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Summary 

In this review we will focus on external factors that may modify energy metabolism 

in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch 

between lipid and glucose oxidation. We describe the metabolic parameters 

suppressibility, adaptability and substrate-regulated flexibility and show the influence 

of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some 

pharmacological agents modifying nuclear receptors (PPAR and LXR), on these 

parameters in human myotubes. Possible cellular mechanisms for changes in these 

parameters will also be highlighted. 

 

Metabolic flexibility 

Skeletal muscle is the main tissue involved in lipid and glucose oxidation in the body. 

In the postprandial state glucose oxidation dominates, however fat oxidation increases 

both during fasting and sustained exercise [1-3]. The ability to switch from 

predominantly lipid oxidation during fasting conditions to increased glucose oxidation 

and suppression of lipid oxidation in response to insulin [2, 3] is called metabolic 

flexibility, and is a characteristic of healthy skeletal muscle [4, 5]. Kelley and 

Mandarino termed loss of this ability to switch easily between glucose and lipid 

oxidation metabolic inflexibility [5]. Obesity, insulin resistance and type 2 diabetes 

(T2D) are linked to reduced lipid oxidation during fasting, impaired postprandial 

switch from lipid to glucose oxidation and reduced capacity to increase lipid 

oxidation during exercise [3, 6-8]. Furthermore, a reduced postprandial switch from 

lipid to glucose oxidation has been observed in individuals with impaired glucose 

tolerance [7], suggesting that inflexibility plays a role in the early development of 

T2D. The usual way to measure metabolic flexibility to carbohydrate in vivo is to 

calculate the difference between steady-state respiratory quotient (RQ) at the end of 

hyperinsulinemic euglycemic clamp and fasting RQ (ΔRQ) [9]. A low RQ indicates 

high lipid oxidation, whereas a high RQ indicates high glucose oxidation. An 

impaired ability to increase muscle and whole body glucose oxidation during clamp 

has been observed in insulin resistant subjects [5, 10-12]. Additionally, insulin-

stimulated glucose disposal rate has been found to correlate with metabolic flexibility 

and to explain most of the variance in ΔRQ [11, 13], indicating that metabolic 

flexibility to carbohydrate is primarily reflecting glucose uptake. However, other 



  3 

studies suggest that impairments in substrate uptake and oxidation do not always 

occur in parallel [1, 14]. Adaptability to lipid, i.e. the capacity to increase lipid 

oxidation upon increased fatty acid availability, is less thoroughly investigated. 

However, Kelley and Simoneau observed a higher postprandial leg RQ in response to 

a high-fat meal in T2D subjects compared to weight-matched non-diabetic controls 

[15]. 

 

Metabolic switching of skeletal muscle cells 

Metabolic switching of human skeletal muscle cells (myotubes) in vitro has been 

described by Ukropcova et al. [16]. Suppressibility was defined as the ability of the 

cells to suppress fatty acid (FA) oxidation by acute addition of glucose, and 

adaptability was defined as the capacity of the cells to increase FA oxidation upon 

increased fatty acid availability [16]. In vitro suppressibility was inversely correlated 

with insulin sensitivity and metabolic flexibility in vivo, whereas adaptability was 

positively correlated with these parameters [16]. This study indicated that metabolic 

switching is an intrinsic characteristic of skeletal muscle cells. Stull et al. recently 

showed that race was a contributor of metabolic flexibility in vivo [13], signifying that 

metabolic flexibility is at least partly a product of genetics. Nevertheless, metabolic 

inflexibility could be due to both intrinsic and extrinsic (induced) factors. Human in 

vivo studies have shown that postprandial impairments in metabolic flexibility can be 

improved by weight loss [7, 14, 17], and that exercise improves the ability of skeletal 

muscle to oxidize fatty acids during exercise and fasting [14, 18, 19]. A recent 

intervention study on men with metabolic syndrome indicated that isoenergetic 

modulation of dietary fat quality and quantity did not affect respiratory quotient or 

carbohydrate and lipid oxidation during fasting or after a meal [20]. However, the 

sample size in this study was relatively small for detecting such changes. The 

investigation of substrate oxidation started decades ago, and according to Randle 

cycle [21], fatty acids reduce glucose oxidation, whereas glucose reduces fatty acid 

oxidation through “reverse Randle cycle” [22, 23]. While the mechanistic basis for 

