
Simplified cloud-oriented virtual machine

management with MLN

Kyrre Begnum
kyrre.begnum@iu.hio.no

Oslo University College, Norway

March 7, 2010

Abstract

System administrators are faced with the challenge of making their ex-
isting systems power-efficient and scalable. Although Cloud Computing
is offered as a solution to this challenge by many, we argue that hav-
ing multiple interfaces and cloud providers can result in more complexity
than before. This paper addresses cloud computing from a user perspec-
tive. We show how complex scenarios, such as an on-demand render farm
and scaling web-service, can be achieved utilizing clouds but at the same
time keeping the same management interface as for local virtual machines.
Further, we demonstrate that by enabling the virtual machine to have its
policy locally instead of in the underlying framework, it can move between
otherwise incompatible cloud providers and sites in order to achieve its
goals more efficiently.

1 Introduction

Infrastructure as a service (IaaS) is becoming attractive for both researchers and
technicians with the emergence of products and tools surrounding on-demand
deployment of virtual machines. The main principle is that you can get comput-
ing resources (Xen-based virtual machines in the case of Amazon EC2) without
investing in or setting up hardware, thereby reducing cost and power.

What most understand as ”Cloud Computing” compared to a conventional
IaaS product is the existence of an API to manage virtual instances directly.
Instead of a permanent setup of instances which are rented over an contracted
period of time, the users create new instances themselves and tear them down
when they are obsolete. Cloud Computing is therefore more transient and flex-
ible than a conventional IaaS. This property of minute-to-minute influence over
the number of resources used, fits very well with the ideas of dynamically adap-
tion of services. Virtualization, Iaas combined with an API, work as an enabler
for the development of new types of infrastructures.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Digital Archive at Oslo and Akershus University College

https://core.ac.uk/display/35073133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Being a system administrator in this era means facing a new set of man-
agement challenges. Before, it was about simply keeping systems and services
running and getting enough permanent resources to survive a usage spike. To-
day, we are expected to program behavior into our systems so that they adapt
and behave according to complex policies. This new paradigm means having to
give our systems self-* properties, like self-configuration and self-scaling. A likely
scenario is to leverage an increase in distributed server resources for temporary
extra computing power or proximity to customers. One of the main challenges
in achieving this from a local perspective, is the lack of tools which address both
in-house virtual machine management and cloud computing through the same
management interface. This is not merely a problem of learning yet another
tool, but that of integrating the clouds instances into existing, local infrastruc-
ture systems, such as monitoring, user management and backup. We argue that
cloud computing should be integrated into the existing management tools and
practices at an organization and not having to split up management operations
to span multiple provider-centric interfaces.

Consider a small company producing CGI (computer-generated imagery) ma-
terial which may not afford to buy and maintain their own render farm. Hiring
a render farm for fixed periods of time would be the alternative albeit somewhat
inflexible if they fail to utilize the farm for the entire period they paid for. Cloud
computing may offer a better solution where the render farm exists in a cloud
such as Amazon EC2 and can be booted up only when needed. The local tech-
nicians can maintain a local version of the cluster, running entirely as virtual
machines on a moderately powered computer, providing a testing ground for
their software. Once they need to render a large project, the cluster is pushed
into the cloud and booted up as a far more powerful version of itself. When the
rendering is finished, it can be taken down again and there are no more costs
associated with it.

Another example is that of a company with local web services experiencing
a sudden heavy load due to increased attention from customers. Buying and
installing new hardware in order to cope with the pressure has numerous draw-
backs: The time to get them up will be too long and once they are up they were
a wasted expense if the traffic goes down to its normal level again. Further,
although they can expand their infrastructure, there might be little they can do
with the capacity of their internet connection. Again, with cloud computing they
could boot up web-server instances in different clouds and use load-balancing on
the DNS service to direct the customers. Once the traffic dies down again, the
instances can be taken down. If the load settles on a high level, the company
now has time to invest in more hardware and network equipment based on their
expected profits.

There are some observations to be made about these scenarios. The most
important one is that the companies all have local infrastructure and the ca-
pability to run virtual machines. Further, they are cloud-aware and have the
means to effectively manage instances both locally and in a cloud if necessary.

2

As a result, they have designed their service to work with support from cloud
providers when needed. Seeing cloud computing as an addition rather than only
a replacement for local infrastructure offers many more scenarios like these.

