pathways

under controlled conditions. Particularly, the present model might

be of great interest in clarifying the potential of contractions on

energy metabolism in skeletal muscle cells obtained from different

groups of individuals (obese, glucose intolerant, athletes etc.).

Currently, contraction-induced effects on energy metabolism in

human skeletal muscle cells originating from extremely obese

individuals with or without type 2 diabetes are being investigated.

Supporting Information

Video S1 A film showing contractions of cultured
human skeletal muscle cells exposed to chronic, low-
frequency EPS. Cultured human skeletal muscle cells were

exposed to chronic, low-frequency EPS (single, bipolar pulses of

2 ms, with 30 V and 1 Hz continuously for the last 24 or 48 h of

differentiation period). The observed contractions were synchro-

nous with the electrical pulses.

(M4V)
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