Randle cycle is relatively well understood, the molecular mechanism underlying 

metabolic inflexibility remains to be revealed.  
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Methodology used to measure metabolic switching of human myotubes  

For a better description of metabolic switching in cells, we have used three 

parameters, the two parameters suppressibility and adaptability as introduced by 

Ukropcova [16], and the new parameter substrate-regulated flexibility [24] in 

functional studies of fuel selection and energy metabolism in cell cultures. Substrate-

regulated flexibility was defined as the ability to increase fatty acid (FA) oxidation 

when changing from a high glucose (5 mM), low FA (5 µM) condition (“fed”) to a 

high FA (100 µM), low glucose (0 mM) (“fasted”) condition (Figure 1).  

The suppressibility of oleic acid (OA) oxidation, measured as carbondioxide 

formation (CO2), when 5 mM glucose was added acutely to the cells, was independent 

of the fatty acid concentration in the range from 5 to 300 µM (Figure 2A). Moreover, 

it was observed that maximum suppression by about 50 % was reached at 2-5 mM 

glucose, and already at 0.5-1 mM glucose acutely we observed a significant reduction 

in OA oxidation (IC50 0.55 mM). Moreover, we also showed that suppressibility of 

OA oxidation by glucose was not affected when increasing mitochondrial respiration 

by addition of the mitochondrial uncoupler 2.4-dinitrophenol (DNP) (Figure 2B). In 

the opposite situation, suppressibility of glucose oxidation by acute addition of OA 

was strongly dependent of mitochondrial respiration (Figure 2B) probably because 

glycolytic metabolism is preferred in human myotubes [25, 26]. 

The adaptability of OA oxidation in the range from 5 to 300 µM of the fatty acid is 

shown in Figure 2C, which demonstrate that the adaptability was dependent on FA 

concentration. For our calculations of this parameter we have mostly used the ratio 

100 µM FA/ 5 µM FA (Figure 1).  

Addition of insulin (100 nM) to the low FA condition (“fed”) condition did not 

change substrate-regulated flexibility, probably because most of the glucose uptake in 

human myotubes occurs independent of insulin. Moreover, Ukropcova et al. [16] 

observed that insulin was not needed for the expression of the metabolic switching 

phenotype in muscle cells. We also found that this parameter was robust against 

varying degree of fatty acid uptake by the cells (data not shown). The details about 

muscle cell cultures used in these studies are given in the legend to Figure 2. 

Metabolic switching of human myotubes can be changed by alterations in the 

extra-cellular milieu  

Metabolic switching of myotubes can be altered by changing the extracellular milieu, 
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and myotubes can be used as a cell model to determine how dietary changes (e.g. fatty 

acids), altered glycemic control (chronic hyperglycemia) or pharmacological agents 

acting at nuclear receptors (e.g. PPAR and LXR) may affect overall energy 

metabolism in cells. 

Treatment of myotubes with various fatty acids (100 µM) for 24 h showed that the n-3 

fatty acid eicosapentaenoic acid (EPA) increased suppressibility of the acute 

[14C]oleic acid (OA) metabolism compared to OA pretreatment, as well as 

adaptability and substrate-regulated flexibility compared to pretreatment with OA and 

the fatty acid-free control (BSA) (Figure 3 [24]). This suggests a beneficial role for 

EPA in improving metabolic switching and overall energy metabolism in skeletal 

muscle. Exposure of myotubes to other long-chain n-3 FAs such as α-linolenic acid 

(ALA) and docosahexaenoic acid (DHA) also increased substrate-regulated flexibility 

to the same extent as EPA, indicating that EPA’s effect on metabolic switching may 

be due to a general quality of n-3 FAs [24]. Adaptability of the myotubes was also 

increased after exposure to palmitic acid (PA) and linoleic acid (LA), suggesting that 

this is a general fatty acid effect. 

For most experiments we have used [14C]OA acutely when measuring the metabolic 

switching parameters. With OA pretreatment and subsequent incubation with 

[14C]OA we did not see any change in fatty acid adaptability for OA (Figure 4A). We 

also observed the same with PA pretreatment and [14C]PA thereafter, thus for 

determination of the adaptability parameter it seems that another FA acutely is 

preferred rather than the pretreatment fatty acid. The reason is not clear but it may be 

an artifact due to isotope dilution. Moreover, adaptability was much higher for 

labelled OA than for PA (Figure 4A). Also pretreatment with the sulfur-substituted 

fatty acid analogue tetradecylthioacetic acid (TTA) for 24 h and then using [14C]OA 

acutely increased the adaptability of the myotubes (Figure 4B). TTA may also work 

as a PPAR agonist after prolonged incubation of myotubes [27] (see later). 