This paper describes an effort to address the problem of cloud-aware lo-
cal management by modifying the virtual machine management tool MLN to
integrate cloud architectures and thereby enable seamless integration of cloud
instances into local management. We showcase its usefulness today through two
scenarios, an on-demand render cluster and a scaling web-scenario. Possibilities
for self-management are demonstrated in a third scenario to highlight the future
potential of virtualization and cloud computing.

2 Background

Amazon’s elastic computing cloud (EC2) is a Xen-based IaaS product which
has become a popular example of cloud computing. Users can upload custom
virtual machine images and boot instances of them according to five different
hardware profiles. There are several cost-metrics involved in calculating the
running costs for a virtual machine, based on added services such as permanent
storage partitions and network traffic. However, the most important observation
is that cost is dominated by instance uptime and not CPU usage per se. The
more powerful the instance, the higher the cost associated with keeping it up
and running. A cost-effective utilization of Amazon’s product means making
sure that the instances only running when they are needed. This highlights the
new paradigm of system administration where behavior becomes the focus rather
than uptime. When the behavior is resource scaling, the common approach is to
find an algorithm for resource scaling based on the usage levels. The work done
in [15] is a good example of this, even though they implemented their cluster
in a data center and booted up physical machines instead of virtual machines.
In [16], the cost / value function is investigated in a resource scaling context.
Here, the load balancer would seek to optimize the resource level entirely based
on the cost for each resource unit compared with the reported value from the
users. Other, traditional variables such as connection rate and system load are
not used, thereby reducing the need for elaborate monitoring and representation
of knowledge.

An available API to the EC2 cloud enables other developers to build value-
added products based on Amazon’s infrastructure. Tools such as the firefox
plugin Elasticfox or sites such as RightScale.com provide different entry-points
to the same cloud computing product. The drawback of these tools is that they
only deal with virtual machines in the cloud and not local virtual machines.
Further, they are built as graphical interfaces which encumbers automation.

An open source alternative to Amazon EC2 is Eucalyptus, a project located
at the University Of California[1]. Eucalyptus is appealing because it supports
the same API as Amazon EC2 and can work as a plug-in replacement for Ama-
zon’s commercial offering. This may be more attractive to research institutions,
where sharing resources for experiments has been widespread. One example of

3

such practice is PlanetLab.
One particular feature of Amazon EC2 and Eucalyptus alike is that the

changes made to a running virtual machine are not stored in the filesystem which
was originally uploaded. Rebooting the instance will lead to all changes being
lost. From a system administration point of view, this creates extra challenges
as systems are rarely satic. Examples of activities which change the system are
user management (adding, deleting, changing passwords and permissions) and
log files. Re-uploading a large filesystem just because one changed the permis-
sion to a file is cumbersome as well as not being able to investigate the log-files
after a crash. One is quickly faced with the need to create a local staging area
in order to fine-tune the virtual machine before it is moved into the cloud. This
makes it increasinlgy important to combine local virtual machie management
tools aware of clouds and facilitate this process. Amazon’s attempt at mitigat-
ing lack of permanent storage is to use so-called EBS volumes, which are block
devices which offer permanent storage and can be attached to running virtual
machines. Although this in theory makes it possible to have persistent data, it
is more difficult in practice due to a complicated naming scheme of volumes and
instances which leaves most tools unable to automate much in this regard.

An example of IaaS being used in order to enhance local infrastructure can be
found in the VMplant project [13]. Here, virtual machines running on a remote
infrastructure could be connected to the local area network using tunneling. The
goal was the ability to dynamically expand the number of local servers. Utilizing
clod computing in order to optimize resource allocation to the current demand
has seen great interest as of late. Examples of such can be found in [9, 10, 11]

2.1 MLN

MLN (Manage Large Networks) is an open source tool designed for management
of large numbers of virtual machines. A concept of groups of virtual machines
called ”projects”, enable atomic management operations such as building, start-
ing and stopping entire clusters and networks. An expandable plugin framework
to allow additions to MLNs configuration language and features.[14]

MLN uses a configuration language to specify how the virtual machines are
to be set up. In this language both VM properties such as memory and disk
size are specified along with internal system properties such as users, passwords
and startup parameters. MLN supports Xen, User-Mode Linux and VMware
Server and has previously been shown to work well in scenarios where large
numbers of virtual machines are deployed with complex network topologies and
system configurations, such as high-performance computing and virtual labs in
education. [12, 5, 6]

Typical management tools in this field are GUI-based, with little possibility
to group together virtual machines or correlate configuration parameters accross
them. Further, scripting of complex operations, such as moving groups of virtual
machines from one location to another based an initiative taken by the virtual
machine itself is not possible with standard vendor management tools. In MLN,

4

simplified management is achieved through atomic management commands. The
user can build, start, stop and upgrade large and complex scenarios, consisting
og multiple, logically grouped, virtual machines spread over several physical
servers, using only single commands. This type of management fits well with
scenarios like the ones described above and allows for scripts and higher level
tools to utilize these commands in order to achieve their goals.

2.2 Integrating Amazon EC2 and Eucalyptus

Both Amazon EC2 and Eucalyptus support by-and-large the same API for vir-
tual machine management. For MLN, integrating support for these two cloud
providers is done through the development of a plugin, which can be maintained
apart from the main MLN codebase. This plugin seamlessly expands the syn-
tax of the MLN configuration language, allowing users to include Amazon EC2
or Eucalyptus properties in the virtual machines they design. The following is
a simple project consisting of only one virtual machine which is to run inside
the Amazon EC2 cloud. The ec2-block inside the host specification is what
is handled by the plugin and results in this virtual machine being built in the
cloud.

global {
project ec2example

}
host webserver {

xen
ec2 {

type c1.medium
volumes {

2G hda1 /var/log/apache ext3 defaults
}

}
network eth0 {

address dhcp
}
template web.ext3
free_space 2000M

}

Notice how volumes can be specified in an integrated manner, allowing MLN
to coordinate which volumes belong where, letting the virtual machine always
be associated with that particular volume. Associating volumes with virtual
machines is of particular importance when projects of numerous virtual ma-
chines are run, where each virtual machine has its own volume. Keeping track
of the volumes so that the same volume is always associated with the same vir-
tual machine is something which is not possible with even Amazon EC2’s own
management console.

The management commands stay the same, which enables the user to keep
managing virtual machines the exact same way regardless if they are local or in
a cloud. It is even possible with projects containing both local virtual machines
and cloud instances and subsequent management (starting, stopping, building,
removing) of these as an atomic unit:

mln build -f projectfile.mln
mln < start |stop > -p projectname

5

In order to cope with long-term management of projects, MLN provides an
”upgrade” command which allows modifications to running virtual machines.
When upgrading, a new version of the project configuration file is submitted
and MLN will attempt to enact the changes based on the difference from the
previous version. The type of modification can be hardware-oriented, such as
increasing disk size or memory. It can also be used to migrate the virtual machine
from one server to another, so-called live migration, where it is supported. It is
this upgrade mechanism which allows system administrators to migrate virtual
machines which are running locally into Amazon EC2 or Eucalyptus. When
doing so, the new version of the project needs to have an ec2-block inside each
virtual machine which is to be migrated to a cloud. Another possibility is to add
virtual machines to a running project, which leads to the possibility of a scaling
site where the number of servers can be increased on demand. The command to
upgrade an existing project is: mln upgrade -S -f newprojectfile.mln

3 Case: On-demand render farm
In this scenario, we want to demonstrate how MLN can be used to create and
manage a large cluster of virtual machines which can reside either locally or in a
cloud. The case, as highlighted above,is that of a company in need for a render
farm for short periods of time. The technicians maintain a local renderfarm
running on a moderately powered computer, such as a modern desktop machine.
The following project represents the design of the render farm in its local version:

global {
project render
autoenum {

numhosts 5
superclass rendernode
hostprefix rend

}
}
superclass common {

xen
memory 512
free_space 1000M
network eth0 {

address dhcp
}
template rendernode.ext3

}
superclass rendernode {

superclass common
startup {

/scripts/rendernode.pl start
}

}
host frontend {

superclass common
template manager.ext3
startup {

/scripts/frontnode.pl start
}

}

Note that some additional parameters which would have been useful, such
as users and passwords have been omitted for clarity. The project consists of a