In addition to various FAs, other components in the extracellular milieu can affect 

metabolic switching of myotubes. We have previously shown that treatment of human 

myotubes with chronic hyperglycemia (HG) reduced acute glucose uptake and 

glycogen synthesis. This reduction accompanied increased accumulation of TAG in 

the cells and an increased de novo lipogenesis [28]. Moreover, recent data show that 

HG reduced glucose and oleic acid (OA) oxidation, as well as the suppressibility of 

the cells [26]. However, the adaptability of OA oxidation was not affected after 
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chronic HG treatment [26]. We also measured substrate-regulated flexibility, which 

was significantly reduced after HG treatment of the cells (Figure 5).  

 

Metabolic switching of human myotubes can be modified by agonist regulating 

the nuclear receptors PPARs and LXRs  

In addition to various FAs and chronic hyperglycemia, we also examined the possible 

involvement of peroxisome proliferator-activated receptors (PPARs) and liver X 

receptors (LXRs) in metabolic switching. The myotubes were incubated for 4 days 

with compounds known to act agonistic at these receptors. 

PPARs are activated by fatty acids and therefore act as lipid sensors in the body [29-

31]. Three subtypes of PPARs have been identified, differing in tissue distribution 

and function. PPARα is predominantly expressed in the liver, but also found in heart 

and skeletal muscle, where it increases fatty acid oxidation [29, 32-34]. PPARγ is 

mainly expressed in adipose tissue, and plays an important role in adipocyte 

differentiation and lipid storage [31, 35-37]. In contrast to the other subtypes, PPARδ 

(also called PPARβ) is ubiquitously expressed and is relatively abundant in skeletal 

muscle [38]. The human myotube model used in our experiments express more 

PPARδ than PPARα (unpublished observations).  

The role of PPARδ is currently under investigation, and is so far found to increase 

fatty acid oxidation in skeletal muscle [39], and might thus play an important role in 

energy turnover [40]. Treatment of the myotubes with the PPARδ agonists 

GW501516 and the pan-agonist TTA for 4 days during differentiation increased CO2 

formation from the cells when incubated acutely with labelled OA (Figure 6). The 

two metabolic parameters suppressibility and adaptability were not changed by PPAR 

activation, but substrate-regulated flexibility was 2-fold increased by TTA (Figure 7), 

but not by GW501516. TTA is a pan-PPAR activator that reduces plasma lipids and 

enhances hepatic fatty acid oxidation in rodents [41]. Dual and pan-PPAR agonists 

are currently being developed for treatment of type 2 diabetes (T2D) [42], and TTA 

has been shown to improve glucose metabolism in insulin-resistant rats [43] and to 

stimulate mitochondrial proliferation in rat skeletal muscle [44]. Recently, we have 

shown that preincubation of myotubes with TTA enhanced mitochondrial fatty acid 

and glucose oxidation, indicating increased mitochondrial biogenesis and an 

improved glucose metabolism [27]. At the same time TTA opposed increased lipid 

accumulation by the cells. TTA seems more potent in activating rat PPARα than 
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PPARδ [43, 45], whereas the opposite has been demonstrated for human PPARs [46]. 

This may partly explain why TTA has particularly strong effects on hepatic 

metabolism in rodents where PPARα is a major regulator, but relatively modest 

effects in skeletal muscle where PPARδ may play a more prominent role [38, 47]. In 

human myotubes, PPARδ seems to play a dominant role over PPARα in controlling 

lipid oxidation [48], and we have demonstrated that preincubation of myotubes with 

the PPARδ selective agonist GW501516 and TTA, but not the PPARα-selective 

agonists fenofibrate and clofibrate (at PPARα-selective concentrations), could induce 

increased mitochondrial fatty acid oxidation in myotubes [49]. Our data on fatty acid 

oxidation (Figure 6) also demonstrate that an increased capacity for oxidation of fatty 

acids (increased CO2 formation) alone is not sufficient to change the metabolic 

parameters described in this paper.  