6

frontend virtual machine and a number of render nodes which all inherit from
the rendernode superclass. The number of render nodes (in this example 5) is
defined in the autoenum block, which removes the complexity of adding more
nodes by acting as a for-loop at parse time[6]. The project file itself will not
grow based on the number of nodes, so it could just as well be 32 nodes without
changing any of the management steps. The virtual machines are built from
templates, which are ready-made filesystems containing the render software and
libraries. The frontend node contains queueing software in order to partition the
job and manage the nodes. Building and starting the cluster is done by issuing
management directives on the project-level:

mln build -f render.mln
mln start -p render

Until now the render farm has been running locally while the technicians
have adjusted the software to work properly with their local applications. With
a low memory setting per node, this could run as local virtual machines on a
moderate desktop computer using the Xen hypervisor[2]. When it is time to run
the render farm as a more powerful cluster, a cloud provider will act as extra
infrastructure for the required period. The next step for the technician will be
to move the cluster into the cloud. This is achieved by using the MLN upgrade
command. First, a new version of the project file is written with the following
addition to the superclass common:

ec2 {
type c1.xlarge
volumes {

2G hda1 /var/log
}

}

By adding the ec2-block to the superclass, all virtual machines inheriting
from it will now be instances running in a cloud environment. This could be
either Amazon’s EC2 framework, as the name suggests, or an Eucalyptus cloud
provided by another party. There are two directives in this block. The first
is a type assignment, which will boot this VM as the most powerful hardware
allocation in terms of CPU; 8 cores and 7GB of memory. The volumes block
will assign each instance a permanent partition which will be mounted on the
/var/log folder for logging. This is useful since the EC2 frameworks do not
offer permanent storage of changes made on the virtual machines while they are
running. The changes to the project are enacted using the following command:

mln upgrade -f render_ec2.mln

MLN will now bundle and transfer the images necessary to boot the project to
the cloud environment and automate the typical steps of registering the images,
creating the permanent volumes and assigning volumes to each instance. Note,
that EC2 frameworks can boot several virtual machines from the same image,
so in this case we only need to transfer two compressed images, one for a render
node and one for the frontend. This holds regardless of the size of the render
farm. Once the upgrade process is completed, the project can be started with
the same command as above on the same machine. Having 16 render nodes
of the largest type, would provide a 128 CPU cluster, which they in terms of
management can boot up and shut down as they like just like a group of local
virtual machines.

7

It is also possible to run a secondary local copy of the cluster for updates
and then push it out again into the cloud for actual production. This can ease
lack of permanent storage of the root filesystems for both EC2 and Eucalyptus.

4 Case: Scaling web service

The ability to dynamically de- or increase it’s number of resources, be it for
performance objectives or power-management, has been the focus of many in
the wake of virtualization’s attention the last years. For most organizations
today, however, the technology is unavailable to them unless they invest heavily
in specialized products. Further, automatically scaling is not trivial, as it has
the potential to cost excessive amounts if the algorithm reacts to a false positives
or deliberate denial-of-service attacks.

In this scenario, MLN is used to add or remove nodes in a cloud belonging
to a web service. The service consists of a load balancer with the ability to
dynamically add new nodes to be used as webservers. The system administrator
can decide how many webservers to use through MLN upgrade command to the
project.

500 1000
1500

2000
2500 3000

Requests (10 requests per connection)

0

50

100

150

200

250

300

Re
pl

ie
s

pe
r s

ec
on

d

1x Webserver Avg. reply rate
1x Webserver Max/Min reply rate
2x webservers Avg. reply rate
2x webservers Max/Min reply rate
4x webservers Avg. reply rate
4x webservers Max/Min reply rate

Performance of a scaling web service

Figure 1: The performance of a scaling website when using 1, 2 and 4 webservers
running on the Amazon EC2 framework

Using a design similar to the render farm, a project consisting of the fron-
tend loadbalancer and a number of webservers is declared. Different versions of
that project would only differ in the number of webservers. Changing between
them could then be enacted using the MLN upgrade command. Each of these
commands would result in the specific number of webservers being set and can
be run in arbitrary order:

mln upgrade -S -f webservice_x1.mln
mln upgrade -S -f webservice_x2.mln

8

mln upgrade -S -f webservice_x4.mln

The figure 1 shows the performance of the website based on the number
of webservers running. The website was running on the Amazon EC2 cloud
and the loadbalancer used was perlbal. The performance data was gathered
using httperf. We see that the ability to withstand a high request rate increases
with the number of backend webservers. The maximum number of connections
per second for a single webserver seems to be around 900. As the number of
webservers is increased, we see that the performance w

One would ask why it would be desirable to keep the website running with
only one webserver when it could run with four. The answer is in essence what
cloud computing is about. A system administrator, with proper monitoring,
will be able to keep the site at a low-cost, low-power performance level during
periods of known inactivity, like night-time. During the day, a scheduled job
could increase the number of servers to two and four servers could be kept as
a short peak-hours remedy. What is important in this scenario, is that local
management commands can be used to manage cloud-based systems like we
would traditionally script system behavior, and that the mechanism to control
cloud-based systems is separated from the policy (or algorithm), enabling local
solutions.

An example of a local solution would be the implementation of automated
scaling when MLN is combined with decision making component. In the follow-
ing case, the load-balancing frontend continuously monitors the incoming rate of
connections. It is asssumed that the performance of a single webserver is known
from benchmarks and monitoring. This quota can then be used to deduct the
desired number of webservers which should be running relative to the current
rate. The avreage of a sliding window of the last 60 seconds is used for decision
making.

The frontend adjusts the number of webservers through the MLN command
and sends new versions of the project to the infrastructure it is running on. The
average rate is compared to the number of webservers every 5 seconds, however
a grace time of 15 seconds is enforced after a change is initiated in order to allow
the previous command to finish. In the experiment the web-farm runs in Amazon
EC2. The incoming rate of connections varies between 0 to 130 per second in
steps, similar to the work in [15]. A maximum of 7 backend webservers is allowed.
The webpage requires the webserver to read a file and sort its contents of 4096
bytes, simulating a site with a majority of static content but some server-side
processing. A client timout of 5 seconds is used to signify an acceptable service
level. Each webserver is found to be capable of sustaining a maximum of ca 30
connections per second. The qouta is set to 25 per second in order to allow a
little over 80% utilization of each webserver.

The traffic is generated through a series of httperf sessions, varying both the
rate and length of each session. The rate changes quickly from 0 to 130 over a
few minutes before it declines more slowly down to 20. This part investigates
the ability for the load blancer to adjust itself and follow a slow-moving trend.
A short burst at the end for only 30 seconds will test how the front-end copes

9

with sudden and short-lived bursts. The entire experiment is approximately 18
minutes long.

Data is collected both on the front-end and the traffic generator. Important
values to observe is the number of lost connections during times of pressure and
before the cluster has had time to adapt. Further the rate at which changes
can be enacted will impact the overall result. Figure 2 shows the results of one
iteration of the experiment.

00 03 06 09 12 15 18

0

100

200

300

400

500

600

Co
nn

ec
tio

n
ra

te

1

2

3

4

5

6

W
eb

se
rv

er
 n

od
es

Connection rate
Waiting clients
Sliding window average
Intended number of nodes
Number of nodes

00 03 06 09 12 15 18
0

10000

20000

30000

40000

Co
nn

ec
tio

ns

40

50

60

70
80

90

100

%
 s

uc
ce

ss
fu

l c
on

.

Connections
Replies
% Replies

00 03 06 09 12 15 18

0
20
40
60
80

100
120
140

Co
nn

ec
tio

n
ra

te Connection rate
Average reply rate

Dynamic Scaling Web Service

Figure 2: The plots show the dynamic scaling of webservers in a webfarm based
on the incoming rate of connections. Each server has a qouta of 25 conenctions
per second. The decision is made based on a sliding window og 60 seconds.

The experiment was repeated 20 times. Each time a total of 84600 connec-
tions were made to the webservice. An average of 87% were successful connec-
tions. Most of the lost connections happen during the two large surges, one at
the beginning and at 13 minutes where the connection loss was average 47% and
78% respectively.

The flexibility of the service depends on the rate at which instances can be
added or removed from the cluster. The results show that the loss of service is
only present while we wait for the new instances to become operational. The
experiments showed low variation from the average of 53.5 seconds from the
decision was made to increase with a single virtual machine until that virtual
machine was registered with the load balancer. Interestingely, in the cases where

10

two isntances were added in the same decision, they could be booted up at the
same time. Now the average was only 61 seconds until both instances were in
use. This indicates that the major factor is the boot time of the virtual machine.

5 Self-management with local policies

This part demonstrates how cloud computing can play a role in development of
advanced system policies based on ideas from agent-based behavior. A virtual
machine, compared with a physical and conventional system, has the ability to be
modified in ways which resemble that of traditional agents. They can increase in
computing power and memory while powered on or even move between locations
either while running or powered off. Virtualization provides the flexibility for
agent behavior. What is needed is the individual VMs ability to enact behavior
based on its own local goals.

The traditional approach of managing virtual machines is to build a frame-
work which handles and monitors all the virtual machines combined with an
algorithm for balancing the virtual machines across the physical machines. How-
ever, this approach has some drawbacks when seen from the perspective of the
user:

• Cloud providers are unaware of each other, while the users more likely will
have virtual machines in multiple clouds in the future. It is difficult to
get homogeneous treatment of your virtual machine across the different
clouds, which complicates coordinated management of all resources.