LXRs play a crucial role in regulation of cholesterol, lipid and carbohydrate 

metabolism [50-54]. We have shown that chronic activation of LXRs may affect 

glucose uptake and oxidation as well as promote a strong effect on lipid metabolism 

by increasing fatty acid uptake and accumulation as complex lipids and to stimulate 

lipogenesis in human myotubes [55, 56]. Thus, LXRs could play a role in the 

regulation of metabolic switching. We have shown that treatment of myotubes with 

the LXR agonist T0901317 for 2 days did not affect suppressibility or adaptability of 

the cells per se, but counteracted the effect of EPA on these two parameters (Figure 

8A and B, [24]). Treatment with T0901317 did not change substrate-regulated 

flexibility, nor cancel out the effect of EPA on this parameter. Therefore, LXRs do 

not seem to play a major role, but show some impact on metabolic switching of 

myotubes.   

 

Possible mechanisms for changes in metabolic switching of myotubes 

To study whether the effects of FA pretreatment on metabolic switching could be due 

to altered gene expression, microarray analysis was performed [24]. This revealed that 

24 h treatment with 0.1 mM EPA regulated more genes than the other FAs examined, 

followed by LA and OA, while PA regulated fewest genes. Three of the genes 

induced by all FAs are involved in fatty acid β-oxidation [24]. Hence, this could 

reflect the ability of FAs to increase adaptability. Moreover, pathway analysis showed 

that some pathways involved in carbohydrate metabolism were affected only after 
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exposure to EPA, supporting the functional data showing specific effects of n-3 FAs 

on suppressibility and substrate-regulated flexibility compared to the other FAs [24] 

(Figure 9). In vivo studies (both human and animal) have shown that fatty acid 

oxidation and the activity of β-oxidation enzymes are increased in skeletal muscle of 

individuals/rats fed a high-fat diet [57-59]. This could be a mechanism to compensate 

for elevated availability of fatty acids to protect against lipid accumulation, and might 

be reflected in vitro by the adaptability parameter.   

Chronic treatment with the PPARδ agonist GW501516 markedly increased OA 

oxidation and this substance has previously been shown to induce genes involved in 

fatty acid transport and oxidation in cells [39, 48, 60], and to increase fatty acid 

oxidation [61, 62]. Moreover, we demonstrate that increasing the capacities for fatty 

acid oxidation by PPAR activation, or respiration by mitochondrial uncoupling did 

not change the metabolic parameters in the myotubes. The pan-PPAR agonist TTA 

also increased fatty acid oxidation, but in contrast to GW501516 it seemed to increase 

substrate-regulated flexibility. We have previously shown that TTA also positively 

influences glucose metabolism in myotubes [27], and this fatty acid analogue also 

increased adaptability after 24 h pretreatment (Figure 4B). Thus, TTA may show 

PPAR and PPAR-independent effects [41, 45] in myotubes that could explain the 

difference between the two PPAR agonists on the metabolic parameters.  With respect 

to the different FAs some studies have shown that PUFAs are slightly more potent 

PPAR agonists than other FAs [29, 30, 63], however no difference in the activation of 

PPARs has been observed between n-3 and n-6 FAs [29, 63]. Studies have indicated 

that PPARα interacts almost equally with both saturated and unsaturated FAs and that 

PPARδ also interacts with saturated and unsaturated FAs, although less effective than 

PPARα [63, 64]. Based on the gene expression studies we suggest that the effects on 

metabolic switching by FAs may only partly be explained by changes in gene 

expression [24].  

The effects of distinct FAs on metabolic switching could also be due to differences in 

accumulation of fatty acids, the level of intracellular lipid species such as acyl-CoA, 

diacylglycerol (DAG) and triacylglycerol (TAG), and lipid utilization. Ectopic fat 

deposition is associated with impaired organ function [65], and increased 

accumulation of intramyocellular lipids (IMCL) correlates with insulin resistance and 

T2D [66-70]. Intramyocellular lipid intermediates might as well affect metabolic 

switching. We have shown that EPA per se was less incorporated in the cells than the 
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other FAs examined, probably due to higher oxidation rate [24]. However, treatment 

with EPA, as well as OA and LA, increased the number of lipid droplets (LDs) per 

nucleus in myotubes [24]. The content of neutral lipids followed the same pattern as 

the number of LDs, but lipid distribution was not changed by pretreatment with the 

various FAs. In accordance with our data, previous studies have shown that treatment 

with EPA increased acute fatty acid uptake [27, 71]. Furthermore, treatment with EPA 

has been shown to promote accumulation of TAG and reduce the level of total acyl-

CoA in human myotubes [27, 71]. Nevertheless, although various FAs were handled 

differently in the cells, altered lipid specie distribution could not easily explain the 

observed effects on metabolic switching. Other possible mechanisms by which 

metabolic switching can be changed by FAs include altered AMP-activated protein 

kinase (AMPK) activity, differences in gene regulation through various nuclear 

receptors, as well as different membrane incorporation of fatty acids and thereby 

altered membrane fluidity and activity of membrane-associated proteins or dynamics 

of mitochondrial membranes [72-79].  

The effects of chronic hyperglycemia (HG) on metabolic switching were not due to 

changes in gene expression, as microarray analysis revealed that no genes were 

significantly regulated by HG treatment [26]. This is a potential important finding, 

and suggests that the effects of HG could be due to post-translational modifications, 

such as glycosylations or glycations. Moreover, ATP concentration was reduced in 

HG cells. This indicates that hyperglycemia induces some kind of mitochondrial 

dysfunction. The amount of mitochondrial DNA was not changed indicating that the 

mitochondrial content was unaffected. Yet, the mitochondrial function might be 

impaired. This is in accordance with the findings of Gao et al. showing that HG 

treatment of 3T3-L1 adipocytes induced insulin resistance, loss of mitochondrial 

membrane potential, as well as resulted in smaller and more compact mitochondria 

with no effect on mitochondrial DNA [80]. Another mechanism by which HG 

theoretically could affect metabolism is through altered AMPK activity, since glucose 

infusion in rats has been shown to reduce phosphorylation of AMPK and its substrate 

acetyl-CoA carboxylase (ACC) in red but not white muscle [81]. In our study [26], 

AMPK activity could not explain the metabolic impairments because phosphorylation 

of AMPK and ACC was not changed after HG exposure. Taken together, chronic HG 

impaired metabolic switching of myotubes probably due to an induced mitochondrial 

dysfunction. 
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Conclusion 

The in vitro metabolic parameters suppressibility, adaptability and substrate-regulated 

flexibility can be modified by fatty acids or by chronic hyperglycemia (HG) in human 

myotubes. Eicosapentaenoic acid (EPA) increased all three parameters, and the effect 

of EPA could be counteracted by LXR activation. The fatty acid analogue 

tetradecylthioacetic acid (TTA) could also modify metabolic switching depending on 

treatment time. Increased fatty acid oxidation after PPARδ agonist treatment did not 

change metabolic switching of myotubes. Treatment with HG negatively influenced 

suppressibility and substrate-regulated flexibility of the cells. 
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Captions to illustrations 

 

Figure 1. Calculations of metabolic flexibility parameters. 

 

Figure 2. Suppressibility of oleic acid (OA) oxidation by glucose and of glucose 

oxidation by OA, and adaptability of OA oxidation at different OA 

concentrations. Suppressibility (A). Myotubes underwent CO2 trapping for 4 h with 

different concentrations of [14C]oleic acid (OA) in the presence or absence of 5 mM 

glucose. Suppressibility with mitochondrial uncoupling (B). Myotubes were incubated 

with radiolabeled substrates in the absence or presence of 2.4-dinitrophenol (DNP, 

100 µM) for 4 h to collect CO2. Figure shows suppressibility by acute glucose or by 

acute oleic acid. Figure left shows suppressibility of [14C]oleic acid (OA) (100 µM) 

oxidation in presence of acute glucose (5 mM), and right shows suppressbility of 

[14C(U)]glucose (200 µM) oxidation in presence of acute OA (100 µM). Adaptability 

(C). Myotubes underwent CO2 trapping for 4 h with different concentrations of 

[14C]OA in the absence of glucose. Results represent means ± SEM for n=5 (A), n=4 

(B), n=4-17 (C). n, number of separate experiments with cells from individual donors.  