• Load balancing algorithms are very basic and limited to typical services like
web applications. The customers can not decide which factors to prioritize,
like accepting poor performance in order to keep costs down.

• Interfacing with a cloud is often done through a graphical application in-
tended for humans. It is difficult to program your own algorithm on top
which would give your virtual machines a specialized policy across multiple
cloud providers.

The decoupling of high-level management algorithms from the infrastructure
is a necessary step in order to let the virtual machines manage them selves. We
will next show two examples where a virtual machine will be aware of multiple
infrastructure providers and make decisions locally as to where it should be
located based on its own policy. Further, we show that this can be achieved
with conventional tools common in the field of configuration management.

5.1 Service optimization through user proximity

In [3] we let the virtual machine run a web-service and monitor the origin of
its users. We introduced three location where the virtual machine could move
freely based on its own local decision. The location were one in the United
States and two in Norway. In order to achieve the best service to the majority

11

of its current users, the virtual machine decided where to stay based on a short
history of incoming user requests. By introducing curve-based behavior at each
location relative to local working hours, we observed that the virtual machine
moved back and forth between Norway and The United States.

The virtual machine was able to change its own location by having a local
version of its own MLN project and by the ability to communicate changes
down to the framework using the MLN client and issuing an upgrade with a
new version of its project. The framework itself is passive and does not do any
load balancing or optimization itself. The decision is made entirely inside of
the virtual machine, based on its own policy. The configuration management
tool Cfengine[7, 8], was used to monitor the clients, analyze the usage and make
the decision to migrate. Dynamic DNS is used to offer the same address to the
clients regardless of the virtual machines current location.

The plot below shows the result from migrating a virtual machine between
two norwegian cities, Oslo and Gjøvik, with induced difference in time-zones.
The virtual machine uses a simple policy to decide where to stay: The desired
location has more than 60% of the total current clients and their trend is rising
in the last 15 minutes. The dotted line represents the threshold of 60% while the
line around it depicts the current percentage of the location with the most users.
The two sine curves show the activity from the two cities, normalized to fit the
plot. The round-trip time, as seen from Gjøvik, is shown in the bottom line.
The results show that the simple policy migrates the machine to Oslo at the
beginning of their working hours. The RTT-value is lowest as seen from Oslo.
Gradually, the activity increases at Gjøvik, and when Oslo is past its peak, the
majority shifts and the virtual machine moves to Gjøvik. We see then that the
RTT-value becomes low for Gjøvik for the remainder of their working day.

It is important to note, that the input data is something only the virtual ma-
chine can see at all times. It would be possible to see the traffic from the frame-
work, but if Oslo and Gjøvik would represent two different providers, chances
are small they would share monitoring data.

The policy used to migrate is simple but demonstrates our point that policies
inside of the virtual machines can mimic those usually found in frameworks with
basic resource balancing. We see from the RTT value that at some migrations,
it takes time for the virtual machine to settle at its new location. This is because
we had a level of noise in our load generators, which could impact the majority
when it was still very even. However, more advanced policies with better trend
analysis can take advantage of the same mechanism to use MLN in order to
enforce its local policy.

In an addition to free movement between the cities, the virtual was given the
opportunity to add extra local disk devices when it desired to. This was utilized
in order for the virtual machine to backup its data whenever it was at a location
it considered to be trustworthy. This type of behavior fits well with the design of
popular clouds today. Amazon EC2 offers storage volumes called EBS volumes,
which mimic the exact same behavior. The EBS volumes are localized and are
therefore only available to instances in the same availability zone.

12

00:00 09:00 18:00 03:00 12:00 21:00 06:00
Time (at Oslo)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
he

 la
rg

es
t g

ro
up

 o
f u

se
rs

Request from Oslo (hits/5mins)
Request from Gjovik (hits/5mins)
Highest Request Percentage (%)
Policy for Migration
Round Trip Time from Gjovik (ms)

 Virtual Machine Migration based on the location of the majority of users
(24 hours period sine curve, 60% limit to form a majority)

= VM resides in Oslo

Figure 3: The virtual machine monitors the activity from the two locations (two
sine curves) and decides to migrate to the location with a majority of clients.