Human skeletal muscle cell cultures. Satellite cells were isolated from the M. 

obliquus internus abdominis of healthy donors. The biopsies were obtained with 

informed consent and approval by the regional committee for research ethics, Oslo, 

Norway. The cells were cultured in DMEM (5.5 mM glucose) with 2% foetal calf 

serum (FCS), 2% Ultroser G, penicillin/streptomycin (P/S) and amphotericin B until 

70-80% confluent. Myoblast differentiation to myotubes was then induced by 

changing medium to DMEM (5.5 mM glucose) with 2% FCS, 25 pM insulin, P/S and 

amphotericin B. Experiments were performed after 7-8 days of differentiation. 

 

Figure 3. Suppressibility of oleic acid (OA) oxidation by glucose, adaptability of 

OA oxidation and substrate-regulated flexibility of OA after pretreatment with 

different fatty acids.  Suppressibility (A). Myotubes were pretreated for 24 h with 

100 µM OA, EPA, LA, PA, 40 µM BSA (control, all FA treatments contain 40 µM 

bovine serum albumin, BSA), and thereafter underwent CO2 trapping for 4 h with 100 

µM [14C]oleic acid (OA) in the presence or absence of 5 mM glucose. Adaptability 

(B). Myotubes were pretreated for 24 h with 100 µM OA, EPA, LA, PA, 40 µM BSA 
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(control), and thereafter underwent CO2 trapping for 4 h with 5 or 100 µM [14C]OA in 

the absence of glucose. Substrate-regulated flexibility (C). Myotubes were pretreated 

for 24 h with 100 µM OA, EPA, LA, PA, 40 µM BSA (control), and thereafter 

underwent CO2 trapping for 4 h with 100 µM [14C]OA in the absence of glucose or 

with 5 µM [14C]OA in the presence of 5 mM glucose. Results represent means ± SEM 

for n=11-17 (A), n=6-12 (B), n=6-12 (C). *p<0.05 vs. control, #p<0.05 vs oleic acid 

(t-test). 

Abbreviations: BSA, bovine serum albumin; EPA, eicosapentaenoic acid; LA, 

linoleic acid; OA, oleic acid; PA, palmitic acid. Reproduced from [24]. 

 

Figure 4. Adaptability of fatty acid oxidation. Myotubes were pretreated for 24 h 

with 100 µM OA, PA or 40 µM BSA (control), and thereafter underwent CO2 

trapping for 4 h with 5 or 100 µM [14C]OA or [14C]PA in the absence of glucose (A). 

Myotubes were pretreated for 24 h with 100 µM tetradecylthioacetic acid (TTA), and 

thereafter underwent CO2 trapping for 4 h with 5 or 100 µM [14C]OA in the absence 

of glucose. Results represent means ± SEM for n=5 (A and B). *p<0.05 vs. control. 

 

Figure 5. Substrate-regulated flexibility after chronic hyperglycemia (HG). 

Myotubes were pretreated for 4 days with 20 mM glucose, and thereafter the cells 

underwent CO2 trapping for 4 h with 100 µM [14C]OA in the absence of glucose or 

with 5 µM [14C]OA in the presence of 5 mM glucose. Results represent means ± SEM 

for n=4. *p<0.05 vs. control.  

 

Figure 6. Carbondioxide formation after pretreatment with PPAR agonists. 

Myotubes were pretreated for 4 days with 100 µM tetradecylthioacetic acid (TTA), 10 

nM GW501516 or vehicle (control, DMSO), and thereafter the cells underwent CO2 

trapping for 4 h with 100 µM [14C]oleic acid (OA) in the absence of glucose. Results 

represent means ± SEM for n=3-7. *p<0.05 vs. control. 

 

Figure 7. Suppressibility of oleic acid (OA) oxidation by glucose, adaptability of 

OA oxidation and substrate-regulated flexibility of OA after pretreatment with 
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PPAR agonists. Suppressibility (A). Myotubes were pretreated for 4 days with 100 

µM tetradecylthioacetic acid (TTA), 10 nM GW501516 or vehicle (control, DMSO), 

and thereafter the cells underwent CO2 trapping for 4 h with 100 µM [14C]oleic acid 

(OA) in the presence or absence of 5 mM glucose. Adaptability (B). Myotubes were 

pretreated for 4 days with 100 µM tetradecylthioacetic acid (TTA), 10 nM 

GW501516 or vehicle (control, DMSO), and thereafter the cells underwent CO2 

trapping for 4 h with 5 or 100 µM [14C]OA in the absence of glucose. Substrate-

regulated flexibility (C). Myotubes were pretreated for 4 days with 100 µM 

tetradecylthioacetic acid (TTA), 10 nM GW501516 or vehicle (control, DMSO), and 

thereafter the cells underwent CO2 trapping for 4 h with 100 µM [14C]OA in the 

absence of glucose or with 5 µM [14C]OA in the presence of 5 mM glucose. Results 

represent means ± SEM for n=8, 3, 3 for A, B, C, respectively.  

 

Figure 8. Suppressibility of oleic acid (OA) oxidation by glucose, adaptability of 

OA oxidation and substrate-regulated flexibility of OA after pretreatment with 

eicosapentaenoic acid (EPA) and a LXR agonist T0901317. Suppressibility (A). 

Myotubes were pretreated for 24 h with 1 µM T0901317 or vehicle (DMSO), and 

then for another 24 h with 100 µM EPA or 40 µM BSA (control) with and without 

T0901317, and thereafter the cells underwent CO2 trapping for 4 h with 100 µM 

[14C]oleic acid (OA) in the presence or absence of 5 mM glucose. Adaptability (B). 

Myotubes were pretreated for 24 h with 1 µM T0901317 or vehicle (DMSO), and 

then for another 24 h with 100 µM EPA or 40 µM BSA (control) with and without 

T0901317, and thereafter the cells underwent CO2 trapping for 4 h with 5 or 100 µM 

[14C]OA in the absence of glucose. Substrate-regulated flexibility (C). Myotubes were 

pretreated for 24 h with 1 µM T0901317 or vehicle (DMSO), and then for another 24 

h with 100 µM EPA or 40 µM BSA (control) with and without T0901317, and 

thereafter the cells underwent CO2 trapping for 4 h with 100 µM [14C]OA in the 

absence of glucose or with 5 µM [14C]OA in the presence of 5 mM glucose. Results 

represent means ± SEM for n=6-17, 6-12, 6-12 for A, B, C, respectively. *p<0.05 vs. 

control, #p<0.05 vs EPA.  
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Figure 9. Pathways involved in metabolic processes upregulated by fatty acids in 

myotubes. Myotubes were incubated with fatty acids (100 µM) or control (BSA 40 

µM) for 24 h and harvested for RNA isolation. Gene expression was measured by 

Affymetrix human NuGO Genechip arrays and gene set enrichment analysis (GSEA) 

was performed to identify pathways regulated by OA, PA, LA, and EPA compared to 

control. Pathways with FDR (q-value) < 0.2, that is –log(q) > 0.7, were considered 

significantly regulated. Line marks –log(q) = 0.7, the cut-off for significance for the 

GSEA. In short, GSEA identifies pathways in which more genes are regulated than 

one would expect on the basis of chance. 

Abbreviations: BSA, bovine serum albumin; EPA, eicosapentaenoic acid; LA, 

linoleic acid; OA, oleic acid; PA, palmitic acid. Reproduced from reference [24]. 

 

Figure 10.  Metabolic switching of myotubes. The metabolic parameters 

suppressibility, adaptability and substrate-regulated flexibility can be modified by 

fatty acids or by chronic hyperglycemia (HG). Eicosapentaenoic acid (EPA) increased 

all three parameters, and the effect of EPA could be counteracted by LXR activation. 

The fatty acid analogue and PPAR activator tetradecylthioacetic acid (TTA) could 

also modify metabolic switching depending on treatment time. Treatment of 

myotubes with HG negatively influenced suppressibility and substrate-regulated 

flexibility. 
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Suppressibility: the ability of the cells to decrease oleic 
acid (OA) oxidation by acutely added glucose:  
[(1-(oxidation of 100 µM OA at 5 mM glucose/oxidation 
of 100 µM OA at no glucose added)) × 100 %].  

Adaptability: the ability to increase the OA oxidation 
with increasing OA concentration:  
[oxidation of 100 µM OA/oxidation of 5 µM OA].  
Substrate-regulated flexibility: the ability to increase 
the OA oxidation while changing from the "fed" (low 
fatty acid, high glucose) to the "fasted" (high fatty acid, 
no glucose added) condition:  
[oxidation of 100 µM OA without glucose added/ 
oxidation of 5 µM OA at 5 mM glucose].  
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