5.2 Cloud-assisted Queue processing

In this example, we will also consider a virtual machine with a local policy. The
virtual machine reads jobs from a queue and processes them in order. The jobs
vary in size and could be mostly cpu-intensive, like mathematical computations
or graphical rendering. The virtual machine resides at the company which issues
the jobs. If the queue should become too long or a number of large jobs should
reach a threshold, the virtual machine will choose to migrate into the Amazon
EC2 cloud in order to become a more powerful virtual machine. The queue
processing will speed up and when the number of jobs is small again, the virtual
machine moves back to a physical machine at the company.

In our experiment[4], we assume a queue to be made up of different jobs of
a certain type, which takes about half the time it takes to run on a local setup
when processed in the cloud. It would be possible to find a length of queue for
which it is more time efficient to migrate and run in the cloud. If the average
time taken to migrate from the local installation to the cloud Mt, then there
exists a time Lt which is the time taken for the queue to be processed locally
for which Lt = Ct + Mt where Ct is the time to process the queue in the cloud.
For migration to be an incentive,

Lt >> Ct + Mt.

Eg. We have a queue contain units of jobs, which take 10 minutes each to
complete locally, but 5 minutes complete in the cloud. Our average migration
time from the local installation to the Amazon EC2 cloud was about 15 minutes,

13

it means that there would be equilibrium when the length of queue (n) is

n(10) = n(5) + 15

This means that for an incentive for migration, n > 3. If n = 10 for example,
it would take 10(10) = 100 minutes to process the queue locally, however it would
take 10(5) + 15 = 65 minutes to process the same queue by doing a migration
into the cloud first. This behavior was implemented on a virtual machine, using
MLN to migrate itself into the Amazon cloud every time the queue was longer
than 3. In order to control the behavior further, we introduced a maximum 6
hour allowance to be in the cloud in one day. Interestingly, migration back from
Amazon is near instantaneous, since no changes are stored anyway in the cloud,
we can simply boot the filesystem we sent into the cloud when we migrated last.

6 Discussion

MLN provides a familiar interface to multiple scenarios, spanning two important
cloud technologies in addition to provide local virtual machine management. We
believe that local, user-oriented management of virtual machines is more benefi-
cial than todays framework-oriented approach. It is unlikely that an organization
which utilizes clouds will only be a tenant at one provider, but will instead have
different providers in order to gain their individual pricing advantage. A famil-
iar tool for management will enable seamless adoption of new cloud providers
without learning their particular interface.

Another important factor, is that of monitoring and detecting phase changes
on services. Data centers are often criticized for having under-utilized servers
which waste power. This is true, but one fails to see that for one very important
moment, the servers can become fully utilized. Detecting such a change of phase
from idle to active, is a prerequisite for dynamically scaling services. We have
shown that such algorithms can be implemented inside of the virtual machines
themselves instead of having a resource-balancing infrastructure. With MLN,
the task of implementing an algorithm, be it schedule bsed or dynamic, is that
of scripting rather than heavy software developement.

The most obvious case where this is useful is when moving from one provider
to another. It is unlikely that they will offer the same algorithms or interface for
resource management. Bundling it inside of the virtual machines and moving
them means keeping the operations logic across the providers. However, there are
problems with our approach as well. If the virtual machine was to be ”ignorant”
of other virtual machines, how should they organize themselves? If, on the
other hand, all virtual machines would know about all other virtual machines,
we would in effect duplicate what would be almost the same analysis on all the
nodes, which could waste resources.

The implementation of a scaling web-services show that MLN can function
as an enabler for advanced behavior. The scaling algorithm used was basic
but was able to adapt and increase in the rate of incoming conections based on
prior knowledge. Using a-priori knowledge of a individual nodes performance for

14

determining the quota per node might seem static and contrast to approaches
that rely on machine learning. However, in a system administration context,
the service administrator may already have priori knowledge from when the
service was tested during its developement and deployment before it went into
production. It is therefore reasonable to assume that performance bondaries are
known in many contexts. It is outside of the scope of this work to fine-tune
the scaling algorithm used for optimal performance. Instead, the point is that
different algorithms can be implemented and exchanged with transparency to
the instance management layer.

The field of mobile agents comes to mind in the later cases. The virtual
machines behavior can be characterized as that of simple, reactive agents. The
idea is intriguing, as this opens the door to use many of the established concepts
of group-consensus, trust, local belief and market-place dynamics. The virtual
machine as not simply an operating system instance, but rather a mobile agent
with the capabilities to move about and fulfill its (or their) mission is interesting.
At the same time, this agent’s mission is to do real work, such as running an
optimal service for its organization by being closest to its users. This brings
together the field of artificial intelligence and system administration in a new
way, which should be explored further. It is our concern, that over-focusing
on building algorithms for frameworks and leaving the virtual machines passive
may overshadow the potential of this agent-based behavior.

7 Conclusion

This paper addresses the management of virtual machines from a local system
administrators perspective where IaaS-type frameworks such as Amazon EC2
and Eucalyptus are utilized for increased performance and flexibility. We show
that advanced management concepts can be achieved using MLN and familiar
tools in the system administration community without the need to use special
web-based management consoles. Our scenarios showcase cloud-oriented man-
agement which combines both local virtual machines and cloud instances. An
on-demand render farm and scaling website represent what companies would
be interested in realizing today. Lastly, we consider the effect of putting the
decision-making capabilities of a dynamic service inside of the virtual machine,
enabling it to behave in a manner more likely to mobile agents.

Aknowledgements

The author would like to thank Lu Xing and Nii Apleh Lartey for their contri-
butions to this work.

References

[1] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil
Soman, Lamia Youseff, Dmitrii Zagorodnov: The Eucalyptus Open-source

15

Cloud-computing System. Proceedings of 9th IEEE International Symposium
on Cluster Computing and the Grid, Shanghai, China. pp.124-131, ISBN:
978-0-7695-3622-4, 2009, ACM Press

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt and A. Warfield: Xen and the art of virtualization: SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, 2003, 1-58113-757-5, 164–177, ACM Press

[3] Lu Xing: A Self-management Approach to Service Optimization and System
Integrity through Multi-agent Systems. Master Thesis, University of Oslo,
2008

[4] N. Apleh Lartey Virtual Machine Initiated Operations Logic for Resource
Management Master Thesis, University of Oslo, 2009

[5] K. Begnum and K. Koymans and A. Krap and J. Sechrest: Using virtual ma-
chines in system and network administration education. Proceedings of the
System Administration and Network Engineering Conference (SANE),2004

[6] K. Begnum, M. Disney, AE. Frisch and I. Mevaag: Decision support for
virtual machine re-provisioning in production environments. Proceedings of
the 21st conference on Large Installation System Administration Conference,
ISBN:978-1-59327-152-7, p. 1-10, USENIX Association, 2007

[7] M. Burgess, A site configuration engine, COMPUTING SYSTEMS Volume:
8 Issue: 3 Pages: 309-337 Published: SUM 1995

[8] Burgess M, Ralston R Distributed resource administration using Cfengine
SOFTWARE-PRACTICE & EXPERIENCE Volume: 27 Issue: 9 Pages:
1083-1101 Published: SEP 1997

[9] VM3: Measuring, modeling and managing VM shared resources Author(s):
Iyer R, Illikkal R, Tickoo O, et al. Source: COMPUTER NETWORKS Vol-
ume: 53 Issue: 17 Special Issue: Sp. Iss. SI Pages: 2873-2887 Published:
DEC 3 2009

[10] Sandpiper: Black-box and gray-box resource management for virtual ma-
chines Author(s): Wood T, Shenoy P, Venkataramani A, et al. Source: COM-
PUTER NETWORKS Volume: 53 Issue: 17 Special Issue: Sp. Iss. SI Pages:
2923-2938 Published: DEC 3 2009

[11] Harnessing Cloud Technologies for a Virtualized Distributed Computing In-
frastructure Author(s): di Costanzo A, de Assuncao MD, Buyya R Source:
IEEE INTERNET COMPUTING Volume: 13 Issue: 5 Pages: 24-33 Pub-
lished: SEP-OCT 2009

[12] K. Begnum: Manage Large Networks of virtual machines. Proceedings of
the 20th Large installation system administration conference, p. 16 - 28.
2006, USENIX Association

16

[13] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes and R. J. Figueiredo: VM-
Plants: Providing and Managing Virtual Machine Execution Environments
for Grid Computing. SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, 2004 p. 7. isbn: 0-7695-2153-3, IEEE Computer Society

[14] K. Begnum: Towards Autonomic Management in System Administration.
PhD Thesis, University of Oslo, 2008 issn: 1501-7710, Unipup

[15] M. Steinder, I. Whalley, J. Hanson and J. Kephart: Coordinated Man-
agement of Power Usage and Runtime Performance NOMSIEEE (2008), p.
387-394

[16] A. Couch and M. Chiarini: Dynamics of resource closure operators Lec-
ture Notes In Computer Science; Vol. 5637 Proc. Autonomous Infrastructure
Management and Security 2009 P. 28 - 41, ISBN:978-3-642-02626-3

17

